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Abstract.

Objective: Ventricular contractions in healthy individuals normally follow the
contractions of atria to facilitate more efficient pump action and cardiac output.
With a ventricular ectopic beat (VEB), volume within the ventricles are pumped to
the body’s vessels before receiving blood from atria, thus causing inefficient blood
circulation. VEBs tend to cause perturbations in the instantaneous heart rate time
series, making the analysis of heart rate variability inappropriate around such events, or
requiring special treatment (such as signal averaging). Moreover, VEB frequency can
be indicative of life-threatening problems. However, VEBs can often mimic artifacts
both in morphology and timing. Identification of VEBs is therefore an important
unsolved problem. The aim of this study is to introduce a method of wavelet transform
in combination with deep learning network for the classification of VEBs.

Approach: We proposed a method to automatically discriminate VEB beats from
other beats and artifacts with the use of wavelet transform of the electrocardiogram
(ECG) and a convolutional neural network (CNN). Three types of wavelets (Morlet
wavelet, Paul wavelet and Gaussian Derivative) were used to transform segments of
single channel (1-D) ECG waveforms to 2-D time-frequency ‘images’. The 2-D time-
frequency images were then passed into a CNN to optimize the convolutional filters
and classification. Ten-fold cross validation was used to evaluate the approach on the
MIT-BIH arrhythmia database (MIT-BIH). The American Heart Association (AHA)
database was then used as an independent dataset to evaluate the trained network.

Main results: Ten-fold cross validation results on MIT-BIH showed that the
proposed algorithm with Paul wavelet achieved an overall F1 score of 84.94% and
accuracy of 97.96% on out of sample validation. Independent test on AHA resulted in
an F1 score of 84.96% and accuracy of 97.36%.

Significance: The trained network possessed exceptional transferability across
databases and generalization to unseen data.
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1. Introduction

Although electrocardiogram (ECG) arrhythmia classification techniques have been
studied and used for many decades, automatic processing and accurate diagnosis of
pathological ECG signals remains a challenge ( ( ), ( ).
Ventricular ectopic beat (VEB) is a common abnormal heart rhythm to be detected by
automatic algorithms. Although single VEBs do not usually pose a danger and can be
asymptomatic in healthy individuals, frequent or certain patterns of VEBs may be at
increased risk of developing serious arrhythmia, cardiomyopathy or even sudden cardiac
death.

As recommended by ( ), the VEBs include premature ventricular
contraction (PVC), R-on-T PVC and ventricular escape beats. There have been
extensive researches on VEBs or PVCs. ( ) suggested that there
exists a strong correlation of VEBs with left ventricular hypertrophy in hypertensive
patients, and that individuals with left ventricular hypertrophy carried a significant risk
of mortality and sudden death. ( ) evaluated the PVC burdens in 174
patients where 57 (33%) patients had left ventricular dysfunction and discovered a mean
PVC burden of 33% =+ 13% was present in those with a decreased left ventricular ejection
fraction (LVEF) as compared with a mean PVC burden of 13% =+ 12% with normal left
ventricular function. The authors came to the conclusion that “A PVC burden of >24%
was independently associated with PVC-induced cardiomyopathy.” ( )
studied 1,139 participants and found that those in the upper quartile of PVC frequency
possessed 3-fold greater odds of a 5-year decrease in LVEF, a 48% increased risk of
incident congestive heart failure and a 31% increased risk of death compared to the
lowest quartile.

The common VEB detection approaches include two important steps, 1) feature
extraction, 2) pattern classification. Beat detection is the basis for feature extraction.
Two open-source physiologic signal processing toolboxes, ECG-kit and PhysioNet

Cardiovascular Signal Toolbox ( ( )), provided by physionet.org
( ( )), integrated some classical beat detectors such as Pan &
Tompkins ( ( )), EP-Limited ( ( ),
gqrs, wqrs ( ( )), ecgpuwave, wavedet ( ( )) as well as
the state-of-the-art one, jqrs ( ( ), ( )). The extracted
features are usually related to ECG morphologies ( ( ),
cardiac rhythms or heartbeat intervals ( ( )) and wavelet-based features
( ( ). ( ) extracted four inter-beat (RR) interval

features (pre-RR interval, post-RR interval, average RR interval and local average RR
interval), three heartbeat interval features (QRS duration, T-wave duration and P wave
flag) and eight groups of ECG morphology features which contained amplitude values
of the ECG signal and then combined them into eight feature sets to examine the
classification performance. The current challenge is how to select relevant features for
next classification ( ( ))-
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A variety of machine learning approaches have previously been used for VEB
pattern classification, including linear discriminant analysis (LDA) (

( ), ( ), ( )), artificial neural
networks (ANN), ( ( ), ( ), ( )) and
support vector machine (SVM) approaches ( ( )). Many researcher

selected LDA since it is easy to develop the model and it is a convenient modeling
form when nominal classes are considered, however, the discriminant function is always
linear ( ( )), therefore not fitting for complex non-linear
problems. Due to the nonlinearity of the activation function of ANN, the decision
boundary can be nonlinear, making the ANN model more flexible and can lead to an
improved classification accuracy ( ( ).

Novel methods were applied on VEB detection and showed enhanced performance.

