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Abstract— This paper proves that in an unbalanced multi-
phase network with a tree topology, the semidefinite program-
ming relaxation of optimal power flow problems is exact when
critical buses are not adjacent to each other. Here a critical bus
either contributes directly to the cost function or is where an
injection constraint is tight at optimality. Our result generalizes
a sufficient condition for exact relaxation in single-phase tree
networks to tree networks with arbitrary number of phases.

I. INTRODUCTION

Optimal power flow (OPF) is a mathematical program
that minimizes disutility subject to physical laws and other
constraints [1]. It was first proposed in [2] and there is a vast
literatures on a large number of different solution methods.
In general, the OPF problem under alternating current (AC)
model is both non-convex and NP-hard [3], [4]. There is
thus a strong interest in studying its convexification or
approximation; see e.g. a recent survey in [5] on relaxations
and approximations of OPF. Using semidefinite program-
ming (SDP) to relax the non-convex constraints was first
proposed in [6], [7], and turns out to have good performance
in many testcases [8], [9]. Many papers have proposed
sufficient conditions under which the SDP relaxation is exact
for a single-phase radial network (i.e. network with a tree
topology) or its single-phase equivalent of a balanced three-
phase network, e.g. [10], [11], [12], [13], [14].

Most radial networks are however unbalanced multiphase,
e.g., [15], [16]. SDP relaxation has recently been applied
to unbalanced multiphase radial networks [17], [18], [19],
[20]. Simulation results in these papers suggest that SDP
relaxation is often exact even though no sufficient con-
dition for exact relaxation is known to the best of our
knowledge. Indeed, it has been observed in [21], [22], [23]
that a multiphase unbalanced network has an equivalent
single-phase circuit model where each bus-phase pair in
the multiphase network is identified with a single bus in
the equivalent model. The single-phase equivalent model is
then a meshed network and therefore existing guarantees on
exact SDP relaxation are not applicable. Most distribution
systems are unbalanced multiphase networks [24] and hence
the performance of SDP relaxation of OPF on these networks
is important.
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In this paper, we generalize the sufficient condition for
single-phase network proposed in [12] to the multiphase
setting. It is shown that when the critical buses or bottleneck
buses in a network are non-adjacent, then the SDP relaxation
is exact. We prove in this paper the exactness results when
the SDP has a unique solution, and state the result for the
case of multiple solutions without proof.

II. SYSTEM MODEL

A. Network Structure

We use a similar model as in [18], [19].We assume that all
buses have the same number of phases and all generations
and loads are Wye-connected. Let the underlying simple
undirected graph be G = (V, E) where V = {0, 1, . . . , n−1}
denotes the set of buses and E the set of edges. Throughout
the paper, we will use (graph, vertex, edge) and (power
network, bus, line) interchangeably. Without loss of gener-
ality, we let bus 0 be the slack bus where the voltage is
specified. Assume all buses have m phases for m ∈ Z+.
We will use (j, k) and j ∼ k interchangeably to denote
an edge connecting bus j and k. Consider an m-phase line
(j, k) characterized by the admittance matrix yjk ∈ Cm×m,
we assume yjk is invertible. The admittance matrix Y ∈
Cmn×mn for the entire network can be divided into n × n
number of m×m block matrices. Let Yjk ∈ Cm×m denote
the block matrix corresponding to the admittance between
bus j and k, then we have

Yjj =
∑
k:j∼k

yjk, j ∈ V

Yjk =

{
−yjk , j ∼ k
0 , j 6∼ k .

For each bus j, let the voltages of all m phases at bus
j be the vector Vj ∈ Cm. We use Vφ

j for φ ∈ M :=
{1, 2, . . . ,m} to indicate the voltage for phase φ. Let V =
[VT

0 ,V
T
1 , . . . ,V

T
n−1]T be the voltage vector for the entire

network. Similarly, we use sφj to denote the bus injection
for phase φ at bus j. Let eφj ∈ Rmn be the base vector
which has 1 at the (jm + φ)th entry and 0 elsewhere. Let
Eφ
j = eφj (eφj )T, then we define

Y φj := Eφ
jY ∈ Cmn×mn

and

Φφ
j :=

1

2

(
(Y φj )H + Y φj

)
Ψφ
j :=

1

2i

(
(Y φj )H − Y φj

)
.
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Both Φ and Ψ are Hermitian matrices. The relationship
between bus voltages and injections can be expressed as

