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Abstract

Objective: Recent advances in wearable technologies and signal processing have made it possible to
perform health monitoring during everyday life activities. Despite the fact that new technologies
allow the storage of large volumes of data on small devices, limitations remain when data have to be
transmitted or processed with devices with both energy and computational constraints. Approach:
This work focuses on the implementation and validation of a photoplethysmogram (PPG) low-
complexity analysis method for sensors that acquire a compressed PPG signal through compressive
sensing (CS) and allows for the accurate detection of the PPG systolic peak in the compressed
domain. Three public datasets were used consisting of a total of about 52 h of PPG signals from 600
patients with normal and abnormal rhythms. Peaks were manually annotated by experts or derived
from the annotated synchronized ECG. Main results: The proposed method achieved a pooled
average F1 measure on the three datasets of 91% + 8% for a 5% compression ratio (CR), 89% +
10% for CR = 70% and 82% = 12% for CR of 90%. The pooled average F1 measure on the original
uncompressed data using an offline open source peak detector is F1 = 91% 4- 11%. The proposed
method is up to ~100 times faster with respect to methods using decompression followed by peak
detection. Significance: Results demonstrate that it is possible to achieve detection performance, in
terms of the F1 measure, comparable with those obtained on the original uncompressed and filtered
signal, making the proposed approach appropriate for real-time wearable systems with energy and
computation constraints.

1. Introduction

In the last decade there has been an increasing interest on the development of new wearable technologies for
health monitoring (Pantelopoulos and Bourbakis 2010, Seneviratne et al 2017). As a consequence of aging
populations, dysfunctional lifestyles, and the rising concern of patients toward their health, many studies have
been focused on new solutions to provide real-time and continuous monitoring of physiological parameters.
However, to make it possible for wearable devices to cross the boundary between consumer electronics devices,
with a simple fitness monitoring purpose, to regulated medical devices, new algorithms and methods are needed.
Indeed, it is necessary to ensure a certain quality of the acquired signal as well as to preserve the diagnostic
information while processing the signals (Shcherbina et al 2017).

While devices are becoming smaller and sensors integrated in everyday objects (e.g. watches, clothing ...),
there are still some technology limitations to make it possible to continuously monitor the health status in real-
time. The huge storage capacity available even on small devices leverages somehow the problem when non
immediate processing of the signal is required. Also, cloud storage and cloud computing seems to be very promis-
ing to this end, but they both require to transfer the data from the wearable device to the cloud platform, usually
by Bluetooth/wireless connection.

When continuous transmission of the data is required, for example between the sensors to a smart-phone via
Bluetooth, or to a remote cloud platform over Wi-Fi, energy limitations start to become predominant. To man-

© 2019 Institute of Physics and Engineering in Medicine


publisher-id
doi
https://orcid.org/0000-0002-8960-1077
mailto:giulia@dbmi.emory.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6579/ab254b&domain=pdf&date_stamp=2019-07-02
https://doi.org/10.1088/1361-6579/ab254b

10P Publishing

Physiol. Meas. 40 (2019) 065007 (15pp) GDaPoianetal

age energy-related issues, one of the most promising and extensively investigated solutions proposed over the last
years is compressive sensing (CS) (Candes and Wakin 2008).

As shown by several works (Chen et al 2012, Dixon et al 2012, Liu et al 2014, Craven et al 2015), CS allows to
extend the battery life of a low-power device, by acquiring a compressed version of the signal at a lower rate with
respect to the one required by Nyquist, and avoiding the compression stage. It should be noted that CS can be
also implemented as a low complexity (and low consumption) digital compression scheme (Da Poian et al 2016,
Pareschietal 2017).

In this study we consider the scenario of a photoplethysmographic (PPG) sensor designed to directly acquire
a compressed sensed version of the original PPG signal (Rajesh et al 2016, Natarajan et al 2017, Pamula et al
2018). The one proposed by Rajesh eral (2016) is also able to perform a direct estimation of the average heart-rate
(HR) over a 4 s window without signal decompression, by using the power spectral density obtained from the
Lomb-Scargle periodogram.

Similarly, the recently proposed TROIKA (Zhang et al 2015) and JOSS (Zhang 2015) methods are able to per-
form HR estimation from down-sampled PPG signals. Both methods apply signal processing to remove motion
artefacts from the PPG spectra prior to HR estimation by choosing the highest spectral peak in the PPG spec-
trum. The TROIKA framework consists of signal decomposition (which aims to partially remove the motion
artefact components), sparsity-based high-resolution spectrum estimation, and spectral peak tracking and veri-
fication. The JOSS method jointly estimates spectra of PPG signals and simultaneous acceleration signals, utiliz-
ing the multiple measurement vector model in sparse signal recovery, to remove motion artefact from the PPG
spectra. The processing/analysis capability of these methods is limited to HR estimation and do not provide
inter-beat-interval (IBI) estimation.

The aim of this research goes beyond HR estimation by developing and validating a compressed PPG systolic
peak detection system, inspired by the method proposed for the ECG signal in Da Poian et al (2017). The pro-
posed framework, hereinafter called CSMFppg, works on the compressed signal without need of signal recon-
struction (i.e. decompression). In particular, it is able to detect the PPG systolic peaks useful to perform pulse
rate variability (PRV) analyses as well as atrial fibrillation (AF) detection, and HR as well. As reported in Schifer
and Vagedes (2013), PRV is typically sufficiently accurate, although coupling effects between respiration and the
cardiovascular system leads to an overestimation of the short-term variability.

