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Abstract 

Study Objectives: The usage of wrist-worn wearables to detect sleep-wake states remains a 

formidable challenge, particularly among individuals with disordered sleep. We developed a novel 

and unbiased data-driven method for detection of sleep-wake and compared its performance to the 

well-established Oakley algorithm (OA) relative to polysomnography (PSG) in elderly men with 

disordered sleep.  

Methods: Overnight in-lab PSG from 102 participants was compared to accelerometry and 

photoplethysmography simultaneously collected with a wearable device (Empatica E4). A binary 

segmentation algorithm was used to detect change points in these signals. A model that estimates 

sleep or wake states given the changes in these signals was established (Change Point Decoder, 

CPD). The CPD's performance was compared to the performance of the OA in relation to PSG.  

Results: On the Testing Set, OA provided sleep accuracy of 0.85, wake accuracy of 0.54, AUC of 0.67, 

and Kappa of 0.39. Comparable values for CPD were 0.70, 0.74, 0.78, and 0.40. The CPD method had 

sleep onset latency error of -22.9 minutes, sleep efficiency error of 2.09%, and underestimated the 

number of sleep/wake transitions with an error of 64.4. The OA method’s performance was 28.6 

minutes, -0.03%, and -17.2 respectively. 

Conclusions: The CPD aggregates information from both cardiac and motion signals for state 

determination as well as the cross-dimensional influences from these domains. Therefore, CPD 

classification achieved balanced performance and higher AUC, despite underestimating sleep/wake 

transitions. The CPD could be used as an alternate framework to investigate sleep/wake dynamics 

within the conventional time frame of 30-second epochs.  

Keywords: Sleep/wake, change point detection, wearable device, actigraphy, heart rate 
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Statement of Significance: Wearable devices enabled collecting various physiological signals 

and sleep assessment for non-laboratory settings. However, most of the proposed methods for 

sleep/wake detection with wearable devices aim for high overall accuracy at the expense of wake 

detection performance. The Change Point Decoder (CPD) technique is a novel signal processing 

approach that can distinguish wakefulness from sleep by solely using changes in the signals collected 

by wearables. The technique uses temporal information in the changes and the coupling between 

multiple sources to optimize classification. The results suggest that CPD provides unbiased 

sleep/wake detection with performance comparable to a traditional algorithm for sleep efficiency 

but with potential underestimation of sleep/wake transitions. 
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Introduction 

Several sleep/wake classification algorithms for wearables have been suggested over the last 

decades, and they are typically based solely on actigraphy derived from accelerometer.1-4 Several 

findings suggest that only using movement signals leads to the main limitation of current algorithms: 

the incorrect classification and overestimation of low activity tasks as such sleep.5-7 Indeed, low 

activity (quiescent) segments are not unique to sleep but are common to other activities such as 

reading or watching television. Another limitation results from the adoption of imprecise evaluation 

metrics used in assessing the performance of these devices. Since the percentage of sleep is typically 

higher compared to wake overnight, total accuracy may not be a reliable metric to evaluate 

performance. Sleep/wake detection may be considered as a “rare class problem” and may be 

amenable to alternative model evaluation metrics which better reflect this issue.  

The first approaches in the field for state determination were based on calculating a 

weighted sum over the actigraphy epochs around the current epoch and scaling the summation to 

distinguish sleep from wakefulness.1,2 Oakley presented a similar approach in which the current 

epoch, epochs in the 2 minutes before and the 2 minutes after the current epoch are scaled with 

predetermined coefficients and summed.8 If the summation is higher than the threshold, the region 

was labeled as wake. The Oakley algorithm is utilized in commercially available devices with different 

threshold selections (e.g., Actiwatch 2, Philips Respironics; Bend, Oregon). These actigraphic 

methods rely solely on the amplitude of actigraphic signals, which makes them low cost and easy to 

implement. However, these methods may overestimate sleep, particularly for patients with 

disordered sleep.9,10 It has been long been known that heart rate reflects transitions from sleep to 

wake and from wake to sleep.11-13 Recent studies in the field leverage a combination of 

photoplethysmography (PPG) and accelerometer signals for sleep/wake detection.14-16 However, 

these approaches have not been tested on clinical populations and still show low sensitivity in 

detecting wake epochs. 
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The method described in this paper combines PPG and accelerometer signals collected from 

wearable devices and detects patterns in change points associated with sleep/wake transitions. The 

proposed method, which is referred to as Change Point Decoder (CPD), is inspired by methods 

related to neural spike train models and uses a similar encoding/decoding framework.17 In this study, 

CPD was developed on a clinical data set of 102 patients, which was split into a training set of 70 

subjects and a test set of 32 subjects. The effect of sleep disorders on the method's performance 

was then investigated. 

