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Abstract

Study Objectives: The usage of wrist-worn wearables to detect sleep-wake states remains a
formidable challenge, particularly among individuals with disordered sleep. We developed a novel
and unbiased data-driven method for detection of sleep-wake and compared its performance to the
well-established Oakley algorithm (OA) relative to polysomnography (PSG) in elderly men with

disordered sleep.

Methods: Overnight in-lab PSG from 102 participants was compared to accelerometry and
photoplethysmography simultaneously collected with a wearable device (Empatica E4). A binary
segmentation algorithm was used to detect change points in these signals. A model that estimates
sleep or wake states given the changes in these signals was established (Change Point Decoder,

CPD). The CPD's performance was compared to the performance of the OA in relation to PSG.

Results: On the Testing Set, OA provided sleep accuracy of 0.85, wake accuracy of 0.54, AUC of 0.67,
and Kappa of 0.39. Comparable values for CPD were 0.70, 0.74, 0.78, and 0.40. The CPD method had
sleep onset latency error of -22.9 minutes, sleep efficiency error of 2.09%, and underestimated the
number of sleep/wake transitions with an error of 64.4. The OA method’s performance was 28.6

minutes, -0.03%, and -17.2 respectively.

Conclusions: The CPD aggregates information from both cardiac and motion signals for state
determination as well as the cross-dimensional influences from these domains. Therefore, CPD
classification achieved balanced performance and higher AUC, despite underestimating sleep/wake
transitions. The CPD could be used as an alternate framework to investigate sleep/wake dynamics

within the conventional time frame of 30-second epochs.

Keywords: Sleep/wake, change point detection, wearable device, actigraphy, heart rate
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Statement of Significance: Wearable devices enabled collecting various physiological signals
and sleep assessment for non-laboratory settings. However, most of the proposed methods for
sleep/wake detection with wearable devices aim for high overall accuracy at the expense of wake
detection performance. The Change Point Decoder (CPD) technique is a novel signal processing
approach that can distinguish wakefulness from sleep by solely using changes in the signals collected
by wearables. The technique uses temporal information in the changes and the coupling between
multiple sources to optimize classification. The results suggest that CPD provides unbiased
sleep/wake detection with performance comparable to a traditional algorithm for sleep efficiency

but with potential underestimation of sleep/wake transitions.
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Introduction

Several sleep/wake classification algorithms for wearables have been suggested over the last
decades, and they are typically based solely on actigraphy derived from accelerometer.’* Several
findings suggest that only using movement signals leads to the main limitation of current algorithms:
the incorrect classification and overestimation of low activity tasks as such sleep.”” Indeed, low
activity (quiescent) segments are not unique to sleep but are common to other activities such as
reading or watching television. Another limitation results from the adoption of imprecise evaluation
metrics used in assessing the performance of these devices. Since the percentage of sleep is typically
higher compared to wake overnight, total accuracy may not be a reliable metric to evaluate
performance. Sleep/wake detection may be considered as a “rare class problem” and may be

amenable to alternative model evaluation metrics which better reflect this issue.

The first approaches in the field for state determination were based on calculating a
weighted sum over the actigraphy epochs around the current epoch and scaling the summation to
distinguish sleep from wakefulness.%? Oakley presented a similar approach in which the current
epoch, epochs in the 2 minutes before and the 2 minutes after the current epoch are scaled with
predetermined coefficients and summed.® If the summation is higher than the threshold, the region
was labeled as wake. The Oakley algorithm is utilized in commercially available devices with different
threshold selections (e.g., Actiwatch 2, Philips Respironics; Bend, Oregon). These actigraphic
methods rely solely on the amplitude of actigraphic signals, which makes them low cost and easy to
implement. However, these methods may overestimate sleep, particularly for patients with
disordered sleep.>? It has been long been known that heart rate reflects transitions from sleep to
wake and from wake to sleep.!¥™ Recent studies in the field leverage a combination of
photoplethysmography (PPG) and accelerometer signals for sleep/wake detection.'*!® However,
these approaches have not been tested on clinical populations and still show low sensitivity in