In this work we present an efficient processing algorithm for compressed detection of PPG systolic peaks with
the future aim of developing an event driven wearable PPG monitoring device, which after detecting an abnor-
mal event—such as AF—on the compressed signal, can send an alert as well as the compressed signal to a remote
user, e.g. a physician. Furthermore, the compressed signal can be always recovered at the receiver by solving an
optimization problem (see section 1.1) combined with a sparsyfing basis such as the one we propose in this paper
(see section 2.3), allowing for further analysis and expert evaluation.

The main contributions of this paper are as follows:

e low complexity digital processing of PPG signals—the systolic peaks are estimated directly from sub-Nyquist
samples;

e novel dictionary for PPG spare approximation that exploits the structure of the signal and that improves the
reconstruction performance;

e validation of proposed methods on a broad set of PPGs different for patient age, recording device (wrist and
fingertip), health status and activity (rest and physical exercise).

1.1. Compressive sensing of PPG signal

This section is intended to introduce the notation used in the rest of this work. For an extensive review of the
compressive sensing technique please refer to Candés and Wakin (2008). Let us consider a PPG signal x(#), which
is going to be acquired and simultaneously compressed. By using compressive sensing it is possible to merge the
acquisition and compression stage in order to directly acquire a signal y € RM, which is a compressed digitized
version of the original signal samples x € RY, relative to a fixed window of length N. This operation can be
mathematically expressed as

y=a&x+n, (1)

where ® € RM*N with M < N, is the so called sensing matrix, which must satisfy the restricted isometry
property (RIP) (Baraniuk et al 2008) in order to preserve information during compression. The additional term
n represents the measurement and process noise.

Signal reconstruction, sometimes referred to as recovery or decompression, can be performed by optim-
ization methods exploiting the sparsity of the acquired signal. Given a basis ¥ € RN*N or an overcomplete dic-
tionary D € RN*P with P > N, asignal is said to be k-sparse if its signal expansion o, € R” such that x = Do
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has only k non zero elements, with k < N. Thus, given a sparsifying dictionary (or basis), one can recover the
signal x from the compressed measurements y, by solving the following optimization problem:

min Jollo st [y — ®Dalf} < 6 @

and obtain x as X = Da. This NP-hard problem can be solved by several methods proposed in literature such
as basis pursuit denoising (BPDN) (Chen et al 2001), orthogonal matching pursuit (OMP) (Tropp and Gilbert
2007), Smooth-[0 (SLO) (Mohimani et al 2009).

2. CSMFppgalgorithm description

Inspired by the compressed sensed matching filtering (CSMF) ECG peak detector (Da Poian et al 2017),
implemented for beat detection on compressed sensed ECG signals, in this work we propose a compressed
systolic peak detector for the PPG signal. Note that the proposed signal modeling and processing procedures
differ from the ones presented in Da Poian et al (2017), which are tailored to ECG, in particular for template
generation and compressive sensing dictionary construction.

2.1. Template generation
The PPG systolic peak detector used in this work is based on the estimated correlation of the compressed input
signal y with a known template v, which is projected into the compressed domain as well.

The first and fundamental step is the construction of the template v on the uncompressed or reconstructed
signal. To this end we assume to have access to a limited portion of good quality uncompressed signal X,; of
length T, In a real-world application one can provide for a preliminary phase, in which the subject is asked
to record an initialization signal for T;,; seconds, without movements to guarantee a good signal quality. When
only the compressed sensed signal is available, the initial signal x;,¢ can be reconstructed using one of the solv-
ers mentioned in section 1.1. The signal mean is then removed and a ‘traditional’ systolic peak detector, such as
the one described in Lazaro et al (2014), is applied on the recovered PPG signal. As an alternative, R peaks from
a simultaneously recorded ECG or PPG onsets can be used to define the segments of PPG to be used to generate
the template.

Since different onsets can be used, the algorithm is designed to segment the initial PPG based on the type of
onset. In particular, when the initial fiducial points are systolic peaks, the PPG is segmented by taking a window
of 350 ms before and 500 ms after each detected peak. When ECG R-peaks are used, the PPG window is taken
from 50 ms to 900 ms after the fiducial point (R-peak).

To correctly align the segments, the maximum value within each window is used as an anchor point.Insuch a
way the template generation is independent from the reference fiducial point initially used.

At this stage the PPG template y is computed by taking the mean of the segmented and aligned PPG segments
and keeping the window from the minimum (i.e. the onset computed as the max of the third derivative of the
template), to 150 ms after the peak. This design optimizes the performance of the detector since keeping only the
rising part of «y allows to adapt also to changing rhythm as the pulse width changes with the heart rate. Typically,
the PPG shows narrow pulses at high heart rate while, at low heart rate, the pulses are wider.

