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1. Introduction

In the last decade there has been an increasing interest on the development of new wearable technologies for 
health monitoring (Pantelopoulos and Bourbakis 2010, Seneviratne et al 2017). As a consequence of aging 
populations, dysfunctional lifestyles, and the rising concern of patients toward their health, many studies have 
been focused on new solutions to provide real-time and continuous monitoring of physiological parameters. 
However, to make it possible for wearable devices to cross the boundary between consumer electronics devices, 
with a simple fitness monitoring purpose, to regulated medical devices, new algorithms and methods are needed. 
Indeed, it is necessary to ensure a certain quality of the acquired signal as well as to preserve the diagnostic 
information while processing the signals (Shcherbina et al 2017).

While devices are becoming smaller and sensors integrated in everyday objects (e.g. watches, clothing ...), 
there are still some technology limitations to make it possible to continuously monitor the health status in real-
time. The huge storage capacity available even on small devices leverages somehow the problem when non 
immediate processing of the signal is required. Also, cloud storage and cloud computing seems to be very promis-
ing to this end, but they both require to transfer the data from the wearable device to the cloud platform, usually 
by Bluetooth/wireless connection.

When continuous transmission of the data is required, for example between the sensors to a smart-phone via 
Bluetooth, or to a remote cloud platform over Wi-Fi, energy limitations start to become predominant. To man-
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Abstract
Objective: Recent advances in wearable technologies and signal processing have made it possible to 
perform health monitoring during everyday life activities. Despite the fact that new technologies 
allow the storage of large volumes of data on small devices, limitations remain when data have to be 
transmitted or processed with devices with both energy and computational constraints. Approach: 
This work focuses on the implementation and validation of a photoplethysmogram (PPG) low-
complexity analysis method for sensors that acquire a compressed PPG signal through compressive 
sensing (CS) and allows for the accurate detection of the PPG systolic peak in the compressed 
domain. Three public datasets were used consisting of a total of about 52 h of PPG signals from 600 
patients with normal and abnormal rhythms. Peaks were manually annotated by experts or derived 
from the annotated synchronized ECG. Main results: The proposed method achieved a pooled 
average F1 measure on the three datasets of 91% ± 8% for a 5% compression ratio (CR), 89% ±
10% for CR  =  70% and 82% ± 12% for CR of 90%. The pooled average F1 measure on the original 
uncompressed data using an offline open source peak detector is F1  =  91% ± 11%. The proposed 
method is up to  ∼100 times faster with respect to methods using decompression followed by peak 
detection. Significance: Results demonstrate that it is possible to achieve detection performance, in 
terms of the F1 measure, comparable with those obtained on the original uncompressed and filtered 
signal, making the proposed approach appropriate for real-time wearable systems with energy and 
computation constraints.
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age energy-related issues, one of the most promising and extensively investigated solutions proposed over the last 
years is compressive sensing (CS) (Candès and Wakin 2008).

As shown by several works (Chen et al 2012, Dixon et al 2012, Liu et al 2014, Craven et al 2015), CS allows to 
extend the battery life of a low-power device, by acquiring a compressed version of the signal at a lower rate with 
respect to the one required by Nyquist, and avoiding the compression stage. It should be noted that CS can be 
also implemented as a low complexity (and low consumption) digital compression scheme (Da Poian et al 2016, 
Pareschi et al 2017).

In this study we consider the scenario of a photoplethysmographic (PPG) sensor designed to directly acquire 
a compressed sensed version of the original PPG signal (Rajesh et al 2016, Natarajan et al 2017, Pamula et al 
2018). The one proposed by Rajesh et al (2016) is also able to perform a direct estimation of the average heart-rate 
(HR) over a 4 s window without signal decompression, by using the power spectral density obtained from the 
Lomb–Scargle periodogram.

Similarly, the recently proposed TROIKA (Zhang et al 2015) and JOSS (Zhang 2015) methods are able to per-
form HR estimation from down-sampled PPG signals. Both methods apply signal processing to remove motion 
artefacts from the PPG spectra prior to HR estimation by choosing the highest spectral peak in the PPG spec-
trum. The TROIKA framework consists of signal decomposition (which aims to partially remove the motion 
artefact components), sparsity-based high-resolution spectrum estimation, and spectral peak tracking and veri-
fication. The JOSS method jointly estimates spectra of PPG signals and simultaneous acceleration signals, utiliz-
ing the multiple measurement vector model in sparse signal recovery, to remove motion artefact from the PPG 
spectra. The processing/analysis capability of these methods is limited to HR estimation and do not provide 
inter-beat-interval (IBI) estimation.

The aim of this research goes beyond HR estimation by developing and validating a compressed PPG systolic 
peak detection system, inspired by the method proposed for the ECG signal in Da Poian et al (2017). The pro-
posed framework, hereinafter called CSMFppg, works on the compressed signal without need of signal recon-
struction (i.e. decompression). In particular, it is able to detect the PPG systolic peaks useful to perform pulse 
rate variability (PRV) analyses as well as atrial fibrillation (AF) detection, and HR as well. As reported in Schäfer 
and Vagedes (2013), PRV is typically sufficiently accurate, although coupling effects between respiration and the 
cardiovascular system leads to an overestimation of the short-term variability.

In this work we present an efficient processing algorithm for compressed detection of PPG systolic peaks with 
the future aim of developing an event driven wearable PPG monitoring device, which after detecting an abnor-
mal event—such as AF—on the compressed signal, can send an alert as well as the compressed signal to a remote 
user, e.g. a physician. Furthermore, the compressed signal can be always recovered at the receiver by solving an 
optimization problem (see section 1.1) combined with a sparsyfing basis such as the one we propose in this paper 
(see section 2.3), allowing for further analysis and expert evaluation.