detecting wake epochs.
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The method described in this paper combines PPG and accelerometer signals collected from
wearable devices and detects patterns in change points associated with sleep/wake transitions. The
proposed method, which is referred to as Change Point Decoder (CPD), is inspired by methods
related to neural spike train models and uses a similar encoding/decoding framework.” In this study,
CPD was developed on a clinical data set of 102 patients, which was split into a training set of 70
subjects and a test set of 32 subjects. The effect of sleep disorders on the method's performance

was then investigated.

Methods

Participants

The current study includes a subgroup of participants (n = 102, men, mean age = 68.56, SD =
1.93) from the Emory Twin Study Follow-up recruited from the Vietnam Era Twin Registry.'® All
Polysomnography (PSG) data were collected from data acquisition systems (Natus, Remlogic) set up
in two bedrooms in the Emory Sleep Center. Written informed consent was obtained from all
participants, and the Emory University Institutional Review Board approved this research (IRB #
00081004). During PSG acquisition, subjects wore a commercially available wrist-worn watch
(Empatica E4, Empatica; Cambridge, MA). The wrist-worn device recorded Photoplethysmogram

(PPG) and three-axis accelerometer signals.

Data Set

The study population was assigned to four groups according to their Apnea-Hypopnea Index

(AHI) and Periodic Limb Movement Index (PLMI) as follows:

e Group 1: Subjects with AHI < 15 and PLMI < 15
e Group 2: Subjects with AHI >15 and PLMI < 15
e Group 3: Subjects with AHI < 15 and PLMI >15

¢ Group 4: Subjects with AHI >15 and PLMI >15
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All the data were randomly split into two sets, with 70 subjects assigned to the training set and 32
subjects assigned to testing. Table 1 show ages and PSG-defined sleep efficiency in both sets. Two-
sample Kolmogorov tests were performed for age, AHI, PLMI, and sleep efficiency of the subjects in
the training and testing sets. Differences in these measures between the sets were not statistically

significant, suggesting that the training set is representative of the testing set.

Preprocessing of Signals

Previous studies have shown that the mean and standard deviation of heart rate decreases
during Non-REM sleep and increase during wakefulness.** We hypothesized that change point
detection could be used to mark these alterations in the heart rate. Body movements have also been
used as a sleep/wake identification feature in various studies over the years.%”® In this study,

changes in the amplitude and gross body movements were detected to capture this information.

Initially, the Empatica E4 timestamp was synchronized with the PSG timestamp. The next
preprocessing step consisted of converting the PPG signal to Normal-to-Normal (NN) beat interval
time series and three-axis accelerometer data to actigraphy and angle time series. PPG data were
preprocessed using PhysioNet Cardiovascular Signal Toolbox.!® Firstly, peak detection was
performed using the gppg method provided with the toolbox, and the data was converted to peak-
to-peak (PP) interval time series. Then, non-sinus intervals were detected and removed by
measuring the change in the current PP interval from the previous PP interval and excluding intervals
that change by more than 20%. PP intervals outside of physiologically possible range were also
removed to obtain NN interval time series, which was filtered using a Kalman filter to reduce

noise.?%%!

Raw three-axis accelerometer data were converted to activity counts following the approach

described by Borazio et al.??

Activity counts are the output format of most commercial actigraphy
devices; data are summarized over 30-second epochs or time intervals. This conversion compresses

information, reduces required memory for storing data, and eliminates artifacts and noise in raw
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data. Z-axis actigraphy data were filtered using a 0.25-11 Hz passband to eliminate extremely slow or
fast movements.?®* The maximum values inside 1-second windows were summed for each 30-second

epoch of data to obtain the activity count for each epoch.