2.2. Systolic peak detection from estimated correlation

Given a compressed vector y of length M (corresponding to an uncompressed signal window of length N), the
first step is to estimate the correlation Ry, between x and the template, from the compressed measurements y
and the (compressed) template ~y. In particular, similarly to Da Poian et al (2017), we employ the orthogonal
estimator, which allows to derive the estimated correlation IA{XW, as

T (@07) 1), ®

where +, is the n-sample translated version of the template, whose non-zero elements correspond to the PPG
template. (Note that the template is zero-padded to match the uncompressed window length N.)
Prior to peak detection, an exclusion criteria is applied in order to prevent false detections on noisy segments

Rx'y,n =

of the PPG signals. The exclusion criterion is based on the correlation energy in the current window E; RO and
the average energy of past windows ER (which is updated after a window is considered valid and used for peak
detection). In particular, peak detectlon is not performed on the current window if the ratio ERiQ \Eg R, is lower
than theper,, or higher than thmrg), Indeed, sudden changes in the correlation value can be associated, with high
probability, with noise in the signal and will lead to false detections.

The second stage of the detection procedure consists in the detection of the systolic peaks p by comparing the
value of the correlation against an adaptive amplitude-dependent threshold th. The detection threshold is com-
puted for each correlation window, i.e. for each measurement block, and it depends on the correlation amplitude
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Figure 1. Example of double peak detection on the estimated correlation Ry, (solid line) due to the transition between two
windows. The ‘original’ correlation Ry, is reported for reference (dash line). Signal sampling frequency 125 Hz.

in the current window, th = they, - max(Ry,, ). A refractory period of 200 ms is used accordingly to physiologi-
cal limits to prevent double peaks detection.

Additional control to avoid double detection between two consecutive windows, as well as missing detection, is
performed. In particular, if the distance (deqks) between thelast peak p _in the previous window and the firstin the
currentonep ,islowerthanalimitF,,;, thetwodetectionsaremergedbytakingaweighted pointinbetweendepend-
ing on the values of correlation of both points, i.e. Pyerged = (p— - Ry ypo P4 Rx“/,p )/ (Ry_ vpo T+ IAI,W,I, L)
where Ry ~p is the value of the estimated correlation on the previous windows in p_ and IAIXA,,P . for the current
in p ;. The example illustrated in figure 1 helps to understand the double peaks replacement.

Whereas, when dje. is higher than the upper physiological limit F,,,,,, a missing peak is highly probable and
asecond peak search is therefore performed on the estimated correlation between the two windows (in a neigh-
borhood centered on the edge and with length Ty,4.-Fs samples, Fs being the sampling frequency) by lowering
the previous threshold, i.e. th = thyege, - th. The same strategy is also applied if deqis is higher than thyg; the
median IBI (e.g. variation of more than 60% of the median IBI) interval computed on the last Njzrwindows.

The actual parameter values used in the experiments will be specified in section 4.1.

2.3. Photoplethysmogram sparsifying dictionary
Despite the proposed method works in the compressed domain without requiring signal reconstruction, it is

always possible to recover the original signal from the compressed measurements in order to perform an offline
automated analysis or visual evaluation of the signal. To this end, it is necessary to employ a good sparsifying basis
or dictionary able to ensure signal reconstruction even at a high compression ratio. In this work we suggest to use
the overcomplete dictionary (PPG Dic.) described in this section.

In order to design a good mathematical model, we looked at features inside the PPG waveform such as the
systolic peak of PPG, always present if the signal is well detected by the device (see figure 2). Another important
feature is the slope of the derivative for the first rising portion of PPG. Indeed, the derivative is always positive
till it reaches zero at the maximum and changes sign. A last feature is the presence, not in all cases, of a second
maximum (diastolic peak) with a lower peak value compared to the previous one. This signal segment can be well
approximated by the same basis but scaled and shifted. The aim is to find a family of functions in the form

f(a,b,t>=¢(t"’), @)

a

whose superposition will approximate the PPG signal, where a, b are parameters respectively for scale and

translation.
A good candidate to approximate the one-peak PPG waveform is the following:

¢(t) =t"- e, (5)
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Figure2. Anexample of photoplethysmogram (PPG) waveform signal and its characteristic parameters.

for t > 0. Furthermore, such basis functions have another degree of freedom which is the parameter 1, whose
higher values correspond to steeper rising.
For all the reasons explained above, we propose

flabynt) = (t_b)n.e(’a) (6)

for t > b (and 0 elsewhere), as the family of functions used to generate the dictionary.
A value of n which well approximates the rising section of the signal is 7 = 2, and for it the set of suitable a;

found through fitting is {a;|a; = 1 4 0.5 - k,0 < k < 9} - £ where Fsis the signal sampling frequency.
Figure 3 shows how different numbers of dictionary atoms can approximate a PPG (using the OMP recon-
struction algorithm).

3. Materials

3.1. Benchmark datasets

To validate the proposed method we used three different public datasets of PPG signals both from wrist devices
and finger tip devices (see table 1). In particular, the first dataset section 3.1.1 was used as a baseline for detection
when no physical activity is performed. The second dataset section 3.1.2 was used to test the ability of dealing with
rapid changes in heart rate and noise due to physical activity. Finally, the third dataset section 3.1.3 provided a

validation for the ability of the proposed method to work with signals containing different kinds of arrhythmias.

3.1.1. IEEE respiratory rate benchmark (RRB) dataset
The pulse oximetry benchmark dataset, was originally proposed for the validation of the SmartFusion respiratory
rate estimation algorithm (Karlen eral 2013).

The used test set includes 8 min long raw PPG signals (with additional synchronized ECG signals) from 42
subjects, as well as pulse peak and artefact labels validated by an expert rater. All signals were sampled at 300 Hz
and recorded from patients with age range 0.8—75.6 years.

