A low-complexity photoplethysmographic systolic peak detector for compressed sensed data

To cite this article: Giulia Da Poian et al 2019 Physiol. Meas. 40 065007

View the article online for updates and enhancements.
A low-complexity photoplethysmographic systolic peak detector for compressed sensed data

Giulia Da Poian, Nunzio A Letizia, Roberto Rinaldo and Gari D Clifford

1 Department of Biomedical Informatics, Emory University, Atlanta, GA, United States of America
2 Dipartimento Politecnico di Ingegneria e Architettura, University of Udine, Udine, Italy
3 Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
E-mail: giulia@dbmi.emory.edu

Keywords: compressive sensing, PPG, peak detection, compressive signal processing, compressive peak detection

Abstract

Objective: Recent advances in wearable technologies and signal processing have made it possible to perform health monitoring during everyday life activities. Despite the fact that new technologies allow the storage of large volumes of data on small devices, limitations remain when data have to be transmitted or processed with devices with both energy and computational constraints.

Approach: This work focuses on the implementation and validation of a photoplethysmogram (PPG) low-complexity analysis method for sensors that acquire a compressed PPG signal through compressive sensing (CS) and allows for the accurate detection of the PPG systolic peak in the compressed domain. Three public datasets were used consisting of a total of about 52 h of PPG signals from 600 patients with normal and abnormal rhythms. Peaks were manually annotated by experts or derived from the annotated synchronized ECG. Main results: The proposed method achieved a pooled average F1 measure on the three datasets of 91% ± 8% for a 5% compression ratio (CR), 89% ± 10% for CR = 70% and 82% ± 12% for CR of 90%. The pooled average F1 measure on the original uncompressed data using an offline open source peak detector is F1 = 91% ± 11%. The proposed method is up to ~100 times faster with respect to methods using decompression followed by peak detection. Significance: Results demonstrate that it is possible to achieve detection performance, in terms of the F1 measure, comparable with those obtained on the original uncompressed and filtered signal, making the proposed approach appropriate for real-time wearable systems with energy and computation constraints.

1. Introduction

In the last decade there has been an increasing interest on the development of new wearable technologies for health monitoring (Pantelopoulos and Bourbakis 2010, Seneviratne et al 2017). As a consequence of aging populations, dysfunctional lifestyles, and the rising concern of patients toward their health, many studies have focused on new solutions to provide real-time and continuous monitoring of physiological parameters. However, to make it possible for wearable devices to cross the boundary between consumer electronics devices, with a simple fitness monitoring purpose, to regulated medical devices, new algorithms and methods are needed. Indeed, it is necessary to ensure a certain quality of the acquired signal as well as to preserve the diagnostic information while processing the signals (Shcherbina et al 2017).

While devices are becoming smaller and sensors integrated in everyday objects (e.g. watches, clothing ...), there are still some technology limitations to make it possible to continuously monitor the health status in real-time. The huge storage capacity available even on small devices leverages somehow the problem when non immediate processing of the signal is required. Also, cloud storage and cloud computing seems to be very promising to this end, but they both require to transfer the data from the wearable device to the cloud platform, usually by Bluetooth/wireless connection.

When continuous transmission of the data is required, for example between the sensors to a smart-phone via Bluetooth, or to a remote cloud platform over Wi-Fi, energy limitations start to become predominant. To man-
age energy-related issues, one of the most promising and extensively investigated solutions proposed over the last years is compressive sensing (CS) (Candès and Wakin 2008).

As shown by several works (Chen et al 2012, Dixon et al 2012, Liu et al 2014, Craven et al 2015), CS allows to extend the battery life of a low-power device, by acquiring a compressed version of the signal at a lower rate with respect to the one required by Nyquist, and avoiding the compression stage. It should be noted that CS can be also implemented as a low complexity (and low consumption) digital compression scheme (Da Poian et al 2016, Pareschi et al 2017).

In this study we consider the scenario of a photoplethysmographic (PPG) sensor designed to directly acquire a compressed version of the original PPG signal (Rajesh et al 2016, Natarajan et al 2017, Pamula et al 2018). The one proposed by Rajesh et al (2016) is also able to perform a direct estimation of the average heart-rate (HR) over a 4 s window without signal decompression, by using the power spectral density obtained from the Lomb–Scargle periodogram.

Similarly, the recently proposed TROIKA (Zhang et al 2015) and JOSS (Zhang 2015) methods are able to perform HR estimation from down-sampled PPG signals. Both methods apply signal processing to remove motion artefacts from the PPG spectra prior to HR estimation by choosing the highest spectral peak in the PPG spectrum. The TROIKA framework consists of signal decomposition (which aims to partially remove the motion artefact components), sparsity-based high-resolution spectrum estimation, and spectral peak tracking and verification. The JOSS method jointly estimates spectra of PPG signals and simultaneous acceleration signals, utilizing the multiple measurement vector model in sparse signal recovery, to remove motion artefact from the PPG spectra. The processing/analysis capability of these methods is limited to HR estimation and do not provide inter-beat-interval (IBI) estimation.