Lastly, a tilt angle time series was derived from the raw accelerometer data to capture
information that is not present in the activity count time series. Specifically, tilt angle, which is the
angle between the gravitational vector measured by the accelerometer and the initial orientation
with the gravitational field pointing downwards along the z-axis, can be calculated from the

accelerometer reading as
aZ

p= —,
/a,zc+a32,+a§

where p is the tilt angle and a,, ay, and a, are the readings from x, y, and z axes of the

€y

accelerometer respectively.

Change Point Detection

Binary Segmentation (BiS) was used on the preprocessed actigraphy, tilt angle, and NN
interval time series to detect significant changes in the mean and standard deviation, as seen in
Figure 1. BiS technique was chosen for the its simplicity and easy implementation. The procedure
starts by searching for a change point tin the input signal S = {x4, x5, ..., xy} that satisfies the

condition

CS1:r + C5r+1:N + B < CS1:N (2)

where C is a cost function and f is a penalty term that reduces overfitting. If the condition in Eq. 2 is
met, T becomes the first estimated change point, and S;.; and S;;i.y become the first
subsequences. The process continues within these subsequences until data cannot be divided any

further. Cost function in the above equation is given by
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Cs, ey = —2 log £(6|S;,_, ;) 3)
where L is the likelihood function.

In a previous study, Yoneyama et al. selected body movements with more than 10° changes
in the body angle as turnover events.?* They used the bi-modal distribution of turnover angle
changes and duration between turnovers to analyze sleep in healthy and neurodegenerative
patients. Those authors also stated that abdominal motion due to breathing causes 5° fluctuations,
so 10° threshold is ideal for detecting turnover events. In this study, changes more than 10° tilt angle

were used as a change point in the tilt angle time series.

Encoding Generalized Linear Models

The CPD model is inspired by the encoding/decoding framework in neuroscience,!’” where a
neural population response to a stimulus signal is observed in the form of spike trains. These
responses are used to train encoding models which describe the probability of the responses. Then,
when a spike train is observed from a group of cells, this model is used to "decode" or estimate the
stimulus signal. Similarly, in the proposed CPD model, the sleep/wake signal through the night was
thought as the stimulus driving the changes in the NN time series and actigraphy signals collected by
the wearable device. Following the approach by Pillow et al, the information in the change point
time series was used to train the encoding model. As seen in Figure 2, the model consists of a history
filter, coupling filters, and a stimulus filter. In the encoding step, the optimal filters are selected using

the training data. For example, the instantaneous firing rate of NN time series can be expressed as

NN (t) = f(kNN ' x(t) +h- ZNN,history )+ CNNact " Zact )+ CNN,angle " Zangle (t)) (4)

where x(t) is the sleep/wake stimulus that drives the changes in the signals. k, h and ¢ are stimulus,
history, and coupling filters respectively. zyy nistory represents the history of the NN time series
while z,¢; and Zgp 4. are the windows of actigraphy and angle time series. f can be selected as the

exponential function and it converts the summation into probability of spiking. We fitted this set of
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four filters for each actigraphy, angle, and NN time series. Filter coefficients were calculated by using
"glmfit" function from MATLAB.® This generalized linear model approach allowed for both

excitatory and inhibitory interactions between signals.

Decoding Generalized Linear Models

The decoding framework is composed of three steps as shown in Fig. 3. The decoding uses
the trained model from the encoding step and tries to estimate if the subject is asleep or wake,
given the changes in the input signals. The change point time series derived from each of the three
data streams were fed into the trained model, and the penalized maximum likelihood estimate of

the sleep/wake stimulus was calculated by minimizing

£ = argmin(—log p(x|2) + Allx|lzv) ©)
X

where X is the estimate sleep/wake and z is the change point time series and log p(x|z)

is the log-probability of sleep/wake states given the observed change events. We regularized the
likelihood with the Total Variation (TV) norm to prevent overfitting and preserve step-like properties
of the sleep/wake stimulus. After estimation, the output X is thresholded and converted back to
binary sleep/wake detection as seen in Fig. 4. More details on encoding and decoding steps can be

found in the Supplement section.