Re(sφj ) = VHΦφ
jV,

Im(sφj ) = VHΨφ
jV. (1)

B. Optimal Power Flow

Optimal power flow problems minimize certain cost func-
tions subject to constraints involving voltages and injections.
Here we consider problems that take the linear combination
of bus injections as the cost function and are subject to
operational constraints for both voltage magnitudes and
real/reactive injections. For problems with nonlinear cost
functions, see Section VI. Suppose the bounds V and V for
the voltage magnitudes are always positive and finite, but the
bounds for real/reactive injections can be ±∞ if there are
no such constraints.

minimize
V,s

∑
j,φ

cφj,reRe(sφj ) + cφj,imIm(sφj ) (2a)

subject to (1) (2b)

V φj ≤ |V
φ
j | ≤ V

φ

j , ∀j, φ (2c)

pφ
j
≤ Re(sφj ) ≤ pφj , ∀j, φ (2d)

qφ
j
≤ Im(sφj ) ≤ qφj , ∀j, φ (2e)

V0 = Vref (2f)

Here, Vref ∈ Cm denotes the reference voltage for m phases
at the slack bus. Substituting the decision variables s and V
with W := VVH, the following equivalent formulation of
(2) is obtained.

minimize
W≥0

tr(C0W) (3a)

subject to vφj ≤ tr(Eφ
jW) ≤ vφj , ∀j, φ (3b)

pφ
j
≤ tr(Φφ

jW) ≤ pφj , ∀j, φ (3c)

qφ
j
≤ tr(Ψφ

jW) ≤ qφj , ∀j, φ (3d)

[W]00 = vref (3e)
rank(W) = 1. (3f)

Here, vφj = |V φj |2, vφj = |V φj |2, vref = VrefV
H
ref , and [W]00

stands for the upper left m×m submatrix of W. The cost
matrix C0 =

∑
j,φ c

φ
j,reΦ

φ
j + cφj,imΨφ

j . Dropping the rank-1
constraint in (3f) yields the semidefinite relaxation.

minimize
W≥0

tr(C0W) (4a)

subject to (3b)− (3e). (4b)

We use the following exactness definition.
Definition 1: A relaxation problem (4) is exact if at least

one of its optimal solutions W∗ is of rank 1.
Given a rank-1 solution W∗ of (4), a V∗ can be uniquely
determined, which is feasible, and hence optimal, for (3).

We first make the assumption that (4) has a unique optimal
solution. In Section VI, we discuss the case when multiple
optimal solutions exist.

III. PERTURBATION ANALYSIS

We first study a perturbed version of (4).

A. Perturbed Problem

Fix a nonzero Hermitian matrix C1, and consider the
following perturbed problem for ε ≥ 0.

minimize
W≥0

tr((C0 + εC1)W) (5a)

subject to (3b)− (3e). (5b)

We say that (5) is exact if one of its optimal solution is of
rank 1.

Lemma 1: For any nonzero C1, if there exists a sequence
{εl}∞l=1 with liml→∞ εl = 0 such that (5) is exact for all εl,
then (4) is exact.

Proof: Suppose the rank-1 optimal solution to (5) for
εl is Wl. If the rank-1 optimal solution is non-unique, then
pick any one as Wl. As all the vφj are finite, we assume they
are upper bounded by a constant α. Hence the constraint (3b)
implies all the diagonal elements of W are upper bounded
by α. Since W is positive semidefinite, the norms of all their
entries can be upper bounded by α as well. Consider the set

S = {W ≥ 0 : (3b)− (3f)}. (6)

The set {W : rank(W) ≤ 1} is closed [25] and all other
constraints (3b)-(3e) also prescribe closed sets. The only W
with rank 0 is the zero matrix which violates (3e) and is thus
infeasible. Further, we have shown that for any W ∈ S , its
max norm must be upper bounded by α, so S is compact.
The infinite set {Wl}∞l=1 is a subset in S and hence has a
limit point Wlim ∈ S [26]. For any εl, (5) has the same
feasible set as (4), and hence the rank-1 matrix Wlim is also
feasible for (4). Next we show that Wlim is also an optimal
point for (4).