3.1.2. IEEE Signal Processing Cup (SPC) dataset

The second dataset used in this work was set up for the IEEE Signal Processing Cup and is publicly available
(Zhang 2015). The dataset consists of 12 5 min recordings which were collected from 18 to 58 year old subjects
performing various physical exercises. For each subject, the PPG signals were recorded from the wrist using two
pulse oximeters with green LEDs (wavelength: 515nm). The ECG signal was recorded simultaneously from
the chest using wet ECG sensors. All signals were sampled at 125 Hz. Three types of activities were performed
including walking or running on a treadmill at different speeds from 1-2kmh ™! toa maximum of 12-15kmh ™.
The subjects were asked to purposely use the hand with the wristband to pull clothes, wipe sweat on forehead,
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Figure 3. Signal approximation of a PPG pulse (sampled at 300 Hz) using the proposed PPG over-complete dictionary and the
OMP method for different sparsity levels 1 and 6. It can be seen that 6 atoms allow a good approximation of the original signal

preserving the PPG peak position.
Table 1. Summary of datasets used by this work.
Dataset Number of signals Total length (h) Arrhythmias
Respiratory rate benchmark (RRB) (Karlen et al 2013) 42 5.6 No
2015 Signal Processing Cup (SPC) (Zhang 2015) 12 1 No
550 45.8 yes

PhysioNet Challenge 2015 (PC2015) (Clifford et al 2015)

and push buttons on the treadmill. The ECG-based HR ground-truth using an 8 s sliding window (2 s increment)

is also provided.

3.1.3. PhysioNet Challenge 2015 (PC2015) dataset
The last dataset used in this work is the one provided for the PhysioNet Challenge 2015 (Goldberger et al 2000,
Clifford et al 2015). Data are sourced from four hospitals in the USA and Europe, chosen at random. The dataset
contains 750 recordings from which we used a subset of 550 signals excluding those with missing ECG and/or
PPG signals or containing very noisy ECG signals that makes it impossible to get a reliable reference. The subset
contains synchronized 300 or 330 s long ECG and PPG signals, which have been resampled (using anti-alias
filters) to 12 bit, 250 Hz. The signals were preprocessed with a band pass filter at 0.05 to 40 Hz, and mains notch

filters applied to remove noise. The following 5 types of arrhythmias are present in the chosen subset: asystole (64
signals), extreme bradycardia (67 signals), extreme tachycardia (99 signals), ventricular tachycardia (290 signals)

and ventricular flutter/fibrillation (30 signals).

4. Methods

4.1. Parameter selection
The parameters applied for the validation of the proposed CSMFppg are the same for all the datasets, and are
listed in table 2. The only parameters that depend on the dataset, and in particular on the sampling frequency, are

the ones multiplied by Fs.

The choice of Fmin and Fmax is based on a physiologically probable range of HR ranging between 33 and 200
beats per minute (bpm) for a population likely to use wearable sensors. Note that these parameters are used as
a flag to check for missing/double peaks. However, the algorithm is still able to detect peaks such that the inter-
beat-interval is shorter or longer then Fimin and Frmax.

Remark. Optimized settings for the proposed method were obtained by using as training set PPG signals from
the MIMIC II dataset (Goldberger et al 2000, Saeed et al 2011). No further optimization was carried out on the

benchmark datasets, which have been used only as ‘test” datasets.
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Table2. Listof CSMFppg parameters and values used by this work.

Parameter Value Usage

thenergy 5 (%) Exclusion threshold

Foin 0.3 (s) Minimum inter-beat-interval

Frax 1.8 (s) Maximum inter-beat-interval

MinVal 0 (a.u.) Minimum height of Ry, for detection

theorr 30 (%) Threshold for detection of peaks referred to maximum peak

Thorder 0.05 (s) If one peak is missing, look inside a window of width
ThorderF's samples centered between two consecutive windows

tHporder 50 (%) If in this neighborhood there is a peak higher than Thy, times
the weighted mean of two adjacent, detect it

Nigr 10 Compute median IBI on last Njgr windows

thypr 60 (%) Maximum % variation of IBI with respect to the median IBI

Tt 30 (s) PPG signal length used to generate the template

Lyyin 1.28 (s) Length of the PPG window to compress

It should be noted that the results of the proposed method are slightly dependent on the window length N as
long as L,;, = N/Fsranges between 1 s and 2 s. Shorter windows introduce more artefacts due to discontinuities
between consecutive windows. Longer windows, other then increasing the computational load, are not suitable
for on-line analysis.

4.2. Validation procedures
To assess the feasibility and actual usefulness of the proposed method, we performed a set of validation
experiments on the three datasets described in section 3.1.

In particular we validated and compared the peak detection performance (section 4.2.1), the execution
time performance (section 4.2.2) and the reliability of PRV measures estimation (section 4.2.3) on compressed,
reconstructed and original signals as follows.

