

1 **Title:** A Thermodynamic Evaluation of Antibody-Surface Interactions in Multimodal Cation
2 Exchange Chromatography

3
4 **Authors:** Ronak B. Gudhka¹, David J. Roush², Steven M. Cramer¹

5 **Affiliations:** ¹Howard P. Isermann Department of Chemical and Biological Engineering and
6 Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110
7 Eighth Street, Troy, New York 12180, United States

8 ²Biologics Process R&D, Merck Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey
9 07033, United States

10
11 **Corresponding Author:** Dr. Steven M. Cramer

12 **Corresponding Author's affiliations:** Dept. of Chemical and Biological Engineering and Center
13 for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth
14 Street, Troy, New York 12180, United States

15 **Corresponding Author's Email:** crames@rpi.edu

16 **Corresponding Author's telephone number:** 518-276-6198

17 **A Thermodynamic Evaluation of Antibody-Surface Interactions in**
18 **Multimodal Cation Exchange Chromatography**

19 Ronak B. Gudhka¹, David J. Roush², Steven M. Cramer¹

20 ¹Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and
21 Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States

22 ²Biologics Process R&D, Merck Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States

23 **1 Abstract**

24 In this study, the thermodynamics of binding of two industrial mAbs to multimodal cation exchange systems was investigated over a range of buffer and salt conditions via a van't Hoff analysis of retention data. Isocratic chromatography was first employed over a range of temperature and salt conditions on three multimodal resins and the retention data were analyzed in both the low and high salt regimes. While mAb retention decreased with salt for all resins at low salts, retention increased at high salts for two of the resins, suggesting a shift from electrostatic to more hydrophobic driven interactions. The retention data at various temperatures were then employed to generate non-linear van't Hoff plots which were fit to the quadratic form of the van't Hoff equation. At low salts, retention of both mAbs decreased with increasing temperature and the van't Hoff plots were concave downward on Capto MMC and Nuvia cPrime, while being concave upward on Capto MMC ImpRes. Different trends were observed on some of the resins with respect to both the concavity of the van't Hoff plots as well as the impact of temperature on the favorable enthalpies in the low salt regime. Interestingly, while increasingly favorable enthalpy with temperature was observed with Capto MMC and Nuvia cPrime at low salt, favorable enthalpy decreased with temperature for Capto MMC ImpRes. At high salts, binding of both mAbs on the two Capto resins were consistently entropically driven, consistent with desolvation. While the negative heat capacity data at low salts indicated that desolvation of polar/charged groups were important in Capto MMC and Nuvia cPrime, the positive data suggested that desolvation of non-polar groups were more important with Capto MMC ImpRes. Finally, the data at high salts indicated that desolvation of non-polar groups was the major driver for binding of both mAbs to the Capto resins under these conditions.

45 **Key words:** Multimodal chromatography, thermodynamics, non-linear van't Hoff plot,
46 monoclonal antibody.

47 **2 Introduction**

48 Traditional platform processes for the downstream purification of monoclonal antibodies
49 (mAbs) have employed post protein A polishing steps that have used single mode interaction
50 systems such as ion exchange (IEX) or hydrophobic interaction chromatography (HIC) [1,2].
51 Recently, multimodal (MM) chromatography has emerged as a promising alternative polishing
52 step owing to enhanced selectivity resulting from the combination of electrostatic, hydrogen
53 bonding, hydrophobic and/or aromatic interactions within a single ligand [3–8]. Further, MM resin
54 materials that vary in surface properties (e.g. geometric presentation of functional groups, ligand
55 density, linker between resin and ligand) have been shown to interact differently with libraries of
56 model proteins thus creating unique windows of selectivity as compared to the traditional single
57 mode interaction systems [9–12].

58 Our group and several others have been actively working on improving our understanding of
59 selectivity in MM chromatography [9–29]. Chung et al. employed a library of cold shock protein
60 B mutant variants to demonstrate the importance of charge and hydrophobicity on the protein
61 surface for interacting with MM chromatographic systems [13]. Nfor et al. developed an empirical
62 mixed mode isotherm to model the binding of proteins to MM resins [24]. Tong et al. have
63 employed Molecular Dynamics (MD) simulations to provide a molecular level understanding of
64 the mechanisms involved in the binding of the IgG1-Fc domain to a hydrophobic charge induction
65 chromatographic (HCIC) system at different pH and ligand densities [29]. Woo et al. and Robinson
66 et al. have examined the retention of a library of model proteins to shed light on the effect of ligand
67 structure, chemistry and density on selectivity patterns observed in MM cation exchange (MM
68 CEX) and anion exchange (MM AEX) systems [11,12]. Srinivasan et al. have used biophysical
69 techniques (Nuclear Magnetic Resonance (NMR), Atomic Force Microscopy (AFM), Isothermal
70 Titration Calorimetry (ITC)) in combination with Molecular Dynamics (MD) simulations to study
71 the binding of a preferred face of ubiquitin on two MM CEX surfaces; Capto MMC and Nuvia
72 cPrime [22,23]. Robinson et al. have also examined potential preferred binding regions of mAbs
73 in MM CEX systems [16]. While these and other studies have improved our understanding of
74 protein-surface interactions in MM systems, there is still a lack of understanding of the
75 thermodynamic basis of these interactions, especially for large complex biomolecules like mAbs.

76 There is a vast literature that has employed a van't Hoff (VH) analysis of chromatographic
77 retention data to study the thermodynamics [30–39]. Roush et al. used linear VH plots to evaluate
78 the effect of temperature on the binding of recombinant rat cytochrome b₅ to an AEX resin [30].
79 While linear VH plots are associated with a zero heat capacity change ($\Delta C_{P,ads}$), these plots are
80 often non-linear, indicating a heat capacity change (either positive or negative) associated with
81 binding. Thus, protein chromatography often requires a non-linear VH analysis in order to fully
82 describe the behavior. This has been carried out using either a logarithmic approach which assumes
83 the heat capacity change to be temperature invariant or a quadratic formulation that allows for
84 variation of $\Delta C_{P,ads}$ with temperature [31]. Several groups have employed these non-linear VH
85 analyses to elucidate the mechanisms of protein binding in various single mode interaction systems
86 such as HIC and IEX. In the current study, we employ the quadratic formulation of the VH
87 equation to examine how the enthalpic and entropic contributions to binding change with mAb
88 and salt concentration in different MM CEX chromatographic systems.

89 In the current paper, MM chromatographic separations that have previously been reported
90 to exhibit interesting selectivity trends for two commercial mAbs are examined from a
91 thermodynamic perspective. Isocratic retention of these mAbs on three commercial MM CEX
92 resins (Capto MMC, Nuvia cPrime and Capto MMC ImpRes) is carried out over a range of salt
93 and temperature conditions and a quadratic Van't Hoff analysis is carried out to determine the
94 enthalpic and entropic contributions as well as the heat capacity changes associated with these
95 interactions at low and high salt regimes. The work presented in this paper provides
96 thermodynamic insights into mAb binding in MM CEX chromatography.

97 3 Materials and Methods

98 3.1 Materials

99 Purified IgG1 antibodies (A, pI 7.59 and C, pI 8.27) were supplied by Merck and Co., Inc.
100 (Kenilworth, NJ, 07033, USA). Both the antibodies have a common F_C domain but have different
101 Fab domains as identified by the amino acid sequence. Disposable PD10 desalting columns were
102 purchased from Cytiva (Uppsala, Sweden). Sodium acetate, Tris base, sodium chloride and
103 hydrochloric acid were purchased from Sigma-Aldrich (St. Louis, MO, 63134, USA). CaptoTM
104 MMC and CaptoTM MMC ImpRes chromatographic resins were purchased from Cytiva (Uppsala,

105 Sweden). NuviaTM cPrimeTM chromatographic resin was donated by Bio-Rad Laboratories
106 (Hercules, CA, 94547, USA).

107 **3.2 Protein Solutions**

108 Protein solutions were buffer exchanged using the PD10 desalting columns. Briefly, the
109 column was equilibrated with buffer B (20 mM sodium acetate, Tris and 2.5 M NaCl adjusted to
110 pH 6.0). 2.5 mL of protein sample (~10 mg/mL) was added to the column and the buffer was
111 allowed to flow through. The buffer exchanged protein was eluted by addition of 3.5 mL of buffer
112 B and was diluted with appropriate amounts of buffer A (20 mM sodium acetate, Tris adjusted to
113 pH 6.0) to get the desired salt concentration as well as a final mAb concentration of 3 mg/mL.