( ) proposed a model-based dynamic algorithm for tracking the ECG

characteristic waveforms using an extended Kalman filter. A polar representation of the
ECG signal, constructed using the Bayesian estimations of the state variables, and
a measure of signal fidelity by monitoring the covariance matrix of the innovation
signals from the extended Kalman filter were introduced. VEBs were detected by
simultaneously tracking the signal fidelity and the polar envelope. The algorithm showed
an accuracy of 99.10%, sensitivity of 98.77% and positive predictivity of 97.47% on
the MIT-BIH arrhythmia database (MIT-BIH). The drawback of the method is the
dependency of the results on the initial estimations for the state vector as well as the
selection of the covariance matrices of the process and the measurement noise, so it
may be unsuitable for ECG signals with pathological rhythms. ( )
proposed a state-of-the-art PVC detection algorithm based on switching Kalman filters.
The switching Kalman filter could automatically select the most likely mode (beat
type), normal beat or ventricular beat, while concurrently filter the ECG signal using
appropriate prior knowledge. For certain heartbeats that could not be clustered into
expected morphologies of ventricular or normal beats, either due to their rarity or due
to the amount of noise distorting the apparent morphology, they were classified as a new
mode (X-factor). An F1 scores of 98.6%, sensitivity of 97.3% and positive predictivity of
99.96% were reported on the MIT-BIH when 3.2% of the heartbeats were discarded as
X-factor. However, this approach was semi-supervised and relied on trained cardiologist
to assign every beat cluster to normal or ventricular classes. It is therefore inappropriate
for analysis of large datasets or continuous recordings.

We also note that VEB detection is equivalent to classification in a two class VEB
/ not VEB problem. Historically, PVC / VEB detection has been implemented using
heuristics or optimized thresholds on hand crafted features, such as the relative change in
the RR interval compared to adjacent RR intervals and/or QRS duration and amplitude.
In particular we note that ( ) designed a logic-based program
that measured RR interval, duration and shape of QRS complexes to find the optimum
combination of parameters to detect PVCs while rejecting muscle artifacts.
( ) adopted a similar approach that followed a rigidly defined protocol, consisted of
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artifact detection, shape classification and prematurity test for the detection of PVCs.

( ) used an adaptive Hermite model and extracted the b parameter
for the width of QRS complex and compared the b parameter with a threshold for PVC
detection. ( ) demonstrated that RR interval-based thresholds were

highly sensitive to the threshold and quantified the trade-off between misclassifying
noise as ectopy or sinus beats. A threshold of 15% was shown to be optimal, although
by no means sufficient for accurate PVC detection.

Convolutional neural network (CNN) architectures have been successfully used

over the last several decades in image recognition ( ( )), audio
and video analysis ( ( )) and many other domains (
( )) due to their high accuracy, low error rate and fast learning rate. To

motivate the use of the CNN, we note that a CNN can eliminate the feature design and
extraction process required in other approaches, identifying the network connections to
reproduce the representation of the VEB at an autoassociative node.
( ) and ( ) first demonstrated this for a one-dimensional (1-
D) representation of normal ECG beats and PVCs. That work was limited by the
lack of data and computational power to fully train a network over a large population,
thereby learning generalized morphologies. These authors also showed that, in the
limit, with a linear activation function, the approach mapped to the Karhunen-Love
transform, first reported for PVC classification in 1989 by ( ).
In this work we extend these earlier works to the time-scale domain and apply further
deep CNN layers to map these time-scale images to beat classes. In order to take
advantage of the success of CNN in the domain of image processing, we converted the 1-
D ECG signals to two-dimensional (2-D) images by a continuous wavelet transform. By
offering a simultaneous localization in time and frequency domain, the wavelet transform
provides a clear time-frequency characteristic of the PVC ( ( ).
The convolutional transformation converts a set of amplitude or energy measurements
(pixels in an image) into feature maps. The spatial dependence of the pixels is exploited
by local connectivity on neurons on adjacent layers ( ( )). The CNN
automatically learns features when the network is tuned by the stochastic gradient
descent algorithm. Moreover, a CNN is capable of learning translationally (and under
specific circumstances, rotationally) invariant features from a vast amount of trained
data ( ( )). Since the VEB morphology can change based on the respiratory
cycle, sympathovagal balance, heart rate and other movements, it is important to
identify subtle changes in the beat that are relatively invariant to such changes. The
CNN allows us to automatically select such invariant spatio-temporal correlations in
the image. We note that other authors, such as ( ) and

( ), have attempted to classify beats using a CNN-based approach, but used a
1-D CNN instead. While, in theory, the CNN could learn a time-scale representation of
the beat as a preliminary filter, it is unlikely that these exact basis function would be
learned. In that sense, one can think of this as analogous to whitening a neural network
with principal component analysis. We also note that there has been much interest
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in classifying rhythms (rather than beats) from the recent Computing in Cardiology
(CinC) Challenge 2017 ( ( )). In particular ( ),
(2018), (2018), (201%8) and
( ) used 1-D CNN approaches to classify arrhythmias. None use a time-scale
representation as detailed in this work, or on a beat-by-beat level.
In this study we propose a systematic approach for training, validating and testing
a CNN model for VEB classification. The method section introduces the datasets we
used, a validation and test design as well as a wavelet transform to convert the 1-D ECG
signals to 2-D images and the CNN structure. Results section shows the performance
of the algorithm, followed by discussion, where we compare the proposed method with
the state of the art algorithms for VEB detection.

2. Method

2.1. Dataset

The MIT-BIH arrhythmia database was used for algorithm training, validation and
testing. The American Heart Association database (AHA) was also used as a separate
dataset for further testing. The MIT-BIH consists of 48 two-channel recordings, each
lasts 30 minutes, obtained from 47 subjects. Each beat is annotated by at least two
expert cardiologists independently and all disagreements have been resolved. The ECG
signals are sampled at 360 Hz. In this study, ECG signals from the first channel were
used, mostly collected by the modified limb lead IT (MLII) and on 3 occasions (record
number 102, 104 and 114) by V5. The AHA includes 80 two-channel recordings, each
lasts 35 minutes. The final 30 minutes of each recording are annotated beat-by-beat.
The sampling frequency is 250 Hz. These 80 recordings are divided into eight classes of
ten recordings each, according to the highest level of ventricular ectopy present: class 1,
no ventricular ectopy; class 2, isolated unifocal PVCs; class 3, isolated multifocal PVCs;
class 4, ventricular bigeminy and trigeminy; class 5, R-on-T PVCs; class 6, ventricular
couplets; class 7, ventricular tachycardia; class 8, ventricular flutter/fibrillation. Since
recordings in class 8 are used for ventricular flutter and fibrillation detection and some
ECG waveforms at the beginning of the ventricular flutter segments are annotated as
PVC beats, where similar segments in MIT-BIH are annotated as ventricular flutter
instead, the ten recordings in class 8 were excluded from this study for consistency. As
recommended by ( ), the recordings with paced beats, 4 (102, 104, 107
and 217) out of 48 from MIT-BIH and 2 (2202 and 8205) out of 80 from AHA, were
also excluded from this study. The reference annotation files the databases provided
were used as the gold standard. Since we focus on two-type classification, VEB (V) or
non-VEB (N), any beat that does not fall into the V category is set to type N. Examples
of VEBs and their corresponding time-scale images are shown in Figure 1.