The main contributions of this paper are as follows:

	 •	�low complexity digital processing of PPG signals—the systolic peaks are estimated directly from sub-Nyquist 
samples; 

	 •	�novel dictionary for PPG spare approximation that exploits the structure of the signal and that improves the 
reconstruction performance; 

	 •	�validation of proposed methods on a broad set of PPGs different for patient age, recording device (wrist and 
fingertip), health status and activity (rest and physical exercise).

1.1.  Compressive sensing of PPG signal
This section is intended to introduce the notation used in the rest of this work. For an extensive review of the 
compressive sensing technique please refer to Candès and Wakin (2008). Let us consider a PPG signal x(t), which 
is going to be acquired and simultaneously compressed. By using compressive sensing it is possible to merge the 
acquisition and compression stage in order to directly acquire a signal y ∈ RM , which is a compressed digitized 
version of the original signal samples x ∈ RN, relative to a fixed window of length N. This operation can be 
mathematically expressed as

y = Φx+ n,� (1)

where Φ ∈ RM×N, with M  <  N, is the so called sensing matrix, which must satisfy the restricted isometry 
property (RIP) (Baraniuk et al 2008) in order to preserve information during compression. The additional term 
n represents the measurement and process noise.

Signal reconstruction, sometimes referred to as recovery or decompression, can be performed by optim
ization methods exploiting the sparsity of the acquired signal. Given a basis Ψ ∈ RN×N  or an overcomplete dic-
tionary D ∈ RN×P, with P  >  N, a signal is said to be k-sparse if its signal expansion α, α ∈ RP such that x = Dα 
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has only k non zero elements, with k � N. Thus, given a sparsifying dictionary (or basis), one can recover the 
signal x  from the compressed measurements y, by solving the following optimization problem:

min
α

||α||0 s.t. ||y− ΦDα||22 � ε,� (2)

and obtain x  as x = Dα. This NP-hard problem can be solved by several methods proposed in literature such 
as basis pursuit denoising (BPDN) (Chen et al 2001), orthogonal matching pursuit (OMP) (Tropp and Gilbert 
2007), Smooth-l0 (SL0) (Mohimani et al 2009).

2.  CSMFppg algorithm description

Inspired by the compressed sensed matching filtering (CSMF) ECG peak detector (Da Poian et  al 2017), 
implemented for beat detection on compressed sensed ECG signals, in this work we propose a compressed 
systolic peak detector for the PPG signal. Note that the proposed signal modeling and processing procedures 
differ from the ones presented in Da Poian et al (2017), which are tailored to ECG, in particular for template 
generation and compressive sensing dictionary construction.

2.1.  Template generation
The PPG systolic peak detector used in this work is based on the estimated correlation of the compressed input 
signal y with a known template γ , which is projected into the compressed domain as well.

The first and fundamental step is the construction of the template γ  on the uncompressed or reconstructed 
signal. To this end we assume to have access to a limited portion of good quality uncompressed signal xint  of 
length Tint. In a real-world application one can provide for a preliminary phase, in which the subject is asked 
to record an initialization signal for Tint seconds, without movements to guarantee a good signal quality. When 
only the compressed sensed signal is available, the initial signal xint  can be reconstructed using one of the solv-
ers mentioned in section 1.1. The signal mean is then removed and a ‘traditional’ systolic peak detector, such as 
the one described in Lázaro et al (2014), is applied on the recovered PPG signal. As an alternative, R peaks from 
a simultaneously recorded ECG or PPG onsets can be used to define the segments of PPG to be used to generate 
the template.

Since different onsets can be used, the algorithm is designed to segment the initial PPG based on the type of 
onset. In particular, when the initial fiducial points are systolic peaks, the PPG is segmented by taking a window 
of 350 ms before and 500 ms after each detected peak. When ECG R-peaks are used, the PPG window is taken 
from 50 ms to 900 ms after the fiducial point (R-peak).

To correctly align the segments, the maximum value within each window is used as an anchor point. In such a 
way the template generation is independent from the reference fiducial point initially used.

At this stage the PPG template γ  is computed by taking the mean of the segmented and aligned PPG segments 
and keeping the window from the minimum (i.e. the onset computed as the max of the third derivative of the 
template), to 150 ms after the peak. This design optimizes the performance of the detector since keeping only the 
rising part of γ  allows to adapt also to changing rhythm as the pulse width changes with the heart rate. Typically, 
the PPG shows narrow pulses at high heart rate while, at low heart rate, the pulses are wider.

2.2.  Systolic peak detection from estimated correlation
Given a compressed vector y of length M (corresponding to an uncompressed signal window of length N), the 
first step is to estimate the correlation Rxγ between x  and the template, from the compressed measurements y 
and the (compressed) template γ . In particular, similarly to Da Poian et al (2017), we employ the orthogonal 
estimator, which allows to derive the estimated correlation R̂xγ,n as

R̂xγ,n =
N

M
〈y, (ΦΦT)−1Φγn〉,� (3)

where γn is the n-sample translated version of the template, whose non-zero elements correspond to the PPG 
template. (Note that the template is zero-padded to match the uncompressed window length N.)

Prior to peak detection, an exclusion criteria is applied in order to prevent false detections on noisy segments 

of the PPG signals. The exclusion criterion is based on the correlation energy in the current window ER̂(i)
xγ

, and 
the average energy of past windows ER̂xγ  (which is updated after a window is considered valid and used for peak 

detection). In particular, peak detection is not performed on the current window if the ratio ER̂(i)
xγ
\ER̂xγ

 is lower 

than thenergy or higher than th−1
energy. Indeed, sudden changes in the correlation value can be associated, with high 

probability, with noise in the signal and will lead to false detections.
The second stage of the detection procedure consists in the detection of the systolic peaks p  by comparing the 

value of the correlation against an adaptive amplitude-dependent threshold th. The detection threshold is com-
puted for each correlation window, i.e. for each measurement block, and it depends on the correlation amplitude 
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in the current window, th = thcorr ·max(R̂xγ,n). A refractory period of 200 ms is used accordingly to physiologi-
cal limits to prevent double peaks detection.