114 **3.3 Chromatography Experiments**

115 Chromatographic media were packed into a 5 x 50 mm column and isocratic
116 chromatography was carried out at 1 column volume (CV)/min on an ÄKTATM Explorer 100
117 (Cytiva, Uppsala, Sweden) controlled by Unicorn 5.1 software (except 4°C experiments, which
118 were performed on ÄKTATM prime). Experiments were conducted in a temperature-controlled
119 room maintained at different temperatures (4°C, 17°C, 22°C, 30°C and 37°C ± 0.5°C). Buffers A
120 and B (described above) were used for all the experiments and columns were regenerated using 1
121 M sodium hydroxide to prepare the columns for the next protein injection. The column was
122 equilibrated at the desired salt concentration by appropriately mixing buffers A and B followed by
123 injection of 100 µL of buffer exchanged protein (3 mg/mL) in the running buffer. The column
124 effluent was monitored at a UV wavelength of 280 nm. An acetone pulse was used to determine
125 the retention time of an inert unretained solute. Retention time was determined by the average first
126 moment from duplicate runs.

127 **4 Theory**

128 The retention factor was determined directly from the chromatogram as [40]:

$$129 k' = \frac{t_R - t_0}{t_0} \quad (1)$$

130 where t_R is the retention time of the solute and t_0 is the retention time of an inert unretained solute.

131 The phase ratio was determined using the retention time of the unretained solute [41]

132
$$\emptyset = \frac{V - t_0 V'}{t_0 V'} \quad (2)$$

133 where V is the column volume and V' is the volumetric flowrate. It is important to note that this
 134 definition of the phase ratio considers the entire volume of the resin to be the stationary phase
 135 volume ($V - t_0 V'$), consistent with the previous literature [30–39].

136 The thermodynamic framework presented here is adopted from ref [31]. The relationship between
 137 the retention factor and the equilibrium constant is given by:

138
$$k' = K_{eq} \emptyset \quad (3)$$

139 The Gibbs free energy of adsorption is linearly related to the logarithm of the equilibrium rate
 140 constant as follows:

141
$$\Delta G_{ads} = -RT \ln K_{eq} \quad (4)$$

142 where R is universal gas constant and T is the absolute temperature. Combining equations 3 and 4
 143 along with the standard thermodynamic formulations, we obtain the linear VH equation:

144
$$\ln k' = \frac{-\Delta H_{ads}}{RT} + \frac{\Delta S_{ads}}{R} + \ln \emptyset \quad (5)$$

145 where ΔH_{ads} and ΔS_{ads} are the enthalpy and entropy changes for adsorption. This equation holds
 146 true only when the heat capacity change is zero and the enthalpy and entropy changes are
 147 independent of temperature. When the heat capacity changes for adsorption to chromatographic
 148 resins are non-zero and non-constant, the resulting non-linear quadratic VH equation is obtained:

149
$$\ln k' = a + \frac{b}{T} + \frac{c}{T^2} + \ln \emptyset \quad (6)$$

150 The parameters a , b and c can be calculated by fitting equation 6 to the experimental data and
 151 equations 7, 8 and 9 can then be used to determine the enthalpic and entropic contributions and the
 152 heat capacity change upon adsorption.

153
$$\Delta H_{ads} = -R \left(b + \frac{2c}{T} \right) \quad (7)$$

154
$$\Delta S_{ads} = R \left(a - \frac{2Rc}{T^2} \right) \quad (8)$$

155
$$\Delta C_{p,ads} = \frac{2Rc}{T^2} \quad (9)$$

156 **5 Results and Discussion**

157 **5.1 Linear Gradient Chromatography**

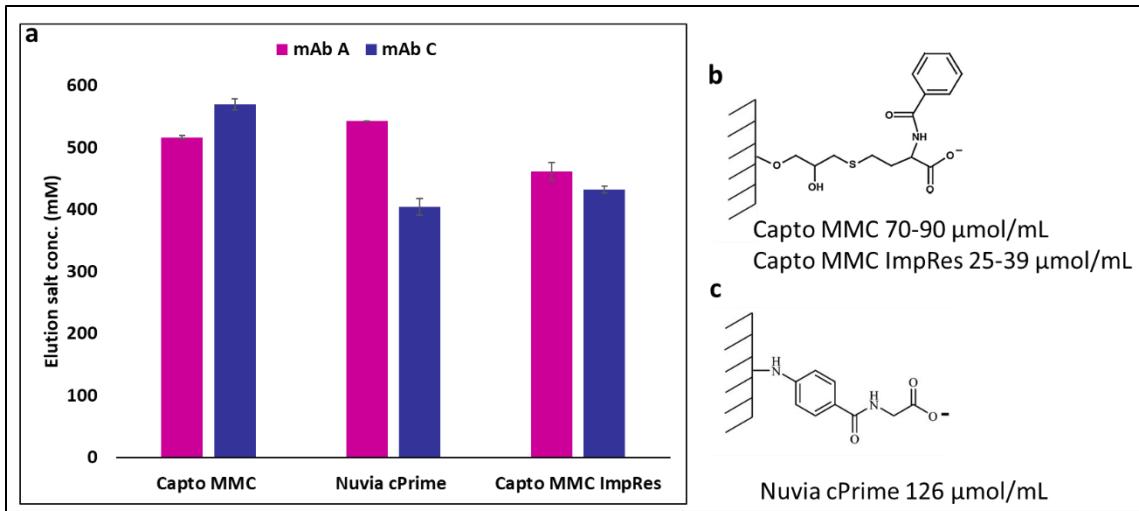
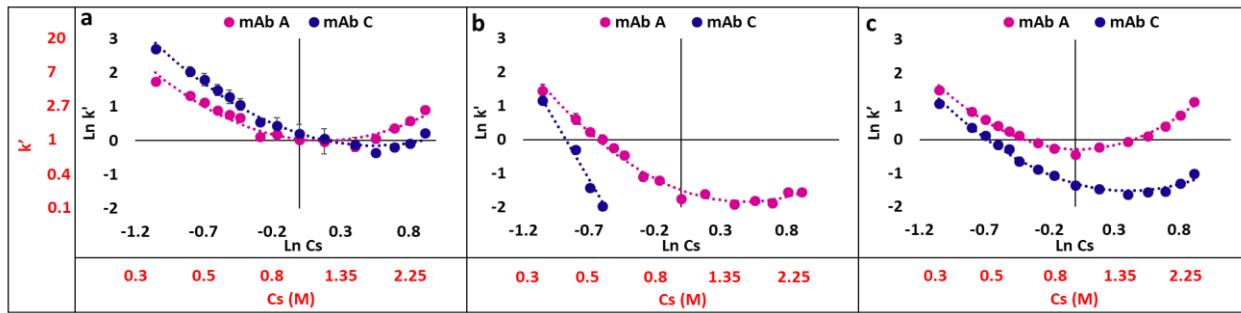



Figure 1. (a) Chromatographic retention of mAbs A (purple) and C (blue) on multimodal cation exchange chromatography systems and structures of the (b) Capto and (c) Nuvia cPrime ligand head groups (numbers in parenthesis indicate the corresponding ligand densities on the chromatographic resin surfaces). Capto MMC and Capto MMC ImpRes resins have the same ligand head group with different surface ligand density. Linear salt gradients were from 0 to 1 M NaCl, 40 column volumes, pH 6. Retention data reproduced from ref [16].

158 Our group has previously reported that two mAbs exhibited different selectivity patterns
 159 on three commercially available MM CEX resins (Capto MMC, Nuvia cPrime, Capto MMC
 160 ImpRes) [16]. These two mAbs shared a common F_C with different Fab domains resulting in pIs
 161 of 7.6 and 8.3 for mAbs A and C, respectively. The MM ligands in these resins are shown in Figure
 162 1, with the aromatic ring being more solvent exposed for the Capto MMC ligand (Figure 1b) as
 163 compared to the Nuvia cPrime ligand (Figure 1c). In addition, while the Capto MMC and Nuvia
 164 cPrime resins had relatively high ligand densities the Capto MMC Impress had significantly lower
 165 density. As can be seen in Figure 1a (data obtained from Figure 6 of ref [16]) the elution order on
 166 Capto MMC (mAb A followed by mAb C) was different than that observed in Nuvia cPrime and
 167 Capto MMC ImpRes. While the selectivity difference between Capto MMC and Nuvia cPrime
 168 was mainly due to the higher retention of mAb C on Capto MMC, the shift in selectivity in Capto
 169 MMC ImpRes was more subtle with both mAbs exhibiting reduced binding. In order to study the

