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Phonon scattering by electrons, or “phonon-electron scattering,” has been recognized as a significant scattering
channel for phonons in materials with high electron concentration, such as thermoelectrics and nanoelectronics,
even at room temperature. Despite the abundant previous studies of phonon-electron scattering in different types
of three-dimensional bulk materials, its impact on the phonon transport, and thus the heat transfer properties,
of two-dimensional (2D) materials has not been understood. In this work, we apply ab initio methods to
calculate the phonon-electron scattering rates in two representative 2D materials, silicene and phosphorene,
and examine the potential of controlling the thermal conductivity of these materials via externally induced
phonon-electron scattering by electrostatic gating. We also develop an analytical model to explain the impact
of reduced dimensionality and distinct electron and phonon dispersions in two dimensions on phonon-electron
scattering processes. We find that over 40% reduction of the lattice thermal conductivity can be achieved in
silicene with an induced charge-carrier concentration around 1013 cm−2, which is experimentally achievable.
Our study not only generates new fundamental insights into phonon transport in 2D materials but also provides
practical guidelines to search for 2D materials with strong phonon-electron scattering for potential thermal
switching applications.
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I. INTRODUCTION

Electron-phonon interactions play a major role in deter-
mining the electronic properties of materials since they are
the major contributors to electrical resistance and also mediate
conventional superconductivity [1,2]. For these reasons, the
influence of electron-phonon interaction on the transport of
electrons has been intensively studied and well understood.
On the other hand, the scattering of phonons due to electron-
phonon interactions (hereafter “phonon-electron scattering”)
and its impact on thermal transport of solids have received
limited research interest, due to the long-held belief that it
is only important at cryogenic temperatures [3–5]. The main
reason is that most of the previous studies and practical inter-
ests were limited to devices with a low or moderate electron
concentration, typically below 1019 cm−3. Recent technolog-
ical developments have led to important applications with
electron concentrations as high as 1020 to 1021 cm−3, such
as in heavily doped thermoelectric materials [6] and nano-
electronic devices [7]. In this regime, however, the impact
of phonon-electron scattering on thermal transport in largely
unknown. Recently, Liao et al. used ab initio calculations to
show that the lattice thermal conductivity of silicon with a
high electron concentration can be suppressed by as much
as 50% even at room temperature due to phonon-electron
scattering [8]. Significant suppression of phonon propagation
by phonon-electron scattering in silicon at room temperature
was subsequently verified experimentally using ultrafast pho-
toacoustic spectroscopy [9]. Moreover, ab initio calculations
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of phonon-electron scattering have also been carried out in
bulk metals [10,11], providing new insights into the details of
coupled transport of phonons and electrons.

With the rapid advancement of nanotechnology, two-
dimensional (2D) materials have become star candidates for
a wide range of applications, e.g., transistors, optoelectron-
ics, and energy-harvesting devices. Currently, theoretical and
experimental understanding of electron-phonon interaction in
2D materials has been limited to its influence on electrons
and charge-carrier mobility [12–14]. The effect of phonon-
electron scattering on the phonon frequency renormalization
of 2D materials has been reported [15], but its effect on
phonon lifetime and transport properties is still lacking. Given
the paramount importance of phonon transport and thermal
management for device performance in these applications,
it is desirable to gain an in-depth understanding of phonon-
electron scattering and its impact on phonon transport in 2D
materials. From a fundamental point of view, phonon-electron
scattering in 2D materials is expected to be qualitatively dif-
ferent from that in three-dimensional (3D) bulk materials, due
to factors including reduced dimensionality and thus altered
scattering phase space, dominant normal phonon scattering
and hydrodynamic phonon transport [16,17], new symmetries
and the associated scattering selection rules [18], distinct
electron and phonon dispersion relations (e.g., massless Dirac
fermions and quadratic flexural phonons), and different di-
electric screening behavior for polar materials [19]. There-
fore, it is of fundamental interest to explore the behavior of
phonon-electron scattering in 2D materials. From a practical
point of view, thanks to the possibility of inducing a high
concentration of electrons or holes in 2D materials via elec-
trostatic gating [14,20], efficient phonon-electron scattering in
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FIG. 1. (a) The concept of controlling phonon transport in 2D
materials via externally induced phonon-electron scattering. (b) The
crystal structures of phosphorene and silicene.