The data window size for encoding model filters, the TV regularization parameter A, and the
threshold were selected by sweeping a range of values and selecting parameters maximizing the F1
score in the training set. Data window sizes tested were 30 seconds, 1 minute and 1.5 minutes. Fig. 5
illustrates the sweep of regularization parameter in the range [0:0.1:5] and threshold [0:0.01:0.5]. F1
score was used to guide model selection because it is a combined metric for precision and recall.
Precision indicates how many epochs of detected wake are correct, whereas recall refers to the
percentage of total wake epochs results correctly classified. Therefore, F1 score, which combines

precision and recall, proves to be a useful metric for this imbalanced classification scenario.

10
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Oakley Method

The Oakley sleep/wake detection method was also implemented on the same dataset to
allow a fair comparison with the proposed technique. The algorithm is adapted for 30-second

/'26

epochs following the approach by Kosmadopoulos et al.”® Actigraphy data are weighted and

summed as follows

A;= 004EqG_4)+ 004 E_3)+02E;_+02E;_4)+

2E4 +02E41) +02E42)+0.04E 43+ 0.04Eg14 7
where i denotes the current epoch index and E denotes the actigraphy count in the epoch. Then 4;
is compared to a predefined threshold to identify sleep/wake. In commercially available Actiwatch
devices, there are three different thresholds: low (20), medium (40), and large (80). Since the
wearable device is different in this study, it could result in an actigraphy time series with a different
amplitude range than Actiwatch and thresholds may not apply. Therefore, the threshold was
selected using the training data to maximize F1 score. Results of both optimized threshold and

medium setting are reported for comparison.

Performance Evaluation

To evaluate the performance of the model, standard metrics such as sleep accuracy, wake
accuracy, and total accuracy were calculated. F1 score is used both for hyper-parameter selection as
described above and for evaluating the algorithms. Also, we fixed the regularization parameter of
CPD to the value selected using the F1 score and sweep thresholds for both methods to derive ROC
and Precision-Recall curves. Cohen's Kappa was also calculated to measure inter-rater reliability
between PSG study and the algorithms. Furthermore, sleep-wake statistics including Wake After
Sleep Onset (WASQ), Sleep Onset Latency (SOL), Sleep Efficiency, and the number of sleep wake
transitions were calculated. WASO was defined as the minutes awake during the sleep period after
sleep onset (defined as the first 30-second epoch of any stage of sleep). Sleep Onset Latency was

calculated as the time from lights out until sleep onset in minutes. Sleep efficiency was defined as

11
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the percent of time scored as sleep during the sleep period subsequent to sleep onset. For training
set performance evaluation, models were trained and validated using leave-one-out cross validation
within training set. For testing set performance evaluation, final model was trained using the
subjects in the training set with selected hyperparameters and tested on the testing set. Using
individual signal models without the coupling filters between different domains was also tested in
the same manner in order to assess the contribution of each signal and the coupling filters to the

performance.

Results

Hyperparameters selected on training set for CPD are 1-minute window size, regularization
parameter of 2, and threshold of 0.22. For the OA method, threshold optimized with F1 score on the
training set is equal to 70. Concordance between PSG and the two methods are evaluated on testing
set. The mean across subjects for total accuracy, sleep accuracy, wake accuracy, Kappa, F1 score,
WASO, and SE are shown in Table 2 and Table 3 for both methods. For WASO, SE and the number of
sleep wake transitions, the error is calculated as the PSG gold standard minus estimated value. Fig. 6
illustrates Receiver Operating Characteristic (ROC) curve and Precision-Recall curve for both
methods as their threshold is varied. Operating points selected using the training data are also
marked with red circles on the plots. The area under the curve (AUC) for the CPD method was found
to be 0.78 and 0.67 for the OA method. Moreover, we observed from Fig. 6 that it was possible to
achieve similar performance to OA by changing the CPD method’s threshold. However, it was not

possible for OA method to reach the CPD’s operating point by modifying the threshold value.