If there exists another feasible Wopt 6= Wlim such
that tr(C0Wlim) − tr(C0Wopt) = ν > 0. Clearly ∀W
feasible for (4), |tr(C1W)| ≤ m2n2‖C1‖∞‖W‖∞ ≤
m2n2α‖C1‖∞. For sufficiently large l such that

εl <
ν

4m2n2α‖C1‖∞
‖Wl −Wlim‖∞ <

ν

4m2n2‖C0‖∞
,

we have

tr(C0(Wl −Wlim)) ≥ −ν
4

(7a)

tr(εlC1Wl) ≥ −ν
4

(7b)

tr(C0Wlim) = tr(C0Wopt) + ν (7c)
ν

4
≥ tr(εlC1Wopt) (7d)

Summing up (7a)-(7d) gives

tr((C0 + εlC1)Wl) > tr((C0 + εlC1)Wopt).

contradicting the optimality of Wl for εl.



B. Duality

The dual problem of (5) is as follows.

maximize
λ
φ
j ,λ

φ
j ,µ

φ
j ,µ

φ

j
,

ηφj ,η
φ

j
,κ

−
∑
j,φ

(λ
φ

j v
φ
j − λ

φ
j v
φ
j + µφj p

φ
j − µ

φ
j
pφ
j

+

ηφj q
φ
j − η

φ
j
qφ
j

+ tr(κvref)) (8a)

subject to λ
φ

j , λ
φ
j , µ

φ
j , µ

φ
j
, ηφj , η

φ
j
≥ 0 (8b)

A(ε) ≥ 0. (8c)

Dual variables (λ
φ

j , λ
φ
j ), (µφj , µ

φ
j
), (ηφj , η

φ
j
) and κ correspond

to (3b)-(3e) in (5b), respectively. Specifically κ ∈ Cm×m is
Hermitian but not necessarily semidefinite positive. Matrix
A(ε) denotes

A(ε) :=
∑
j,φ

(λ
φ

j − λ
φ
j )Eφ

j + (µφj − µ
φ
j
)Φφ

j + (ηφj − η
φ
j
)Ψφ

j

+ C0 + εC1 + Π(κ) (9)

and Π(κ) is an mn ×mn matrix whose upper left m ×m
block is κ and other elements are 0. Note that the upper
and lower bounds in (3c) and (3d) could take values of ±∞.
However, since the feasible set prescribed by (5b) is compact,
the actual values of Φφ

jW and Ψφ
jW are always finite and

hence the dual variables associated with such constraints will
be 0. These constraints can be removed from (5) and (8). We
will use λ

φ

j (ε), λφj (ε) and so on to denote the Lagrange
multipliers for ε. Clearly, when ε = 0, (8) is the dual
problem of (4) with λ

φ

j (0), λφj (0) and so on as the Lagrange
multipliers. If the value of ε is clear in the context, we might
denote them simply as λ

φ

j , λφj and so on for convenience. Let
A∗(ε) be the dual matrix when dual variables are evaluated
at a KKT point.

IV. SUFFICIENT CONDITIONS

The first condition we assume is:
A1: Problem (4) is strictly feasible, i.e., there exists a

feasible point such that strict inequality holds in all
inequality constraints in (3b)-(3e).

Then the Slater’s condition is satisfied for both (4) and (5)
as they share the same feasible set, and the strong duality
between (5) and (8) holds. The KKT condition is necessary
and sufficient optimality condition for the primal (5) and the
dual (8) problem. In this section, W∗ refers to the unique
solution of (4).

A. Notations

The following notations and definitions will be used
throughout the rest of the paper.

For each bus-phase pair (j, φ), we define

fp(j, φ) :=


0, tr(Φφ

jW
∗) 6∈ {pφj , pφj }

1, tr(Φφ
jW

∗) = pφj
−1, tr(Φφ

jW
∗) = pφ

j

.

The strict feasibility in A1 guarantees that pφj and pφ
j

cannot
be attained simultaneously, so the definition above is fully

specified. Similarly we define

fq(j, φ) :=


0, tr(Ψφ

jW
∗) 6∈ {qφj , qφj }

1, tr(Ψφ
jW

∗) = qφj
−1, tr(Ψφ

jW
∗) = qφ

j

.