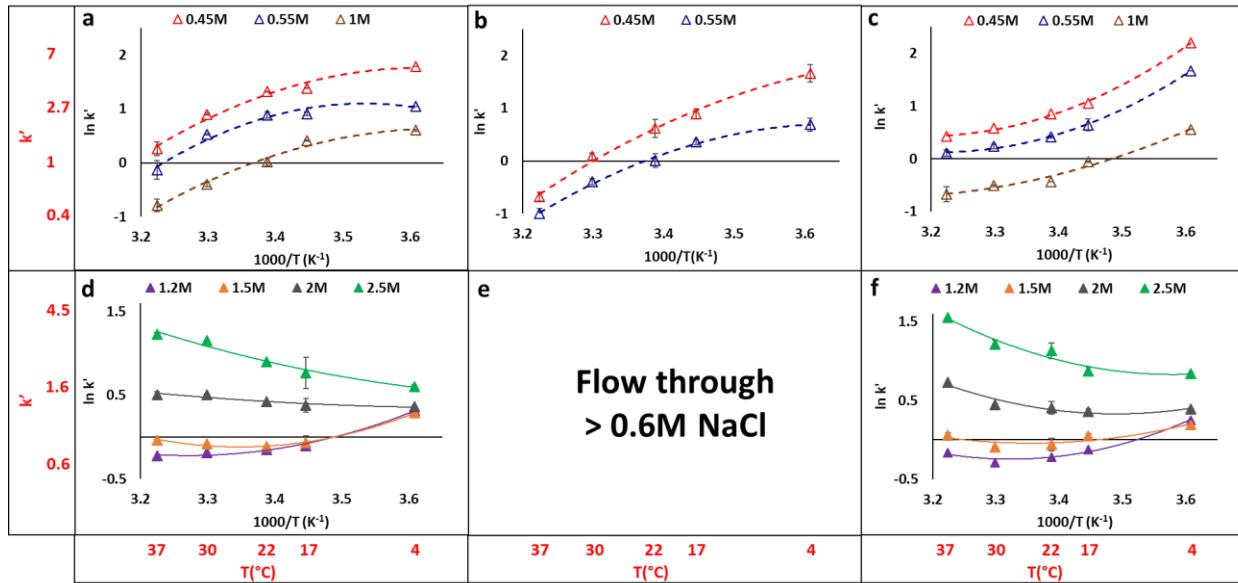
Figure 2. $\ln k'$ vs $\ln Cs$ plots for retention of mAbs A (purple) and C (blue) on (a) Capto MMC, (b) Nuvia cPrime and (c) Capto MMC ImpRes at room temperature (295 K).

170 relative electrostatic and hydrophobic behavior of these systems, we first examined the impact of
 171 salt on the retention behavior of these mAbs in the three resin systems at room temperature.

172 **5.2 Isocratic Chromatography**

173 As described in methods section, isocratic chromatography experiments were carried out
 174 with mAbs A and C on Capto MMC, Nuvia cPrime and Capto MMC ImpRes at different salt
 175 concentrations ranging from 0.45 M to 2.5 M NaCl. The retention times of the mAbs (first
 176 moment) at a given condition were used for calculating the k' 's and the resulting \ln - \ln plots for
 177 mAbs A and C on these resins at room temperature (22°C) are presented in Figure 2. To facilitate
 178 the discussion, we divide the salt concentration range into the low salt (below 1.2 M NaCl) and
 179 high salt regimes (1.2 to 2.5 M NaCl). In the low salt regime, the elution order observed in the
 180 isocratic experiments was in qualitative agreement with that seen in the linear salt gradient
 181 experiments (Figure 1a) on all resin systems. Further, in this regime the retention of both mAbs
 182 decreased with increasing salt concentrations. In this salt range, both mAbs were more retained on
 183 Capto MMC and Capto MMC ImpRes as compared to Nuvia cPrime. Interestingly, the decrease
 184 in retention with salt observed in the Nuvia resin was significantly more pronounced than that seen
 185 with the Capto resins, indicating that while electrostatic interactions were likely playing a
 186 dominant role in Nuvia cPrime the interactions in the Capto systems were more complex. It can
 187 also be seen that the Capto MMC system had higher retention and selectivity than the Capto MMC
 188 ImpRes system at low salt conditions. This is likely due to the enhanced electrostatic interactions
 189 occurring at higher ligand densities [42].

190 This difference in elution behavior on these resin systems was even more pronounced at
 191 elevated salt conditions. For the Nuvia system, while mAb C was not retained in this high salt
 192 regime, there was a very weak retention of mAb A that plateaued with increasing salt


193 concentration. In contrast, the retention of the mAbs increased in both Capto systems at the higher
194 salt concentrations. Further, while the retention plots were similar for mAb A at both ligand
195 densities, the behavior of mAb C was markedly different on the Capto MMC and Capto MMC
196 ImpRes systems.

197 At elevated salt concentrations, electrostatic interactions are screened, and hydrophobic
198 interactions tend to play a more dominant role. The difference in retention behavior between the
199 Nuvia cPrime and the Capto systems is likely due to the enhanced hydrophobicity of the Capto
200 ligand which has the more solvent exposed aromatic ring [10]. This has also been observed
201 previously when examining a range of model proteins [10,11]. Previous work on the
202 chromatographic behavior of mAbs A and C in HIC systems and their surface hydrophobicities
203 using a Surface Aggregation Propensity (SAP) analysis have established that mAb A is more
204 hydrophobic [16]. Thus, at elevated salt concentrations, it would be expected that mAb A would
205 have a higher retention than mAb C on a ligand with higher relative hydrophobic properties.
206 Further, the dramatic difference in the retention behavior of mAb C at elevated salt concentrations
207 in the Capto MMC and Capto MMC ImpRes systems is likely due to the decreased hydrophobicity
208 of the lower ligand density Capto MMC ImpRes system. This may also be related to the recently
209 hypothesized aromatic cluster behavior at the higher ligand density, which may further enhance
210 the degree of hydrophobic interactions with mAb C [19].

211 These results indicate that very different retention behavior occurred with these two mAbs
212 in three MM systems at various salt conditions. Since the retention mechanisms in multimodal
213 chromatography can be quite complex, with many modes of interactions playing a role, we carried
214 out a VH analysis to determine the thermodynamic driving forces contributing towards binding.

215 **5.3 Van't Hoff Plots**

216 Isocratic experiments were carried out over a range of salt and temperature conditions as
217 described in the experimental section and a VH analysis was carried out to determine the
218 thermodynamics. Figures 3 and S1 show representative VH plots ($\ln k'$ versus $1/T$) for the retention
219 data of mAbs A and C, respectively, on the three resin systems. Representative data for the lower
220 and higher salt regimes are presented at the top and bottom portions of the figure. The data were
221 fit to the quadratic VH equation (Eq. 6) using Matlab R2019b to determine the parameters a, b and
222 c with a maximum fitting error of 10% in a 95% confidence interval and the resulting curves are

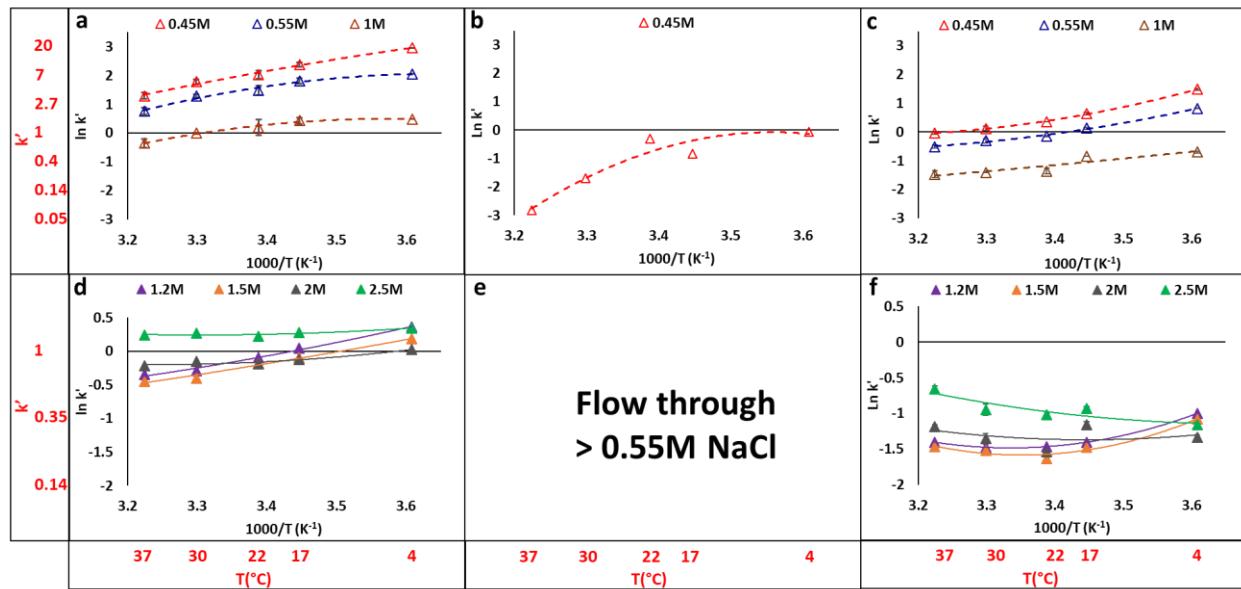


Figure 3. Non-linear van't Hoff plots for adsorption of mAb A on (a,d) Capto MMC, (b,e) Nuvia cPrime and (c,f) Capto MMC ImpRes at different salt concentrations. Curves generated by fitting the quadratic VH equation are presented as dotted lines for low salt regime (0.45, red; 0.55, blue; 1 M, brown; NaCl) and solid lines for high salt regime (1.2, violet; 1.5, orange; 2, grey; and 2.5 M, green; NaCl).