As shown in Table 2 and Table 3, the CPD method achieved greater accuracy for wake

accuracy, Kappa, and F1 Score for both training and test sets. The difference between wake accuracy

12
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was statistically significant (P < 0.05) for the methods in both training and test sets. It can also be
seen that OA overestimated WASO while wake accuracy is low. Note that the CPD method exhibited
lower WASO error in both analyses. When using the medium threshold setting (40) is used for the
OA method, total accuracy was 0.54, sleep accuracy was 0.38, and wake accuracy was 0.81 for the
test set. The error in the number of sleep wake transitions in the test set was overestimated as -

17.19 (36.13) for the OA algorithm and underestimated as 64.41 (34.80) for the CPD.

Table 4 shows the same experiment repeated by using each signal by itself, without the
coupling filters between the different domains. Tilt angle signal model performed better than PPG
and actigraphy models in terms of Kappa, F1 score, WASO error, and SE error performance metrics.
However, all three single signal models resulted in lower total accuracy, Kappa, F1 score, and higher

SE error when compared to the combined model with the coupling filters.

Figure 7 provides the Bland Altman analyses of the differences for SE and WASO for the OA
and CPD methods for the Testing set. The modified Bland Altman plot shows that the Oakley method
exhibited a bias towards overestimating WASO (see Figure 7, bottom left subplot). These plots also

show that both methods exhibited similar performance as measured by SE error.

Tables 5 and 6 compare the results of both methods for all four groups in the test set. The
CPD has a higher wake accuracy than the Oakley method in each subject group, while the Oakley

method performs slightly better in terms of total accuracy.

Discussion
This article presents a novel method (CPD) for identifying sleep and wake states from
movement and physiological signals collected using wearable devices. The method was comprised of
three types of filters; stimulus, history, and coupling. Filter coefficients were estimated through a
training process and then were used to detect sleep and wake states from change points. Our

approach was flexible enough to incorporate various signal modalities and incorporating information

13
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from these results in higher wake detection performance. The CPD approach used a combination of
movement-related and physiological signals, making it possible to overcome some of the limitations
of previous algorithms based solely on actigraphy. For instance, the results demonstrate that the
CPD method does not overestimate sleep and has high wake detection performance. Therefore, the
CPD method can provide an unbiased solution to sleep/wake detection. The CPD modeled time
series of discrete change events derived from wearable device signals and outputted a score of
wakefulness (X) which can be used to investigate gradual transitions between sleep and wake states

within the epochs.

The OA method exhibited a higher sleep accuracy with respect to the CPD approach, which
resulted in slightly higher total accuracy for OA since the prevalence of the sleep epochs in the data
was relatively higher than the prevalence of wake epochs. By contrast, we observed a significant
improvement in wake accuracy by using the CPD. Higher wake accuracy also resulted in lower WASO
error for both training and test sets with the CPD. The OA method overestimated WASO and had
lower wake detection accuracy, even though the threshold parameter was optimized during training
(Table 2, 3). This outcome indicated that the Oakley algorithm misclassified sleep epochs as wake
while being unable to recognize true wake epochs. A similar pattern was observed in subjects
without any sleep disorder (Group 1) within the test set. This result could be due to the fact that
when there is no movement, OA could not estimate that the subject was wake, as exemplified in

Figure 8.

Periodic Limb Movement Disorder is characterized by episodes of limb movements during
sleep, and these limb movements could bias the actigraphy based method into estimating a subject
is awake. For PLMD subjects (Group 3), the CPD method had higher wake accuracy compared to OA,
indicated in Table 5. However, this did not lead to significantly lower WASO Error due to the CPD
method's lower sleep accuracy in this group, suggesting that limb movements had a similar effect in

both methods.

14
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Accurate estimates of WASO could become especially important in monitoring populations
with difficulties falling or staying asleep. For example, WASO duration has been used as a diagnostic
criterion for insomnia.?’ The OA method is known to have lower performance in detecting
wakefulness for insomnia. >1° In this study, optimizing the threshold parameter for OA did not yield a
significant increase in wake accuracy. Therefore, the CPD method could be more useful in this
population due to its higher accuracy in detecting wake epochs and the lower error in WASO. On the
other hand, CPD method had a high error for estimating the number of sleep/wake transitions,

which should be taken into account while applying the method on the insomnia population.