In order to find an appropriate window length for beat classification by CNN, we
extracted each beat of the ECG signal at different window lengths, varying from 0.5
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Figure 1: Examples of PVC, R-on-T PVC and ventricular escape beats from left to right
and their time-scale images.

seconds to 6 seconds at 0.5-second intervals, with the annotation placed at the center
of the window. This annotation then marks the beat type of the window. As the
sampling frequency of MIT-BIH is 360 Hz, a range of 180-point to 2160-point windows
were generated. The beats in the first and last 3 seconds of ECG were excluded in all
44 recordings (of the MIT-BIH) in order to keep the total number of beats consistent
across all window lengths, resulting in a total of 100372 beats in which 6990 were V.
The 69 AHA records were resampled to 360 Hz and a total number of 163802 beats
including 14735 V were extracted in the same manner.

2.2. Wavelet transform

Wavelet transform is a spectral analysis technique where signals can be expressed as
linear combinations of shifted and dilated versions of a base wavelet. Time-frequency
representations of these signal can then be constructed, offering good time and frequency
localization.

Sahambi et al. (1997) used the first derivative of a Gaussian to characterize ECG in
real-time. The quadratic spline wavelet originally proposed by Mallat and Zhong (1992)
was used to characterize the local shape of irregular structures. Martinez ot al. (2004)
adopted this wavelet in their ECG delineator to determine the QRS complexes and P
and T wave peaks. Li et al. (1995) and Bahoura et al. (1997) also used this wavelet
to detect the characteristic points and waveforms of ECG. While wavelet transforms
have been adopted in the past for detecting ECG waveforms, in this paper, we used
an improved algorithm to increase efficiency by fast convolution via the fast Fourier
transform (FFT), explained in detail by Montejo and Suarez (2013). We used the
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common nonorthogonal wavelet functions: complex wavelets Morlet and Paul, and real
valued wavelets Derivative of Gaussian (DOG) ( ( )), which are
suitable for input to the continuous wavelet transform for time series analysis (
(1992)).

We converted each extracted 1-D ECG beat to a 2-D time-scale image in this way.
The toolbox “A cross wavelet and wavelet coherence toolbox” was used to perform this
conversion (https://github.com/grinsted /wavelet-coherence). The mathematics behind
the wavelet analysis is well documented by ( ). The converted image
consists of information with the wavelet scaling factor as vertical axis ranging from 21
to 22 at 202 intervals and time as horizontal axis. The processed data with different
window lengths were resampled to a fixed number of points of 45 for consistency. All the
images were normalized to scale [0,1]. In this way, the resulting 2-D images all possess
the same size of 41x45 and scale, standardized for further processing.

The toolbox supports three types of wavelets for transformation: Morlet wavelet,
Paul wavelet and DOG wavelet. All three were adopted to compare the effects of
different wavelet types when convoluted with the extracted ECG beats.

Figure 2 gives an illustration of a VEB beat and a non-VEB beat in their ECGs
forms and the results after wavelet transform by each type of wavelet. The left shows a
VEB beat with a broadened irregularly-shaped QRS complex in its ECG and multiple
wider warm-colored peaks in its processed images whereas the right shows a non-VEB
beat with a normal QRS complex in its ECG and two main narrower peaks at the
centers of both images processed by the Morlet wavelet and the Paul wavelet. There
are discernible differences in the outcomes of the two beat types processed by the DOG
wavelet as well.

2.8. Convolutional neural network

Since we have converted the ECG beats to wavelet power spectra in a 2-D space,
we then used CNN to study relevant information from the power spectra and achieve
classification. The input to the CNN was the wavelet power spectrum computed from
each exacted ECG beat. Our CNN architecture consists of three convolutional layers,
two max pooling layers (implemented after the first and the second convolutional layer),
a rectified linear unit (ReLU) layer and finally a fully connected layer. The CNN was
implemented using the MatConvNet toolkit in Matlab ( ( ).

In the convolutional layer, a n-by-m sized filter is convoluted with the input image
with a stride of 1 along both directions, resulting in an output with n-1 x m-1 reduction
in size from the input. The size of filters used for each convolutional layer are 4x4,
4x6 and 8x8, and the number of filters are 50, 100 and 200 respectively. The 2x2 max
pooling layer with a stride of 2 downsamples the input by a factor of 2 in both directions,
dropping 75% of data size while retaining most discernible features for classification. The
final layer of convolution computes the input into a single value, which after increasing
nonlinear properties by the ReLLU layer, is passed into the fully connected layer thereby
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Figure 2: The original ECGs (first row) and their results after wavelet transform with
three types of wavelets of the two beat types (VEB on the left and non-VEB on the
right). The second row represents the outcomes with the Paul wavelet, the third the
Morlet wavelet and the last the DOG wavelet.

producing a final classification result. The weights of the CNN model were randomly
initialized from uniform distribution. Stochastic gradient descent (SGD) algorithm was
chosen to optimize the weights of the model. A learn rate of 0.001 was used. Figure 3
shows the structure of the CNN.