The aim of this research goes beyond HR estimation by developing and validating a compressed PPG systolic peak detection system, inspired by the method proposed for the ECG signal in Da Poian et al (2017). The proposed framework, hereinafter called CSMFppg, works on the compressed signal without need of signal reconstruction (i.e. decompression). In particular, it is able to detect the PPG systolic peaks useful to perform pulse rate variability (PRV) analyses as well as atrial fibrillation (AF) detection, and HR as well. As reported in Schäfer and Vagedes (2013), PRV is typically sufficiently accurate, although coupling effects between respiration and the cardiovascular system leads to an overestimation of the short-term variability.

In this work we present an efficient processing algorithm for compressed detection of PPG systolic peaks with the future aim of developing an event driven wearable PPG monitoring device, which after detecting an abnormal event—such as AF—on the compressed signal, can send an alert as well as the compressed signal to a remote user, e.g. a physician. Furthermore, the compressed signal can be always recovered at the receiver by solving an optimization problem (see section 1.1) combined with a sparsifying basis such as the one we propose in this paper (see section 2.3), allowing for further analysis and expert evaluation.

The main contributions of this paper are as follows:

- low complexity digital processing of PPG signals—the systolic peaks are estimated directly from sub-Nyquist samples;
- novel dictionary for PPG spare approximation that exploits the structure of the signal and that improves the reconstruction performance;
- validation of proposed methods on a broad set of PPGs different for patient age, recording device (wrist and fingertip), health status and activity (rest and physical exercise).

1.1. Compressive sensing of PPG signal

This section is intended to introduce the notation used in the rest of this work. For an extensive review of the compressive sensing technique please refer to Candès and Wakin (2008). Let us consider a PPG signal \(x(t) \), which is going to be acquired and simultaneously compressed. By using compressive sensing it is possible to merge the acquisition and compression stage in order to directly acquire a signal \(y \in \mathbb{R}^M \), which is a compressed digitized version of the original signal samples \(x \in \mathbb{R}^N \), relative to a fixed window of length \(N \). This operation can be mathematically expressed as

\[
y = \Phi x + n, \tag{1}
\]

where \(\Phi \in \mathbb{R}^{M \times N} \), with \(M < N \), is the so called sensing matrix, which must satisfy the restricted isometry property (RIP) (Baraniuk et al 2008) in order to preserve information during compression. The additional term \(n \) represents the measurement and process noise.

Signal reconstruction, sometimes referred to as recovery or decompression, can be performed by optimization methods exploiting the sparsity of the acquired signal. Given a basis \(\Psi \in \mathbb{R}^{N \times N} \) or an overcomplete dictionary \(\mathbf{D} \in \mathbb{R}^{N \times P} \), with \(P > N \), a signal is said to be \(k \)-sparse if its signal expansion \(\alpha, \alpha \in \mathbb{R}^P \) such that \(\mathbf{x} = \mathbf{D}\alpha \).
has only k non zero elements, with $k \ll N$. Thus, given a sparsifying dictionary (or basis), one can recover the signal x from the compressed measurements y, by solving the following optimization problem:

$$\min_{\alpha} ||\alpha||_0 \text{ s.t. } ||y - \Phi \alpha||^2_2 \leq \epsilon,$$

and obtain x as $x = D_\alpha$. This NP-hard problem can be solved by several methods proposed in literature such as basis pursuit denoising (BPDN) (Chen et al. 2001), orthogonal matching pursuit (OMP) (Tropp and Gilbert 2007), Smooth-J0 (SL0) (Mohimani et al. 2009).

2. CSMFppg algorithm description

Inspired by the compressed sensed matching filtering (CSMF) ECG peak detector (Da Poian et al. 2017), implemented for beat detection on compressed sensed ECG signals, in this work we propose a compressed systolic peak detector for the PPG signal. Note that the proposed signal modeling and processing procedures differ from the ones presented in Da Poian et al. (2017), which are tailored to ECG, in particular for template generation and compressive sensing dictionary construction.

2.1. Template generation

The PPG systolic peak detector used in this work is based on the estimated correlation of the compressed input signal y with a known template γ, which is projected into the compressed domain as well.

The first and fundamental step is the construction of the template γ on the uncompressed or reconstructed signal. To this end we assume to have access to a limited portion of good quality uncompressed signal x_{in} of length T_{in}. In a real-world application one can provide for a preliminary phase, in which the subject is asked to record an initialization signal for T_{in} seconds, without movements to guarantee a good signal quality. When only the compressed sensed signal is available, the initial signal x_{in} can be reconstructed using one of the solvers mentioned in section 1.1. The signal mean is then removed and a ‘traditional’ systolic peak detector, such as the one described in Lázaro et al. (2014), is applied on the recovered PPG signal. As an alternative, R peaks from a simultaneously recorded ECG or PPG onsets can be used to define the segments of PPG to be used to generate the template.

Since different onsets can be used, the algorithm is designed to segment the initial PPG based on the type of onset. In particular, when the initial fiducial points are systolic peaks, the PPG is segmented by taking a window of 350 ms before and 500 ms after each detected peak. When ECG R-peaks are used, the PPG window is taken from 50 ms to 900 ms after the fiducial point (R-peak).