2D materials can potentially enable the development of fast
thermal switches whose thermal conductivity can be tuned by
applying an external electric field. This concept is illustrated
in Fig. 1(a). Reversible and wide-range control of the thermal
conductivity of solids using external fields is highly desirable
in diverse fields [21]. Previously, a variety of approaches have
been explored experimentally to reversibly control the thermal
conductivity of solids. For example, the metal-insulator phase
transition [22] and the associated crystal lattice change, e.g.,
of vanadium dioxide, has been proposed as a potential mech-
anism of thermal switching, but only a small contrast was
achieved experimentally [23]. In another example, a thermal
conductivity tuning of 11% was demonstrated by modifying
the ferroelectric domain structure using an external electric
field [24]. Reversible electrochemical intercalation of ions
has been demonstrated to change the thermal conductivity of
layered materials [25], but requires operation in a liquid elec-
trolyte. Here we provide another possible scheme. With the
development of solid-state electrolytes as the gate dielectric,
inducing a charge concentration as high as 1014 cm−2 in 2D
materials [14,20] has recently been demonstrated. In princi-
ple, this high density of charge carriers can efficiently scatter
phonons and largely reduce the lattice thermal conductivity
while an optimum charge-carrier density can be selected to
balance the increase of the electronic thermal conductivity.

In this work, we use ab initio electron-phonon interaction
calculations [26] to examine the practicality of this mech-
anism as a means to realize efficient thermal switching of
2D materials. We choose silicene and phosphorene as model
systems due to their wrinkled crystal structures that break
the out-of-plane mirror symmetry, as shown in Fig. 1(b).
It has been theoretically shown that the out-of-plane mirror
symmetry, e.g., of graphene, prohibits the first-order inter-
action of electrons with the out-of-plane flexural phonons
[27,28], which are the major heat carriers in 2D materials
[18]. Therefore, 2D materials without the out-of-plane mir-
ror symmetry should be better candidates to possess strong
phonon-electron scattering. Another reason to choose silicene

and phosphorene is their distinct electronic structures: silicene
is a Dirac semimetal with massless electrons and holes near
the intrinsic Fermi level [29] and phosphorene is a semicon-
ductor with a sizable band gap and highly anisotropic carrier
effective masses [13,30]. Therefore, a comparative study will
help elucidate the impact of electronic structure on phonon-
electron scattering and provide guidelines in the future search
for 2D materials with desirable phonon-electron scattering
properties.

II. METHODS

The scattering rate of a phonon mode with wave vector q
and branch label ν due to phonon-electron scattering is given
by Fermi’s golden rule in the form [2,8]

1

τ
ep
qν

= −2π

h̄

∑
mn,k

∣∣gν
mn(k,q)

∣∣2
( fnk − fm(k+q+G) )

× δ(εnk − εm(k+q+G) − ωqν ), (1)

where τ
ep
qν is the corresponding phonon relaxation time,

gν
mn(k,q) is the scattering matrix element connecting the

initial electronic state with band index n and wave vector k
with the final electronic state with band index m and wave
vector k + q + G (G is a reciprocal lattice vector) due to
the conservation of crystal momentum, fnk is the Fermi-Dirac
distribution, εnk is the electron energy, and ωqν is the phonon
frequency. The δ function imposes energy conservation during
the scattering process. From Eq. (1), there are two major
factors that contribute to the phonon-electron scattering rate:
the scattering matrix elements that reflect the strength of
the coupling between the electronic and lattice degrees of
freedom and the energy-momentum conservation conditions
that determine the number of potential scattering channels. To
carry out the calculation in Eq. (1), the electronic band struc-
ture, the phonon dispersion, and electron-phonon scattering
matrix element are required. We use the density functional
theory (DFT)-based method to calculate these ingredients.
The electronic band structure is calculated using the QUAN-
TUM ESPRESSO package [31]. A mesh grid of 30 × 30 × 1
in the first Brillouin zone is adopted for both materials with
norm-conserving pseudopotentials. The kinetic energy cutoff
for wave functions is set to 40 Ry. The kinetic energy cutoff
for charge density and potential is set to 160 Ry. The total
electron energy convergence threshold for self-consistency is
1 × 10−10 Ry. The crystal lattice is fully relaxed with a force
threshold of 1 × 10−4 eV/Å. Applying density functional
perturbation theory (DFPT) implemented in the same pack-
age, the phonon dispersion and the electron-phonon matrix
elements are calculated on a coarse mesh of 6 × 6 × 1 and
4 × 4 × 1 for silicene and phosphorene, respectively. The
calculated electronic density of states and phonon dispersion
relation of both materials are presented in the Supplemental
Material (SM) [32]. In particular, we quantify the parabolicity
of the dispersion of the out-of-plane flexural acoustic (ZA)
phonon modes by computing the residual of quadratic fits,
as shown in Fig. S2 in the SI [32]. The small fitting residue
indicates that the crystal lattices are fully relaxed with negli-
gible stress. The electronic band structure, phonon dispersion
relation, and electron-phonon scattering matrix elements are
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FIG. 2. Phonon-electron scattering rates of (a) ZA, (b) TA, and (c) LA modes as a function of phonon frequency at different carrier
concentrations in n-type phosphorene. The solid lines are fits based on Eqs, (4) and (5). (d) Mode-resolved phonon-electron scattering rates in
n-type phosphorene at a carrier concentration of 5.2 × 1012 cm−2. (e–h) Corresponding plots for p-type phosphorene.