Definition 2: The critical objective bus set is

So := {j ∈ V : ∃φ s.t. cφj,re 6= 0 or cφj,im 6= 0}.
Definition 3: The critical constraint bus set is

Sc := {j ∈ V : ∃φ s.t. fp(j, φ) 6= 0 or fq(j, φ) 6= 0}.
For any mn × mn matrix X, we use [X]j,k to denote

the m ×m block of X from rows jm + 1 to jm + m and
from columns km+ 1 to km+m. Further, for φ ∈M, we
denote [X]φ,:j,k and [X]:,φj,k as the φth row and column of [X]j,k,
respectively. Similarly, for an mn dimensional vector x, we
use [x]j to denote the subvector of x from the (jm+ 1)th to
(jm+m)th entry. Denote

Ω(x) := {j ∈ V, [x]j 6= 0}

and we use |Ω| to denote its cardinality.
We say V1 ⊆ V is connected in G if G has a connected

subgraph whose vertex set is V1. For any node j ∈ V , we
denote the set of its neighbors in G as N (j). For K ⊆ V ,
we reload N (K) := ∪j∈KN (j).

We say a set of real numbers are sign-semidefinite if all
the non-zero numbers are of the same sign.

B. Main Results

Consider the following conditions.
A2: The underlying graph G is a tree.
A3: (So ∪ Sc) ∩N (So ∪ Sc) = ∅.
A4: So ∩ Sc = ∅.
A5: For any j ∈ So ∩ Sc and φ ∈M, cφj,refp(j, φ) ≥ 0 and

cφj,imfq(j, φ) ≥ 0.
Informally, A3 means all the critical buses are not adja-
cent to each other. A5 means if a bus is both critical in
objective function and constraints, then for all m phases,
{cφj,re, fp(j, φ)} and {cφj,im, fq(j, φ)} are sign-semidefinite,
respectively. The following two theorems provide two sets
of sufficient conditions for exact SDP relaxation.

Theorem 1: If conditions A1, A2, A3 and A4 hold, then
(4) is exact.

Theorem 2: If conditions A1, A2, A3 and A5 hold, then
(4) is exact.

Both theorems rely on strict feasibility, tree structure and
critical buses not be adjacent. Theorem 1 needs So and Sc

to be also disjoint. On the other hand, Theorem 2 allows
them to intersect, but says for each (j, φ) in the intersection,
the objective and constraints should encourage its injection to
move in the same direction. 1 Since A4 implies A5, Theorem
2 is stronger than Theorem 1. In the next section, we will
only provide a proof of Theorem 2.

1For example, if Re(sφj ) is minimized in the objective function, then the
lower bound of Re(sφj ) should not be active in the constraints.



One drawback of Theorems 1 and 2 is that the sufficient
conditions are given in terms of the optimal solution W∗.
The next result provides a sufficient condition that depends
only on the primal parameters in (2). Let

S̃c := {j ∈ V : ∃φ s.t. {±∞} 6⊆ {pφ
j
, pφj , q

φ
j
, pφj }}.

Corollary 1: Suppose A1 and A2 hold, If (So ∪ S̃c) ∩
N (So ∪ S̃c) = ∅ and So ∩ S̃c = ∅, then (4) is exact.

Proof: As Sc ⊆ S̃c, the conditions in the corollary
imply A1–A4 and thus exactness holds.

Informally, Corollary 1 shows that if all the buses involved
in the objective function and constraints are not adjacent to
each other, then the SDP relaxation is exact.

V. PROOF OF SUFFICIENT CONDITIONS

A. Review

The existing works [12], [13] prove that the optimal
solution of SDP relaxation is of rank 1 in single phase
networks. A crucial step in their proof uses the strong duality
to show that the product of the primal optimal solution W∗

and the dual matrix A∗ is a zero matrix, and hence the rank
of W∗ cannot exceed the dimension of A∗’s null space.
Under certain conditions [12], [13] prove that A∗’s null space
is of dimension at most 1. Hence the optimal primal solution
W∗ must be of rank at most 1.

This argument however breaks down in a multiphase
network for the following two reasons. First, although the
underlying graph for m phase network is still a tree, each bus
now has m different phases and might have m unbalanced
voltages in general. If we extend each phase to a separate ver-
tex in the new graph and connect every phase pair between
every two neighboring buses, then the m phase network will
be transformed into an (mn)-node meshed network with
multiple cycles [21], [22], [23]. Hence the theory for single-
phase radial network is not applicable. Second, in an m phase
network, it is unknown wether the null space of A∗ at the
optimal point is still of dimension 1. It is therefore not clear
how to prove rank(W∗) = 1 via analyzing the dimension
of null(A∗).

In the following argument, we use a similar proof frame-
work to that in [12], but the proof will be based on the
eigenvectors of W∗ instead of the dimension of null(A∗).
From now on, we suppose A1, A2, A3 and A5 hold.