The proposed method only required the timestamps of the change points. Due to this fact,
the CPD approach required less storage space than other methods. In this study, saving raw
accelerometer and PPG signals for each subject resulted in 6.91 GB of data. However, if the change
points alone were saved, stored data were only 1.3 MB. Using the CPD method reduced the required
memory to 0.02% compared to other approaches that need the whole signal for feature extraction
or training the models. As a result, the CPD method could result in immense memory (and energy)
savings for large populations, applications with more data streams, and studies in which subjects are

monitored over long periods.

This study has some limitations. Since the signals were stored as change point time series
and raw signals were not saved, the information in signal segments was lost. This could limit the
data being used for other applications such as detecting or monitoring disorders like arrhythmia or
sleep apnea. Also, it has been observed that the CPD approach has lower wake accuracy in subjects
with sleep apnea (Group 2) compared to other groups. Future studies will explore adding a PPG-
derived respiration signal to the model to improve performance in subjects with sleep apnea. A
second limitation of the CPD is the lower number of sleep/wake transitions. The CPD method

employs total variation regularization. While this regularization prevents overfitting and preserves

15
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piecewise constant structure of sleep/wake signal, it results in fewer switches between sleep and

wakefulness.

In conclusion, this work presents the Change Point Decoder, which is a novel technique for
sleep/wake identification in patients with highly disordered sleep. The CPD provides higher wake
detection accuracy when compared to a solely actigraphy-based method. This superior performance
could enable more accurate investigation of the vital role of awakenings during the night in various
psychological disorders. The CPD method requires low memory in the wearable devices compared to
existing methods, and therefore, it could prove beneficial in long-term studies. Moreover, as a
method, the CPD has the ability to adapt to different and novel devices and signals beyond the

accelerometer.
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Figure List
Figure 1: Change points detected from various signals are visualized here as dashed
lines. Actigraphy time series is shown on figure (a) and tilt angle time series are
shown in figure (b). Figure (c) shows NN interval time series in light purple, Kalman
filtered NN intervals in darker purple.
Figure 2: Encoding diagram for angle time series. Raw signals from the Empatica
devices are converted to change point time series. History, coupling, and stimulus
filters were applied on one-minute windows of data, summed and converted to
spiking probability of tilt angle time series in time interval §t using instantaneous
firing rate 1;;¢(t).
Figure 3: Pipeline for decoding sleep/wake stages. Detected changed points are fed
into the trained model. Output of the model is converted to sleep/wake detection using
penalized Poisson Maximum Likelihood estimation (Eq. 5) and thresholding to
convert x,g to binary sleep/wake predictions. Sleep and wake states are indicated
with 'S' and 'W' letters on the figure.
Figure 4: Example of the proposed CPD algorithm. Top figure: output of the decoder
X (light green solid line), ground truth (i.e. gold-standard polysomnography) (light-
blue area), and threshold (red dashed line). Bottom figure: binary sleep/wake output
after thresholding (dark green solid line).
Figure 5: Sweeping threshold and regularization parameter. F1 score represents a

combination of precision and recall, with high values reflecting better performance
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Figure 6: ROC and Precision-Recall curves for the CPD and OA methods.
Performance of both methods is illustrated as their threshold varied. Operating points
are shown with red circles on the plots.

Figure 7: Modified Bland Altman plots for sleep metrics in Test Set. x axis shows
ground truth (i.e. gold standard) PSG metrics and y axis shows the difference between
PSG and the estimates. Participants belonging to four subgroups determined by AHI
and PLMI are indicated with different symbols.