subsequently interpolated onto a fine mesh of 60 × 60 × 1 for
silicene and 64 × 64 × 1 for phosphorene using a maximally
localized Wannier-function-based scheme as implemented in
the EPW package [33]. We checked the convergence of the
phonon scattering rates as a function of the fine sampling
mesh density, as presented in Fig. S3 in the SM [32].

To compare the contribution of phonon-electron scatter-
ing to the lattice thermal conductivity with that of intrinsic
phonon-phonon scattering, we calculate the phonon-phonon
scattering rates in silicene and phosphorene based on the third-
order anharmonic interatomic force constants (IFCs). The
phonon-phonon scattering rates 1

τ
pp
qν

can be calculated from

the anharmonic IFCs using Fermi’s golden rule. The detailed
equations of the anharmonic IFCs and the phonon-phonon
scattering rate can be found elsewhere [34]. The anharmonic
IFCs are calculated using a frozen-phonon approach combin-
ing DFT force calculation using QUANTUM ESPRESSO and the
SHENGBTE package [35,36], with supercell sizes 5 × 5 × 1
and 4 × 4 × 1 for silicene and phosphorene, respectively. The
q-mesh grid 60 × 60 × 1 is adopted for both silicene and
phosphorene. To evaluate the intrinsic lattice thermal conduc-
tivity of silicene and phosphorene without induced phonon-
electron scattering, the phonon Boltzmann transport equation
(BTE) is solved iteratively [37] using SHENGBTE, and the
convergence of the lattice thermal conductivity as a function
of the q-mesh sampling density is confirmed and presented
in Fig. S4 in the SM. To evaluate the impact of the induced
phonon-electron scattering on the lattice thermal conductivity,
we calculate the total scattering rate of each phonon mode

by combining phonon-electron and phonon-phonon scattering
using Matthiessen’s rule:

1

τ total
qν

= 1

τ
ep
qν

+ 1

τ
pp
qν

. (2)

The lattice thermal conductivity κi (i = x, y, z) affected by the
phonon-electron scattering is then evaluated using the kinetic
formula

κi =
∑
qν

Cqνv
2
i,qντ

total
qν . (3)

A more satisfactory calculation would solve the coupled
electron-phonon Boltzmann transport equations [34] with
phonon-electron and phonon-phonon scattering rates, which
is beyond the scope of the current work. We note that
the kinetic formula [Eq. (3)] should be reasonably accurate
when the phonon-electron scattering is strong and the phonon
momentum is effectively dissipated locally.

III. RESULTS AND DISCUSSION

Figure 2 shows the scattering rates of different phonon
modes due to phonon-electron scattering in phosphorene.
Both n-type and p-type phosphorene with different charge-
carrier concentrations are investigated. Several observations
can be made compared to the results in 3D materials, such
as bulk silicon [8]. While the phonon scattering rates scale
linearly with the carrier concentration in both silicon and
phosphorene, a major difference is the phonon frequency
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dependence of the scattering rates for the low-frequency
acoustic phonons. In 3D semiconductors like silicon, the
linear phonon dispersion and parabolic electronic bands give
rise to the linear dependence of the phonon scattering rates on
the phonon frequency for the low-frequency acoustic phonons
[8], whereas in phosphorene, the frequency dependence is
more complicated: the scattering rates first rise with phonon
frequency below 0.3 THz and then decrease. The decreasing
trend of the phonon scattering rates in phosphorene indicates
that the major heat-carrying phonons, typically around 1 THz,
are less effectively scattered by electrons than phonons with
longer wavelengths. To qualitatively understand the distinct
phonon frequency dependence of the phonon-electron scatter-
ing rates in phosphorene, we develop an analytical model for
the phonon-electron scattering rates of low-frequency acoustic
phonons with the deformation potential approximation, where
the electron-phonon matrix elements |gν