To correctly align the segments, the maximum value within each window is used as an anchor point. In such a way the template generation is independent from the reference fiducial point initially used.

At this stage the PPG template γ is computed by taking the mean of the segmented and aligned PPG segments and keeping the window from the minimum (i.e. the onset computed as the max of the third derivative of the template), to 150 ms after the peak. This design optimizes the performance of the detector since keeping only the rising part of γ allows to adapt also to changing rhythm as the pulse width changes with the heart rate. Typically, the PPG shows narrow pulses at high heart rate while, at low heart rate, the pulses are wider.

2.2. Systolic peak detection from estimated correlation

Given a compressed vector y of length M (corresponding to an uncompressed signal window of length N), the first step is to estimate the correlation R_{xy} between x and the template, from the compressed measurements y and the (compressed) template γ. In particular, similarly to Da Poian et al. (2017), we employ the orthogonal estimator, which allows to derive the estimated correlation $R_{\gamma,n}$ as

$$R_{\gamma,n} = \frac{N}{M} \langle y, (\Phi \Phi^T)^{-1} \Phi \gamma_n \rangle,$$

where γ_n is the n-sample translated version of the template, whose non-zero elements correspond to the PPG template. (Note that the template is zero-padded to match the uncompressed window length N.)

Prior to peak detection, an exclusion criteria is applied in order to prevent false detections on noisy segments of the PPG signals. The exclusion criterion is based on the correlation energy in the current window $E_{R_{\gamma,n}}$ and the average energy of past windows $\overline{E}_{R_{\gamma,n}}$ (which is updated after a window is considered valid and used for peak detection). In particular, peak detection is not performed on the current window if the ratio $E_{R_{\gamma,n}} / \overline{E}_{R_{\gamma,n}}$ is lower than t_{energy} or higher than t_{energy}^{-1}. Indeed, sudden changes in the correlation value can be associated with high probability, with noise in the signal and will lead to false detections.

The second stage of the detection procedure consists in the detection of the systolic peaks p by comparing the value of the correlation against an adaptive amplitude-dependent threshold θ. The detection threshold is computed for each correlation window, i.e. for each measurement block, and it depends on the correlation amplitude.
in the current window, \(th = th_{\text{corr}} \cdot \max(\hat{R}_{x\gamma,p}) \). A refractory period of 200 ms is used accordingly to physiological limits to prevent double peaks detection.

Additional control to avoid double detection between two consecutive windows, as well as missing detection, is performed. In particular, if the distance \(d_{\text{peaks}} \) between the last peak \(p_{-} \) in the previous window and the first in the current one \(p_{+} \) is lower than a limit \(F_{\text{min}} \), the two detections are merged by taking a weighted point in between depending on the values of correlation of both points, i.e.

\[
p_{\text{merged}} = (p_{-} \cdot \hat{R}_{x\gamma,p_{-}} + p_{+} \cdot \hat{R}_{x\gamma,p_{+}}) / (\hat{R}_{x\gamma,p_{-}} + \hat{R}_{x\gamma,p_{+}}),
\]

where \(\hat{R}_{x\gamma,p_{-}} \) is the value of the estimated correlation on the previous windows in \(p_{-} \) and \(\hat{R}_{x\gamma,p_{+}} \) for the current in \(p_{+} \). The example illustrated in figure 1 helps to understand the double peaks replacement.

Whereas, when \(d_{\text{peaks}} \) is higher than the upper physiological limit \(F_{\text{max}} \), a missing peak is highly probable and a second peak search is therefore performed on the estimated correlation between the two windows (in a neighborhood centered on the edge and with length \(T_{\text{border}}F_{s} \) samples, \(F_{s} \) being the sampling frequency) by lowering the previous threshold, i.e. \(th = th_{\text{border}} \cdot th \). The same strategy is also applied if \(d_{\text{peaks}} \) is higher than \(th_{\text{IBI}} \) the median IBI (e.g. variation of more than 60% of the median IBI) interval computed on the last \(N_{\text{IBI}} \) windows.

The actual parameter values used in the experiments will be specified in section 4.1.

2.3. Photoplethysmogram sparsifying dictionary

Despite the proposed method works in the compressed domain without requiring signal reconstruction, it is always possible to recover the original signal from the compressed measurements in order to perform an offline automated analysis or visual evaluation of the signal. To this end, it is necessary to employ a good sparsifying basis or dictionary able to ensure signal reconstruction even at a high compression ratio. In this work we suggest to use the overcomplete dictionary (PPG Dic.) described in this section.

In order to design a good mathematical model, we looked at features inside the PPG waveform such as the systolic peak of PPG, always present if the signal is well detected by the device (see figure 2). Another important feature is the slope of the derivative for the first rising portion of PPG. Indeed, the derivative is always positive till it reaches zero at the maximum and changes sign. A last feature is the presence, not in all cases, of a second maximum (diastolic peak) with a lower peak value compared to the previous one. This signal segment can be well approximated by the same basis but scaled and shifted. The aim is to find a family of functions in the form

\[
f(a, b, t) = \phi \left(\frac{t - b}{a} \right),
\]

whose superposition will approximate the PPG signal, where \(a, b \) are parameters respectively for scale and translation.