2.4. Training, validation and test

The 44 recordings of MIT-BIH were randomly allocated into ten subsets (folds) of data.
Random grouping was done by recording numbers rather than the total heartbeats, so
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Figure 3: Convolutional neural network structure

that the data of one recording would not appear in both the training dataset and the
testing set to avoid bias and overfitting. Note that records 201 and 202, which are from
the same patient, are put to one subset mandatorily as well.

To train the CNN model, nine folds of the dataset were used for training and the
remaining fold for testing. The heartbeats in the training set were further randomly
divided into two subsets during the training procedure, where 5/6 heartbeats were used
to train the model directly and 1/6 heartbeats were used for validation during the
learning process to optimize the model parameters and avoid overfitting. Finally the
trained model was tested on the remaining fold. This process was repeated ten times
so that each of the ten folds was tested and the results on each fold were combined.

See Table Al in appendix for details of the randomly generated K-fold set up we
adopted in this evaluation.

After we obtained the ten-fold cross validation models, we tested the ten models
on the AHA database. The classification result was acquired by averaging the ten
probability output of each model. A separate CNN model trained on all heartbeats of
MIT-BIH was tested on AHA as well. To test the transferability of our model further,
we used all heartbeats of the AHA database to train a new model and performed a final
testing back on MIT-BIH.

2.5. Evaluation method

We used accuracy (Acc), sensitivity (Se), specificity (Sp), positive predictive value (PPV,
or +P) and F1 score (F1) to evaluate the performance of the algorithm. For each test
fold in MIT-BIH, after we acquired the results of TP (V beats correctly identified as V),
EFN (V beats incorrectly identified as N), FP (N beats incorrectly identified as V) and
TN (N beats correctly identified as N), we calculated the statistical measures as below.

Acc = (TP + TN)/(TP + FN + TN + FP)

Se = TP / (TP + FN)

Sp = TN / (TN + FP)

PPV = TP / (TP + FP)

F1 = 2TP / (2TP + FN + FP)
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To combine the ten test folds results into an overall statistics, two types of aggregate
statistics were used ( ( )): gross statistics, in which each beat was given
equal weight, and average statistics, in which the measures of ten folds were averaged

and stored along with their standard deviations.

3. Results

Table 1 illustrated the gross results on the test folds of MIT-BIH. What we obtained
with the Paul wavelet at different window lengths for test folds was that the F'1 score was
at its highest with a 3.5-second window, as shown in Figure 4(b). Results for training
folds however, showed a highest F'1 score for a 1.5-second window, as shown in Figure
4(a). Amongst the three wavelets, Paul wavelet provided the best test performance. An
Acc of 97.96%, an Se of 82.60%, an Sp of 99.11%, a PPV of 87.42% and an F1 of 84.94%
were achieved as the gross result on the test folds of MIT-BIH with Paul wavelet on a
3.5-second window.
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Figure 4: Training and test performances on the MIT-BIH database with Paul wavelet
at varying window lengths

For the training folds, we achieved the best training performance with Paul wavelet
on a 1.5-second window an Acc of 99.32% and an F1 score of 95.08%. Please see Table
A2 in appendix for details of the average results on the training folds. Details of the
average results on the test folds can also be found in Table A3.

For the Morlet wavelet, a 2.5-second window achieved the highest F1 score for the
testing folds and a 2-second window for training folds. DOG wavelet performed the best
with a 3.5-second window on testing folds and a 1.5-second window on training folds.
See Figure A1 and A2 in appendix for details.

The performances on individual test fold and individual recording with Paul wavelet
at 3.5-second window length were shown in Table 2 and Table 3 respectively.
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Wavelet  Window(s) Acc(%) Se(%) Sp(%) PPV(%) F1(%)
Paul 0.5 90.94 71.03 92.43 41.24 52.19
Paul 1 93.29 77.22 94.50 51.23 61.60
Paul 1.5 96.73 80.72 97.92 74.42 77.44
Paul 2 97.52 81.20 98.75 82.90 82.04
Paul 2.5 97.92 82.62 99.07 86.92 84.71
Paul 3 97.88 82.78 99.01 86.23 84.47
Paul 3.5 97.96 82.60 99.11 87.42 84.94
Paul 4 97.88 80.96 99.15 87.65 84.17
Paul 4.5 97.80 80.47 99.10 87.02 83.62
Paul 5 97.55 77.57 99.05 85.90 81.52
Paul 5.5 97.54 77.18 99.06 86.04 81.37
Paul 6 97.48 77.07 99.00 85.26 80.96
Morlet 0.5 93.24 69.33 95.03 51.10 58.83
Morlet 1 94.80 71.42 96.55 60.78 65.67
Morlet 1.5 97.43 79.46 98.77 82.91 81.15
Morlet 2 97.59 80.46 98.87 84.25 82.31
Morlet 2.5 97.77 81.14 99.01 86.04 83.52
Morlet 3 97.55 79.74 98.88 84.21 81.92
Morlet 3.5 97.56 79.01 98.95 84.93 81.86
Morlet 4 97.22 76.57 98.77 82.30 79.33
Morlet 4.5 97.25 75.51 98.88 83.45 79.28
Morlet 5 97.23 74.62 98.92 83.85 78.96
Morlet 5.5 97.07 73.28 98.85 82.69 77.70
Morlet 6 97.02 73.16 98.81 82.11 77.38
DOG 0.5 93.42 49.60 96.70 52.91 51.20
DOG 1 91.90 65.24 93.89 44.44 52.86
DOG 1.5 96.90 77.63 98.34 77.79 77.71
DOG 2 97.74 78.98 99.15 87.41 82.99
DOG 2.5 97.74 78.80 99.16 87.51 82.93
DOG 3 97.74 77.93 99.22 88.20 82.74
DOG 3.5 97.80 78.03 99.28 88.99 83.15
DOG 4 97.81 77.27 99.35 89.91 83.11
DOG 4.5 97.76 76.74 99.33 89.56 82.66
DOG 5 97.66 75.11 99.35 89.65 81.74
DOG 5.5 97.36 73.43 99.15 86.56 79.46
DOG 6 97.33 72.76 99.17 86.79 79.16