Methods 

Participants 

The current study includes a subgroup of participants (n = 102, men, mean age = 68.56, SD = 

1.93) from the Emory Twin Study Follow-up recruited from the Vietnam Era Twin Registry.18 All 

Polysomnography (PSG) data were collected from data acquisition systems (Natus, Remlogic) set up 

in two bedrooms in the Emory Sleep Center. Written informed consent was obtained from all 

participants, and the Emory University Institutional Review Board approved this research (IRB # 

00081004). During PSG acquisition, subjects wore a commercially available wrist-worn watch 

(Empatica E4, Empatica; Cambridge, MA). The wrist-worn device recorded Photoplethysmogram 

(PPG) and three-axis accelerometer signals.  

Data Set 

The study population was assigned to four groups according to their Apnea-Hypopnea Index 

(AHI) and Periodic Limb Movement Index (PLMI) as follows: 

 Group 1: Subjects with AHI < 15 and PLMI < 15 

 Group 2: Subjects with AHI ≥15 and PLMI < 15 

 Group 3: Subjects with AHI < 15 and PLMI ≥15 

 Group 4: Subjects with AHI ≥15 and PLMI ≥15 
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All the data were randomly split into two sets, with 70 subjects assigned to the training set and 32 

subjects assigned to testing. Table 1 show ages and PSG-defined sleep efficiency in both sets. Two-

sample Kolmogorov tests were performed for age, AHI, PLMI, and sleep efficiency of the subjects in 

the training and testing sets. Differences in these measures between the sets were not statistically 

significant, suggesting that the training set is representative of the testing set. 

Preprocessing of Signals 

Previous studies have shown that the mean and standard deviation of heart rate decreases 

during Non-REM sleep and increase during wakefulness.11,13 We hypothesized that change point 

detection could be used to mark these alterations in the heart rate. Body movements have also been 

used as a sleep/wake identification feature in various studies over the years.1,7,8 In this study, 

changes in the amplitude and gross body movements were detected to capture this information. 

Initially, the Empatica E4 timestamp was synchronized with the PSG timestamp. The next 

preprocessing step consisted of converting the PPG signal to Normal-to-Normal (NN) beat interval 

time series and three-axis accelerometer data to actigraphy and angle time series. PPG data were 

preprocessed using PhysioNet Cardiovascular Signal Toolbox.19 Firstly, peak detection was 

performed using the qppg method provided with the toolbox, and the data was converted to peak-

to-peak (PP) interval time series. Then, non-sinus intervals were detected and removed by 

measuring the change in the current PP interval from the previous PP interval and excluding intervals 

that change by more than 20%. PP intervals outside of physiologically possible range were also 

removed to obtain NN interval time series, which was filtered using a Kalman filter to reduce 

noise.20,21    

Raw three-axis accelerometer data were converted to activity counts following the approach 

described by Borazio et al.22 Activity counts are the output format of most commercial actigraphy 

devices; data are summarized over 30-second epochs or time intervals. This conversion compresses 

information, reduces required memory for storing data, and eliminates artifacts and noise in raw 
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data. Z-axis actigraphy data were filtered using a 0.25-11 Hz passband to eliminate extremely slow or 

fast movements.23 The maximum values inside 1-second windows were summed for each 30-second 

epoch of data to obtain the activity count for each epoch. 

Lastly, a tilt angle time series was derived from the raw accelerometer data to capture 

information that is not present in the activity count time series. Specifically, tilt angle, which is the 

angle between the gravitational vector measured by the accelerometer and the initial orientation 

with the gravitational field pointing downwards along the z-axis, can be calculated from the 

accelerometer reading as 

𝜌 =  
𝑎𝑧

√𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2 

  , (1)
 

where 𝜌 is the tilt angle and 𝑎𝑥, 𝑎𝑦, and 𝑎𝑧 are the readings from x, y, and z axes of the 

accelerometer respectively. 