B. Preliminaries

Our strategy is to prove the exactness of the perturbed OPF
problem and then use Lemma 1 to show (4) is also exact. It
is important to make sure that all the non-active constraints
will remain non-active in the perturbation neighborhood.

Lemma 2: For any nonzero C1, there exists a positive
sequence ε ↓ 0 such that for each ε in the sequence, one
can collect (µφj (ε), µφ

j
(ε), ηφj (ε), ηφ

j
(ε)) from at least one of

its KKT multiplier tuples satisfying

fp(j, φ) = 0 =⇒ µφj (ε) = µφ
j
(ε) = 0 (10a)

fp(j, φ) 6= 0 =⇒ fp(j, φ) · (µφj (ε)− µφ
j
(ε)) ≥ 0 (10b)

fq(j, φ) = 0 =⇒ ηφj (ε) = ηφ
j
(ε) = 0 (10c)

fq(j, φ) 6= 0 =⇒ fq(j, φ) · (ηφj (ε)− ηφ
j
(ε)) ≥ 0. (10d)

Proof: First consider any positive sequence {εl}∞l=1

such that liml→∞ εl = 0. Suppose the optimal solution to (5)
under εl is Wl (if there are multiple solutions then select one
of them). As (5b) prescribes a compact set, using a similar
argument as in the proof of Lemma 1 we know there must
be a subsequence of {εl}∞l=1, denoted by {εzt}∞t=1, such that
Wzt converges to W∗ in the max norm. The difference
‖Wzt−W∗‖∞ can be arbitrarily small for sufficiently large
t. When t is large enough, the non-active constraints in
(5b) under W∗ will remain non-active under Wzt , and the
corresponding KKT multipliers will remain 0. As a result,

fp(j, φ) = 0 =⇒ pφ
j
< tr(Φφ

jW
∗) < pφj

=⇒ pφ
j
< tr(Φφ

jWzt) < pφj =⇒ µφj (εzt) = µφ
j
(εzt) = 0,

fp(j, φ) = +1 =⇒ pφ
j
< tr(Φφ

jW
∗)

=⇒ pφ
j
< tr(Φφ

jWzt) =⇒ µφ
j
(εzt) = 0

=⇒ fp(j, φ) · (µφj (εzt)− µφj (εzt)) ≥ 0,

fp(j, φ) = −1 =⇒ tr(Φφ
jW

∗) < pφj

=⇒ tr(Φφ
jWzt) < pφj =⇒ µφj (εzt) = 0

=⇒ fp(j, φ) · (µφj (εzt)− µφj (εzt)) ≥ 0

all hold. A similar argument can also be applied to prove
(10c) and (10d).

C. Properties of Dual Matrix A∗(ε)

In order to apply Lemma 1, we construct C1 ∈ Cmn×mn
in the following manner.

[C1]jj = 0 ∈ Cm×m, for j ∈ V
[C1]jk = 0 ∈ Cm×m, for (j, k) 6∈ E

When (j, k) ∈ E , we assume j < k. If neither j nor k is in
So ∪ Sc, then we construct [C1]jk = Yjk.

If j ∈ So ∪ Sc, then A3 guarantees k 6∈ So ∪ Sc. ∀φ ∈
M, we set [C1]φ,:jk to Yφ,:

jk if cφj,re = cφj,im = fp(j, φ) =

fq(j, φ) = 0, and to (fp(j, φ) + fq(j, φ)i)Yφ,:
jk otherwise.

If k ∈ So ∪ Sc, then A3 guarantees j 6∈ So ∪ Sc.
∀φ ∈ M, we similarly set [C1]:,φjk to (Yφ,:

kj )H if cφk,re =

cφk,im = fp(k, φ) = fq(k, φ) = 0, and to (fp(k, φ) −
fq(k, φ)i)(Yφ,:

kj )H otherwise.
Finally, we set [C1]kj := [C1]Hjk for all j < k to make

C1 Hermitian.
Definition 4: An mn × mn positive semidefinite matrix

X is G-invertible for some graph G if the following two



conditions hold:
1) ∀(a, b) ∈ E , [X]ab is invertible.
2) ∀a, b ∈ V such that a 6= b and (a, b) 6∈ E , [X]ab is all

zero.
The next theorem provides a key intermediate result to

prove Theorem 2. Suppose under such C1, the sequence
guaranteed by Lemma 2 is {εl}∞l=1.