Figure 8: Comparison of Oakley and Change Point Decoder Methods. Top plot
illustrates actigraphy while middle and bottom plots shows OA and CPD estimates

respectively.
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Table 1- Participant Demographics and PSG Sleep Statistics in Training and Test Sets. Mean

(Standard Deviation) of variables in each group.

Training Set Testing Set

n Age PSG Sleep n Age PSG Sleep

Efficiency Efficiency
Group 1 19 68.1(2.31) 75 (13) 9 68.22 (2.64) 74 (14)
Group 2 22 68.0 (2.03) 72 (14) 7 69.43 (1.62) 74 (13)
Group 3 24 68.42 (2.87) 74 (15) 14 68.28 (1.68) 67 (19)
Group 4 5 67.20 (3.42) 65 (16) 2 69 (0) 74 (5)
All Subjects 70 68.11 (2.48) 73 (14) 32 68.56 (1.93) 71 (16)
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Table 2- Sleep/wake identification performances in the Training Set

Training Set
OA 95 % Cl CPD 95 % Cl
Mean (SD) Mean (SD)

Total Accuracy 0.76 (0.10) [0.73,0.78] 0.76 (0.12) [0.73,0.79]

Sleep Accuracy 0.82 (0.15) [0.79, 0.86] 0.78 (0.19) [0.73,0.82]

Wake Accuracy 0.61 (0.19) [0.56, 0.65] 0.72 (0.18) * [0.67,0.76]

Kappa 0.41 (0.17) [0.37, 0.45] 0.46 (0.20) [0.41, 0.50]

F1 Score 0.59 (0.14) [0.56, 0.63] 0.64 (0.15) * [0.60, 0.68]

WASO Error -22.82(69.04)  [-39.28,-6.36]  13.17(56.84) *  [-0.38,26.72]

(min.)

SE Error (%)

SOL Error (min.)

3.01 (15.74)

22.69 (25.72)

[-0.74, 6.76]

[16.56, 28.83]

-1.59 (14.18) *

-10.49 (43.30) *

[-4.97, 1.79]

[-20.81, 0.16]

* Wilcoxon signed-rank comparison of two methods, 5% significance level.

Abbreviations: Cl, Confidence Interval; SD, Standard Deviation.
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Table 3- Sleep/wake identification performances in the Testing Set

Testing Set
OA 95 % Cl CPD 95 % Cl
Mean (SD) Mean (SD)

Total Accuracy 0.76 (0.09) [0.72, 0.79] 0.72 (0.14) [0.67,0.77]

Sleep Accuracy 0.85(0.12) * [0.80, 0.89] 0.70 (0.19) [0.63,0.76]

Wake Accuracy 0.54 (0.20) [0.47,0.62] 0.74 (0.20) * [0.66, 0.81]

Kappa 0.39 (0.17) [0.33, 0.45] 0.40 (0.24) [0.31, 0.49]

F1 Score 0.59 (0.14) [0.54, 0.64] 0.62 (0.20) [0.55, 0.70]
WASO Error -9.95 (63.75) [-32.94, 13.03] 7.66 (67.34) [-16.62, 31.94]

(min.)
SE Error (%) -0.03 (14.93) [-5.42, 5.35] 2.09 (16.81) [-3.97, 8.15]
SOL Error (min.)  28.64 (36.84) [15.36,41.92] -22.86(58.68) *  [-44.01,-1.7]

* Wilcoxon signed-rank comparison of two methods, 5% significance level.

Abbreviations: Cl, Confidence Interval; SD, Standard Deviation.
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Table 4- Performances of single signal models in the Testing Set

PPG model Act. model Tilt model

Mean (SD) Mean (SD) Mean (SD)

Total Accuracy 0.60 (0.14) 0.69 (0.13) 0.69 (0.15)
Sleep Accuracy 0.49 (0.19) 0.89(0.12) 0.65 (0.22)
Wake Accuracy 0.83(0.13) 0.34(0.17) 0.75 (0.20)
Kappa 0.25 (0.17) 0.24 (0.19) 0.36 (0.23)

F1 Score 0.60 (0.16) 0.41 (0.17) 0.61 (0.19)
WASO Error (min.) -53.31 (89.39) 65.13 (69.45) -2.44 (65.21)
SE Error (%) 20.87 (22.37) -16.54 (15.98) 6.21 (18.13)

SOL Error (min.) -15.36 (66.04) 12.14 (51.14) -29.94 (59.99)

Abbreviations: Act., Actigraphy; SD, Standard Deviation.
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Table 5- Sleep/wake identification performance in different disorder groups in the Test set.