Additional control to avoid double detection between two consecutive windows, as well as missing detection, is 
performed. In particular, if the distance (dpeaks) between the last peak p − in the previous window and the first in the 
current one p + is lower than a limit Fmin the two detections are merged by taking a weighted point in between depend-
ing on the values of correlation of both points, i.e. pmerged = ( p− · R̂x−γ,p− + p+ · R̂xγ,p+)/(R̂x−γ,p− + R̂xγ,p+), 
where R̂x−γ,p− is the value of the estimated correlation on the previous windows in p − and R̂xγ,p+ for the current 
in p + . The example illustrated in figure 1 helps to understand the double peaks replacement.

Whereas, when dpeaks is higher than the upper physiological limit Fmax, a missing peak is highly probable and 
a second peak search is therefore performed on the estimated correlation between the two windows (in a neigh-
borhood centered on the edge and with length TborderFs samples, Fs being the sampling frequency) by lowering 
the previous threshold, i.e. th = thborder · th. The same strategy is also applied if dpeaks is higher than thIBI the 
median IBI (e.g. variation of more than 60% of the median IBI) interval computed on the last NIBI windows.

The actual parameter values used in the experiments will be specified in section 4.1.

2.3.  Photoplethysmogram sparsifying dictionary
Despite the proposed method works in the compressed domain without requiring signal reconstruction, it is 
always possible to recover the original signal from the compressed measurements in order to perform an offline 
automated analysis or visual evaluation of the signal. To this end, it is necessary to employ a good sparsifying basis 
or dictionary able to ensure signal reconstruction even at a high compression ratio. In this work we suggest to use 
the overcomplete dictionary (PPG Dic.) described in this section.

In order to design a good mathematical model, we looked at features inside the PPG waveform such as the 
systolic peak of PPG, always present if the signal is well detected by the device (see figure 2). Another important 
feature is the slope of the derivative for the first rising portion of PPG. Indeed, the derivative is always positive 
till it reaches zero at the maximum and changes sign. A last feature is the presence, not in all cases, of a second 
maximum (diastolic peak) with a lower peak value compared to the previous one. This signal segment can be well 
approximated by the same basis but scaled and shifted. The aim is to find a family of functions in the form

f (a, b, t) = φ

(
t − b

a

)
,� (4)

whose superposition will approximate the PPG signal, where a, b are parameters respectively for scale and 
translation.

A good candidate to approximate the one-peak PPG waveform is the following:

φ(t) = tn · e−t ,� (5)

Figure 1.  Example of double peak detection on the estimated correlation R̂xγ (solid line) due to the transition between two 
windows. The ‘original’ correlation Rxγ is reported for reference (dash line). Signal sampling frequency 125 Hz. 
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for t � 0. Furthermore, such basis functions have another degree of freedom which is the parameter n, whose 
higher values correspond to steeper rising.

For all the reasons explained above, we propose

f (a, b, n, t) =

(
t − b

a

)n

· e−
(

t−b
a

)
� (6)

for t  >  b (and 0 elsewhere), as the family of functions used to generate the dictionary.
A value of n which well approximates the rising section of the signal is n  =  2, and for it the set of suitable ai 

found through fitting is {ai|ai = 1+ 0.5 · k, 0 � k � 9} · Fs
60 where Fs is the signal sampling frequency.

Figure 3 shows how different numbers of dictionary atoms can approximate a PPG (using the OMP recon-
struction algorithm).

3.  Materials

3.1.  Benchmark datasets
To validate the proposed method we used three different public datasets of PPG signals both from wrist devices 
and finger tip devices (see table 1). In particular, the first dataset section 3.1.1 was used as a baseline for detection 
when no physical activity is performed. The second dataset section 3.1.2 was used to test the ability of dealing with 
rapid changes in heart rate and noise due to physical activity. Finally, the third dataset section 3.1.3 provided a 

validation for the ability of the proposed method to work with signals containing different kinds of arrhythmias.

3.1.1.  IEEE respiratory rate benchmark (RRB) dataset
The pulse oximetry benchmark dataset, was originally proposed for the validation of the SmartFusion respiratory 
rate estimation algorithm (Karlen et al 2013).

The used test set includes 8 min long raw PPG signals (with additional synchronized ECG signals) from 42 
subjects, as well as pulse peak and artefact labels validated by an expert rater. All signals were sampled at 300 Hz 
and recorded from patients with age range 0.8–75.6 years.

3.1.2.  IEEE Signal Processing Cup (SPC) dataset
The second dataset used in this work was set up for the IEEE Signal Processing Cup and is publicly available 
(Zhang 2015). The dataset consists of 12 5 min recordings which were collected from 18 to 58 year old subjects 
performing various physical exercises. For each subject, the PPG signals were recorded from the wrist using two 
pulse oximeters with green LEDs (wavelength: 515 nm). The ECG signal was recorded simultaneously from 
the chest using wet ECG sensors. All signals were sampled at 125 Hz. Three types of activities were performed 
including walking or running on a treadmill at different speeds from 1–2 km h−1 to a maximum of 12–15 km h−1. 
The subjects were asked to purposely use the hand with the wristband to pull clothes, wipe sweat on forehead, 

Systolic 
Peak Diastolic 

Peak

Figure 2.  An example of photoplethysmogram (PPG) waveform signal and its characteristic parameters.
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and push buttons on the treadmill. The ECG-based HR ground-truth using an 8 s sliding window (2 s increment) 
is also provided.