Theorem 3: Under A1, A2, A3 and A5, for each εl, the
dual matrix A∗(εl) is G-invertible. 2

Proof: The value of A∗(εl) is the same as the right
hand side of (9) when all dual variables take values at their
corresponding KKT multipliers (with respect to εl). If not
otherwise specified, all the (µφj , µ

φ
j
, ηφj , η

φ
j
) in this proof refer

to the tuple in Lemma 2 with respect to εl. Since for all
a 6= b, [Eφ

j ]ab and [Π(κ)]ab are always zero matrices, it is
sufficient to show

Q :=
∑
j,φ

(
(µφj − µ

φ
j
)Φφ

j + (ηφj − η
φ
j
)Ψφ

j

)
+ C0 + εlC1

satisfies the two conditions in Definition 4.3

For a 6= b and (a, b) 6∈ E , recall that C0 is the linear
combination of Φφ

j and Ψφ
j . When (a, b) 6∈ E , Yab is a zero

matrix and so are all [Φφ
j ]ab and [Ψφ

j ]ab. The construction
of C1 also guarantees [C1]ab is all zero. Hence [Q]ab is all
zero as well.

Now assume a < b. If (a, b) ∈ E , we have

[Q]ab

=
∑
φ

(
(µφa − µφa + cφa,re)[Φφ

a ]ab+(ηφa − ηφa + cφa,im)[Ψφ
a ]ab

)
+
∑
φ

(
(µφb − µ

φ
b

+ cφb,re)[Φφ
b ]ab+(ηφb − η

φ
b

+ cφb,im)[Ψφ
b ]ab

)
+εl[C1]ab. (11)

If neither a nor b is in So ∪ Sc, then by definition, for all
φ ∈M there must be

cφa,re = cφa,im = fp(a, φ) = fq(a, φ) = 0, (12a)

cφb,re = cφb,im = fp(b, φ) = fq(b, φ) = 0. (12b)

Equation (11) and Lemma 2 imply [Q]ab = εl[C1]ab. By
construction, [C1]ab = Yab is invertible, and so is [Q]ab.

If a ∈ So∪Sc, then A3 guarantees b 6∈ So∪Sc. Thus (12b)
holds for all φ ∈ M. For a given φ ∈ M, if (12a) holds,
then by construction, we have [Q]φ,:ab = εl[C1]φ,:ab = εlY

φ,:
ab .

If (12a) does not hold for the given φ, then we have

[Q]φ,:ab = (µφa − µφa + cφa,re + 2εlfp(a, φ))
Yφ,:
ab

2

+ (ηφa − ηφa + cφa,im + 2εlfq(a, φ))
Yφ,:
ab

2
i.

Note that Condition A5 and Lemma 2 imply both {µφa −
µφ
a
, fp(a, φ), cφa,re} and {ηφa − ηφa , fq(a, φ), cφa,im} are sign-

2If the KKT multiplier tuple at εl is non-unique, then A∗(εl) is evaluated
at the multiplier tuple in Lemma 2 satisfying (10).

3The matrix Q itself might not be G-invertible as Q might not be positive
semidefinite, but A∗ ≥ 0 always hold.

semidefinite sets, respectively. When (12a) does not hold,
at least one of {cφa,re, c

φ
a,im, fp(a, φ), fq(a, φ)} is non-zero.

As a result, there exists some non-zero σφ,:ab ∈ C such that
[Q]φ,:ab = σφ,:ab Yφ,:

ab . In short, in the case a ∈ So ∪ Sc, [Q]φ,:ab

is always a non-zero multiple of Yφ,:
ab . The invertibility of

Yab indicates all the Yφ,:
ab are independent for φ ∈ M, so

[Q]ab is also invertible.
If b ∈ So∪Sc, then A3 guarantees a 6∈ So∪Sc. Then (12a)

holds for all φ ∈M. For a given φ ∈M, if (12b) holds, then
by construction, we have [Q]:,φab = εl[C1]:,φab = εl(Y

φ,:
ba )H.

If (12b) does not hold, then similar to the previous case,
there exists some non-zero σ:,φ

ab ∈ C such that [Q]:,φab =

σ:,φ
ab (Yφ,:

ba )H. Hence [Q]:,φab is always a non-zero multiple of
(Yφ,:

ba )H. The invertibility of Yba indicates all the Yφ,:
ba are

independent for φ ∈M, so [Q]ab is also invertible.
The next theorem is a generalization of Theorem 3.3 in

[27]. While [27] studies the matrices whose non-zero off-
diagonal entries correspond to an edge in G, we extend the
results to G-invertible matrices.