223 also presented in the Figures. As can be seen, the data were accurately represented by the non-
 224 linear VH plots. The non-linearity of the VH plots can be a result of multiplicity of interactions
 225 further indicating dependence of enthalpy and entropy of binding on temperature in the
 226 temperature range studied [31–33,43]. While non-linear VH plots can arise from both changes in
 227 thermodynamics as well as changes in phase ratio, in these MM systems under investigation it is
 228 unlikely that there are any phase ratio changes that are responsible for this non-linearity.

229 As can be seen in the Figures, at all temperatures, the retention decreased with salt in the
 230 lower salt regime and increased with salt in the higher salt regime. Further, in the low salt regime,
 231 for both mAbs, while the retention decreased with increasing temperature on all MM CEX
 232 systems, the curvature behavior was different. For example, the VH plots for mAb A were all
 233 concave downwards for Capto MMC and Nuvia cPrime (Figure 3a,b) while being consistently
 234 concave upwards for Capto MMC ImpRes (Figure 3c). The VH plots for mAb C (Figure S1a,b,c)
 235 in general exhibited the same curvature trends as observed for mAb A. The differences in curvature
 236 of these plots will be discussed in the next section on the VH analysis.

237 In the high salt regime, the binding behavior of mAb A in the Capto MMC and Capto
 238 MMC ImpRes systems were similar, with a strong temperature dependence only seen at the upper
 239 end of the high salt regime (e.g. 2.5 M NaCl). On the other hand, mAb C was weakly retained in

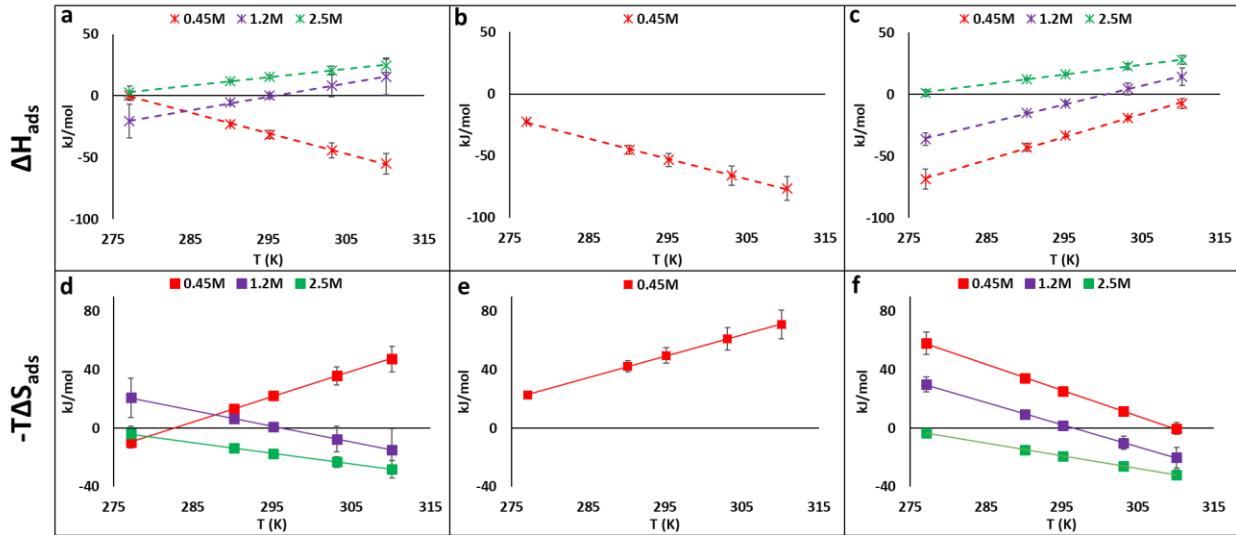


Figure S1. Non-linear van't Hoff plots for adsorption of mAb C on (a,d) Capto MMC, (b,e) Nuvia cPrime and (c,f) Capto MMC ImpRes at different salt concentrations. Curves generated by fitting the quadratic VH equation are presented as dotted lines for low salt regime (0.45, red; 0.55, blue; 1 M, brown; NaCl) and solid lines for high salt regime (1.2, violet; 1.5, orange; 2, grey; and 2.5 M, green; NaCl).

240 both Capto resin systems at the higher salt conditions and showed minimal temperature
 241 dependence (Figure S1d,f). For the Nuvia resin, there was minimal or no retention under all high
 242 salt conditions. The increased retention with increasing temperature observed with mAb A in the
 243 Capto resin systems at high salt is similar to that previously reported in some HIC systems
 244 [31,32,44]. While the data trends and the observed differences in curvature in the VH plots were
 245 quite interesting, it was also important to determine the enthalpic and entropic contributions
 246 towards these interactions in order to provide additional information.

247 5.4 Van't Hoff Analysis

248 As described in the previous section, the data from the VH plots (Figures 3 and S1) were fit
 249 to the quadratic VH equation (Eq. 6) using Matlab R2019b to determine the parameters a, b and c.
 250 The enthalpic (ΔH_{ads}) and entropic ($-T\Delta S_{ads}$) components were then calculated using equations 6-
 251 9 and are presented in the top and bottom portions, respectively, of Figures 4 and S2. To facilitate
 252 the discussion, a representative salt concentration from the low (0.45 M NaCl) and high salt (2.5
 253 M NaCl) regimes are presented as well as an intermediate salt condition (1.2 M NaCl). As can be
 254 seen in Figure 4a,b,c, the enthalpic contribution to the binding of mAb A to the MM CEX resins
 255 was dependent on temperature for all the resin systems. In the low salt regime, the results indicated
 256 that while the binding was enthalpically driven in all cases, the trends with temperature were