All the signals from the three datasets described in section 3.1 were compressed at several compression ratios,
i.e. CR = (5, 10, 20, 30, 40, 50, 60, 65, 70, 75, 80, 82.5, 85, 87.5, 90, 92.5, 95, 97.5) %, by using a random Gaussian
sensing matrix. We chose to use a different sensing matrix for each signal to consider its influence on the average
detection capability (however, this is not necessary in an actual implementation). After compression all the fol-
lowing methods were applied to the compressed signals and results compared.

e The proposed compressed peak detector CSMFppg was applied directly on each compressed signal y, using
parameters described in section 4.1.

e Each compressed signal was also reconstructed by using the S0 algorithm (Mohimani et al 2009) in
combination with the proposed PPG Dictionary (SI0&PPG Dictionary). On the obtained reconstructed
signal the PPG peak detector proposed by Lazaro et al (2014) was applied. It should be noted that it works
offline on the entire reconstructed signal (Offline PD). Note that the detector in Lazaro et al (2014) consists of
two phases: a linear filtering transformation (linear-phase FIR low-pass-differentiator filter with transition
band from 7.7 Hz to 8 Hz), and an adaptive thresholding operation.

e A second method for reconstructed signals was applied, again we used the SI0 algorithm but this time in
combination with a sparsyfing Wavelet DB4 basis with 3 levels of decomposition (SI0&DB4) (Pinheiro et al
2010). The PPG peak detector (Offline PD) described above was used to perform offline PPG fiducial point
detection.

We also applied the offline systolic peak detector (Offline PD) to the entire uncompressed and filtered signal to
derive baseline performances.

Finally, for the HRV assessment we also included in the comparison an offline onset detector (Offline OD),
allowing for further comparison. After subtracting the signal mean, the signal were bandpass filtered to remove
frequencies outside the range of 0.2-10 Hz, using a butterworth filter of order three. On the filtered signals we
applied the onset detector provided in Vest et al (2018), which is a Matlab implementation of the atrial blood
pressure onset detector proposed in Zong et al (2003).

4.2.1. Detection performance
By evaluating the ability of correct detection of peak locations and comparing it with a standard off-line peak
detector, we aim at quantifying the performance of the proposed method, at different compression ratios, taking
the ground truth as reference.
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Peaks obtained from the four different approaches described in section 4.2 were tested according to the rec-
ommendation of the American National Standard for ambulatory ECG analyzers (ANSI/AAMI EC38-1994)
(AAMI 1994). For each recording, we computed the sensitivity (Se), the positive predictive value (PPV) and the
F1 measure, defined as the harmonic mean of Se and PPV, namely

TP
Se = ———— x 100,
TP + EN
TP
PPV = —— x 100,
TP + FP
2TP

F1 100.

TP+ EN L FP
In the above equations, TP (true positives) is the total number of systolic peaks correctly located by the detector, a
false negative (FN) occurs when the algorithm fails to detect a true peak and a false positive (FP) represents a false
beat detection. The average results in terms of Se, PPV and F1 over all the segments are reported.

As reference annotations we used the true PPG peaks provided with the dataset when available. This was the
case of the RRB dataset.

For the other two datasets, i.e. SPC and PC2015, we used the QRS-synchronized beat annotations obtained
from the ECG signal using jqrs (Behar et al 2014). Each detected R-peak was associated with the location of the
PPG peak. PPG reference beats and detected PPG peaks are matched if the latter fall within a 150 ms window
centered at the ECG beat annotation label, as also used for R-peak detection algorithm validation (AAMI 1994).

4.2.2. Runtime performance

The usefulness of a compressed peak detector for low-power devices is also related to its capability to be less
complex than standard methods working on uncompressed or reconstructed signals. To this end, the complexity
of our algorithm has been compared against the offline peak detector proposed in Lézaro et al (2014) on
uncompressed data and also with respect to the time required for signal reconstruction and peak detection. In
particular weare here interested in the performance gain achieved by not recovering the signal. Thus, we evaluated
the time required by the proposed method CSMFppg and by Offline PD as well as by SI0&PPG Dic. + Offline PD
and SI0&DB4 + Offline PD (see section 4.2.1). All the simulations were written in Matlab, running on an Intel
Corei5 processor, equipped with 8 GB memory.

4.2.3. Heart rate variability performance

The last assessment aims to evaluate the impact of compression on the estimated PRV metrics. Differently from
peak detection performance, evaluating the ability of the proposed method to derive metrics used in clinical
applications allowed to have a better understanding of its possible practical and clinical usability. In this work, we
focus on three widely used time domain metrics: the mean of Normal-to-Normal (NN) intervals NNmean, the
standard deviation of NN SDNN, and the root-mean-squared value of the difference (RMSSD) were computed
on 60 s epochs with a 10 s increment, using the PhysioNet cardiovascular signal toolbox with default settings
(Vest et al 2018)*. As mentioned, R-peak locations were available for the RRB dataset and derived directly from
the ECG signals using jqrs (Vest et al 2018) for the other datasets. IBIs from uncompressed PPGs where derived
using the peaks detected using the Offline PD (Lazaro et al2014) and from onsets detected by the Offline OD (Vest
et al 2018). For the compressed scenario, we limited the analysis to IBIs derived from peaks detected directly in
the compressed domain with CSMFppg. The agreement between the HRV and PRV metrics were assessed using
the Bland—Altman method (Bland and Altman 1986). Results are reported as the mean (u) and the standard
deviation (o) of the difference. One should keep in mind that minor differences between the HRV and PRV
exist (Schifer and Vagedes 2013) and will be an additional source of error in the reported results. We would like
to clarify also that the aim of this analysis is to show that errors deriving from using the proposed CSMFppg are
comparable with those obtained on the uncompressed PPG signal with a standard detector. Itis beyond the scope
of this paper to prove whether or not HRV metrics derived from PPG could be used as a surrogate measurement
of HRV from the ECG.