A good candidate to approximate the one-peak PPG waveform is the following:

\[
\phi(t) = t^n \cdot e^{-t},
\]
for $t \geq 0$. Furthermore, such basis functions have another degree of freedom which is the parameter n, whose higher values correspond to steeper rising.

For all the reasons explained above, we propose

$$f(a, b, n, t) = \left(\frac{t - b}{a} \right)^n \cdot e^{-\frac{(t-b)}{a}}$$

for $t > b$ (and 0 elsewhere), as the family of functions used to generate the dictionary.

A value of n which well approximates the rising section of the signal is $n = 2$, and for it the set of suitable a_i found through fitting is $\{a_i|a_i = 1 + 0.5 \cdot k, 0 \leq k \leq 9\} \cdot \frac{F_s}{60}$ where F_s is the signal sampling frequency.

Figure 3 shows how different numbers of dictionary atoms can approximate a PPG (using the OMP reconstruction algorithm).

3. Materials

3.1. Benchmark datasets

To validate the proposed method we used three different public datasets of PPG signals both from wrist devices and finger tip devices (see table 1). In particular, the first dataset section 3.1.1 was used as a baseline for detection when no physical activity is performed. The second dataset section 3.1.2 was used to test the ability of dealing with rapid changes in heart rate and noise due to physical activity. Finally, the third dataset section 3.1.3 provided a validation for the ability of the proposed method to work with signals containing different kinds of arrhythmias.

3.1.1. IEEE respiratory rate benchmark (RRB) dataset

The pulse oximetry benchmark dataset, was originally proposed for the validation of the SmartFusion respiratory rate estimation algorithm (Karlen et al 2013).

The used test set includes 8 min long raw PPG signals (with additional synchronized ECG signals) from 42 subjects, as well as pulse peak and artefact labels validated by an expert rater. All signals were sampled at 300 Hz and recorded from patients with age range 0.8–75.6 years.

3.1.2. IEEE Signal Processing Cup (SPC) dataset

The second dataset used in this work was set up for the IEEE Signal Processing Cup and is publicly available (Zhang 2015). The dataset consists of 12 5 min recordings which were collected from 18 to 58 year old subjects performing various physical exercises. For each subject, the PPG signals were recorded from the wrist using two pulse oximeters with green LEDs (wavelength: 515 nm). The ECG signal was recorded simultaneously from the chest using wet ECG sensors. All signals were sampled at 125 Hz. Three types of activities were performed including walking or running on a treadmill at different speeds from 1–2 km h$^{-1}$ to a maximum of 12–15 km h$^{-1}$. The subjects were asked to purposely use the hand with the wristband to pull clothes, wipe sweat on forehead,
and push buttons on the treadmill. The ECG-based HR ground-truth using an 8 s sliding window (2 s increment) is also provided.

3.1.3. PhysioNet Challenge 2015 (PC2015) dataset

The last dataset used in this work is the one provided for the PhysioNet Challenge 2015 (Goldberger et al. 2000, Clifford et al. 2015). Data are sourced from four hospitals in the USA and Europe, chosen at random. The dataset contains 750 recordings from which we used a subset of 550 signals excluding those with missing ECG and/or PPG signals or containing very noisy ECG signals that makes it impossible to get a reliable reference. The subset contains synchronized 300 or 330 s long ECG and PPG signals, which have been resampled (using anti-alias filters) to 12 bit, 250 Hz. The signals were preprocessed with a band pass filter at 0.05 to 40 Hz, and mains notch filters applied to remove noise. The following 5 types of arrhythmias are present in the chosen subset: asystole (64 signals), extreme bradycardia (67 signals), extreme tachycardia (99 signals), ventricular tachycardia (290 signals) and ventricular flutter/fibrillation (30 signals).

4. Methods

4.1. Parameter selection

The parameters applied for the validation of the proposed CSMFppg are the same for all the datasets, and are listed in table 2. The only parameters that depend on the dataset, and in particular on the sampling frequency, are the ones multiplied by F_s.

The choice of F_{min} and F_{max} is based on a physiologically probable range of HR ranging between 33 and 200 beats per minute (bpm) for a population likely to use wearable sensors. Note that these parameters are used as a flag to check for missing/double peaks. However, the algorithm is still able to detect peaks such that the inter-beat-interval is shorter or longer then F_{min} and F_{max}.

Remark. Optimized settings for the proposed method were obtained by using as training set PPG signals from the MIMIC II dataset (Goldberger et al. 2000, Saeed et al. 2011). No further optimization was carried out on the benchmark datasets, which have been used only as ‘test’ datasets.
It should be noted that the results of the proposed method are slightly dependent on the window length \(N \) as long as \(L_{\text{win}} = N / F_s \) ranges between 1 s and 2 s. Shorter windows introduce more artefacts due to discontinuities between consecutive windows. Longer windows, other than increasing the computational load, are not suitable for on-line analysis.