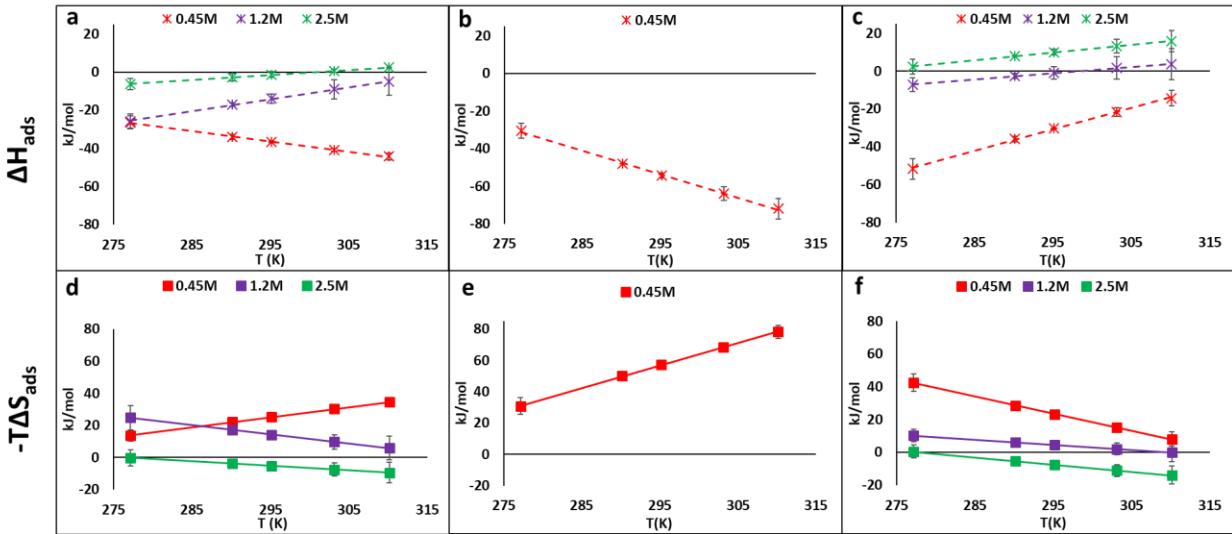


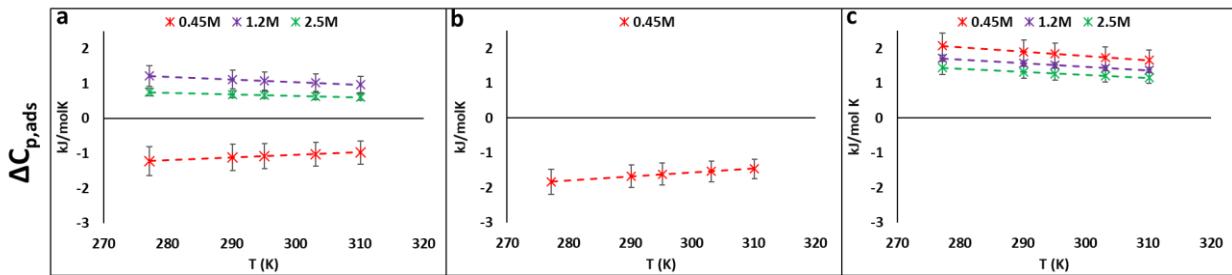
Figure 4. Enthalpic (top) and entropic (bottom) contributions at different temperatures (278, 290, 295, 303 and 310 K) and salt concentrations (0.45, red; 1.2, violet; and 2.5 M, green; NaCl) for binding of mAb A on (a,d) Capto MMC, (b,e) Nuvia cPrime and (c,f) Capto MMC ImpRes.

257 different, with the favorable enthalpic contributions increasing with temperature for Capto MMC
 258 and Nuvia cPrime systems and decreasing for Capto MMC ImpRes. In the high salt regime, the
 259 trends for mAb A were very similar for both Capto systems, with the favorable enthalpic
 260 component consistently decreasing with temperature at all salt concentrations (Figure 4a,c).
 261 Further, at the highest salt (2.5 M NaCl) the enthalpic contributions were consistently unfavorable
 262 for mAb A. For the Nuvia resin, the mAb A was weakly retained at salt concentrations above 0.45
 263 M NaCl, limiting our analysis to this relatively low salt concentration.

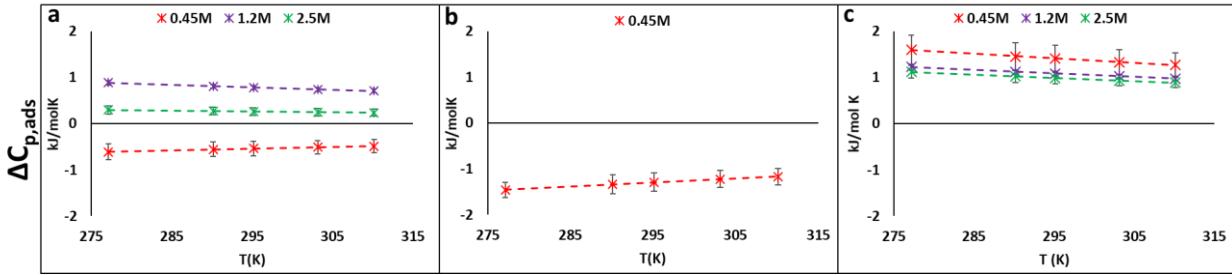
264 Interestingly, the enthalpic trends observed for mAb C on the three resins at various salt
 265 concentrations (Figure S2a,b,c) were in general quite similar to those observed with mAb A. For
 266 Capto MMC, the changes in enthalpic trends seen for mAbs A and C at different salt concentrations
 267 could potentially indicate shifts in the preferred binding regions on the mAb surface for interacting
 268 with this resin.

269 The entropic contributions ($-T\Delta S_{ads}$) to the binding of mAb A to the MM CEX resins
 270 (Figure 4d,e,f) exhibited the opposite trends with temperature as were seen with the enthalpy,
 271 indicating enthalpy-entropy compensation [31,37,45,46]. In the low salt regime (0.45 M NaCl),
 272 the entropic contribution for binding was unfavorable for all the MM CEX resins, except at very
 273 low temperature (278 K) on Capto MMC resin, where it was favorable. While the favorable
 274 entropic component decreased (positive slope) with temperature for Capto MMC and Nuvia

Figure S2. Enthalpic (top) and entropic (bottom) contributions at different temperatures (278, 290, 295, 303 and 310 K) and salt concentrations (0.45, red; 1.2, violet; and 2.5 M, green; NaCl) for binding of mAb C on (a,d) Capto MMC, (b,e) Nuvia cPrime and (c,f) Capto MMC ImpRes.


275 cPrime systems, it increased for the Capto MMC ImpRes resin. On the other hand, in the high salt
 276 regime, while we were unable to determine the entropic component in the Nuvia system due to
 277 weak retention of mAb A, the entropic trends were similar for the two Capto resins, with both
 278 exhibiting an increase in favorable entropy (negative slope) with temperature. Further, for mAb A
 279 the binding was completely entropically dominated at the highest salt (2.5 M NaCl) in both resins.
 280 As was observed with the enthalpy, the entropic trends at different conditions for mAb C (Figure
 281 S2d,e,f) were in general similar to those observed for mAb A (Figure 4d,e,f).

282 It's interesting to note that in the low salt regime, favorable enthalpic and unfavorable
 283 entropic contributions were observed for the binding of mAbs on all three MM CEX resin systems
 284 (Figures 4 and S2). The adsorption of proteins to MM resins can be driven by a complex
 285 combination of electrostatic, hydrophobic, H-bonding, van der Waals, pi-cation and/or aromatic
 286 interactions. Previous studies on microcalorimetric evaluation of protein binding to IEX systems
 287 have shown that the attractive electrostatic interactions are the major contributors towards
 288 favorable enthalpic contributions [47]. Since the binding of both mAbs on all MM resins decreased
 289 with increasing salt concentration in this low salt regime, the electrostatic interactions are likely
 290 also playing an important role here with the MM systems.


291 Interestingly, while the favorable enthalpic contributions increased with temperature for
 292 Nuvia cPrime and Capto MMC, they decreased for the Capto MMC ImpRes resin (Figures 4a,c

293 and S2a,c). These opposing trends for the Capto systems at these lower salt conditions may be due
 294 in part to differences in the resulting electrostatic potential presented by these resins at the two
 295 ligand densities. While the salt may be more effective at charge screening on the lower ligand
 296 density Capto MMC ImpRes, the higher density Capto MMC surface may have relatively lower
 297 charge screening while also exhibiting higher hydrophobicity. In fact, the increasing favorable
 298 enthalpic trend with temperature seen with Capto MMC has also been observed in some HIC
 299 systems where van der Waals interactions play an important role [31,48]. On the other hand, the
 300 enthalpy dependence on temperature observed with Capto MMC ImpRes is similar to that seen in
 301 IEX systems [49], where the decreasing strength of electrostatic interactions at elevated
 302 temperatures was indicative of decreasingly favorable enthalpic contributions. These results
 303 indicate that even though the binding was enthalpically driven for mAbs on the three MM CEX
 304 resins in the low salt regime, they likely interacted with different binding mechanisms which will
 305 be explored below when discussing the heat capacity data.

306 In contrast to the low salt conditions, the enthalpic contributions became less favorable and
 307 the binding was increasingly entropically driven on both Capto systems in the high salt regime
 308 (Figures 4 and S2). The decreasing favorable enthalpic contributions is likely due to the screening
 309 of electrostatic interactions at the higher salt concentrations. At the highest salt condition (2.5 M
 310 NaCl) the entropic contributions were observed to be favorable for both mAbs and Capto systems,
 311 indicating that hydrophobic interactions were very likely playing an important role in binding. It
 312 is well established that while the release of water molecules (desolvation) during binding results
 313 in a favorable entropic contribution, this disruption of well-ordered water structure also can lead
 314 to unfavorable enthalpy changes, trends observed in both figures. The observed increase in the
 315 entropic driving force with increasing temperature on both Capto resins, also supports desolvation

Figure 5. Heat capacity change upon adsorption of mAb A on (a) Capto MMC, (b) Nuvia cPrime and (c) Capto MMC ImpRes at different temperatures (278, 290, 295, 303 and 310 K) and salt concentrations (0.45, red; 1.2, violet; and 2.5 M, green; NaCl).

Figure S3. Heat capacity change upon adsorption of mAb C on (a) Capto MMC, (b) Nuvia cPrime and (c) Capto MMC ImpRes at different temperatures (278, 290, 295, 303 and 310 K) and salt concentrations (0.45, red; 1.2, violet; and 2.5 M, green; NaCl).