Change Point Detection 

Binary Segmentation (BiS) was used on the preprocessed actigraphy, tilt angle, and NN 

interval time series to detect significant changes in the mean and standard deviation, as seen in 

Figure 1.  BiS technique was chosen for the its simplicity and easy implementation. The procedure 

starts by searching for a change point 𝜏 in the input signal 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑁} that satisfies the 

condition 

𝐶𝑆1:𝜏
+  𝐶𝑆𝜏+1:𝑁 

+ 𝛽 < 𝐶𝑆1:𝑁
 (2) 

where 𝐶 is a cost function and 𝛽 is a penalty term that reduces overfitting. If the condition in Eq. 2 is 

met, 𝜏 becomes the first estimated change point, and 𝑆1:𝜏 and 𝑆𝜏+1:𝑁 become the first 

subsequences. The process continues within these subsequences until data cannot be divided any 

further. Cost function in the above equation is given by 
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𝐶𝑆𝜏𝑖−1:𝜏𝑖
=  −2 log ℒ(𝜃|𝑆𝜏𝑖−1:𝜏𝑖

) (3) 

where ℒ is the likelihood function.  

In a previous study, Yoneyama et al. selected body movements with more than 10° changes 

in the body angle as turnover events.24 They used the bi-modal distribution of turnover angle 

changes and duration between turnovers to analyze sleep in healthy and neurodegenerative 

patients. Those authors also stated that abdominal motion due to breathing causes 5° fluctuations, 

so 10° threshold is ideal for detecting turnover events. In this study, changes more than 10° tilt angle 

were used as a change point in the tilt angle time series.  

Encoding Generalized Linear Models 

The CPD model is inspired by the encoding/decoding framework in neuroscience,17 where a 

neural population response to a stimulus signal is observed in the form of spike trains. These 

responses are used to train encoding models which describe the probability of the responses. Then, 

when a spike train is observed from a group of cells, this model is used to "decode" or estimate the 

stimulus signal. Similarly, in the proposed CPD model, the sleep/wake signal through the night was 

thought as the stimulus driving the changes in the NN time series and actigraphy signals collected by 

the wearable device. Following the approach by Pillow et al, the information in the change point 

time series was used to train the encoding model. As seen in Figure 2, the model consists of a history 

filter, coupling filters, and a stimulus filter. In the encoding step, the optimal filters are selected using 

the training data. For example, the instantaneous firing rate of NN time series can be expressed as 

𝑟𝑁𝑁(𝑡) = 𝑓(𝑘𝑁𝑁 ∙ 𝑥(𝑡) + ℎ ∙ 𝑧𝑁𝑁,ℎ𝑖𝑠𝑡𝑜𝑟𝑦(𝑡) +  𝑐𝑁𝑁,𝑎𝑐𝑡 ∙ 𝑧𝑎𝑐𝑡(𝑡) + 𝑐𝑁𝑁,𝑎𝑛𝑔𝑙𝑒 ∙ 𝑧𝑎𝑛𝑔𝑙𝑒(𝑡)) (4) 

where 𝑥(𝑡) is the sleep/wake stimulus that drives the changes in the signals. 𝑘, ℎ and 𝑐 are stimulus, 

history, and coupling filters respectively. 𝑧𝑁𝑁,ℎ𝑖𝑠𝑡𝑜𝑟𝑦 represents the history of the NN time series 

while 𝑧𝑎𝑐𝑡 and 𝑧𝑎𝑛𝑔𝑙𝑒 are the windows of actigraphy and angle time series. 𝑓 can be selected as the 

exponential function and it converts the summation into probability of spiking. We fitted this set of 
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four filters for each actigraphy, angle, and NN time series. Filter coefficients were calculated by using 

"glmfit" function from MATLAB.25 This generalized linear model approach allowed for both 

excitatory and inhibitory interactions between signals. 