Table 1: Gross results on the test folds of the MIT-BIH database
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Kthfold TP  FP FN TN  Acc(%) Se(%) Sp(%) PPV(%)F1(%)

1 406 193 247 8278 95.18  62.17  97.72  67.78  64.86
2 278 70 39 7350 98.59  87.70  99.06 79.89  83.61
3 807 44 131 9960 98.40  86.03 99.56  94.83  90.22
4 368 12 122 10634 98.80 75.10 99.89 96.84  84.60
5 542 9 47 8365 99.38  92.02 99.89  98.37  95.09
6 755 2 72 8480 99.21 9129 9998 99.74  95.33
7 527 195 315 13641 96.53  62.59 9859 7299  67.39
8 578 9 153 7811 98.11  79.07 99.88  98.47  87.71
9 958 235 30 7884 97.09 96.96 97.11 80.30  87.85
10 555 62 60 10148 98.87  90.24  99.39  89.95 90.10

Table 2: Test performances on individual fold of the MIT-BIH database with Paul
wavelet at 3.5-second window size

On the AHA database, we reached an Acc of 97.36%, an Se of 82.83%, an Sp
of 98.80%, a PPV of 87.20% and an F1 of 84.96% when a model was trained on all
heartbeats in MIT-BIH database with Paul wavelet at 3.5-second window length. The
averaged results from the ten probability outputs of each model obtained from ten-fold
cross validation classification of MIT-BIH were also similar. The performance of the
two models is shown in Table 4.

When we trained the model on AHA database and tested back on MIT-BIH, we
obtained an Acc of 97.56%, an Se of 82.55%, an Sp of 98.68%, a PPV of 82.39% and an
F1 of 82.47%, as shown in Table 5.

4. Discussion

In this work we presented a novel deep learning neural network approach to distinguish
VEBs from all other types of ECG beats, using a CNN with continuous wavelet
transform of the ECG signal as input. The proposed approach is not highly
computationally intensive due to the relatively simple kernels that were utilized in the
CNN. We tested the computational time using the trained CNN model for prediction
on MIT-BIH database on an Intel Xeon E5-2660 2.2GHz CPU and a Linux platform.
The total process time for generating the time-scale images on a 3.5 s window using
Paul wavelet and classifying the beat using the trained CNN model was 1866 s for
100372 beats, which is equivalent to 18.6 ms per beat. Figure A3 (in the appendix)
illustrates the timing for various window lengths. We have also tested the process
time for several open source algorithms published as part of the Physionet / CinC
Challenge 2017 (focused on atrial fibrillation detection) as a comparison. Results are
shown for windows sizes from 10 seconds to 60 seconds in Table A4. We note that
our new algorithm is over 100 times faster per unit time/window than our previously
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Record TP FP FN TN Acc(%) Se(%) Sp(%) PPV(%) F1(%)
100 1 0 0 2263 100 100 100 100 100
101 0 0 0 1858 100 - 100 - -
103 0 0 0 2077 100 - 100 - -
105 28 29 13 2493 98.36  68.29 98.85 49.12 57.14
106 483 9 35 1494 97.82 9324 99.40 98.17  95.64
108 11 38 6 1701 9749 64.71 97.81 2245  33.33
109 19 0 19 2485 99.25  50.00 100 100 66.67
111 0 1 1 2115 9991 O 9995 0 0

112 0 0 0 2530 100 - 100 - -

113 0 3 0 1785 99.83  — 9983 0 0

114 38 ) ) 1824 99.47  88.37 99.73  88.37  88.37
115 0 0 0 1946 100 - 100 - -

116 107 2 2 2293 99.83  98.17 99.91  98.17  98.17
117 0 0 0 1529 100 - 100 - -

118 12 3 4 2251 99.69  75.00 99.87 80.00  77.42
119 442 0 1 1537 99.95 99.77 100 100 99.89
121 1 3 0 1852 99.84 100 99.84  25.00  40.00
122 0 0 0 2466 100 - 100 - -

123 3 0 0 1508 100 100 100 100 100
124 40 0 7 1567 99.57  85.11 100 100 91.95
200 752 2 72 1766 97.15 9126  99.89 99.73  95.31
201 3 98 195 1661 85.03  1.52 94.43  2.97 2.01
202 6 20 13 2091 98.45  31.58 99.05  23.08  26.67
203 277 132 167 2395 89.94 6239 94.78 67.73  64.95
205 35 0 36 2576 98.64 49.30 100 100 66.04
207 128 45 80 1596 93.24 6154 9726 7399 67.19
208 958 111 30 1846 95.21  96.96 94.33 89.62  93.15
209 1 6 0 2989 99.80 100 99.80  14.29  25.00
210 149 5) 44 2442 98.14  77.20 99.80  96.75  85.88
212 0 0 0 2740 100 - 100 - -

213 180 45 40 2974 97.38  81.82 98.51  80.00  80.90
214 228 24 28 1973 97.69 89.06 98.80 90.48  89.76
215 53 0 111 3188 96.69 32.32 100 100 48.85
219 59 62 4 2021 96.92 93.65 97.02 4876 64.13
220 0 16 0 2024 99.22 - 99.22 0 0

221 393 0 2 2023 99.92  99.49 100 100 99.75
222 0 30 0 2444 98.79 - 98.79 0 0

223 356 6 117 2117 95.26  75.26  99.72  98.34  85.27
228 307 0 54 1684 97.36  85.04 100 100 91.92
230 0 3 1 2243 99.82 0 99.87 0 0