4.2. Validation procedures

To assess the feasibility and actual usefulness of the proposed method, we performed a set of validation experiments on the three datasets described in section 3.1. In particular we validated and compared the peak detection performance (section 4.2.1), the execution time performance (section 4.2.2) and the reliability of PRV measures estimation (section 4.2.3) on compressed, reconstructed and original signals as follows.

- The proposed compressed peak detector CSMFppg was applied directly on each compressed signal \(y \), using parameters described in section 4.1.
- Each compressed signal was also reconstructed by using the SL0 algorithm (Mohimani et al. 2009) in combination with the proposed PPG Dictionary (SL0 & PPG Dictionary). On the obtained reconstructed signal the PPG peak detector proposed by Lázaro et al. (2014) was applied. It should be noted that it works offline on the entire reconstructed signal (Offline PD). Note that the detector in Lázaro et al. (2014) consists of two phases: a linear filtering transformation (linear-phase FIR low-pass-differentiator filter with transition band from 7.7 Hz to 8 Hz), and an adaptive thresholding operation.
- A second method for reconstructed signals was applied, again we used the SL0 algorithm but this time in combination with a sparsifying Wavelet DB4 basis with 3 levels of decomposition (SL0 & DB4) (Pinheiro et al. 2010). The PPG peak detector (Offline PD) described above was used to perform offline PPG fiducial point detection.

We also applied the offline systolic peak detector (Offline PD) to the entire uncompressed and filtered signal to derive baseline performances.

Finally, for the HRV assessment we also included in the comparison an offline onset detector (Offline OD), allowing for further comparison. After subtracting the signal mean, the signal were bandpass filtered to remove frequencies outside the range of 0.2–10 Hz, using a butterworth filter of order three. On the filtered signals we applied the onset detector provided in Vest et al. (2018), which is a Matlab implementation of the atrial blood pressure onset detector proposed in Zong et al. (2003).

4.2.1. Detection performance

By evaluating the ability of correct detection of peak locations and comparing it with a standard off-line peak detector, we aim at quantifying the performance of the proposed method, at different compression ratios, taking the ground truth as reference.

Table 2. List of CSMFppg parameters and values used by this work.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>thenergy</td>
<td>5 (%)</td>
<td>Exclusion threshold</td>
</tr>
<tr>
<td>Fmin</td>
<td>0.3 (s)</td>
<td>Minimum inter-beat-interval</td>
</tr>
<tr>
<td>Fmax</td>
<td>1.8 (s)</td>
<td>Maximum inter-beat-interval</td>
</tr>
<tr>
<td>MinVal</td>
<td>0 (a.u.)</td>
<td>Minimum height of (R_{\text{evo}}) for detection</td>
</tr>
<tr>
<td>thcorr</td>
<td>30 (%)</td>
<td>Threshold for detection of peaks referred to maximum peak</td>
</tr>
<tr>
<td>Tborder</td>
<td>0.05 (s)</td>
<td>If one peak is missing, look inside a window of width (T_{\text{win}}F_s) centered between two consecutive windows</td>
</tr>
<tr>
<td>thborder</td>
<td>50 (%)</td>
<td>If in this neighborhood there is a peak higher than (T_{\text{h}0}) times the weighted mean of two adjacent, detect it</td>
</tr>
<tr>
<td>NIBI</td>
<td>10</td>
<td>Compute median IBI on last (N_{\text{IBI}}) windows</td>
</tr>
<tr>
<td>thIBI</td>
<td>60 (%)</td>
<td>Maximum % variation of IBI with respect to the median IBI</td>
</tr>
<tr>
<td>Tint</td>
<td>30 (s)</td>
<td>PPG signal length used to generate the template</td>
</tr>
<tr>
<td>Lwin</td>
<td>1.28 (s)</td>
<td>Length of the PPG window to compress</td>
</tr>
</tbody>
</table>
Peaks obtained from the four different approaches described in section 4.2 were tested according to the recommendation of the American National Standard for ambulatory ECG analyzers (ANSI/AAMI EC38-1994) (AAMI 1994). For each recording, we computed the sensitivity (Se), the positive predictive value (PPV) and the F1 measure, defined as the harmonic mean of Se and PPV, namely

\[
Se = \frac{TP}{TP + FN} \times 100, \\
PPV = \frac{TP}{TP + FP} \times 100, \\
F1 = \frac{2TP}{2TP + FN + FP} \times 100.
\]

In the above equations, TP (true positives) is the total number of systolic peaks correctly located by the detector, a false negative (FN) occurs when the algorithm fails to detect a true peak and a false positive (FP) represents a false beat detection. The average results in terms of Se, PPV and F1 over all the segments are reported.

As reference annotations we used the true PPG peaks provided with the dataset when available. This was the case of the RRB dataset.

For the other two datasets, i.e. SPC and PC2015, we used the QRS-synchronized beat annotations obtained from the ECG signal using jqrs (Behar et al 2014). Each detected R-peak was associated with the location of the PPG peak. PPG reference beats and detected PPG peaks are matched if the latter fall within a 150 ms window centered at the ECG beat annotation label, as also used for R-peak detection algorithm validation (AAMI 1994).