3.1.3.  PhysioNet Challenge 2015 (PC2015) dataset
The last dataset used in this work is the one provided for the PhysioNet Challenge 2015 (Goldberger et al 2000, 
Clifford et al 2015). Data are sourced from four hospitals in the USA and Europe, chosen at random. The dataset 
contains 750 recordings from which we used a subset of 550 signals excluding those with missing ECG and/or 
PPG signals or containing very noisy ECG signals that makes it impossible to get a reliable reference. The subset 
contains synchronized 300 or 330 s long ECG and PPG signals, which have been resampled (using anti-alias 
filters) to 12 bit, 250 Hz. The signals were preprocessed with a band pass filter at 0.05 to 40 Hz, and mains notch 
filters applied to remove noise. The following 5 types of arrhythmias are present in the chosen subset: asystole (64 
signals), extreme bradycardia (67 signals), extreme tachycardia (99 signals), ventricular tachycardia (290 signals) 
and ventricular flutter/fibrillation (30 signals).

4.  Methods

4.1.  Parameter selection
The parameters applied for the validation of the proposed CSMFppg are the same for all the datasets, and are 
listed in table 2. The only parameters that depend on the dataset, and in particular on the sampling frequency, are 

the ones multiplied by Fs.
The choice of Fmin and Fmax is based on a physiologically probable range of HR ranging between 33 and 200 

beats per minute (bpm) for a population likely to use wearable sensors. Note that these parameters are used as 
a flag to check for missing/double peaks. However, the algorithm is still able to detect peaks such that the inter-
beat-interval is shorter or longer then Fmin and Fmax.
Remark. Optimized settings for the proposed method were obtained by using as training set PPG signals from 
the MIMIC II dataset (Goldberger et al 2000, Saeed et al 2011). No further optimization was carried out on the 
benchmark datasets, which have been used only as ‘test’ datasets.

Figure 3.  Signal approximation of a PPG pulse (sampled at 300 Hz) using the proposed PPG over-complete dictionary and the 
OMP method for different sparsity levels 1 and 6. It can be seen that 6 atoms allow a good approximation of the original signal 
preserving the PPG peak position.

Table 1.  Summary of datasets used by this work.

Dataset Number of signals Total length (h) Arrhythmias

Respiratory rate benchmark (RRB) (Karlen et al 2013) 42 5.6 No

2015 Signal Processing Cup (SPC) (Zhang 2015) 12 1 No

PhysioNet Challenge 2015 (PC2015) (Clifford et al 2015) 550 45.8 yes

Physiol. Meas. 40 (2019) 065007 (15pp)
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It should be noted that the results of the proposed method are slightly dependent on the window length N as 
long as Lwin  =  N/Fs ranges between 1 s and 2 s. Shorter windows introduce more artefacts due to discontinuities 
between consecutive windows. Longer windows, other then increasing the computational load, are not suitable 
for on-line analysis.

4.2.  Validation procedures
To assess the feasibility and actual usefulness of the proposed method, we performed a set of validation 
experiments on the three datasets described in section 3.1.

In particular we validated and compared the peak detection performance (section 4.2.1), the execution 
time performance (section 4.2.2) and the reliability of PRV measures estimation (section 4.2.3) on compressed, 
reconstructed and original signals as follows.

All the signals from the three datasets described in section 3.1 were compressed at several compression ratios, 
i.e. CR  =  (5, 10, 20, 30, 40, 50, 60, 65, 70, 75, 80, 82.5, 85, 87.5, 90, 92.5, 95, 97.5)%, by using a random Gaussian 
sensing matrix. We chose to use a different sensing matrix for each signal to consider its influence on the average 
detection capability (however, this is not necessary in an actual implementation). After compression all the fol-
lowing methods were applied to the compressed signals and results compared.

	 •	�The proposed compressed peak detector CSMFppg was applied directly on each compressed signal y, using 
parameters described in section 4.1.

	 •	�Each compressed signal was also reconstructed by using the Sl0 algorithm (Mohimani et al 2009) in 
combination with the proposed PPG Dictionary (Sl0&PPG Dictionary). On the obtained reconstructed 
signal the PPG peak detector proposed by Lázaro et al (2014) was applied. It should be noted that it works 
offline on the entire reconstructed signal (Offline PD). Note that the detector in Lázaro et al (2014) consists of 
two phases: a linear filtering transformation (linear-phase FIR low-pass-differentiator filter with transition 
band from 7.7 Hz to 8 Hz), and an adaptive thresholding operation.

	 •	�A second method for reconstructed signals was applied, again we used the Sl0 algorithm but this time in 
combination with a sparsyfing Wavelet DB4 basis with 3 levels of decomposition (Sl0&DB4) (Pinheiro et al 
2010). The PPG peak detector (Offline PD) described above was used to perform offline PPG fiducial point 
detection.

We also applied the offline systolic peak detector (Offline PD) to the entire uncompressed and filtered signal to 
derive baseline performances.

Finally, for the HRV assessment we also included in the comparison an offline onset detector (Offline OD), 
allowing for further comparison. After subtracting the signal mean, the signal were bandpass filtered to remove 
frequencies outside the range of 0.2–10 Hz, using a butterworth filter of order three. On the filtered signals we 
applied the onset detector provided in Vest et al (2018), which is a Matlab implementation of the atrial blood 
pressure onset detector proposed in Zong et al (2003).

4.2.1.  Detection performance
By evaluating the ability of correct detection of peak locations and comparing it with a standard off-line peak 
detector, we aim at quantifying the performance of the proposed method, at different compression ratios, taking 
the ground truth as reference.

Table 2.  List of CSMFppg parameters and values used by this work.