316 playing an important role here. This temperature behavior has also been observed in HIC systems
 317 [37,39,44] where desolvation entropy was deemed important. Finally, while unfavorable
 318 configurational entropy can sometimes play a role in protein binding, the fact that the entropy was
 319 consistently favorable at the high salt conditions again supports desolvation as a major driver.
 320 Clearly, the energetic trends for mAb interactions with the MM resins at low and high salt
 321 conditions are indicative of different binding mechanisms occurring in these two regimes.

322 The heat capacity values were also obtained from the VH analysis and are presented in
 323 Figures 5 and S3. As can be seen, the heat capacities showed minimal dependence on temperature.
 324 Further, while modest negative values for $\Delta C_{p,ads}$ were obtained for both mAbs on Capto MMC
 325 and Nuvia cPrime at low salt, the heat capacities were positive at the higher salts for Capto MMC
 326 (note: weak retention of mAbs at higher salts on Nuvia cPrime, limited our analysis for this resin
 327 to the low salt condition. In contrast, the $\Delta C_{p,ads}$ values for Capto MMC ImpRes were consistently
 328 positive for both mAbs in the two salt regimes. Reports in the literature have indicated that while
 329 negative heat capacity values are indicative of desolvation of the polar/charged residues upon
 330 binding, the dehydration of non-polar groups result in positive $\Delta C_{p,ads}$ values [31,50]. In addition,
 331 protein conformational changes upon binding can lead to exposure of buried non-polar groups,
 332 potentially contributing towards positive $\Delta C_{p,ads}$ values [32]. The negative values in the low salt
 333 regime for the binding of both mAbs in the Capto MMC and Nuvia cPrime systems indicate that
 334 desolvation of polar groups may be playing a role in binding, supporting our contention that the
 335 electrostatic interactions are playing a major role in binding. In contrast, the results with Capto
 336 MMC ImpRes at the low salt condition indicate that desolvation of non-polar groups may be
 337 playing an important role which may be due to a different preferred binding region for this lower
 338 ligand density resin material. On the other hand, at the high salt conditions where the hydrophobic

339 interactions were more important for binding, the positive values for both Capto systems are likely
340 indicative of dehydration of the non-polar residues. These heat capacity results in concert with the
341 thermodynamic data discussed above, shed light on the dominant modes of interactions of these
342 mAbs in the MM CEX systems in the two salt regimes as well as subtle differences between the
343 different resin systems.

344 **6 Conclusions**

345 In this study, the binding of two industrial mAbs that had previously been shown to exhibit
346 unique selectivity patterns on MM CEX resins was evaluated from a thermodynamic perspective.
347 Isocratic chromatographic experiments were carried out on these resins (Capto MMC, Nuvia
348 cPrime and Capto MMC ImpRes) over a range of temperature and salt conditions to generate the
349 data for the non-linear VH analysis. The retention data were evaluated in both the low (0.45 to 1.0
350 M NaCl) and high salt (1.2 to 2.5 M NaCl) regimes. While the retention at room temperature of
351 the two mAbs decreased with salt for all the resins in the low salt regime, the retention increased
352 at elevated salts on the two Capto systems. The Nuvia cPrime resin exhibited a stronger
353 dependence on salt than the Capto systems in the low salt regime, while having minimal retention
354 above 0.6 M NaCl, likely due to decreased contributions from the sterically inaccessible aromatic
355 moiety on the ligand. These retention patterns with salt indicate a shift from electrostatically driven
356 to more hydrophobic interactions in the Capto resins when transitioning from the low to the higher
357 salt regime.

358 The retention data at various temperatures were used to generate VH plots which were
359 clearly non-linear and which were well fit to the quadratic form of VH equation. This indicated
360 that multiple interactions were likely involved in the binding. In the low salt regime, the retention
361 of both mAbs decreased with increasing temperature and the VH plots were concave downward
362 on the Capto MMC and Nuvia cPrime resins while being concave upward on the Capto MMC
363 ImpRes system. Further, this difference in curvature was more pronounced with the more
364 hydrophobic mAb A than with mAb C. In the high salt regime, while the retention of mAb A
365 increased with temperature on both Capto resins, mAb C exhibited minimal temperature
366 dependence.

367 The fits of the data to the quadratic VH equation were used to provide insights into the
368 enthalpic and entropic contributions to binding under different conditions as well as the heat
369 capacities. In the low salt regime, while the entropic contributions were unfavorable, the enthalpy
370 was favorable for all resin systems with different temperature trends observed. Interestingly, while
371 increasingly favorable enthalpic contributions with increasing temperature were observed with the
372 Capto MMC and Nuvia cPrime systems, the favorable enthalpy was seen to decrease with
373 increasing temperature for Capto MMC ImpRes. These enthalpic trends with temperature indicate
374 different mechanisms involved in binding in these MM systems at low salt. On the other hand, at
375 the high salt condition (2.5 M NaCl), binding of both mAbs on the two Capto resins was
376 consistently entropically driven, indicating that desolvation was the major driver for binding.

377 Clearly, the complexity of these mAb biomolecules makes it difficult to directly connect this
378 thermodynamic information with their specific molecular interactions with the multimodal resins.
379 However, some insights were obtained by examining the heat capacity trends. For example, the
380 negative heat capacities at low salts obtained with the Capto MMC and Nuvia cPrime resins
381 indicated that desolvation of polar/charged groups on the mAb surfaces were potentially playing
382 an important role. In contrast, the positive heat capacity values at low salts with the lower ligand
383 density Capto MMC ImpRes resin, may be indicative of a contribution from desolvation of non-
384 polar groups. Finally, in the high salt regime, the positive heat capacity values in concert with the
385 entropic driving forces were indicative of desolvation of non-polar groups being an important
386 driver for the binding of both mAbs on the two Capto systems.

387 The work in this paper demonstrates clear differences in the thermodynamic behavior for
388 the three MM CEX resin systems in two salt regimes. It is expected that these thermodynamic
389 differences will be even more pronounced in multimodal anion exchange systems, where increased
390 retention with salt has been observed even at lower salts. Further, the difference in energetics with
391 temperature for these two mAbs raises questions about the distribution and types of binding
392 regions on these protein surfaces. Future work will focus on evaluation of the preferred regions on
393 the mAb surfaces involved in binding to the resins using covalent cross-linking and mass
394 spectrometry analysis as well as MD simulations. This will enable us to make more direct
395 connection between the thermodynamic trends and molecular interactions involved with these
396 particular binding regions and chromatographic surfaces.

397 **7 Acknowledgements**

398 The authors would like to acknowledge Mayank Vats for helpful discussion. This material is based
399 upon work supported by the National Science Foundation (Grant number CBET 1704745) and
400 Merck & Co., Inc. (Kenilworth, NJ, 07033, USA).

401 **8 References**

402 [1] Y. Tao, G. Carta, G. Ferreira, D. Robbins, Adsorption of deamidated antibody variants on
403 macroporous and dextran-grafted cation exchangers: I. Adsorption equilibrium, *J. Chromatogr. A.* 1218 (2011) 1519–1529. doi:10.1016/j.chroma.2011.01.049.

405 [2] Y. Lu, B. Williamson, R. Gillespie, Recent Advancement in Application of Hydrophobic
406 Interaction Chromatography for Aggregate Removal in Industrial Purification Process,
407 *Curr Pharm Biotechnol.* 10 (2009) 427-433. doi: 10.2174/138920109788488897.

408 [3] W.R. Melander, Z. El Rassi, C. Horváth, Interplay of hydrophobic and electrostatic
409 interactions in biopolymer chromatography : Effect of salts on the retention of proteins, *J. Chromatogr. A.* 469 (1989) 3–27. doi:10.1016/S0021-9673(01)96437-4.

411 [4] S.C. Burton, N.W. Haggarty, D.R.K. Harding, One step purification of chymosin by mixed
412 mode chromatography, *Biotechnol. Bioeng.* 56 (1997) 45–55. doi:10.1002/(SICI)1097-
413 0290(19971005)56:1<45::AID-BIT5>3.0.CO;2-V.

414 [5] S.C. Burton, D. Roger, K. Harding, High-density ligand attachment to brominated allyl
415 matrices and application to mixed mode chromatography of chymosin, *J. Chromatogr. A.* 775 (1997) 39-50. doi.org/10.1016/S0021-9673(97)00515-3.

417 [6] B.-L. Johansson, M. Belew, S. Eriksson, G. Glad, O. Lind, J.-L. Maloisel, N. Norrman,
418 Preparation and characterization of prototypes for multi-modal separation media aimed for
419 capture of negatively charged biomolecules at high salt conditions, *J. Chromatogr. A.* 1016
420 (2003) 21–33. doi:10.1016/S0021-9673(03)01140-3.