mn(k,q)|2 are replaced

by h̄D2q2

2m0ωqν
with D being the constant deformation potential

[38] and m0 the atomic mass. The deformation potential is the
change of the electron energy near the band edges in response
to a static strain of the lattice, corresponding to the coupling
strength of electrons with long-wavelength acoustic phonons.
Using the phonon dispersion relations in two dimensions,
including the quadratic dispersion for out-of-plane flexural
phonons, and the 2D electronic band structure, we derive the
following analytical equations for the phonon-scattering rates
of ZA phonons in 2D semiconductors in the nondegenerate
regime:

1

τ
ep
qν

= D2(2πm∗)
1
2

ρα
1
2 (kBT )

3
2

e− h̄2 ( 1
2 + αm∗

h̄ )2ωqν

2m∗αkBT n(EF)ω
1
2
qν, (4)

where m∗ is the electron or hole density of states (DOS)
effective mass, ρ is the areal mass density, α is the coefficient
for the quadratic ZA phonon dispersion (ω = αq2), kB is the
Boltzmann constant, and n(EF) is the carrier concentration
corresponding to a certain Fermi level EF. Phosphorene has
strongly anisotropic effective masses ma = 0.17 (0.16) along
the armchair direction and mz = 1.23 (7.0) along the zigzag
direction for electrons (holes), and in this case m∗ = √

mamz.
The effective-mass values are extracted from a quadratic
fitting of the calculated electronic band structure and are in
good agreement with the literature [39]. The derivation of
Eq. (4) is given in the Supplemental Material. Similarly, we
also derive an analytical expression for the phonon scattering
rates of transverse acoustic (TA) and longitudinalacoustic
(LA) phonon modes with linear dispersion relations given by

1

τ
ep
qν

= D2(2πm∗)
1
2

ρvs(kBT )
3
2

e
− h̄2ω2

qν

8m∗v2
s kBT

− h̄ωqν

2kBT − m∗v2
s

2kBT n(EF)ωqν, (5)

where vs is the speed of sound for the TA and LA phonon
modes. These analytical formulas are used to fit the calculated
phonon-electron scattering rates for long-wavelength phonons
with the deformation potential D as the only fitting parameter.
The results are plotted in Fig. 2 as solid lines and agree well
with the ab initio calculations, and confirm that the different
phonon frequency dependency originates from the difference
in dimensionality and the electron and phonon dispersion
relations. The extracted values of the deformation potential

(averaged over the armchair and zigzag directions and dif-
ferent acoustic branches) are roughly 5 eV for electrons and
3 eV for holes, in agreement with previous calculations [40].
These analytical formulas can be used to estimate the level of
phonon-electron scattering rates for long-wavelength acoustic
phonons in 2D semiconductors. In Figs. 2(d) and 2(h), we also
report the phonon-mode-resolved phonon-electron scattering
rates in n-type and p-type phosphorene, where each data point
in the plots represents a phonon mode with given frequency
and wave-vector magnitude and the color of the data point
encodes the phonon-electron scattering rate of this mode. In
both n-type and p-type phosphorene, phonons near the zone
center are much more strongly scattered by electrons. This
behavior is also observed in bulk silicon [8] and is expected
due to the small energy scale of phonons compared to that of
electrons, so that the small-wave-vector phonons have a larger
chance of meeting the energy-momentum conservation condi-
tions during the scattering process. Furthermore, some of the
zone boundary phonons, particularly in p-type phosphorene,
are also significantly scattered by electrons. This is related to
the strong anisotropy and large carrier effective mass along
the zigzag direction in phosphorene [13,30], which leads to
large radius of the electron and hole pockets near the band
edges such that the electrons can be scattered across the
carrier pockets by the zone boundary phonons with a large
momentum change but a small energy change.