231 2 0 0 1562 100 100 100 100 100
232 0 124 0 1650 93.01 - 93.01 0 0

233 699 6 129 2234 95.60 84.42 99.73 99.15 91.19
234 3 3 0 2738 99.89 100 99.89  50.00  66.67

Table 3: Test performances on individual records of the MIT-BIH database with Paul
wavelet at 3.5-second window size
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Model TP  FP FN TN  Acc(%) Se(%) Sp(%) PPV(%)F1(%)

trained on MIT 12205 1792 2530 147275 9736  82.83 9880  87.20  84.96
average of 10 12004 1736 2731 147331 97.27  81.47 98.84 8737 84.31

Table 4: Test results on AHA database by the model(s) trained on MIT-BIH database
with Paul wavelet at 3.5-second window size

Model TP FP FN TN Acc(%) Se(%) Sp(%) PPV(%)F1(%)

trained on AHA 5770 1233 1220 92149 9756  82.55  98.68 8239 8247

Table 5: Test results on MIT-BIH database by the model trained on AHA database
with Paul wavelet at 3.5-second window size

reported algorithm and approximately 1000 times faster than the other algorithms from
the Physionet / CinC Challenge 2017.

It was shown that the Paul wavelet displayed the best performance among the three
types of wavelets tested. This could be due to the closer resemblance of Paul wavelet
to the shape of a standard ECG wave compared to the other two wavelet types tested.

The 3.5-second window exhibited the highest accuracy (97.96%) and F1 score
(84.94%) using the Paul wavelet. We speculate that this is because the 3.5-second
window contained at least one heartbeat before the VEB and one heartbeat after it,
so the window captures the dynamic of the premature contraction and the following
compensatory pause. A relatively shorter window length (3-second for Paul) provided
the highest sensitivity (82.78%), and on the other hand a relatively longer window length
(4-second for DOG) exhibited the highest specificity (99.35%) and PPV (89.91%).

We repeated our algorithms at 0.2-second intervals and obtained the following
results (illustrated in Figure A4). A window length of 3.5 second provided the
best accuracy and F1 score. The performance on the 0.2-second windows is notably
impressive, given that it encompasses only the ventricular period and provides no
context on prematurity. Conversely, longer windows provide information of the relative
prematurity or retardation of the beat compared to adjacent beats.

Table 4 showed that the performance of the model using all heartbeats in MIT-
BIH database is slightly better than that of the average of ten-fold models on the
AHA database. The independent test on a separate database showed almost the same
performance with that on the original database (for F1 score, 84.96% for AHA compared
with 84.94% for MIT-BIH, for accuracy, 97.36% for AHA compared with 97.96% for
MIT-BIH), indicating an generalization ability of the trained CNN model on a separate
database.

Comparing to other studies (Table 6), we reported ten-fold cross validation results
and an independent test on a separate database. In contrast to this, other studies
divided 44 recordings of MIT-BIH (after the removal of 4 recordings containing paced
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beats) into two subsets and used half the recordings (DS1) for training and the other
half (DS2) for testing ( ( ) ( ), ( ).
A sensitivity of 77.7%, positive predictivity of 81.9% and false positive rate of 1.2%
were reported for VEB class on DS2 by ( ). Note when compared
to K-fold cross validation, arbitrary subset-splitting could cause bias since only half
of the data were used for testing. In addition, records 201 and 202, two records of the
same patient, belonged to subsets DS1 and DS2 separately, causing the heartbeats of the
same patient appear in both training and test sets. The conventional methods have some
disadvantages, for instance, 1) features were extracted from raw ECG data and then
fed into the classifier, therefore performance relied on the quality of feature extraction;
2) classification models trained and tested following the above procedure suffer from
overfitting and show lower performances when validated on a separate dataset (

( )). Since the morphologies of VEBs can vary enormously from patient to
patient, if patients are not stratified (completely held out of training) there may be an
optimistic bias in reporting. As shown in Table 2, we achieved a superior result on one
fold (fold 6) with an Acc of 99.21%, an Se of 91.29%, an Sp of 99.98%, a PPV of 99.74%
and an F1 of 95.33%, but an inferior result on another fold (fold 1) with an Acc of
95.18%, an Se of 62.17%, an Sp of 97.72%, a PPV of 67.78% and an F1 of 64.86%.

On the other hand, ( ) also trained a CNN model and adopted a
ten-fold cross validation in order to classify heartbeats and achieved accuracies of 94.03%
and 93.47% in original and noise free ECGs of the MIT-BIH database, respectively.
In that approach, a balanced database was constructed by replicating the beats of
classes with a lower beat count to match the majority (class N). For instance, V beats
were oversampled 12.5 times (i.e. increasing them from 7235 to 90592). After which,
the repeated beats were randomly partitioned into ten equal folds by beats instead
of by records. As a result, the same VEBs can be found in both training folds as
well as validation fold violating the basic principles of cross validation. It is far more
realistic to evaluate an algorithm’s performance with proper K-fold cross validation with
stratification of patients across folds.