Decoding Generalized Linear Models 

The decoding framework is composed of three steps as shown in Fig. 3. The decoding uses 

the trained model from the encoding step and tries to estimate if the subject is asleep or wake, 

given the changes in the input signals. The change point time series derived from each of the three 

data streams were fed into the trained model, and the penalized maximum likelihood estimate of 

the sleep/wake stimulus was calculated by minimizing 

𝑥 = argmin
𝑥

(− log 𝑝(𝑥|𝑧) + 𝜆‖𝑥‖𝑇𝑉)  (5) 

where 𝑥 is the estimate sleep/wake and 𝑧 is the change point time series and log 𝑝(𝑥|𝑧) 

 is the log-probability of sleep/wake states given the observed change events. We regularized the 

likelihood with the Total Variation (TV) norm to prevent overfitting and preserve step-like properties 

of the sleep/wake stimulus. After estimation, the output 𝑥 is thresholded and converted back to 

binary sleep/wake detection as seen in Fig. 4. More details on encoding and decoding steps can be 

found in the Supplement section. 

The data window size for encoding model filters, the TV regularization parameter 𝜆, and the 

threshold were selected by sweeping a range of values and selecting parameters maximizing the F1 

score in the training set. Data window sizes tested were 30 seconds, 1 minute and 1.5 minutes. Fig. 5 

illustrates the sweep of regularization parameter in the range [0:0.1:5] and threshold [0:0.01:0.5]. F1 

score was used to guide model selection because it is a combined metric for precision and recall. 

Precision indicates how many epochs of detected wake are correct, whereas recall refers to the 

percentage of total wake epochs results correctly classified. Therefore, F1 score, which combines 

precision and recall, proves to be a useful metric for this imbalanced classification scenario. 
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Oakley Method 

The Oakley sleep/wake detection method was also implemented on the same dataset to 

allow a fair comparison with the proposed technique. The algorithm is adapted for 30-second 

epochs following the approach by Kosmadopoulos et al.26 Actigraphy data are weighted and 

summed as follows 

𝐴𝑖 =  0.04 𝐸(𝑖−4) +  0.04  𝐸(𝑖−3) + 0.2 𝐸(𝑖−2) + 0.2 𝐸(𝑖−1) +

2 𝐸(𝑖) + 0.2 𝐸(𝑖+1)  + 0.2 𝐸(𝑖+2) + 0.04 𝐸(𝑖+3) +  0.04 𝐸(𝑖+4) (7)
 

where 𝑖 denotes the current epoch index and 𝐸 denotes the actigraphy count in the epoch. Then 𝐴𝑖  

is compared to a predefined threshold to identify sleep/wake.  In commercially available Actiwatch 

devices, there are three different thresholds: low (20), medium (40), and large (80). Since the 

wearable device is different in this study, it could result in an actigraphy time series with a different 

amplitude range than Actiwatch and thresholds may not apply. Therefore, the threshold was 

selected using the training data to maximize F1 score. Results of both optimized threshold and 

medium setting are reported for comparison.  

Performance Evaluation 

To evaluate the performance of the model, standard metrics such as sleep accuracy, wake 

accuracy, and total accuracy were calculated. F1 score is used both for hyper-parameter selection as 

described above and for evaluating the algorithms. Also, we fixed the regularization parameter of 

CPD to the value selected using the F1 score and sweep thresholds for both methods to derive ROC 

and Precision-Recall curves. Cohen's Kappa was also calculated to measure inter-rater reliability 

between PSG study and the algorithms. Furthermore, sleep-wake statistics including Wake After 

Sleep Onset (WASO), Sleep Onset Latency (SOL), Sleep Efficiency, and the number of sleep wake 

transitions were calculated. WASO was defined as the minutes awake during the sleep period after 

sleep onset (defined as the first 30-second epoch of any stage of sleep). Sleep Onset Latency was 

calculated as the time from lights out until sleep onset in minutes. Sleep efficiency was defined as 
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the percent of time scored as sleep during the sleep period subsequent to sleep onset. For training 

set performance evaluation, models were trained and validated using leave-one-out cross validation 

within training set. For testing set performance evaluation, final model was trained using the 

subjects in the training set with selected hyperparameters and tested on the testing set. Using 

individual signal models without the coupling filters between different domains was also tested in 

the same manner in order to assess the contribution of each signal and the coupling filters to the 

performance. 