In Fig. 3, we show the calculated scattering rates of
phonons due to phonon-electron scattering in silicene. The
main difference between silicene and phosphorene is their
electronic structures: phosphorene is a wide-gap semiconduc-
tor and silicene is a Dirac semimetal with linear electron
bands. The phonon frequency dependence of the scattering
rates of the ZA mode shows similar behavior as that in
phosphorene, but the scattering rates are higher in silicene at
a given carrier concentration in general. As the carrier con-
centration increases, the phonon scattering rates also exhibit
a trend of saturation as the Fermi level moves deeper into the
bands. Due to the linear electron bands and the degenerate na-
ture requiring the use of Fermi-Dirac distribution functions in
Eq. (1), there is no simple analytical expression for the phonon
scattering rates as those given for phosphorene [Eqs. (4)
and (5)], even with the deformation potential approximation.
Instead, we integrate Eq. (1) numerically with the deformation
potential approximation, and the results are shown as solid
lines in Fig. 3, where good agreement with the ab initio results
is observed and the saturation of the scattering rates with
increasing carrier concentration is captured. The extracted
value of the deformation potential associated with the ZA
modes in silicene is 2.2 eV, in the same range as previous first-
principles calculations [41]. Figures 3(d) and 3(h) display the
mode-resolved phonon-electron scattering rates in n-type and
p-type silicene. Similarly as in phosphorene, phonons near
the zone center are strongly scattered by electrons. Phonons
in a section of the Brillouin zone near the boundary are
also strongly scattered, which is caused by intervalley scat-
tering of electrons and holes between the two Dirac cones of
silicene.

From Figs. 2 and 3, it is clear that the phonon scatter-
ing rates due to phonon-electron scattering are significantly
higher in silicene than those in phosphorene given similar
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FIG. 3. Phonon-electron scattering rates of (a) ZA, (b) TA, and (c) LA modes as a function of phonon frequency at different carrier
concentrations in n-type silicene. The solid lines are fits based on numerical integration of Eq. (1) with the deformation potential approximation.
(d) Mode-resolved phonon-electron scattering rates in n-type silicene at a carrier concentration of 1.3 × 1013 cm−2. (e–h) Corresponding plots
for p-type silicene.

carrier concentrations. To understand this difference, we ana-
lyze the strength of phonon-electron scattering by considering
the two major factors that determine the phonon-electron
scattering rates as reflected in Eq. (1): the number of potential
phonon-electron scattering channels imposed by the energy-
momentum conservation conditions and the magnitude of
the electron-phonon scattering matrix elements. Given the
small energy scale of phonons compared to that of electrons,
phonon-electron scatterings are approximately “on-shell” pro-
cesses, where the initial and the final electron states have
similar energy. This observation implies that the number
of potential phonon-electron scattering channels is directly
related to the electron density of states within the Fermi win-
dow, where scatterings can happen between partially occupied
energy levels. A quantitative measure is the so-called thermal
density of states (TDOS) [2], which is defined as a function of
the Fermi level:

TDOS(EF) =
∫ +∞

−∞
DOS(E ) f ′(E ,EF)dE , (6)

where DOS(E ) is the electron density of states, and f ′(E ,EF)
is the energy derivative of the Fermi-Dirac distribution, which
defines the Fermi window. In Figs. 4(a) and 4(b), the TDOS
for both n-type and p-type silicene and phosphorene are
shown, which clearly signals that there is a larger available
scattering phase space in silicene than phosphorene at the
same carrier concentration due to silicene’s semimetallic band
structure. In Figs. 4(c) and 4(d), we further calculate and

compare the scattering matrix elements for acoustic phonon
modes in silicene and phosphorene given the same initial
electron states at k = 0 and at the band extrema. The electron-
phonon matrix elements can be calculated as gν

mn(k,q) =
〈um(k+q) | �qνv

SCF | unk〉, where um(k+q) and unk are the peri-
odic parts of the Bloch wave functions of the corresponding
electron states and �qνv

SCF is the perturbation of the electron
self-consistent-field potential induced by a phonon mode with
wave vector q and branch index ν [26]. Physically, the matrix
elements measure the sensitivity of the electron potential en-
ergy in response to lattice disturbance and can be affected by
crystal structure, chemical bonding environment, and electron
screening effect [2]. Here we see that the electron-phonon
scattering matrix elements in silicene are significantly larger
in magnitude than those in phosphorene, signaling that the
electron states in silicene are much more sensitive to lattice
perturbation, and the structure of silicene might thus be less
stable than that of phosphorene.