Parameter Value Usage

thenergy 5 (%) Exclusion threshold

Fmin 0.3 (s) Minimum inter-beat-interval

Fmax 1.8 (s) Maximum inter-beat-interval

MinVal 0 (a.u.) Minimum height of Rxγ,n for detection

thcorr 30 (%) Threshold for detection of peaks referred to maximum peak

Tborder 0.05 (s) If one peak is missing, look inside a window of width  

TborderFs samples centered between two consecutive windows

thborder 50 (%) If in this neighborhood there is a peak higher than Thb times 

the weighted mean of two adjacent, detect it

NIBI 10 Compute median IBI on last NIBI windows

thIBI 60 (%) Maximum % variation of IBI with respect to the median IBI

Tint 30 (s) PPG signal length used to generate the template

Lwin 1.28 (s) Length of the PPG window to compress

Physiol. Meas. 40 (2019) 065007 (15pp)
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Peaks obtained from the four different approaches described in section 4.2 were tested according to the rec-
ommendation of the American National Standard for ambulatory ECG analyzers (ANSI/AAMI EC38-1994) 
(AAMI 1994). For each recording, we computed the sensitivity (Se), the positive predictive value (PPV) and the 
F1 measure, defined as the harmonic mean of Se and PPV, namely

Se =
TP

TP+ FN
× 100,

PPV =
TP

TP+ FP
× 100,

F1 =
2TP

2TP+ FN+ FP
× 100.

In the above equations, TP (true positives) is the total number of systolic peaks correctly located by the detector, a 
false negative (FN) occurs when the algorithm fails to detect a true peak and a false positive (FP) represents a false 
beat detection. The average results in terms of Se, PPV and F1 over all the segments are reported.

As reference annotations we used the true PPG peaks provided with the dataset when available. This was the 
case of the RRB dataset.

For the other two datasets, i.e. SPC and PC2015, we used the QRS-synchronized beat annotations obtained 
from the ECG signal using jqrs (Behar et al 2014). Each detected R-peak was associated with the location of the 
PPG peak. PPG reference beats and detected PPG peaks are matched if the latter fall within a 150 ms window 
centered at the ECG beat annotation label, as also used for R-peak detection algorithm validation (AAMI 1994).

4.2.2.  Runtime performance
The usefulness of a compressed peak detector for low-power devices is also related to its capability to be less 
complex than standard methods working on uncompressed or reconstructed signals. To this end, the complexity 
of our algorithm has been compared against the offline peak detector proposed in Lázaro et  al (2014) on 
uncompressed data and also with respect to the time required for signal reconstruction and peak detection. In 
particular we are here interested in the performance gain achieved by not recovering the signal. Thus, we evaluated 
the time required by the proposed method CSMFppg and by Offline PD as well as by Sl0&PPG Dic.  +  Offline PD 
and Sl0&DB4  +  Offline PD (see section 4.2.1). All the simulations were written in Matlab, running on an Intel 
Core i5 processor, equipped with 8 GB memory.

4.2.3.  Heart rate variability performance
The last assessment aims to evaluate the impact of compression on the estimated PRV metrics. Differently from 
peak detection performance, evaluating the ability of the proposed method to derive metrics used in clinical 
applications allowed to have a better understanding of its possible practical and clinical usability. In this work, we 
focus on three widely used time domain metrics: the mean of Normal-to-Normal (NN) intervals NNmean, the 
standard deviation of NN SDNN, and the root-mean-squared value of the difference (RMSSD) were computed 
on 60 s epochs with a 10 s increment, using the PhysioNet cardiovascular signal toolbox with default settings 
(Vest et al 2018)4. As mentioned, R-peak locations were available for the RRB dataset and derived directly from 
the ECG signals using jqrs (Vest et al 2018) for the other datasets. IBIs from uncompressed PPGs where derived 
using the peaks detected using the Offline PD (Lázaro et al 2014) and from onsets detected by the Offline OD (Vest 
et al 2018). For the compressed scenario, we limited the analysis to IBIs derived from peaks detected directly in 
the compressed domain with CSMFppg. The agreement between the HRV and PRV metrics were assessed using 
the Bland–Altman method (Bland and Altman 1986). Results are reported as the mean (µ) and the standard 
deviation (σ) of the difference. One should keep in mind that minor differences between the HRV and PRV 
exist (Schäfer and Vagedes 2013) and will be an additional source of error in the reported results. We would like 
to clarify also that the aim of this analysis is to show that errors deriving from using the proposed CSMFppg are 
comparable with those obtained on the uncompressed PPG signal with a standard detector. It is beyond the scope 
of this paper to prove whether or not HRV metrics derived from PPG could be used as a surrogate measurement 
of HRV from the ECG.

5.  Results

5.1.  Detection performance
Table 3 reports the F1 measure obtained using the proposed method for different compression ratios and 
separately for each dataset in order to understand the performance and limitations based on the type of signals. 
Additional results for Se, PPV and F1 measure are reported in table A1

4 Open source code available on-line https://doi.org/10.5281/zenodo.1243111, accessed on 06 September 2018.
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Table 3.  Detection performance of the PPG systolic peak detection performed on compressed sensed data using the proposed CSMFppg at different compression ratios. The results for F1 measure (F1) are reported as mean ± std for each 
of the three datasets used as well as for the training data.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Training 95.57 ± 5.0 93.5 ± 5.5 93.2 ± 5.8 93.3 ± 5.7 93.5 ± 5.5 92.9 ± 5.9 91.8 ± 6.9 89.6 ± 8.4 84.2 ± 9.0 76.4 ± 11.4

RBB   99.2 ± 3.3 99.1 ± 1.3 99.1 ± 1.3 99.0 ± 1.3 98.9 ± 1.4 98.9 ± 1.7 98.9 ± 1.5 98.7 ± 1.7 98.4 ± 2.2 95.9 ± 5.1

SPC   89.1 ± 4.9 90.3 ± 5.0 90.5 ± 4.5 89.5 ± 5.2 90.0 ± 5.1 88.7 ± 5.4 88.2 ± 5.3 87.2 ± 7.0 84.4 ± 5.0 77.6 ± 7.4

PC2015   90.6 ± 11.4 90.2 ± 8.4 89.9 ± 8.7 89.7 ± 9.0 89.6 ± 9.1 89.2 ± 9.2 88.9 ± 9.4 88.1 ± 9.8 86.5 ± 10.3 81.4 ± 11.6

Notes: The 0% compression reports the results of the offline peak detector (Lázaro et al 2014) on the original uncompressed data as a reference.
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Detection on uncompressed signals is marked as 0% compression and, especially for the dataset where no 
PPG peaks were given as reference, provides an upper bound for the detection performance.