5. Results
5.1. Detection performance
Table 3 reports the F1 measure obtained using the proposed method for different compression ratios and

separately for each dataset in order to understand the performance and limitations based on the type of signals.
Additional results for Se, PPV and F1 measure are reported in table A1

*Open source code available on-line https://doi.org/10.5281/zenodo.1243111,accessed on 06 September 2018.
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Table 3. Detection performance of the PPG systolic peak detection performed on compressed sensed data using the proposed CSMFppg at different compression ratios. The results for F1 measure (F1) are reported as mean = std for each

of the three datasets used as well as for the training data.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Training 95.57 £5.0 93.5+5.5 93.2+£538 933 +57 93.5+5.5 929+ 5.9 91.8 £6.9 89.6 + 8.4 84.2+£9.0 76.4 £ 11.4
RBB 99.2 £33 99.1 £ 1.3 99.1+ 1.3 99.0 +£ 1.3 98.9 + 1.4 98.9 £ 1.7 98.9 £ 1.5 98.7 £ 1.7 98.4 +2.2 959 £5.1
SPC 89.1+£49 90.3 £5.0 90.5 £ 4.5 89.5+5.2 90.0 £ 5.1 88.7+ 5.4 88.2+£53 872+£7.0 84.4+5.0 77.6 £ 7.4
PC2015 90.6 + 11.4 90.2 £+ 8.4 89.9 £ 8.7 89.7£9.0 89.6 £ 9.1 89.2£9.2 88.9 £ 9.4 88.1 £9.8 86.5 £ 10.3 81.4 £ 11.6

Notes: The 0% compression reports the results of the offline peak detector (Lézaro et al 2014) on the original uncompressed data as a reference.
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Figure4. (a)Performance of different PPG detection approaches on compressed sensed data and (b) required execution time. For
each dataset considered in this work the F1 value (mean 4 standard deviation) is reported in a separated plot. The time required

to process 1 s of signal is reported as (mean 4 standard deviation). Each plot reports the results for the proposed method working
directly on the compressed measurements (CSMFppg), after signal reconstruction using SI0&PPG Dic. or SI0&DB4 applying an
offline peak detector (Offline PD). Also results for offline peak detection (Offline PD) on the uncompressed data are reported as a
reference (black solid line, bars represent the standard deviation).
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Detection on uncompressed signals is marked as 0% compression and, especially for the dataset where no
PPG peaks were given as reference, provides an upper bound for the detection performance.

Figure 4(a) provides a comparison of the CSMFppg method and the detection after signal reconstruction
with different bases in terms of average F1 measure. Figure 4(a) also reports the results for uncompressed data.

Figure 5(a) shows an example of peak detection on record 08_TYPEO02 performed by CSMFppgat CR = 75%
(red crosses) and also by using the peak detector in Lazaro eral (2014) (black circles). Reference peaks are marked
by yellow diamonds.

5.2. Runtime performance

The computational load for the different methods is reported in figure 4(b). We report the execution time for one
window correspondingto 1 s. The results are shown separately for each dataset to highlight the impact of different
sampling frequencies, in particular on methods that require signal reconstruction before peak detection. For all
the dataset the proposed CSMFppgis up to ~100 time faster than reconstruction using the PPG Dictionary.

To process 1 s of asignal, the offline peak detector (Ldzaro et al 2014) requires an average time of 0.5 4 0.2 ms.
Whereas, the proposed CSMFppg, which allows data compression, requires at most 0.3 + 0.2 ms. Finally, the two
methods based on signal reconstruction prior to peak detection, i.e. the SIO&PPG Dic. and the SI0& DB4, require
up to 90 4 22 msand 15 & 5 ms, respectively.

5.3. Heartrate variability performance

Table 4 reports the accuracy of PRV metrics, with respect to HRV metrics computed from ECG, as mean and standard
deviation of the difference. The impact due to compression is negligible and the error is similar to that obtained
when computing HRV metrics on ECG and on uncompressed PPG signals, at least for compression ratios lower than
80%. Due to the limited space, only one example of the Bland—Altman analysis is shown in figure 6 for the SDDN
parameter calculated on the RBB dataset. Taking the SDNN metric calculated from the synced ECG as reference,
figure 6(a) shows the mean and the difference between the reference and the same metric calculated from the PPG
signals with the Offline PD on uncompressed data. Each mark in the figure represents the mean and the difference
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Table4. Pulse rate variability measurement accuracy using Bland—Altman (Bland and Altman 1986) analysis, mean () and standard deviation (o) of the difference are reported. HRV metrics derived from simultaneous ECG signals are

used as reference.
RRB SPC PC2015

NNmean SDNN (ms) RMSSD (ms) NNmean(ms) SDNN (ms) RMSSD (ms) NNmean (ms) SDNN (ms) RMSSD (ms)

(ms)

1 o i o 1 o 1 o 1 o 1 o I o 1 o 1 o

PRV computed on uncompressed and filtered PPG signals
Detector
Lazaro et al 0 10 -6 11 ~12 11 —28 55 —45 48 —52 45 1 45 ~16 39 —23 43
(2014)
Vestetal (2018) 11 68 —10 15 —20 26 —34 80 —56 56 —58 43 8 49 —17 35 —26 40
PRV computed on compressed PPG signals using CSMFppg