 

 

Results 

Hyperparameters selected on training set for CPD are 1-minute window size, regularization 

parameter of 2, and threshold of 0.22. For the OA method, threshold optimized with F1 score on the 

training set is equal to 70. Concordance between PSG and the two methods are evaluated on testing 

set. The mean across subjects for total accuracy, sleep accuracy, wake accuracy, Kappa, F1 score, 

WASO, and SE are shown in Table 2 and Table 3 for both methods. For WASO, SE and the number of 

sleep wake transitions, the error is calculated as the PSG gold standard minus estimated value. Fig. 6 

illustrates Receiver Operating Characteristic (ROC) curve and Precision-Recall curve for both 

methods as their threshold is varied. Operating points selected using the training data are also 

marked with red circles on the plots. The area under the curve (AUC) for the CPD method was found 

to be 0.78 and 0.67 for the OA method. Moreover, we observed from Fig. 6 that it was possible to 

achieve similar performance to OA by changing the CPD method’s threshold. However, it was not 

possible for OA method to reach the CPD’s operating point by modifying the threshold value.  

As shown in Table 2 and Table 3, the CPD method achieved greater accuracy for wake 

accuracy, Kappa, and F1 Score for both training and test sets. The difference between wake accuracy 

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article-abstract/doi/10.1093/sleep/zsaa011/5719607 by G

eorgia Institute of Technology user on 21 February 2020



Acc
ep

ted
 M

an
us

cri
pt

 

 13 

was statistically significant (P < 0.05) for the methods in both training and test sets.  It can also be 

seen that OA overestimated WASO while wake accuracy is low. Note that the CPD method exhibited 

lower WASO error in both analyses.  When using the medium threshold setting (40) is used for the 

OA method, total accuracy was 0.54, sleep accuracy was 0.38, and wake accuracy was 0.81 for the 

test set. The error in the number of sleep wake transitions in the test set was overestimated as -

17.19 (36.13) for the OA algorithm and underestimated as 64.41 (34.80) for the CPD.  

Table 4 shows the same experiment repeated by using each signal by itself, without the 

coupling filters between the different domains. Tilt angle signal model performed better than PPG 

and actigraphy models in terms of Kappa, F1 score, WASO error, and SE error performance metrics. 

However, all three single signal models resulted in lower total accuracy, Kappa, F1 score, and higher 

SE error when compared to the combined model with the coupling filters. 

Figure 7 provides the Bland Altman analyses of the differences for SE and WASO for the OA 

and CPD methods for the Testing set. The modified Bland Altman plot shows that the Oakley method 

exhibited a bias towards overestimating WASO (see Figure 7, bottom left subplot). These plots also 

show that both methods exhibited similar performance as measured by SE error.  

Tables 5 and 6 compare the results of both methods for all four groups in the test set. The 

CPD has a higher wake accuracy than the Oakley method in each subject group, while the Oakley 

method performs slightly better in terms of total accuracy. 

Discussion 

This article presents a novel method (CPD) for identifying sleep and wake states from 

movement and physiological signals collected using wearable devices. The method was comprised of 

three types of filters; stimulus, history, and coupling. Filter coefficients were estimated through a 

training process and then were used to detect sleep and wake states from change points. Our 

approach was flexible enough to incorporate various signal modalities and incorporating information 
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from these results in higher wake detection performance. The CPD approach used a combination of 

movement-related and physiological signals, making it possible to overcome some of the limitations 

of previous algorithms based solely on actigraphy. For instance, the results demonstrate that the 

CPD method does not overestimate sleep and has high wake detection performance. Therefore, the 

CPD method can provide an unbiased solution to sleep/wake detection. The CPD modeled time 

series of discrete change events derived from wearable device signals and outputted a score of 

wakefulness (𝑥) which can be used to investigate gradual transitions between sleep and wake states 

within the epochs. 

The OA method exhibited a higher sleep accuracy with respect to the CPD approach, which 

resulted in slightly higher total accuracy for OA since the prevalence of the sleep epochs in the data 

was relatively higher than the prevalence of wake epochs. By contrast, we observed a significant 

improvement in wake accuracy by using the CPD. Higher wake accuracy also resulted in lower WASO 

error for both training and test sets with the CPD. The OA method overestimated WASO and had 

lower wake detection accuracy, even though the threshold parameter was optimized during training 

(Table 2, 3). This outcome indicated that the Oakley algorithm misclassified sleep epochs as wake 

while being unable to recognize true wake epochs. A similar pattern was observed in subjects 

without any sleep disorder (Group 1) within the test set. This result could be due to the fact that 

when there is no movement, OA could not estimate that the subject was wake, as exemplified in 

Figure 8.  