421 [7] S. Ghose, B. Hubbard, S.M. Cramer, Protein interactions in hydrophobic charge induction
422 chromatography (HCIC), *Biotechnol. Prog.* 21 (2005) 498–508. doi:10.1021/bp049712+.

423 [8] S.M. Cramer, M.A. Holstein, Downstream bioprocessing: recent advances and future

424 promise, *Curr. Opin. Chem. Eng.* 1 (2011) 27–37. doi:10.1016/j.coche.2011.08.008.

425 [9] M.A. Holstein, S. Parimal, S.A. McCallum, S.M. Cramer, Mobile phase modifier effects in
426 multimodal cation exchange chromatography, *Biotechnol. Bioeng.* 109 (2012) 176–186.
427 doi:10.1002/bit.23318.

428 [10] J. Woo, S. Parimal, M.R. Brown, R. Heden, S.M. Cramer, The effect of geometrical
429 presentation of multimodal cation-exchange ligands on selective recognition of
430 hydrophobic regions on protein surfaces, *J. Chromatogr. A.* 1412 (2015) 33–42.
431 doi:10.1016/j.chroma.2015.07.072.

432 [11] J.A. Woo, H. Chen, M.A. Snyder, Y. Chai, R.G. Frost, S.M. Cramer, Defining the property
433 space for chromatographic ligands from a homologous series of mixed-mode ligands, *J.*
434 *Chromatogr. A.* 1407 (2015) 58–68. doi:10.1016/j.chroma.2015.06.017.

435 [12] J. Robinson, M.A. Snyder, C. Belisle, J. Liao, H. Chen, X. He, Y. Xu, S.M. Cramer,
436 Investigating the impact of aromatic ring substitutions on selectivity for a multimodal anion
437 exchange prototype library, *J. Chromatogr. A.* 1569 (2018) 101–109.
438 doi:10.1016/J.CHROMA.2018.07.049.

439 [13] W.K. Chung, Y. Hou, M. Holstein, A. Freed, G.I. Makhatadze, S.M. Cramer, Investigation
440 of Protein Binding Affinity and Preferred Orientations in Ion Exchange Systems Using a
441 Homologous Protein Library, *J. Chromatogr. A.* 1217 (2010) 191–198.
442 doi:10.1016/j.chroma.2009.08.005.

443 [14] M.A. Holstein, S. Parimal, S.A. McCallum, S.M. Cramer, Effects of urea on selectivity and
444 protein-ligand interactions in multimodal cation exchange chromatography, *Langmuir* 29
445 (2013) 158–167. doi:10.1021/la302360b.

446 [15] M.A. Holstein, A.A.M. Nikfetrat, M. Gage, A.G. Hirsh, S.M. Cramer, Improving selectivity
447 in multimodal chromatography using controlled pH gradient elution, *J. Chromatogr. A.*
448 1233 (2012) 152–155. doi:10.1016/j.chroma.2012.01.074.

449 [16] J. Robinson, D. Roush, S. Cramer, Domain contributions to antibody retention in
450 multimodal chromatography systems, *J. Chromatogr. A.* 1563 (2018) 89–98.
451 doi:10.1016/j.chroma.2018.05.058.

452 [17] J.R. Robinson, H.S. Karkov, J.A. Woo, B.O. Krogh, S.M. Cramer, QSAR models for
453 prediction of chromatographic behavior of homologous Fab variants, *Biotechnol. Bioeng.*
454 114 (2017) 1231–1240. doi:10.1002/bit.26236.

455 [18] J. Robinson, D. Roush, S.M. Cramer, The effect of pH on antibody retention in multimodal
456 cation exchange chromatographic systems, *J. Chromatogr. A.* 1617 (2020) 460838.
457 doi:10.1016/j.chroma.2019.460838.

458 [19] C.L. Bilodeau, E.Y. Lau, D. Roush, S. Garde, S.M. Cramer, Formation of Ligand Clusters
459 on Multimodal Chromatographic Surfaces, *Langmuir.* 35 (2019) 16770-16779.
460 doi:10.1021/acs.langmuir.9b01925.

461 [20] S. Parimal, S. Garde, S.M. Cramer, Interactions of Multimodal Ligands with Proteins:
462 Insights into Selectivity Using Molecular Dynamics Simulations, *Langmuir.* 31 (2015)
463 7512-7523. doi:10.1021/acs.langmuir.5b00236.

464 [21] K. Srinivasan, M. Sorci, L. Sejergaard, S. Ranjan, G. Belfort, S.M. Cramer, Protein Binding
465 Kinetics in Multimodal Systems: Implications for Protein Separations, *Anal. Chem.* 90
466 (2018) 2609-2617. doi:10.1021/acs.analchem.7b04158.

467 [22] K. Srinivasan, S. Banerjee, S. Parimal, L. Sejergaard, R. Berkovich, B. Barquera, S. Garde,
468 S.M. Cramer, Single Molecule Force Spectroscopy and Molecular Dynamics Simulations
469 as a Combined Platform for Probing Protein Face-Specific Binding, *Langmuir.* 33 (2017)
470 53. doi:10.1021/acs.langmuir.7b03011.

471 [23] K. Srinivasan, S. Parimal, M.M. Lopez, S.A. McCallum, S.M. Cramer, Investigation into
472 the molecular and thermodynamic basis of protein interactions in multimodal
473 chromatography using functionalized nanoparticles, *Langmuir.* 30 (2014) 13205–13216.
474 doi:10.1021/la502141q.

475 [24] B.K. Nfor, M. Noverraz, S. Chilamkurthi, P.D.E.M. Verhaert, L.A.M. van der Wielen, M.
476 Ottens, High-throughput isotherm determination and thermodynamic modeling of protein
477 adsorption on mixed mode adsorbents, *J. Chromatogr. A.* 1217 (2010) 6829–6850.
478 doi:10.1016/j.chroma.2010.07.069.

479 [25] P. Gagnon, Monoclonal antibody purification with hydroxyapatite, *N. Biotechnol.* 25

480 (2009) 287–293. doi:10.1016/J.NBT.2009.03.017.

481 [26] L. Dattolo, E.L. Keller, G. Carta, pH transients in hydroxyapatite chromatography
482 columns—Effects of operating conditions and media properties, *J. Chromatogr. A.* 1217
483 (2010) 7573–7578. doi:10.1016/J.CHROMA.2010.10.026.

484 [27] J. Chen, J. Tetrault, Y. Zhang, A. Wasserman, G. Conley, M. DiLeo, E. Haimes, A.E.
485 Nixon, A. Ley, The distinctive separation attributes of mixed-mode resins and their
486 application in monoclonal antibody downstream purification process, *J. Chromatogr. A.*
487 1217 (2010) 216–224. doi:10.1016/J.CHROMA.2009.09.047.

488 [28] L. Zhang, S. Bai, Y. Sun, Molecular dynamics simulation of the effect of ligand
489 homogeneity on protein behavior in hydrophobic charge induction chromatography, *J. Mol.*
490 *Graph. Model.* 28 (2010) 863–869. doi:10.1016/J.JMGM.2010.03.006.

491 [29] H.F. Tong, C. Cavallotti, S.J. Yao, D.Q. Lin, Molecular insight into protein binding
492 orientations and interaction modes on hydrophobic charge-induction resin, *J. Chromatogr.*
493 *A.* 1512 (2017) 34–42. doi:10.1016/j.chroma.2017.06.071.

494 [30] D.J. Roush, D.S. Gill, R.C. Willson, Anion-exchange chromatographic behavior of
495 recombinant rat cytochrome b5: Thermodynamic driving forces and temperature
496 dependence of the stoichiometric displacement parameter Z, *J. Chromatogr. A.* 653 (1993)
497 207–218. doi:10.1016/0021-9673(93)83176-S.

498 [31] H.C. Haidacher D., Vailaya A., Horváth C., Temperature effects in hydrophobic interaction
499 chromatography, *Proc. Natl. Acad. Sci.* 93 (1996) 2290–2295.

500 [32] R. Ueberbacher, A. Rodler, R. Hahn, A. Jungbauer, Hydrophobic interaction
501 chromatography of proteins: Thermodynamic analysis of conformational changes, *J.*
502 *Chromatogr. A.* 1217 (2010) 184–190. doi:10.1016/j.chroma.2009.05.033.

503 [33] R.I. Boysen, Y. Wang, H.H. Keah, M.T.W. Hearn, Observations on the origin of the non-
504 linear van't Hoff behaviour of polypeptides in hydrophobic environments, *Biophys. Chem.*
505 77 (1999) 79–97. doi:10.1016/S0301-4622(99)00002-2.