Figure 4(a) provides a comparison of the CSMFppg method and the detection after signal reconstruction 
with different bases in terms of average F1 measure. Figure 4(a) also reports the results for uncompressed data.

Figure 5(a) shows an example of peak detection on record 08_TYPE02 performed by CSMFppg at CR  =  75% 
(red crosses) and also by using the peak detector in Lázaro et al (2014) (black circles). Reference peaks are marked 
by yellow diamonds.

5.2.  Runtime performance
The computational load for the different methods is reported in figure 4(b). We report the execution time for one 
window corresponding to 1 s. The results are shown separately for each dataset to highlight the impact of different 
sampling frequencies, in particular on methods that require signal reconstruction before peak detection. For all 
the dataset the proposed CSMFppg is up to  ∼100 time faster than reconstruction using the PPG Dictionary.

To process 1 s of a signal, the offline peak detector (Lázaro et al 2014) requires an average time of 0.5 ± 0.2 ms. 
Whereas, the proposed CSMFppg, which allows data compression, requires at most 0.3 ± 0.2 ms. Finally, the two 
methods based on signal reconstruction prior to peak detection, i.e. the Sl0&PPG Dic. and the Sl0&DB4, require 
up to 90 ± 22 ms and 15 ± 5 ms, respectively.

5.3.  Heart rate variability performance
Table 4 reports the accuracy of PRV metrics, with respect to HRV metrics computed from ECG, as mean and standard 
deviation of the difference. The impact due to compression is negligible and the error is similar to that obtained 
when computing HRV metrics on ECG and on uncompressed PPG signals, at least for compression ratios lower than 
80%. Due to the limited space, only one example of the Bland–Altman analysis is shown in figure 6 for the SDDN 
parameter calculated on the RBB dataset. Taking the SDNN metric calculated from the synced ECG as reference, 
figure 6(a) shows the mean and the difference between the reference and the same metric calculated from the PPG 
signals with the Offline PD on uncompressed data. Each mark in the figure represents the mean and the difference 

(a)

(b)

Figure 4.  (a) Performance of different PPG detection approaches on compressed sensed data and (b) required execution time. For 
each dataset considered in this work the F1 value (mean ± standard deviation) is reported in a separated plot. The time required 
to process 1 s of signal is reported as (mean ± standard deviation). Each plot reports the results for the proposed method working 
directly on the compressed measurements (CSMFppg), after signal reconstruction using Sl0&PPG Dic. or Sl0&DB4 applying an 
offline peak detector (Offline PD). Also results for offline peak detection (Offline PD) on the uncompressed data are reported as a 
reference (black solid line, bars represent the standard deviation).

Physiol. Meas. 40 (2019) 065007 (15pp)
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Table 4.  Pulse rate variability measurement accuracy using Bland–Altman (Bland and Altman 1986) analysis, mean (µ) and standard deviation (σ) of the difference are reported. HRV metrics derived from simultaneous ECG signals are 
used as reference.

RRB SPC PC2015

NNmean 

(ms)

SDNN (ms) RMSSD (ms) NNmean(ms) SDNN (ms) RMSSD (ms) NNmean (ms) SDNN (ms) RMSSD (ms)

µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

PRV computed on uncompressed and filtered PPG signals

Detector

Lázaro et al 

(2014)

0 10 −6 11 −12 11 −28 55 −45 48 −52 45 1 45 −16 39 −23 43

Vest et al (2018) 11 68 −10 15 −20 26 −34 80 −56 56 −58 43 8 49 −17 35 −26 40

PRV computed on compressed PPG signals using CSMFppg

CR (%)

5 0 3 −6 8 −14 12 −42 76 −59 50 −68 50 −7 34 −21 45 −31 49

10 0 3 −7 8 −15 13 −41 77 −56 50 −65 51 −6 31 −22 46 −32 50

20 0 3 −8 9 −17 14 −42 77 −56 52 −64 53 −8 46 −26 53 −37 57

30 0 2 −8 6 −17 11 −44 77 −57 49 −70 52 −9 46 −27 55 −38 58

40 0 4 −9 12 −19 15 −39 76 −56 48 −64 47 −10 66 −31 57 −42 63

50 0 2 −9 7 −20 11 −42 75 −55 49 −64 47 −7 57 −33 58 −46 63

60 0 3 −11 9 −23 14 −34 65 −58 43 −67 44 −4 63 −33 52 −47 57

65 0 3 −12 12 −26 16 −47 77 −61 43 −78 47 −7 96 −36 61 −51 66

70 0 3 −13 7 −27 10 −39 78 −53 46 −63 43 −11 111 −41 62 −57 70

75 0 4 −15 14 −32 19 −45 77 −62 45 −75 43 −16 113 −47 71 −67 83

80 1 7 −19 18 −38 22 −35 62 −57 41 −71 42 −10 125 −51 68 −70 74

82.5 0 5 −18 14 −37 19 −67 81 −74 45 −88 43 −11 124 −55 72 −76 79

85 0 6 −22 16 −44 22 −66 89 −68 41 −84 39 −19 156 −65 77 −87 85

87.5 −1 8 −25 21 −48 25 −51 81 −64 43 −82 44 −14 163 −70 84 −94 100

90 1 6 −28 13 −56 20 −49 69 −67 48 −82 48 −6 165 −74 78 −99 87

92.5 2 15 −37 25 −67 31 −67 73 −74 34 −97 35 −10 202 −81 77 −103 78

95 27 66 −66 52 −94 50 −64 71 −76 44 −103 47 6 239 −89 77 −113 86

97.5 61 90 −93 48 −123 52 −52 99 −66 55 −94 56 29 268 −86 76 −107 81

P
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of the metrics computed on a 60 s window with 10 s increment. Figure 6(b) shows the mean and the difference of the 
reference with the proposed CSMFppg at 50% compression. The 95% limits of agreement are  −26.8 ms and 15.3 ms 
for the PRV computed on the uncompressed data and  −22.2 ms and 4 ms for the proposed scheme.