Periodic Limb Movement Disorder is characterized by episodes of limb movements during 

sleep, and these limb movements could bias the actigraphy based method into estimating a subject 

is awake. For PLMD subjects (Group 3), the CPD method had higher wake accuracy compared to OA, 

indicated in Table 5. However, this did not lead to significantly lower WASO Error due to the CPD 

method's lower sleep accuracy in this group, suggesting that limb movements had a similar effect in 

both methods. 
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Accurate estimates of WASO could become especially important in monitoring populations 

with difficulties falling or staying asleep. For example, WASO duration has been used as a diagnostic 

criterion for insomnia.27 The OA method is known to have lower performance in detecting 

wakefulness for insomnia. 9.10 In this study, optimizing the threshold parameter for OA did not yield a 

significant increase in wake accuracy. Therefore, the CPD method could be more useful in this 

population due to its higher accuracy in detecting wake epochs and the lower error in WASO. On the 

other hand, CPD method had a high error for estimating the number of sleep/wake transitions, 

which should be taken into account while applying the method on the insomnia population. 

The proposed method only required the timestamps of the change points. Due to this fact, 

the CPD approach required less storage space than other methods. In this study, saving raw 

accelerometer and PPG signals for each subject resulted in 6.91 GB of data. However, if the change 

points alone were saved, stored data were only 1.3 MB. Using the CPD method reduced the required 

memory to 0.02% compared to other approaches that need the whole signal for feature extraction 

or training the models. As a result, the CPD method could result in immense memory (and energy) 

savings for large populations, applications with more data streams, and studies in which subjects are 

monitored over long periods.  

This study has some limitations. Since the signals were stored as change point time series 

and raw signals were not saved, the information in signal segments was lost. This could limit the 

data being used for other applications such as detecting or monitoring disorders like arrhythmia or 

sleep apnea. Also, it has been observed that the CPD approach has lower wake accuracy in subjects 

with sleep apnea (Group 2) compared to other groups. Future studies will explore adding a PPG-

derived respiration signal to the model to improve performance in subjects with sleep apnea. A 

second limitation of the CPD is the lower number of sleep/wake transitions. The CPD method 

employs total variation regularization. While this regularization prevents overfitting and preserves 
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piecewise constant structure of sleep/wake signal, it results in fewer switches between sleep and 

wakefulness.  

In conclusion, this work presents the Change Point Decoder, which is a novel technique for 

sleep/wake identification in patients with highly disordered sleep. The CPD provides higher wake 

detection accuracy when compared to a solely actigraphy-based method. This superior performance 

could enable more accurate investigation of the vital role of awakenings during the night in various 

psychological disorders. The CPD method requires low memory in the wearable devices compared to 

existing methods, and therefore, it could prove beneficial in long-term studies. Moreover, as a 

method, the CPD has the ability to adapt to different and novel devices and signals beyond the 

accelerometer.  
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Figure List 

- Figure 1: Change points detected from various signals are visualized here as dashed 

lines. Actigraphy time series is shown on figure (a) and tilt angle time series are 

shown in figure (b). Figure (c) shows NN interval time series in light purple, Kalman 

filtered NN intervals in darker purple. 

- Figure 2: Encoding diagram for angle time series. Raw signals from the Empatica 

devices are converted to change point time series. History, coupling, and stimulus 

filters were applied on one-minute windows of data, summed and converted to 

spiking probability of tilt angle time series in time interval 𝛿𝑡 using instantaneous 

firing rate 𝑟𝑡𝑖𝑙𝑡(𝑡). 

- Figure 3: Pipeline for decoding sleep/wake stages. Detected changed points are fed 

into the trained model. Output of the model is converted to sleep/wake detection using 

penalized Poisson Maximum Likelihood estimation (Eq. 5) and thresholding to 

convert 𝑥𝑒𝑠𝑡 to binary sleep/wake predictions. Sleep and wake states are indicated 

with 'S' and 'W' letters on the figure. 

- Figure 4: Example of the proposed CPD algorithm. Top figure: output of the decoder 

𝑥̂  (light green solid line), ground truth (i.e. gold-standard polysomnography) (light-

blue area), and threshold (red dashed line). Bottom figure: binary sleep/wake output 

after thresholding (dark green solid line). 