Algorithm records validation Acc Se Sp PPV F1 separate semi/
(%) %) (%) (%) (%)  testset auto
( ) 44 DS2 974 Tr7 988 819 797 No auto
( ) 44 DS2 97.3 86.8 — 75.9 81.0 No auto
( ) 44 DS2 98.87 87.61 99.75 96.43 91.81 Yes semi
Proposed in this study 44 ten-fold  97.96 82.60 99.11 87.42 84.94 Yes auto

Table 6: Performance comparison with reference studies
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5. Conclusion

A highly generalizable VEB classification algorithm that utilizes continuous wavelet
transform and CNN was developed. ECG data can be analyzed rapidly (at 18.6 ms
per beat on a standard processor). It was shown that the algorithm retained its high
performance when tested on a separate database.
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Figure Al: Appendix - Training and test performances on the MIT-BIH database with
Morlet wavelet at varying window lengths
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K-fold Record VEB non-VEB  Total K-fold Record VEB non-VEB  Total

Number beats  beats Number beats  beats
1 100 1 2263 2264 6 122 0 2466 2466
1 203 444 2527 2971 6 123 3 1508 1511
1 207 208 1641 1849 6 200 824 1768 2592
1 220 0 2040 2040 6 212 0 2740 2740
Total 653 8471 9124 Total 827 8482 9309
2 108 17 1739 1756 7 105 41 2522 2563
2 114 43 1829 1872 7 201 198 1759 1957
2 121 1 1855 1856 7 202 19 2111 2130
2 214 256 1997 2253 7 213 220 3019 3239
7 228 361 1684 2045
7 234 3 2741 2744
Total 317 7420 7737 Total 842 13836 14678
3 116 109 2295 2404 8 106 518 1503 2021
3 209 1 2995 2996 8 124 47 1567 1614
3 222 0 2474 2474 8 215 164 3188 3352
3 233 828 2240 3068 8 231 2 1562 1564
Total 938 10004 10942 Total 731 7820 8551
4 103 0 2077 2077 9 101 0 1858 1858
4 115 0 1946 1946 9 112 0 2530 2530
4 118 16 2254 2270 9 208 988 1957 2945
4 223 473 2123 2596 9 232 0 1774 1774
4 230 1 2246 2247
Total 490 10646 11136 Total 988 8119 9107
5 111 1 2116 2117 10 109 38 2485 2523
5 113 0 1788 1788 10 117 0 1529 1529
5 210 193 2447 2640 10 119 443 1537 1980
5 221 395 2023 2418 10 205 71 2576 2647
10 219 63 2083 2146
Total 589 8374 8963 Total 615 10210 10825
Total  Total Total

VEB non-VEB  beats
beats beats
6990 93382 100372

Table Al: Appendix - The randomly generated K-fold set up adopted
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Wavelet  Window(s) Acc(%) Se(%) Sp(%) PPV(%) F1(%)
Paul 0.5 99.20+0.06 92.99+1.28 99.66+0.09 95.42+1.06 94.184+0.48
Paul 1 99.32+0.04 93.86+0.76  99.73%+0.07 96.35+0.90 95.08+0.31
Paul 1.5 99.32+0.04  93.79+1.05 99.7440.04 96.4040.52 95.08+0.37
Paul 2 99.2840.05 93.23£1.03 99.73+0.07 96.34£0.78 94.75+0.38
Paul 2.5 99.26+0.06 93.0240.87 99.73+0.06 96.2640.73 94.61£0.41
Paul 3 99.284+0.06 93.08+0.96 99.74£0.06 96.49£0.75 94.75£0.44
Paul 3.5 99.2840.05 92.9440.96 99.75+0.06 96.5840.79 94.7240.38
Paul 4 99.25+0.05 92.39+1.20 99.76+0.06 96.68+0.71  94.47+0.46
Paul 4.5 99.1940.06 91.79+1.38 99.74+0.08 96.43+0.92 94.0440.54
Paul ) 99.1240.06 91.03+1.49 99.7240.07 96.0740.74 93.47£0.57
Paul 5.9 99.06+0.07 90.52+1.56 99.70£0.07 95.80£0.75 93.08+0.66
Paul 6 99.0240.07 90.13£1.38 99.68+0.07 95.48+0.71 92.7240.62
Morlet 0.5 98.41£0.17 83.40£2.61 99.5340.08 92.9841.02 87.9+1.53
Morlet 1 99.13+0.06 92.20+0.87 99.65+0.09 95.23+1.13 93.68+0.48
Morlet 1.5 99.16+0.07 91.81+1.57 99.71+0.07 96.0140.86 93.85£0.57
Morlet 2 99.20+0.06 92.04+1.11 99.73£0.04 96.25+0.45 94.0940.50
Morlet 2.5 99.17+0.06 91.92+1.34 99.71+0.06 96.02+0.75 93.92+0.51
Morlet 3 99.16£0.05 91.70£1.11 99.7140.06 95.9940.62 93.79+0.46
Morlet 3.5 99.144+0.05 91.50£1.00 99.72+0.06 96.03+0.77 93.71£0.43
Morlet 4 99.07+0.06 90.61£0.96 99.70+0.05 95.8140.58 93.14£0.52
Morlet 4.5 98.98+0.07 89.85£1.41 99.66£0.07 95.25£0.88 92.46£0.61
Morlet ) 98.95+0.07 89.62+1.40 99.6540.06 95.03£0.60 92.2440.66
Morlet 5.9 98.86+0.08 89.234+1.23 99.5840.06 94.14+0.71 91.61£0.67
Morlet 6 98.83+0.07 88.93£1.20 99.57+0.06 93.8940.69 91.33£0.64
DOG 0.5 96.26+0.34 60.34+6.98 98.94+0.17 80.95£1.91 68.95+4.95
DOG 1 98.80£0.12 88.4141.92 99.5740.10 93.97+1.19 91.09+0.98
DOG 1.5 99.184+0.07 91.73+1.76 99.74+0.08 96.33+0.94 93.96£0.57
DOG 2 99.11£0.09 91.23+1.64 99.70+0.11 95.8641.25 93.47£0.62
DOG 2.5 99.02+0.09 90.26£1.53 99.68£0.07 95.51£0.76 92.80+0.66
DOG 3 99.03£0.10 89.97+1.81 99.70+0.09 95.8241.00 92.7940.79
DOG 3.5 98.9840.10 89.51£1.55 99.6940.07 95.6040.82 92.45+0.77
DOG 4 98.9240.10 88.47+2.01 99.70+0.06 95.72+0.69 91.9440.94
DOG 4.5 98.87£0.10 88.05£2.15 99.6840.09 95.374+1.00 91.54+0.93
DOG 5 98.79+0.10 86.98+2.04 99.68+0.08 95.29+1.09 90.924+0.95
DOG 5.5 98.71+0.12 86.34+2.33 99.6340.09 94.67+1.12 90.29+1.11
DOG 6 98.65£0.13 85.83+2.29 99.60£0.08 94.19£1.05 89.80+1.21