6.  Discussion

Detection performance on the three datasets suggests that the proposed method can accurately perform systolic 
peak detection on compressed sensed data up to CR of 80% without a significant performance loss in terms 
of pooled F1 measure (87.3% ± 9.7%) with respect to the offline peak detector on the original data (pooled 
F1  =  90.5% ± 10.7%).

In particular, for the RRB dataset, where true annotations for the PPG peaks were available, the F1 meas-
ure for a compression ratio 87.5% (F1  =  97.3% ± 2.9%) is comparable to the one obtained on the original 
uncompressed signal by an offline peak detector (F1  =  99.2% ± 3.3%). For the SPC dataset, the F1 measure 
(F1  =  89.1% ± 4.9%), starts to drop for the proposed CSMFppg at compression ratios higher than 60%. On the 

(a) (b)

Figure 6.  Bland–Altman plot comparing the SDNN from the ECGs with the one from PPGs on the RRB dataset. PRV-SDNN 
metrics are computed from IBIs detected (a) on the uncompressed PPG signals using the Offline PD and (b) directly on the 
compressd PPG signals (CR  =  50%) by using the proposed CSMFppg. All metrics are computed on 60 s windows with 10 s 
increment.

(a) (b)

(c)

Figure 5.  Example of peaks detected with the proposed CSMFppg on compressed PPG ((a) CR  =  75%, ((b) and (c)) CR  =  60%), 
red crosses, and on original PPG with (Lázaro et al 2014), black circles. (a) Signal 08_TYPE02 from the SPC database, ((b) and 
(c)) signal f543l and t478s containing ventricular flutter/fibrillation and ventricular tachycardia, respectively—from the PC2015 
database. Reference annotations are marked with yellow diamonds.

Physiol. Meas. 40 (2019) 065007 (15pp)
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last dataset, PC2015, which included also different types of arrhythmias, we have a 2% drop on the F1 measure for 
the proposed method at CR  =  65% (reference offline F1 measure equal to 90.6% ± 11.4%).

With respect to the sensitivity and positive predictivity, we notice that the proposed method has typically a 
higher PPV than Se, which is somehow preferable when the future step is HRV analysis. Indeed, wrong detection 
due to noise might lead to misclassification of arrhythmias. The PC2015 dataset was used to test performance 
on recordings containing abnormal rhythms. Based on the description provided with the dataset5, an alarm was 
triggered 5 min from the beginning of each record and the onset of the event is within 10 s of the alarm, although 
additional arrhythmia events can be present in the 5 min preceding the alarm. Unfortunately, it is impossible to 
establish the exact prevalence of the irregular rhythms without specific annotations or to provide specific perfor-
mance for the abnormal segments of the recordings. By visual inspecting some of the recordings, we noticed that 
one possible limitation of the proposed method is the detection of peaks during ventricular tachycardia episodes, 
when some of the PPG peaks have a very low amplitude (see figure 5(b)). With other types of arrhythmia, such as 
ventricular tachycardia/fibrillation, the proposed method is able to perform as well as the offline peak detector 
(see figure 5(c)). Overall, our results on both onset detection performance and HRV metrics are comparable with 
those obtained by offline methods suggesting that the use of the CSMFppg is not limited to a healthy population 
but can be also applied for clinical purposes.

As expected, detection after signal reconstruction is highly dependent on the sparsifying basis/dictionary 
adopted. It can be seen from the F1 measure reported in figure 4(a) that the dictionary proposed in this work 
performs slightly better than the other methods (i.e. detection using CSMFppg or detection after Sl0&DB4). 
However, this comes at the cost of high computational complexity, as shown in figure 4(b).

A first analysis of PRV metrics extracted from compressed signals allow us to conclude that the proposed 
method provide results consistent with those derived from the original PPGs.

Future work will analyze the use of IBIs extracted with the proposed method combined with low-complexity 
signal classification algorithms for arrhythmia detection.

Giving similar detection performance, the proposed method is competitive in terms of computational cost with 
respect to peak detection after signal reconstruction. However, further studies are required to evaluate the actual 
energy saving or battery life extension for a given compression ratio. Indeed, the compression ratio required to 
achieve a certain battery extension is not only dependent on the device and hardware configuration, but also on the 
CS approach adopted (analog versus digital). Based on our preliminary study in Da Poian et al (2016), a CR�50% 
would allow for a significant energy saving when digital CS is used, extending the battery life of at least a factor two.

The next challenge is the implementation of an actual system with good enough performance at the lowest pos-
sible power consumption. Moreover, an auto-adaptive algorithm that increases the compression ratio when possi-
ble can help to improve the overall performance and to find the best trade-off for accuracy and power consumption.

7.  Conclusions

A wearable health monitoring device should be capable of measuring multiple parameters with accurate readings 
and having a long battery lifetime. In this work, we presented a PPG systolic peak detector able to work directly on 
the compressed sensed signals. The method is particularly suitable for low-power implementation on wearable 
devices or smartphones. While the simultaneous acquisition and compression of the signal by means of analog 
compressive sensing reduces the sensing energy, the proposed method allows for low-power on-line signal 
analysis. The pooled average F1 measure for the proposed CSMFppg method ranges from 91% at CR  =  5% to 
82% at CR  =  90%, and is consistent with offline methods on uncompressed and filtered signals (F1  =  91%). The 
main advantage is the possibility to perform PPG analysis directly on the wearable device or on a smart-phone 
in a real-time application. Therefore, whether the data are processed on the device or sent to the smart-phone, 
compressive sensing combined with the proposed method will help to extend the battery life.
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Appendix

In this appendix, we report some additional results about the performance of the proposed PPG systolic peak 
detector. The results are reported in table A1.