4.2.2. Runtime performance
The usefulness of a compressed peak detector for low-power devices is also related to its capability to be less complex than standard methods working on uncompressed or reconstructed signals. To this end, the complexity of our algorithm has been compared against the offline peak detector proposed in Lázaro et al (2014) on uncompressed data and also with respect to the time required for signal reconstruction and peak detection. In particular we are here interested in the performance gain achieved by not recovering the signal. Thus, we evaluated the time required by the proposed method CSMFppg and by Offline PD as well as by Sl0&PPG Dic. + Offline PD and Sl0&DB4 + Offline PD (see section 4.2.1). All the simulations were written in Matlab, running on an Intel Core i5 processor, equipped with 8 GB memory.

4.2.3. Heart rate variability performance
The last assessment aims to evaluate the impact of compression on the estimated PRV metrics. Differently from peak detection performance, evaluating the ability of the proposed method to derive metrics used in clinical applications allowed to have a better understanding of its possible practical and clinical usability. In this work, we focus on three widely used time domain metrics: the mean of Normal-to-Normal (NN) intervals NNmean, the standard deviation of NN, SDNN, and the root-mean square of the difference (RMSSD) were computed on 60 s epochs with a 10 s increment, using the PhysioNet cardiovascular signal toolbox with default settings (Vest et al 2018). As mentioned, R-peak locations were available for the RRB dataset and derived directly from the ECG signals using jqrs (Vest et al 2018) for the other datasets. IBIs from uncompressed PPGs where derived using the peaks detected using the Offline PD (Lázaro et al 2014) and from onsets detected by the Offline OD (Vest et al 2018). For the compressed scenario, we limited the analysis to IBIs derived from peaks detected directly in the compressed domain with CSMFppg. The agreement between the HRV and PRV metrics were assessed using the Bland–Altman method (Bland and Altman 1986). Results are reported as the mean (μ) and the standard deviation (σ) of the difference. One should keep in mind that minor differences between the HRV and PRV exist (Schäfer and Vagedes 2013) and will be an additional source of error in the reported results. We would like to clarify also that the aim of this analysis is to show that errors deriving from using the proposed CSMFppg are comparable with those obtained on the uncompressed PPG signal with a standard detector. It is beyond the scope of this paper to prove whether or not HRV metrics derived from PPG could be used as a surrogate measurement of HRV from the ECG.

5. Results

5.1. Detection performance
Table 3 reports the F1 measure obtained using the proposed method for different compression ratios and separately for each dataset in order to understand the performance and limitations based on the type of signals. Additional results for Se, PPV and F1 measure are reported in table A1.

Table 3. Detection performance of the PPG systolic peak detection performed on compressed sensed data using the proposed CSMFpPG at different compression ratios. The results for F1 measure (F1) are reported as mean ± std for each of the three datasets used as well as for the training data.

<table>
<thead>
<tr>
<th></th>
<th>0%</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
<th>60%</th>
<th>70%</th>
<th>80%</th>
<th>90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>95.57 ± 5.0</td>
<td>93.5 ± 5.5</td>
<td>93.2 ± 5.8</td>
<td>93.3 ± 5.7</td>
<td>93.5 ± 5.5</td>
<td>92.9 ± 5.9</td>
<td>91.8 ± 6.9</td>
<td>89.6 ± 8.4</td>
<td>84.2 ± 9.0</td>
<td>76.4 ± 11.4</td>
</tr>
<tr>
<td>RBB</td>
<td>99.2 ± 3.3</td>
<td>99.1 ± 1.3</td>
<td>99.1 ± 1.3</td>
<td>99.0 ± 1.3</td>
<td>98.9 ± 1.4</td>
<td>98.9 ± 1.5</td>
<td>98.7 ± 1.7</td>
<td>98.4 ± 2.2</td>
<td>93.9 ± 5.1</td>
<td></td>
</tr>
<tr>
<td>SPC</td>
<td>89.1 ± 4.9</td>
<td>90.3 ± 5.0</td>
<td>90.5 ± 4.5</td>
<td>89.5 ± 5.2</td>
<td>90.0 ± 5.1</td>
<td>88.7 ± 5.4</td>
<td>88.2 ± 5.3</td>
<td>87.2 ± 7.0</td>
<td>84.4 ± 5.0</td>
<td>77.6 ± 7.4</td>
</tr>
<tr>
<td>PC2015</td>
<td>90.6 ± 11.4</td>
<td>90.2 ± 8.4</td>
<td>89.9 ± 8.7</td>
<td>89.7 ± 9.0</td>
<td>89.6 ± 9.1</td>
<td>89.2 ± 9.2</td>
<td>88.9 ± 9.4</td>
<td>88.1 ± 9.8</td>
<td>86.5 ± 10.3</td>
<td>81.4 ± 11.6</td>
</tr>
</tbody>
</table>

Notes: The 0% compression reports the results of the offline peak detector (Lázaro et al 2014) on the original uncompressed data as a reference.
Detection on uncompressed signals is marked as 0% compression and, especially for the dataset where no PPG peaks were given as reference, provides an upper bound for the detection performance.