Theorem 4: Let y ∈ Cmn be a non-zero vector with the
smallest |Ω(y)| satisfying Xy = 0, where X is G-invertible.
Then Ω(y) is connected in G.

Proof: If not, then assume Ω(y) = Ω1∪Ω2 where non-
empty sets Ω1 and Ω2 are not connected in G. Construct ỹ
in the following manner:

[ỹ]k =

{
[y]k , k 6∈ Ω2

0 , k ∈ Ω2
.

Then for each j ∈ Ω1,

[Xỹ]j =
∑
k∈V

[X]jk[ỹ]k = [X]jj [ỹ]j +
∑
k:k∼j

[X]jk[ỹ]k

=[X]jj [y]j +
∑
k:k∼j

[X]jk[y]k = [Xy]j = 0.

The third equality above is due to the fact that j ∈ Ω1 is not
connected to any nodes in Ω2. Therefore,

ỹHXỹ =
∑
j∈V

[ỹ]Hj [Xỹ]j =
∑
j∈Ω1

[ỹ]Hj [Xỹ]j +
∑
j 6∈Ω1

[ỹ]Hj [Xỹ]j

=
∑
j∈Ω1

[ỹ]Hj 0 +
∑
j 6∈Ω1

0H[Xỹ]j = 0.

Since G-invertibility implies X ≥ 0, there must be Xỹ = 0
as well. As |Ω(ỹ)| = |Ω1| < |Ω(y)| and ỹ is non-zero by
construction, it contradicts the minimality of |Ω(y)|.

D. Proof of Theorem 2

We now prove that (4) is exact under conditions A1, A2,
A3 and A5. According to Lemma 1, we only need to show (5)
is exact for any εl in the sequence {εl}∞l=1 used in Theorem
3. If (5) is not exact, then there exists an optimal solution
W∗ such that rank(W∗) ≥ 2. 4 Note that in this subsection,
W∗ stands for the optimal solution to (5).

4Note that rank(W∗) cannot be 0 as the constraint [W∗]00 = vref

requires W∗ to be a non-zero matrix.



Suppose the eigen-decomposition of W∗ is

W∗ =
mn∑
l=1


lulu
H
l

where 
1 ≥ 
2 ≥ . . . 
mn ≥ 0 are W∗’s eigenvalues in

decreasing order and ul is the eigenvector associated with 
l.
All the ul are non-zero and orthogonal. As rank(W∗) ≥ 2,

we have 
2 > 0. Now let 2 ≤ L ≤ mn be the largest number

such that 
L > 0, then we have

VrefV
H
ref = [W∗]00 =

L∑
l=1


l[ul]0[ul]
H
0 =: UUH,

U :=
[√


1[u1]0,
√

2[u2]0, . . . ,

√

L[uL]0

]
.

If the rank of U is strictly greater than 1, then we can find

z ∈ span(U) such that zHVref = 0. Then UHz �= 0 implies

0 =zHVrefV
H
refz = zHUUHz > 0.

The contradiction means rank(U) ≤ 1, and therefore [u1]0
and [u2]0 are linearly dependent. If [u1]0 = r[u2]0 for some

r ∈ C, then we construct ũ = u1 − ru2. Otherwise [u2]0
must be zero and we construct ũ = u2. Clearly we have

ũ �= 0, [ũ]0 = 0. (13)

On the other hand, KKT conditions give tr(A∗W∗) = 0.

As both A∗ and W∗ are positive semidefinite, we have

0 =tr(A∗W∗) = tr
(
A∗

L∑
l=1


lulu
H
l

)

=
L∑

l=1

tr
(

lA

∗ulu
H
l

)
=

L∑
l=1

tr
(

lu

H
l A

∗ul

) ≥ 0.

The equality holds only when A∗ul = 0 for all l ≤ L.

Hence

A∗ũ = 0. (14)

As (13) has shown 1 ≤ |Ω(ũ)| ≤ n − 1, putting together

Theorem 3, Theorem 4 and (14) implies that there exists û
such that Ω(û) is non-empty, connected in G, 1 ≤ |Ω(û)| ≤
n − 1, and A∗û = 0. Let j be a node not in Ω(û) but is

connected to some node k ∈ Ω(û). Since A2 requires G to

be a tree and Ω(û) is connected in G, k must be the only

node in Ω(û) which is connected to j �∈ Ω(û). Otherwise

there is a cycle. Then

[A∗û]j =
∑
l∈V

[A∗]jl[û]l = [A∗]jj [û]j +
∑
l:l∼j

[A∗]jl[û]l

=[A∗]jj0+ [A∗]jk[û]k +
∑

l:l∼j,l �∈Ω(û)

[A∗]jl[û]l.