- Figure 5: Sweeping threshold and regularization parameter. F1 score represents a 

combination of precision and recall, with high values reflecting better performance 

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article-abstract/doi/10.1093/sleep/zsaa011/5719607 by G

eorgia Institute of Technology user on 21 February 2020



Acc
ep

ted
 M

an
us

cri
pt

 

 23 

- Figure 6: ROC and Precision-Recall curves for the CPD and OA methods. 

Performance of both methods is illustrated as their threshold varied. Operating points 

are shown with red circles on the plots. 

- Figure 7: Modified Bland Altman plots for sleep metrics in Test Set. x axis shows 

ground truth (i.e. gold standard) PSG metrics and y axis shows the difference between 

PSG and the estimates. Participants belonging to four subgroups determined by AHI 

and PLMI are indicated with different symbols. 

- Figure 8: Comparison of Oakley and Change Point Decoder Methods. Top plot 

illustrates actigraphy while middle and bottom plots shows OA and CPD estimates 

respectively. 
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Table 1- Participant Demographics and PSG Sleep Statistics in Training and Test Sets. Mean 

(Standard Deviation) of variables in each group. 

 Training Set Testing Set 

 n Age PSG Sleep 
Efficiency 

n Age PSG Sleep 
Efficiency 

Group 1 19 68.1 (2.31) 75 (13) 9 68.22 (2.64) 74 (14) 

Group 2 22 68.0 (2.03) 72 (14) 7 69.43 (1.62) 74 (13) 

Group 3 24 68.42 (2.87) 74 (15) 14 68.28 (1.68) 67 (19) 

Group 4 5 67.20 (3.42) 65 (16) 2 69 (0) 74 (5) 

All Subjects 70 68.11 (2.48) 73 (14) 32 68.56 (1.93) 71 (16) 
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Table 2- Sleep/wake identification performances in the Training Set 

 Training Set 

 OA 

Mean (SD) 

95 % CI CPD 

Mean (SD) 

95 % CI 

Total Accuracy 0.76 (0.10) [0.73, 0.78] 0.76 (0.12) [0.73, 0.79] 

Sleep Accuracy 0.82 (0.15) [0.79, 0.86] 0.78 (0.19) [0.73, 0.82] 

Wake Accuracy 0.61 (0.19) [0.56, 0.65] 0.72 (0.18) * [0.67, 0.76] 

Kappa 0.41 (0.17) [0.37, 0.45] 0.46 (0.20) [0.41, 0.50] 

F1 Score 0.59 (0.14) [0.56, 0.63] 0.64 (0.15) * [0.60, 0.68] 

WASO Error 
(min.) 

-22.82 (69.04) [-39.28, -6.36] 13.17 (56.84) * [-0.38, 26.72] 

SE Error (%) 3.01 (15.74) [-0.74, 6.76] -1.59 (14.18) * [-4.97, 1.79] 

SOL Error (min.) 22.69 (25.72) [16.56, 28.83] -10.49 (43.30) * [-20.81, 0.16] 

* Wilcoxon signed-rank comparison of two methods, 5% significance level. 

Abbreviations: CI, Confidence Interval; SD, Standard Deviation. 
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Table 3- Sleep/wake identification performances in the Testing Set 

 Testing Set 

 OA 

Mean (SD) 

95 % CI CPD 

Mean (SD) 

95 % CI 

Total Accuracy 0.76 (0.09) [0.72, 0.79] 0.72 (0.14) [0.67, 0.77] 

Sleep Accuracy 0.85 (0.12) * [0.80, 0.89] 0.70 (0.19) [0.63, 0.76] 

Wake Accuracy 0.54 (0.20)  [0.47, 0.62] 0.74 (0.20) * [0.66, 0.81] 

Kappa 0.39 (0.17) [0.33, 0.45] 0.40 (0.24) [0.31, 0.49] 

F1 Score 0.59 (0.14) [0.54, 0.64] 0.62 (0.20)  [0.55, 0.70] 

WASO Error 
(min.) 