Table A2: Appendix - Average results on training folds of the MIT-BIH database
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Wavelet  Window(s) Acc(%) Se(%) Sp(%) PPV(%) F1(%)

Paul 0.5 90.55+8.54 70.46+22.99  92.07+9.19 55.394+31.14  54.86+25.74
Paul 1 92.87+8.51 77.19419.74 94.12+9.34 70.144+31.80 66.69+25.34
Paul 1.5 96.53+3.04 80.34+15.62  97.66+3.21 78.55+23.75 76.86+17.68
Paul 2 97.50+2.15 80.95£13.13 98.65+1.87 84.64+17.64 81.85+13.28
Paul 2.5 97.94+1.61 82.03£11.25 99.05+1.16 87.39+13.23 84.414+11.36
Paul 3 97.92+1.49 82.83+11.27 98.98+1.25 87.09+13.51 84.44+10.46
Paul 3.5 98.01+1.34  82.32+12.26 99.11£1.00 87.92+11.75 84.67+10.51
Paul 4 97.95+1.31 80.70£13.06  99.15+0.96 88.14+11.62  83.87+10.86
Paul 4.5 97.85+1.33 80.06+12.78 99.10+1.14 87.73+12.12 83.24+10.61
Paul ) 97.60+1.26 76.68+14.45 99.0341.20 86.58+13.13 80.52+11.23
Paul 5.9 97.58+1.23 76.00+15.28  99.05+1.16 86.78+13.69  80.00+11.76
Paul 6 97.51+1.32 75.89£15.38 98.97+1.29 86.14+14.18 79.59+£12.15
Morlet 0.5 92.87+8.46 68.124+26.31 94.70+9.17 70.23£31.80 61.52428.95
Morlet 1 94.43+5.96 71.164+22.57  96.18+6.46 71.73+£27.35  65.984+23.76
Morlet 1.5 97.31+2.24 78.974+15.95  98.63+2.17 83.82420.36 79.374+16.25
Morlet 2 97.56+1.60 80.17£13.33  98.80+£1.32 84.37£16.87  81.19+£12.66
Morlet 2.5 97.84+1.31 80.54+11.69 99.04+0.86 86.32+12.08 83.01+10.40
Morlet 3 97.59+1.12 79.26£13.19  98.884+0.98 84.30+13.97  80.77+10.44
Morlet 3.5 97.63+1.10 78.35+14.30  98.96+0.90 85.48+11.95  80.86+10.13
Morlet 4 97.32+£1.31 75.55+£15.96 98.824+1.04 83.51£13.10 78.324+11.75
Morlet 4.5 97.31+£1.28 74.26+16.14  98.89+1.02 83.96+13.15 77.81+12.33
Morlet ) 97.28+1.23 73.35416.42 98.9241.00 84.13+13.46 77.284+12.42
Morlet 5.9 97.10£1.25 72.07£16.55 98.8441.20 83.45+14.66 76.06£12.47
Morlet 6 97.03+1.31 71.72416.85 98.78+1.20 82.45+15.45 75.424+13.33
DOG 0.5 92.9447.27 49.32+31.44  96.12+8.10 73.83+£30.63  49.55+28.05
DOG 1 91.5349.23 64.35+21.28  93.57+9.84 66.764+34.97  58.63+26.46
DOG 1.5 96.82+2.92 77.46+15.09 98.19+2.78 80.844+23.52 77.124+17.62
DOG 2 97.744+1.70 78.78414.02 99.11£1.10 87.27+14.62 82.25+12.75
DOG 2.5 97.76+1.60 78.04+12.62  99.144+1.08 87.88+13.55  82.34+11.83
DOG 3 97.77+1.42 77.63415.32 99.194£0.92 87.81+13.86 81.63+12.51
DOG 3.5 97.84+1.45 77.64+15.70 99.2640.76 88.32412.45 82.024+12.72
DOG 4 97.87+1.47 76.55+15.81 99.35+0.66  89.27+11.63 81.97+13.09
DOG 4.5 97.7941.36 76.18+£15.15 99.3240.64 88.70+11.36 81.524+12.61
DOG 5) 97.71+1.31 74.11+16.55  99.35+0.57 88.42+11.85  80.00+£13.77
DOG 5.5 97.38+1.38 71.89419.17 99.1241.00 86.214+16.28 76.76+16.17
DOG 6 97.36+1.32 71.094+19.81 99.15+0.88 86.31+14.60 76.30+16.21

Table A3: Appendix - Average results on the test folds of the MIT-BIH database
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Process time of algorithms on each ECG (ms)
Window length (s)
10 15 20 25 30 35 40 45 20 5} 60

Algorithms
( ), 2437 2441 2529 2670 2830 3544 3770 4037 4551 4702 4941
(2018)
( ) 33663 33860 34290 34723 35158 35432 35624 35798 36031 36245 36472
( ) 10295 10302 10306 10326 10338 10354 10405 10456 10473 10508 10512
( ) 77259 77277 77323 77343 T7363 77422 77465 T7467 77478 T7503 77569

( ) 45803 45988 49059 50666 52037 56895 57222 57574 57590 57613 57701

Table A4: Appendix - Process time in ms of open source algorithms in the Physionet

CinC Challenge 2017 on each ECG.
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Figure A2: Appendix - Training and test performances on the MIT-BIH database with

DOG wavelet at varying window lengths
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Figure A5: Appendix - Example of a successful detection of VEB (left) versus a failed
detection (right). Top to bottom: original ECG and time-scale images of window length:
1s,2s,3s,45s
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