As [û]l = 0 for l �∈ Ω(û), we have [A∗û]j = [A∗]jk[û]k.

Further, (j, k) ∈ E and the G-invertibility of A∗ implies

[A∗]jk is invertible. Node k is in Ω(û) implies [û]k �= 0. As

a result, [A∗û]j = [A∗]jk[û]k must be non-zero, contracting

A∗û = 0. This implies that (5) is exact. Theorem 2 is

proved.

650

646 645

632

633 634

671680 684 611

652

Fig. 1. An 11 bus network revised from IEEE 13 node test feeder. The
switch in the original system is assumed to be open so 2 buses are removed.

VI. DISCUSSION AND EXAMPLE

A. Discussion

The main results in this paper are Theorem 1, Theorem

2 and Corollary 1. They provide three sets of sufficient

conditions under which the SDP relaxation for unbalanced

multiphase network is exact. These results have different

interpretations and implications.

Sufficient conditions in Corollary 1 do not rely on the

optimal solution of SDP relaxation, and can be checked

a priori. Though these conditions are still restrictive in

practice, we hope this result can stimulate more work on

unbalanced multiphase networks.

Conditions in Theorems 1 and 2 rely on knowing the active

constraints at the optimal point, which cannot be checked a

priori. Nevertheless, the actual value of the optimal point is

not involved as long as one knows where the bottlenecks are.

These conditions also suggest that relaxation is more likely

to be exact if critical buses turn out to be spread over the

network rather than concentrated in some neighborhood

So far we have assumed that (4) has a unique optimal

solution so that inactive constraints at the optimal solution

of (4) remain inactive under a small perturbation. If (4) has

multiple solutions, A4 and A5 in Theorems 1 and 2 and

condition So ∩ S̃c = ∅ in Corollary 1 need to be replaced by

the linear separability condition proposed in [12]. The proof

will be similar to that in this paper.

To generalize the result here to nonlinear cost functions,

note that the proposed conditions involving the cost function

only rely on the signs of cφj,re and cφj,im. The same argument

in this paper can be extended to the nonlinear case when the

cost function is convex, monotonic and additively separable

in injections.

B. Illustrative Example

We use an 11 bus radial network shown in Fig. 1, adapted

from IEEE 13 node test feeder, to illustrate our theoretical

result. The line configuration is reassigned and noise is added

to the admittance matrix, so all the buses have three complete

phases and each yjk is invertible. For illustrative purpose, all

the real/reactive injections are bounded from at most one

direction. Table I summarizes our setup. The ‘+’ and ‘-’

refer to the sign of cφj,re or cφj,im in the cost function. For

constraints, ‘u’ (or ‘l’) means the upper (or lower) bound for



TABLE I
ILLUSTRATIVE EXAMPLE SUMMARY.

Buses 650 632 633 634 645 646 671 684 611 652 680
Phases a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c

Objective (real) + + + - - - + + + - - - + + + + + +
Objective (reactive) + + + - - - - - - + + + + + +
Constraints (real) u u u l l l u u u l l l u u u

Constraints (reactive) u u u l l l l l l u u u u u u

the corresponding injection is finite. It is easy to check that
no matter which constraints are active at the optimal point,
conditions A1, A2, A3 and A5 must hold, so Theorem 2
implies the optimal solution is of rank 1.

After solving the problem, there are actually nine active
constraints, highlighted in light red in Table I. The largest
two eigenvalues of the resulting optimal solution W∗ are
36.90 and 1.44 × 10−10, respectively. It confirms that W∗

is indeed rank 1 up to numerical precision.
Finally, we refer to [18] for more simulation results, which

show that semidefinite relaxation is also exact for IEEE 13,
37, 123-bus networks and a real-world 2065-bus network. In
the simulation of [18], our sufficient conditions are actually
violated since the cost function is set as∑

j∈V

∑
φ∈M

Re(sφj ).

It means even when all the buses are critical, the semidefinite
relaxation can still be exact.

VII. CONCLUSION

We have proposed sufficient conditions for exact SDP
relaxation in unbalanced multiphase radial networks. These
conditions suggest that having critical buses not adjacent to
each other encourages exact relaxation.
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