Total Sleep Wake Kappa F1 Score

Accuracy Accuracy Accuracy Mean (SD) Mean (SD)

Mean (SD) Mean (SD) Mean (SD)
Group 1 OA 0.78 (0.07) 0.88 (0.10) 0.52(0.20) 0.42(0.13) 0.58(0.16)
CPD  0.76(0.07) 0.76 (0.13) 0.73(0.23) 0.44 (0.20) 0.62 (0.20)
Group 2 OA 0.78 (0.09) 0.84 (0.13) 0.55(0.12) 0.42(0.10) 0.60 (0.10)
CPD  0.75(0.12) 0.75 (0.13) 0.63(0.27) 0.37(0.30) 0.58(0.26)
Group 3 OA 0.73(0.09) 0.84(0.13)*  0.54(0.25) 0.35(0.20) 0.59(0.16)
CPD  0.69(0.18) 0.64 (0.23) 0.78(0.18) * 0.39(0.25) 0.64(0.20)
Group 4 OA 0.75 (0.17) 0.78 (0.16) 0.67 (0.17)  0.44(0.33) 0.64(0.18)
CPD  0.70(0.14) 0.62 (0.21) 0.87 (0.02) 0.42(0.21) 0.65(0.08)

* Wilcoxon signed-rank comparison of two methods, 5% significance level.
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Table 6- Sleep study statistic estimation performance in different disorder groups in the Test set.

SE Error WASO Error SOL Error

Mean (SD) Mean (SD) Mean (SD)
Group 1 OA -0.07 (18.75) -8.56 (78.67) 40.11 (55.86)
CPD 1.67 (10.89) 5.33 (38.42) -11.94 (54.67)
Group 2 OA 0.71 (5.16) -16.00 (37.62) 31.64 (43.37)
CPD -8.73 (14.38) 47.21 (72.94) -44.07 (86.40)
Group 3 OA -1.68 (16.93) -2.14 (69.85) 20.18 (16.49)
CPD 5.54 (19.42) -1.04 (74.88) -19.53 (50.13)

Group 4 OA 9.02 (2.67) -49.75 (15.20) 25.75 (5.30)

CPD 17.73 (13.65) -59.50 (53.74) -21(31.11)
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Figure 1

Downloaded from https://academic.oup.com/sleep/advance-article-abstract/doi/10.1093/sleep/zsaa011/5719607 by Georgia Institute of Technology user on 21 February 2020
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Figure 2

Downloaded from https://academic.oup.com/sleep/advance-article-abstract/doi/10.1093/sleep/zsaa011/5719607 by Georgia Institute of Technology user on 21 February 2020
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Figure 3

Downloaded from https://academic.oup.com/sleep/advance-article-abstract/doi/10.1093/sleep/zsaa011/5719607 by Georgia Institute of Technology user on 21 February 2020
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Figure 4

Downloaded from https://academic.oup.com/sleep/advance-article-abstract/doi/10.1093/sleep/zsaa011/5719607 by Georgia Institute of Technology user on 21 February 2020
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Figure 5

Downloaded from https://academic.oup.com/sleep/advance-article-abstract/doi/10.1093/sleep/zsaa011/5719607 by Georgia Institute of Technology user on 21 February 2020
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Figure 6

Downloaded from https://academic.oup.com/sleep/advance-article-abstract/doi/10.1093/sleep/zsaa011/5719607 by Georgia Institute of Technology user on 21 February 2020
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Figure 7
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Figure 8
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