CR (%)
5 0 3 —6 8 —14 12 —42 76 —59 50 —68 50 -7 34 —21 45 —31 49
10 0 3 —7 8 —15 13 —41 77 —56 50 —65 51 —6 31 —22 46 —32 50
20 0 3 -8 9 —17 14 —42 77 —56 52 —64 53 -8 46 —26 53 —37 57
30 0 2 -8 6 —17 11 —44 77 —57 49 —70 52 -9 46 =27 55 —38 58
40 0 4 -9 12 —19 15 -39 76 —56 48 —64 47 —10 66 —31 57 —42 63
50 0 2 -9 7 —20 11 —42 75 —55 49 —64 47 -7 57 —33 58 —46 63
60 0 3 —11 9 —23 14 —34 65 —58 43 —67 44 —4 63 —33 52 —47 57
65 0 3 —12 12 —26 16 —47 77 —61 43 —78 47 —7 96 —36 61 —51 66
70 0 3 —13 7 —-27 10 -39 78 —53 46 —63 43 —11 111 —41 62 —57 70
75 0 4 —15 14 —32 19 —45 77 —62 45 —75 43 —16 113 —47 71 —67 83
80 1 7 —19 18 —38 22 —35 62 —57 41 —71 42 —10 125 —51 68 -70 74
82.5 0 5 —18 14 —37 19 —67 81 —74 45 —88 43 —11 124 —55 72 —76 79
85 0 6 —22 16 —44 22 —66 89 —68 41 —84 39 —19 156 —65 77 —87 85
87.5 -1 8 —25 21 —48 25 —51 81 —64 43 —82 44 —14 163 —-70 84 —94 100
90 1 6 —28 13 —56 20 —49 69 —67 48 —82 48 —6 165 —74 78 -99 87
92.5 2 15 —37 25 —67 31 —67 73 —74 34 -97 35 —10 202 —81 77 —103 78
95 27 66 —66 52 —94 50 —64 71 —76 44 —103 47 6 239 —89 77 —113 86
97.5 61 90 -93 48 —123 52 —52 99 —66 55 —94 56 29 268 —86 76 —107 81
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Figure5. Example of peaks detected with the proposed CSMFppg on compressed PPG ((a) CR = 75%, ((b) and (c)) CR = 60%),
red crosses, and on original PPG with (Lédzaro et al 2014), black circles. (a) Signal 08_TYPEO02 from the SPC database, ((b) and

(c)) signal f5431 and t478s containing ventricular flutter/fibrillation and ventricular tachycardia, respectively—from the PC2015
database. Reference annotations are marked with yellow diamonds.
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Figure 6. Bland—Altman plot comparing the SDNN from the ECGs with the one from PPGs on the RRB dataset. PRV-SDNN
metrics are computed from IBIs detected (a) on the uncompressed PPG signals using the Offline PD and (b) directly on the
compressd PPG signals (CR = 50%) by using the proposed CSMFppg. All metrics are computed on 60 s windows with 10
increment.

of the metrics computed on a 60 s window with 10 s increment. Figure 6(b) shows the mean and the difference of the
reference with the proposed CSMFppg at 50% compression. The 95% limits of agreement are —26.8 ms and 15.3 ms
for the PRV computed on the uncompressed data and —22.2 ms and 4 ms for the proposed scheme.

6. Discussion

Detection performance on the three datasets suggests that the proposed method can accurately perform systolic
peak detection on compressed sensed data up to CR of 80% without a significant performance loss in terms
of pooled F1 measure (87.3% =+ 9.7%) with respect to the offline peak detector on the original data (pooled
F1 = 90.5% + 10.7%).

In particular, for the RRB dataset, where true annotations for the PPG peaks were available, the F1 meas-
ure for a compression ratio 87.5% (F1 = 97.3% =+ 2.9%) is comparable to the one obtained on the original
uncompressed signal by an offline peak detector (F1 = 99.2% =+ 3.3%). For the SPC dataset, the F1 measure
(F1 = 89.1% =+ 4.9%), starts to drop for the proposed CSMFppg at compression ratios higher than 60%. On the
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last dataset, PC2015, which included also different types of arrhythmias, we have a 2% drop on the F1 measure for
the proposed method at CR = 65% (reference offline F1 measure equal to 90.6% 4= 11.4%).

With respect to the sensitivity and positive predictivity, we notice that the proposed method has typically a
higher PPV than Se, which is somehow preferable when the future step is HRV analysis. Indeed, wrong detection
due to noise might lead to misclassification of arrhythmias. The PC2015 dataset was used to test performance
on recordings containing abnormal rhythms. Based on the description provided with the dataset’, an alarm was
triggered 5 min from the beginning of each record and the onset of the event is within 10 s of the alarm, although
additional arrhythmia events can be present in the 5 min preceding the alarm. Unfortunately, it is impossible to
establish the exact prevalence of the irregular rhythms without specific annotations or to provide specific perfor-
mance for the abnormal segments of the recordings. By visual inspecting some of the recordings, we noticed that
one possible limitation of the proposed method is the detection of peaks during ventricular tachycardia episodes,
when some of the PPG peaks have a very low amplitude (see figure 5(b)). With other types of arrhythmia, such as
ventricular tachycardia/fibrillation, the proposed method is able to perform as well as the offline peak detector
(see figure 5(c)). Overall, our results on both onset detection performance and HRV metrics are comparable with
those obtained by offline methods suggesting that the use of the CSMFppg is not limited to a healthy population
but can be also applied for clinical purposes.