Figure 4(a) provides a comparison of the CSMFppg method and the detection after signal reconstruction with different bases in terms of average F1 measure. Figure 4(a) also reports the results for uncompressed data.

Figure 5(a) shows an example of peak detection on record 08_TYPE02 performed by CSMFppg at CR = 75% (red crosses) and also by using the peak detector in Lázaro et al (2014) (black circles). Reference peaks are marked by yellow diamonds.

5.2. Runtime performance

The computational load for the different methods is reported in figure 4(b). We report the execution time for one window corresponding to 1 s. The results are shown separately for each dataset to highlight the impact of different sampling frequencies, in particular on methods that require signal reconstruction before peak detection. For all the dataset the proposed CSMFppg is up to ∼100 time faster than reconstruction using the PPG Dictionary.

To process 1 s of a signal, the offline peak detector (Lázaro et al 2014) requires an average time of 0.5 ± 0.2 ms. Whereas, the proposed CSMFppg, which allows data compression, requires at most 0.3 ± 0.2 ms. Finally, the two methods based on signal reconstruction prior to peak detection, i.e. the Sl0&PPG Dic. and the Sl0&DB4, require up to 90 ± 22 ms and 15 ± 5 ms, respectively.

5.3. Heart rate variability performance

Table 4 reports the accuracy of PRV metrics, with respect to HRV metrics computed from ECG, as mean and standard deviation of the difference. The impact due to compression is negligible and the error is similar to that obtained when computing HRV metrics on ECG and on uncompressed PPG signals, at least for compression ratios lower than 80%. Due to the limited space, only one example of the Bland–Altman analysis is shown in figure 6 for the SDDN parameter calculated on the RBB dataset. Taking the SDNN metric calculated from the synced ECG as reference, figure 6(a) shows the mean and the difference between the reference and the same metric calculated from the PPG signals with the Offline PD on uncompressed data. Each mark in the figure represents the mean and the difference.
Table 4. Pulse rate variability measurement accuracy using Bland–Altman (Bland and Altman 1986) analysis, mean (μ) and standard deviation (σ) of the difference are reported. HRV metrics derived from simultaneous ECG signals are used as reference.

<table>
<thead>
<tr>
<th>Detector</th>
<th>RRB</th>
<th>SPC</th>
<th>PC2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NNmean (ms)</td>
<td>SDNN (ms)</td>
<td>RMSSD (ms)</td>
</tr>
<tr>
<td></td>
<td>μ</td>
<td>σ</td>
<td>μ</td>
</tr>
<tr>
<td>PRV computed on uncompressed and filtered PPG signals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lázaro et al (2014)</td>
<td>0</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>PRV computed on compressed PPG signals using CSMFppg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR (%)</td>
<td>0</td>
<td>3</td>
<td>-6</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>3</td>
<td>-7</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>3</td>
<td>-8</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>2</td>
<td>-8</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>4</td>
<td>-9</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>2</td>
<td>-9</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
<td>3</td>
<td>-11</td>
</tr>
<tr>
<td>70</td>
<td>0</td>
<td>3</td>
<td>-13</td>
</tr>
<tr>
<td>80</td>
<td>0</td>
<td>4</td>
<td>-15</td>
</tr>
<tr>
<td>82.5</td>
<td>1</td>
<td>7</td>
<td>-19</td>
</tr>
<tr>
<td>85</td>
<td>0</td>
<td>5</td>
<td>-18</td>
</tr>
<tr>
<td>87.5</td>
<td>0</td>
<td>6</td>
<td>-22</td>
</tr>
<tr>
<td>90</td>
<td>-1</td>
<td>8</td>
<td>-25</td>
</tr>
<tr>
<td>92.5</td>
<td>1</td>
<td>6</td>
<td>-28</td>
</tr>
<tr>
<td>95</td>
<td>2</td>
<td>15</td>
<td>-37</td>
</tr>
<tr>
<td>97.5</td>
<td>27</td>
<td>66</td>
<td>-66</td>
</tr>
<tr>
<td>99.5</td>
<td>61</td>
<td>90</td>
<td>-93</td>
</tr>
</tbody>
</table>
of the metrics computed on a 60 s window with 10 s increment. Figure 6(b) shows the mean and the difference of the reference with the proposed CSMFppg at 50% compression. The 95% limits of agreement are −26.8 ms and 15.3 ms for the PRV computed on the uncompressed data and −22.2 ms and 4 ms for the proposed scheme.

6. Discussion

Detection performance on the three datasets suggests that the proposed method can accurately perform systolic peak detection on compressed sensed data up to CR of 80% without a significant performance loss in terms of pooled F1 measure (87.3% ± 9.7%) with respect to the offline peak detector on the original data (pooled F1 = 90.5% ± 10.7%).