506 [34] F. Fang, M.-I. Aguilar, M.T.W. Hearn, Influence of temperature on the retention behaviour
507 of proteins in cation-exchange chromatography, *J. Chromatogr. A.* 729 (1996) 49–66.

508 doi.org/10.1016/0021-9673(96)00008-8.

509 [35] F.Y. Lin, W.Y. Chen, M.T.W. Hearn, Thermodynamic analysis of the interaction between
510 proteins and solid surfaces: Application to liquid chromatography, *J. Mol. Recognit.* 15
511 (2002) 55–93. doi:10.1002/jmr.564.

512 [36] A. Vailaya, C. Horváth, Retention Thermodynamics in Hydrophobic Interaction
513 Chromatography, *Ind. Eng. Chem. Res.* 35 (1996) 2964-2981. doi.org/10.1021/ie9507437.

514 [37] W.Y. Chen, H.M. Huang, C.C. Lin, F.Y. Lin, Y.C. Chan, Effect of Temperature on
515 Hydrophobic Interaction between Proteins and Hydrophobic Adsorbents: Studies by
516 Isothermal Titration Calorimetry and the van't Hoff Equation, *Langmuir*. 19 (2003) 9395–
517 9403. doi:10.1021/la034783o.

518 [38] M.E. Thrash, J.M. Phillips, N.G. Pinto, An Analysis of the Interactions of BSA with an
519 Anion-Exchange Surface Under Linear and Non-Linear Conditions, *Adsorption*. 10 (2004)
520 299-307. doi.org/10.1007/s10450-005-4815-0.

521 [39] A.C. Dias-Cabral, J.A. Queiroz, N.G. Pinto, Effect of salts and temperature on the
522 adsorption of bovine serum albumin on polypropylene glycol-Sepharose under linear and
523 overloaded chromatographic conditions, *J. Chromatogr. A.* 1018 (2003) 137–153.
524 doi:10.1016/j.chroma.2003.07.010.

525 [40] K.J. Snyder Lloyd, *Introduction to Modern Liquid Chromatography*, John Wiley & Sons,
526 Inc. 2nd ed. 1979.

527 [41] F.S. Marques, G.L. Silva, M.E. Thrash, A.C. Dias-Cabral, Lysozyme adsorption onto a
528 cation-exchanger: Mechanism of interaction study based on the analysis of retention
529 chromatographic data, *Colloid Surface B.* 122 (2014) 801–807.
530 doi:10.1016/j.colsurfb.2014.08.024.

531 [42] D. Wu, R.R. Walters, Effects of stationary phase ligand density on high-performance ion-
532 exchange chromatography of proteins, *J. Chromatogr. A.* (1992). doi:10.1016/0021-
533 9673(92)85108-6.

534 [43] M. Tanase, A. Soare, V. David, S.C. Moldoveanu, Sources of Nonlinear van't Hoff
535 Temperature Dependence in High-Performance Liquid Chromatography, *ACS Omega*, 4

536 (2019) 19808-19817. doi:10.1021/acsomega.9b02689.

537 [44] A.S. Ferreira, J. Phillips, J.A. Queiroz, N.G. Pinto, The effects of ligand chain length , salt
538 concentration and temperature on the adsorption of bovine serum albumin onto
539 polypropyleneglycol – Sepharose, 616 (2005) 606–616. doi:10.1002/bmc.487.

540 [45] L. Liu, C. Yang, Q.-X. Guo, A study on the enthalpyentropy compensation in protein
541 unfolding, Biophys Chem. 84 (2000) 239-251. doi: 10.1016/s0301-4622(00)00130-7.

542 [46] N. Morin, Y.C. Guillaume, E. Peyrin, J.-C. Rouland, Peculiarities of an imidazole derivative
543 retention mechanism in reversed-phase liquid chromatography: b-cyclodextrin
544 concentration and temperature considerations, J. Chromatogr. A. 808 (1998) 51-60.
545 doi.org/10.1016/S0021-9673(98)00107-1.

546 [47] W.-Y. Chen, Z.-C. Liu, P.-H. Lin, C.-I. Fang, S. Yamamoto, The hydrophobic interactions
547 of the ion-exchanger resin ligands with proteins at high salt concentrations by adsorption
548 isotherms and isothermal titration calorimetry, Sep. Purif. Technol. 54 (2007) 212–219.
549 doi:10.1016/J.SEPPUR.2006.09.008.

550 [48] T.W. Perkins, D.S. Mak, T.W. Root, E.N. Lightfoot, Protein retention in hydrophobic
551 interaction chromatography: Modeling variation with buffer ionic strength and column
552 hydrophobicity, J. Chromatogr. A. 766 (1997) 1–14. doi:10.1016/S0021-9673(96)00978-8.

553 [49] T.W. Hutchens, T.-T. Yip, Protein Interactions With Surface-Immobilized Metal Ions:
554 Structure-Dependent Variations in Affinity and Binding Capacity with Temperature and
555 Urea Concentration, J. Inorg. Biochem. 42 (1991) 105-118. doi: 10.1016/0162-
556 0134(91)80037-i.

557 [50] N. V. Prabhu, K.A. Sharp, Heat Capacity in Proteins, Annu. Rev. Phys. Chem. 56 (2005)
558 521–548. doi:10.1146/annurev.physchem.56.092503.141202.

559

560 **Figure Captions**

561 Figure 1: (a) Chromatographic retention of mAbs A (purple) and C (blue) on multimodal cation
562 exchange chromatography systems and structures of the (b) Capto and (C) Nuvia cPrime ligand
563 head groups (numbers in parenthesis indicate the corresponding ligand densities on the

564 chromatographic resin surfaces). Capto MMC and Capto MMC ImpRes resins have the same
565 ligand head group with different surface ligand density. Linear salt gradients were from 0 to 1M
566 NaCl, 40 CV, pH 6. Retention data reproduced from ref [16].

567 Figure 2: Ln k' vs Ln Cs plots for retention of mAbs A (purple) and C (blue) on (a) Capto MMC,
568 (b) Nuvia cPrime and (c) Capto MMC ImpRes at room temperature (295 K).

569 Figure 3: Non-linear van't Hoff plots for adsorption of mAb A on (a,d) Capto MMC, (b,e) Nuvia
570 cPrime and (c,f) Capto MMC ImpRes at different salt concentrations. Curves generated by fitting
571 the quadratic VH equation are presented as dotted lines for the low salt regime (0.45, red; 0.55,
572 blue; 1 M, brown; NaCl) and solid lines for the high salt regime (1.2, violet; 1.5, orange; 2, grey;
573 and 2.5 M, green; NaCl).

574 Figure 4: Enthalpic (top) and entropic (bottom) contributions at different temperatures (278, 290,
575 295, 303 and 310 K) and salt concentrations (0.45, red; 1.2, violet; and 2.5 M, green; NaCl) for
576 binding of mAb A on (a,d) Capto MMC, (b,e) Nuvia cPrime and (c,f) Capto MMC ImpRes.

577 Figure 5: Heat capacity change upon adsorption of mAb A on (a) Capto MMC, (b) Nuvia cPrime
578 and (c) Capto MMC ImpRes at different temperatures (278, 290, 295, 303 and 310 K) and salt
579 concentrations (0.45, red; 1.2, violet; and 2.5 M, green; NaCl).

580 Figure S1: Non-linear van't Hoff plots for adsorption of mAb C on (a,d) Capto MMC, (b,e) Nuvia
581 cPrime and (c,f) Capto MMC ImpRes at different salt concentrations. Curves generated by fitting
582 the quadratic VH equation are presented as dotted lines for the low salt regime (0.45, red; 0.55,
583 blue; 1 M, brown; NaCl) and solid lines for the high salt regime (1.2, violet; 1.5, orange; 2, grey;
584 and 2.5 M, green; NaCl).

585 Figure S2: Enthalpic (top) and entropic (bottom) contributions at different temperatures (278, 290,
586 295, 303 and 310 K) and salt concentrations (0.45, red; 1.2, violet; and 2.5 M, green; NaCl) for
587 binding of mAb C on (a,d) Capto MMC, (b,e) Nuvia cPrime and (c,f) Capto MMC ImpRes.

588 Figure S3: Heat capacity change upon adsorption of mAb C on (a) Capto MMC, (b) Nuvia cPrime
589 and (c) Capto MMC ImpRes at different temperatures (278, 290, 295, 303 and 310 K) and salt
590 concentrations (0.45, red; 1.2, violet; and 2.5 M, green; NaCl).