As expected, detection after signal reconstruction is highly dependent on the sparsifying basis/dictionary
adopted. It can be seen from the F1 measure reported in figure 4(a) that the dictionary proposed in this work
performs slightly better than the other methods (i.e. detection using CSMFppg or detection after SIO&DB4).
However, this comes at the cost of high computational complexity, as shown in figure 4(b).

A first analysis of PRV metrics extracted from compressed signals allow us to conclude that the proposed
method provide results consistent with those derived from the original PPGs.

Future work will analyze the use of IBIs extracted with the proposed method combined with low-complexity
signal classification algorithms for arrhythmia detection.

Giving similar detection performance, the proposed method is competitive in terms of computational cost with
respect to peak detection after signal reconstruction. However, further studies are required to evaluate the actual
energy saving or battery life extension for a given compression ratio. Indeed, the compression ratio required to
achieve a certain battery extension is not only dependent on the device and hardware configuration, but also on the
CS approach adopted (analog versus digital). Based on our preliminary study in Da Poian et al (2016),a CR=50%
would allow for a significant energy saving when digital CS is used, extending the battery life of at least a factor two.

The next challenge is the implementation of an actual system with good enough performance at the lowest pos-
sible power consumption. Moreover, an auto-adaptive algorithm that increases the compression ratio when possi-
ble can help to improve the overall performance and to find the best trade-off for accuracy and power consumption.

7. Conclusions

A wearable health monitoring device should be capable of measuring multiple parameters with accurate readings
and havingalong battery lifetime. In this work, we presented a PPG systolic peak detector able to work directly on
the compressed sensed signals. The method is particularly suitable for low-power implementation on wearable
devices or smartphones. While the simultaneous acquisition and compression of the signal by means of analog
compressive sensing reduces the sensing energy, the proposed method allows for low-power on-line signal
analysis. The pooled average F1 measure for the proposed CSMFppg method ranges from 91% at CR = 5% to
82% at CR = 90%, and is consistent with offline methods on uncompressed and filtered signals (F1 = 91%). The
main advantage is the possibility to perform PPG analysis directly on the wearable device or on a smart-phone
in a real-time application. Therefore, whether the data are processed on the device or sent to the smart-phone,
compressive sensing combined with the proposed method will help to extend the battery life.
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Appendix

In this appendix, we report some additional results about the performance of the proposed PPG systolic peak
detector. The results are reported in table A1.
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TableAl. Performance of the PPG systolic peak detection performed on compressed sensed data using the proposed CSMFppg at different
compression ratios. The results for Sensitivity (Se), positive predictivity (PPV) and F1 measure (F1), are reported as mean = std for each of
the three dataset used.

RRB SPC PC2015

CR (%) Se (%) PPV (%) F1 (%) Se (%) PPV (%) F1(%) Se (%) PPV (%) F1 (%)

0 99.6 £03 991454 992433 905436 88.04+70 89.14+49 9244116 89.84+11.6 90.6+ 11.4
5 98.7+1.8 995+1.1 991+13 865+£65 948+£37 904+£48 900£96 91.2+£89 903+84
10 98.74+18 994410 99.14+13 863+66 948439 903+50 90.0+9.6 909+9.2 90.2+38.5
20 98.7+1.8 994+1.1 991+13 867+£62 947+£39 905+£45 899+£96 90.6+94 89.9+387
30 98.74+18 994411 99.0+13 852469 943438 895+52 89.7+98 902498 89.7+9.0
40 98.6£21 993+13 989+14 863+£68 942+41 90.0£51 89.7+£99 90.0+10.0 89.6+09.1
50 985423 993414 989417 845466 934449 887+54 895+99 89.6+10.2 89.2+9.2
60 98.6£2.0 993+13 989+15 842+65 926+48 882+53 893+£100 89.1+105 889+94
65 985+24 993+11 989+16 824+75 921+46 869+58 89.1+10.2 88.7+10.7 88.6+9.7
70 985+22 99.0+1.7 987+17 832+89 91.8+£52 872+£70 887+£103 882+109 88.1+938
75 986+19 99.0+1.6 988+15 804+65 90.7+46 851+£54 8844106 87.6+11.3 87.74+10.2
80 98.1+£26 98.7+26 984+22 805+56 888+52 844+£50 873+108 86.4+11.4 86.5+10.3
82.5 97.7+33 975+44 976+36 750+52 881+50 8l1.0+£46 86.8+11.1 85.6+12.0 859+ 10.8
85 97.7+3.0 982+24 979+24 743+£64 868+£56 80.0£55 859+11.4 844+122 848+ 11.1
87.5 974430 974436 973429 73.64+88 846+59 786473 8464+ 11.8 83.14+12.6 835+ 114
90 96.0 £49 958+59 959+51 727+£77 834+76 77.6+£74 829+119 80.7+12.7 81.4+11.6
92.5 93.6+6.0 91.7+7.7 925462 66.6+65 787+47 720+£54 7984120 76.5+134 77.74+11.9
95 874+75 83.0+129 84.8+100 57.5+£71 702+£83 63.1+£75 739+128 693+ 140 71.0 £ 12.6

97.5 773+ 104 693 +£13.5 726+ 11.1 525+11.3 61.2+11.1 56.3+£10.9 605+ 11.5 53.8+13.3 56.4+11.5

Notes: The 0% compression reports the results of the offline peak detector (Lazaro et al 2014) on the original uncompressed data as a
reference.
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