In particular, for the RRB dataset, where true annotations for the PPG peaks were available, the F1 measure (F1 = 97.3% ± 2.9%) is comparable to the one obtained on the original uncompressed signal by an offline peak detector (F1 = 99.2% ± 3.3%). For the SPC dataset, the F1 measure (F1 = 89.1% ± 4.9%), starts to drop for the proposed CSMFppg at compression ratios higher than 60%.
last dataset, PC2015, which included also different types of arrhythmias, we have a 2% drop on the F1 measure for the proposed method at CR = 65% (reference offline F1 measure equal to 90.6% ± 1.4%).

With respect to the sensitivity and positive predictivity, we notice that the proposed method has typically a higher PPV than Se, which is somehow preferable when the future step is HRV analysis. Indeed, wrong detection due to noise might lead to misclassification of arrhythmias. The PC2015 dataset was used to test performance on recordings containing abnormal rhythms. Based on the description provided with the dataset, an alarm was due to noise might lead to misclassification of arrhythmias. The PC2015 dataset was used to test performance higher PPV than Se, which is somehow preferable when the future step is HRV analysis. Indeed, wrong detection or the National Institutes of Health.

Acknowledgments

The authors wish to acknowledge the National Institutes of Health Grant # R01 HL136205 and the National Science Foundation Award 1636933. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or the National Institutes of Health.

Appendix

In this appendix, we report some additional results about the performance of the proposed PPG systolic peak detector. The results are reported in table A1.

5 https://physionet.org/physiobank/database/challenge/2015/
Table A1. Performance of the PPG systolic peak detection performed on compressed sensed data using the proposed CSMFppg at different compression ratios. The results for Sensitivity (Se), positive predictivity (PPV) and F1 measure (F1), are reported as mean ± std for each of the three dataset.

<table>
<thead>
<tr>
<th>Compression Ratio (CR)</th>
<th>RRB</th>
<th>SPC</th>
<th>PC2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>99.6 ± 0.3</td>
<td>99.1 ± 5.4</td>
<td>99.2 ± 3.3</td>
</tr>
<tr>
<td>5</td>
<td>98.7 ± 1.8</td>
<td>99.5 ± 1.1</td>
<td>99.1 ± 1.3</td>
</tr>
<tr>
<td>10</td>
<td>98.7 ± 1.8</td>
<td>99.4 ± 1.0</td>
<td>99.1 ± 1.3</td>
</tr>
<tr>
<td>20</td>
<td>98.7 ± 1.8</td>
<td>99.4 ± 1.1</td>
<td>99.1 ± 1.3</td>
</tr>
<tr>
<td>30</td>
<td>98.7 ± 1.8</td>
<td>99.4 ± 1.1</td>
<td>99.0 ± 1.3</td>
</tr>
<tr>
<td>40</td>
<td>98.6 ± 2.1</td>
<td>99.3 ± 1.3</td>
<td>98.9 ± 1.4</td>
</tr>
<tr>
<td>50</td>
<td>98.5 ± 2.3</td>
<td>99.3 ± 1.4</td>
<td>98.9 ± 1.7</td>
</tr>
<tr>
<td>60</td>
<td>98.6 ± 2.0</td>
<td>99.3 ± 1.3</td>
<td>98.9 ± 1.5</td>
</tr>
<tr>
<td>80</td>
<td>98.5 ± 2.4</td>
<td>99.1 ± 1.6</td>
<td>98.4 ± 1.6</td>
</tr>
<tr>
<td>75</td>
<td>98.6 ± 1.9</td>
<td>99.0 ± 1.7</td>
<td>98.7 ± 1.7</td>
</tr>
<tr>
<td>85</td>
<td>98.7 ± 1.6</td>
<td>99.0 ± 1.6</td>
<td>98.8 ± 1.5</td>
</tr>
<tr>
<td>90</td>
<td>98.7 ± 1.5</td>
<td>99.0 ± 1.6</td>
<td>98.9 ± 1.5</td>
</tr>
<tr>
<td>95</td>
<td>98.7 ± 1.3</td>
<td>99.2 ± 1.4</td>
<td>97.9 ± 2.4</td>
</tr>
<tr>
<td>100</td>
<td>98.7 ± 1.2</td>
<td>99.2 ± 2.4</td>
<td>97.4 ± 3.4</td>
</tr>
</tbody>
</table>

References

Baraniuk R, Davenport M, DeVore R and Wakin M 2008 A simple proof of the restricted isometry property for random matrices Constructive Approx. 28 233–63

Chen S, Sorn L D and Saunder M A 2001 Atomic decomposition by basis pursuit SIAM Rev. 43 129–59

Pamula V R, Van Hoof C and Verhelst M 2018 An ultra-low power, robust photoplethysmographic readout exploiting compressive sampling, artifact reduction, sensor fusion Hybrid ADCs, Smart Sensors for the IoT and Sub-IV and Advanced Node Analog Circuit Design (New York: Springer) pp 145–63

Schafer A and Vagedes J 2013 How accurate is pulse rate variability as an estimate of heart rate variability?: a review on studies comparing photoplethysmographic technology with an electrocardiogram Int. J. Cardiol. 166 15–29