5 https://physionet.org/physiobank/database/challenge/2015/
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Table A1.  Performance of the PPG systolic peak detection performed on compressed sensed data using the proposed CSMFppg at different 
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the three dataset used.

RRB SPC PC2015

CR (%) Se (%) PPV (%) F1 (%) Se (%) PPV (%) F1(%) Se (%) PPV (%) F1 (%)

0 99.6 ± 0.3 99.1 ± 5.4 99.2 ± 3.3 90.5 ± 3.6 88.0 ± 7.0 89.1 ± 4.9 92.4 ± 11.6 89.8 ± 11.6 90.6 ± 11.4

5 98.7 ± 1.8 99.5 ± 1.1 99.1 ± 1.3 86.5 ± 6.5 94.8 ± 3.7 90.4 ± 4.8 90.0 ± 9.6 91.2 ± 8.9 90.3 ± 8.4

10 98.7 ± 1.8 99.4 ± 1.0 99.1 ± 1.3 86.3 ± 6.6 94.8 ± 3.9 90.3 ± 5.0 90.0 ± 9.6 90.9 ± 9.2 90.2 ± 8.5

20 98.7 ± 1.8 99.4 ± 1.1 99.1 ± 1.3 86.7 ± 6.2 94.7 ± 3.9 90.5 ± 4.5 89.9 ± 9.6 90.6 ± 9.4 89.9 ± 8.7

30 98.7 ± 1.8 99.4 ± 1.1 99.0 ± 1.3 85.2 ± 6.9 94.3 ± 3.8 89.5 ± 5.2 89.7 ± 9.8 90.2 ± 9.8 89.7 ± 9.0

40 98.6 ± 2.1 99.3 ± 1.3 98.9 ± 1.4 86.3 ± 6.8 94.2 ± 4.1 90.0 ± 5.1 89.7 ± 9.9 90.0 ± 10.0 89.6 ± 9.1

50 98.5 ± 2.3 99.3 ± 1.4 98.9 ± 1.7 84.5 ± 6.6 93.4 ± 4.9 88.7 ± 5.4 89.5 ± 9.9 89.6 ± 10.2 89.2 ± 9.2

60 98.6 ± 2.0 99.3 ± 1.3 98.9 ± 1.5 84.2 ± 6.5 92.6 ± 4.8 88.2 ± 5.3 89.3 ± 10.0 89.1 ± 10.5 88.9 ± 9.4

65 98.5 ± 2.4 99.3 ± 1.1 98.9 ± 1.6 82.4 ± 7.5 92.1 ± 4.6 86.9 ± 5.8 89.1 ± 10.2 88.7 ± 10.7 88.6 ± 9.7

70 98.5 ± 2.2 99.0 ± 1.7 98.7 ± 1.7 83.2 ± 8.9 91.8 ± 5.2 87.2 ± 7.0 88.7 ± 10.3 88.2 ± 10.9 88.1 ± 9.8

75 98.6 ± 1.9 99.0 ± 1.6 98.8 ± 1.5 80.4 ± 6.5 90.7 ± 4.6 85.1 ± 5.4 88.4 ± 10.6 87.6 ± 11.3 87.7 ± 10.2

80 98.1 ± 2.6 98.7 ± 2.6 98.4 ± 2.2 80.5 ± 5.6 88.8 ± 5.2 84.4 ± 5.0 87.3 ± 10.8 86.4 ± 11.4 86.5 ± 10.3

82.5 97.7 ± 3.3 97.5 ± 4.4 97.6 ± 3.6 75.0 ± 5.2 88.1 ± 5.0 81.0 ± 4.6 86.8 ± 11.1 85.6 ± 12.0 85.9 ± 10.8

85 97.7 ± 3.0 98.2 ± 2.4 97.9 ± 2.4 74.3 ± 6.4 86.8 ± 5.6 80.0 ± 5.5 85.9 ± 11.4 84.4 ± 12.2 84.8 ± 11.1

87.5 97.4 ± 3.0 97.4 ± 3.6 97.3 ± 2.9 73.6 ± 8.8 84.6 ± 5.9 78.6 ± 7.3 84.6 ± 11.8 83.1 ± 12.6 83.5 ± 11.4

90 96.0 ± 4.9 95.8 ± 5.9 95.9 ± 5.1 72.7 ± 7.7 83.4 ± 7.6 77.6 ± 7.4 82.9 ± 11.9 80.7 ± 12.7 81.4 ± 11.6

92.5 93.6 ± 6.0 91.7 ± 7.7 92.5 ± 6.2 66.6 ± 6.5 78.7 ± 4.7 72.0 ± 5.4 79.8 ± 12.0 76.5 ± 13.4 77.7 ± 11.9

95 87.4 ± 7.5 83.0 ± 12.9 84.8 ± 10.0 57.5 ± 7.1 70.2 ± 8.3 63.1 ± 7.5 73.9 ± 12.8 69.3 ± 14.0 71.0 ± 12.6

97.5 77.3 ± 10.4 69.3 ± 13.5 72.6 ± 11.1 52.5 ± 11.3 61.2 ± 11.1 56.3 ± 10.9 60.5 ± 11.5 53.8 ± 13.3 56.4 ± 11.5

Notes: The 0% compression reports the results of the offline peak detector (Lázaro et al 2014) on the original uncompressed data as a 

reference.
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