Finally, we compare the scattering rates due to phonon-
electron and phonon-phonon scatterings and evaluate the
effect of phonon-electron scattering on the lattice thermal
conductivity. The results are shown in Fig. 5. When the carrier
concentration is higher than 1 × 1013 cm−2, the scattering
rates of the low-frequency acoustic phonons below a few
terahertz are dominated by phonon-electron scattering, which
is expected to have a major impact on the lattice thermal
conductivity of these materials. To quantify this effect, we
further obtain the lattice thermal conductivity as a function of
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FIG. 4. The thermal density of states (TDOS) as defined in
Eq. (6) in (a) n-type and (b) p-type silicene and phosphorene. The
intraband electron-phonon scattering matrix elements for acous-
tic phonons with the initial electron state at k = 0 as a function
of phonon frequency in (c) p-type and (d) n-type silicene and
phosphorene.

the carrier concentration as detailed in the Methods section,
which is shown in Fig. 5(e). Due to the ambiguity of defining
an effective thickness for 2D materials to calculate their ther-
mal conductivity, here we report the relative reduction of the
lattice thermal conductivity due to phonon-electron scattering
normalized to the intrinsic values without net induced charge.
The intrinsic thermal conductance (product of layer thickness
and thermal conductivity) we obtain is 5.3 × 10−9 W/K for
silicene, 5.8 × 10−8 W/K along the zigzag direction of phos-
phorene, and 2.3 × 10−8 W/K along the armchair direction
of phosphorene, which are in good agreement with literature
values [42,43]. We find that the lattice thermal conductivity
of silicene and phosphorene depends strongly on the induced
charge-carrier concentration. In particular, in p-type silicene,
over 40% reduction of the lattice thermal conductivity can be
achieved by a charge-carrier density of 1013 cm−3, whereas
in phosphorene, 10% change of the lattice thermal conduc-
tivity can be expected at a similar charge-carrier density. Our
results demonstrate that externally induced phonon-electron
scattering can significantly affect thermal transport in silicene
and phosphorene, indicating the potential use of this mech-
anism to realize thermal switching devices. One potential
concern is the increased electronic thermal conductivity as
the induced carrier concentration increases. Due to the lack
of available experimental data of electronic thermal conduc-
tivity in these materials, we estimate the electronic thermal
conductivity using experimentally reported mobility [39,44]
and the Wiedemann-Franz law to be ∼10% and ∼5% of the
intrinsic lattice thermal conductivity in silicene and phospho-
rene at a carrier concentration of 1013 cm−2, respectively. It is
worth noting that, in addition to inducing charge carriers, the
external electric field applied to 2D materials can also cause
changes to charge density distribution inside the material
that can further reduce the thermal conductivity, as has been
studied from first principles in silicene [45]. We envision that
a combination of these effects will render silicene a promising

FIG. 5. Comparison of phonon-phonon and phonon-electron scattering rates as a function of phonon frequency in (a) n-type phosphorene,
(b) p-type phosphorene, (c) n-type silicene, (d) p-type silicene, and (e) The calculated reduction of the lattice thermal conductivity of silicene
and phosphorene (along zigzag and armchair directions) at 300 K as a function of induced charge-carrier concentration.
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candidate for thermal switching applications driven by an
external electric field.

In summary, we analyze the impact of phonon-electron
scattering on phonon transport in two representative 2D mate-
rials, silicene and phosphorene, using ab initio calculations.
We examine the mode-resolved phonon-electron scattering
rates in silicene and phosphorene in detail and compare their
behavior to 3D bulk materials. We explain the observed
phonon frequency dependence by developing a semianalytical
model using the deformation potential approximation, based
on which we attribute the qualitatively different behavior
to distinct phonon and electron dispersion relations in 2D
materials as well as the reduced dimensionality. We provide
further understanding about significantly different phonon-
electron scattering rates in silicene and phosphorene by an-
alyzing the magnitude of the scattering matrix elements and
the available scattering phase space quantified by the thermal
density of states. We find that the lattice thermal conductivity
of silicene can be reduced by over 40% via externally induced
phonon-electron scattering, indicating the potential applica-

tion in thermal switching devices. Our fundamental study
also provides guidelines to search for 2D materials with even
stronger phonon-electron scatterings for thermal switching
applications.
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