-9.95 (63.75) [-32.94, 13.03] 7.66 (67.34)  [-16.62, 31.94] 

SE Error (%) -0.03 (14.93) [-5.42, 5.35] 2.09 (16.81)  [-3.97, 8.15] 

SOL Error (min.) 28.64 (36.84) [15.36, 41.92] -22.86 (58.68) * [-44.01, -1.7] 

* Wilcoxon signed-rank comparison of two methods, 5% significance level. 

Abbreviations: CI, Confidence Interval; SD, Standard Deviation. 
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Table 4- Performances of single signal models in the Testing Set 

 PPG model 

Mean (SD) 

Act. model 

Mean (SD) 

Tilt model 

Mean (SD) 

Total Accuracy 0.60 (0.14) 0.69 (0.13) 0.69 (0.15) 

Sleep Accuracy 0.49 (0.19) 0.89 (0.12) 0.65 (0.22) 

Wake Accuracy 0.83 (0.13)  0.34 (0.17) 0.75 (0.20)  

Kappa 0.25 (0.17) 0.24 (0.19) 0.36 (0.23) 

F1 Score 0.60 (0.16) 0.41 (0.17) 0.61 (0.19)  

WASO Error (min.) -53.31 (89.39) 65.13 (69.45) -2.44 (65.21) 

SE Error (%) 20.87 (22.37) -16.54 (15.98) 6.21 (18.13) 

SOL Error (min.) -15.36 (66.04) 12.14 (51.14) -29.94 (59.99) 

Abbreviations: Act., Actigraphy; SD, Standard Deviation. 
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Table 5- Sleep/wake identification performance in different disorder groups in the Test set. 

  Total 
Accuracy 

Mean (SD) 

Sleep 
Accuracy 

Mean (SD) 

Wake 
Accuracy 

Mean (SD) 

Kappa 

Mean (SD) 

F1 Score  

Mean (SD) 

Group 1 OA 0.78 (0.07) 0.88 (0.10) 0.52 (0.20) 0.42 (0.13) 0.58 (0.16) 

CPD 0.76 (0.07) 0.76 (0.13) 0.73 (0.23) 0.44 (0.20) 0.62 (0.20) 

Group 2 OA 0.78 (0.09) 0.84 (0.13) 0.55 (0.12) 0.42 (0.10) 0.60 (0.10) 

CPD 0.75 (0.12) 0.75 (0.13) 0.63 (0.27) 0.37 (0.30) 0.58 (0.26) 

Group 3 OA 0.73 (0.09) 0.84 (0.13) * 0.54 (0.25) 0.35 (0.20) 0.59 (0.16) 

CPD 0.69 (0.18) 0.64 (0.23) 0.78 (0.18) * 0.39 (0.25) 0.64 (0.20) 

Group 4 OA 0.75 (0.17) 0.78 (0.16) 0.67 (0.17) 0.44 (0.33) 0.64 (0.18) 

CPD 0.70 (0.14) 0.62 (0.21) 0.87 (0.02) 0.42 (0.21) 0.65 (0.08) 

* Wilcoxon signed-rank comparison of two methods, 5% significance level. 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article-abstract/doi/10.1093/sleep/zsaa011/5719607 by G

eorgia Institute of Technology user on 21 February 2020



Acc
ep

ted
 M

an
us

cri
pt

 

 29 

Table 6- Sleep study statistic estimation performance in different disorder groups in the Test set. 

  SE Error 

Mean (SD) 

WASO Error 

Mean (SD) 

SOL Error 

Mean (SD) 

Group 1 OA -0.07 (18.75) -8.56 (78.67) 40.11 (55.86) 

CPD 1.67 (10.89) 5.33 (38.42) -11.94 (54.67) 

Group 2 OA 0.71 (5.16) -16.00 (37.62) 31.64 (43.37) 

CPD -8.73 (14.38) 47.21 (72.94) -44.07 (86.40) 

Group 3 OA -1.68 (16.93) -2.14 (69.85)  20.18 (16.49) 

CPD 5.54 (19.42) -1.04 (74.88) -19.53 (50.13) 

Group 4 OA 9.02 (2.67) -49.75 (15.20) 25.75 (5.30) 

CPD 17.73 (13.65) -59.50 (53.74) -21 (31.11) 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article-abstract/doi/10.1093/sleep/zsaa011/5719607 by G

eorgia Institute of Technology user on 21 February 2020



Acc
ep

ted
 M

an
us

cri
pt

 

 34 

Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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