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Abstract

In systems with many local degrees of freedom, high-symmetry points in the phase di-
agram can provide an important starting point for the investigation of their properties
throughout the phase diagram. In systems with both spin and orbital (or valley) degrees
of freedom such a starting point gives rise to SU(4)-symmetric models. Here we con-
sider SU(4)-symmetric “spin” models, corresponding to Mott phases at half-filling, i.e.
the six-dimensional representation of SU(4). This may be relevant to twisted multilayer
graphene. In particular, we study the SU(4) antiferromagnetic “Heisenberg” model on
the triangular lattice, both in the classical limit and in the quantum regime. Carrying
out a numerical study using the density matrix renormalization group (DMRG), we argue
that the ground state is non-magnetic. We then derive a dimer expansion of the SU(4)
spin model. An exact diagonalization (ED) study of the effective dimer model suggests
that the ground state breaks translation invariance, forming a valence bond solid (VBS)
with a 12-site unit cell. Finally, we consider the effect of SU(4)-symmetry breaking in-
teractions due to Hund’s coupling, and argue for a possible phase transition between a
VBS and a magnetically ordered state.
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1 Introduction

Frustrated quantum antiferromagnets may possess non-magnetic ground states, avoiding spin
order through short or long range entanglement of spins. In the late 1980s and early 1990s, a
dominant approach to this physics was based on generalizing the SU(2) group of spin rotations
to SU(N) or Sp(2N) [1–4]. In the limit N →∞, models with such enlarged symmetry may
be solved exactly by a fully symmetric saddle point of a path integral representation of the
partition function, and consequently possess non-magnetic ground states. More recently, it
has become possible to study models with SU(N) symmetry for finite N using computational
methods. In particular, models describing SU(N) fermions at half filling were shown to host a
variety of non-magnetic states [5–10], indicating that features of the N →∞ solutions survive
to N of order one.

Interest in models of this type has also been stimulated by their possible experimental real-
ization in cold atoms [11,12], in materials with orbital degeneracy [13,14], and, more recently,
in moiré superlattices with valley degeneracy [15–18]. Here we investigate in particular the
SU(4) antiferromagnet in the self-conjugate six dimensional representation. This is the rep-
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resentation corresponding to two electrons distributed amongst four degenerate spin/orbital
states on each site. This representation thus occurs naturally in systems with spin and a two-
fold orbital or valley degeneracy. Like the familiar S=1/2 SU(2) spins, pairs of spins in this
representation may form a singlet “valence bond”, so that there is a natural “dimer” picture
upon which non-magnetic states may be based.

Indeed, it has been shown by Rokhsar [4] that at N =∞, dimerized states (i.e. products
of singlet bonds) are the ground states in the self-conjugate representation for a very wide
class of lattices and exchange interactions (including almost all those of physical interest).
For N large but finite, it is therefore expected that a quantum dimer model [19–23], which
describes the projection of the Hamiltonian to the singlet subspace, should capture the physics
of the problem. A dimer model consists of a Hilbert space in which dimers, which stand in
for singlets, realize a covering of the lattice, with each site covered by one, and only one
dimer. Such models are known to predict quantum spin liquids and various valence bond
solid orders, depending on the exact model, dimensionality, and lattice. Notably, the simplest
quantum dimer model on the triangular lattice was argued to possess a Z2 spin liquid ground
state [22].

With these motivations, we study the aforementioned SU(4) model on the triangular lattice
both analytically and numerically. In contrast to the previous numerical works mentioned
above, which focused on bipartite lattices, the triangular lattice considered here does not to
our knowledge admit a sign-free Monte Carlo approach for generic parameters (though for a
specific choice of parameters a sign-free algorithm exists [24]). Hence we attack the problem
differently, using the density matrix renormalization group (DMRG), exact diagonalization,
and an analytic dimer expansion. First, we describe a reformulation which takes advantage
of the fact that SU(4) is a double cover of SO(6), through a mapping of the self-conjugate
representation of SU(4) to the vector representation of SO(6), which we define. We determine
the classical ground states of the model, and find that they generalize the three-sublattice
coplanar states of the S=1/2 Heisenberg model on the triangular lattice. However, carrying
out a numerical study of the model using the DMRG method, we argue that this order is
absent in the quantum limit. We note that this result is in agreement with a recent pseudo-
fermion functional renormalization group study [25] of the same model. We then extend the
“overlap expansion” approach – originally developed by Rokhsar and Kivelson [23] to obtain
the quantum dimer model Hamiltonian from the SU(2) spin Hamiltonian – to derive an analytic
overlap expansion for the quantum dimer model relevant to the SU(4) case. We show that the
parameter for the overlap expansion is x = 1/6 in the SU(4) case, which should be compared
to x = 1/2 for SU(2) spins: hence the expansion is expected to be much more accurate for the
present problem. Our exact diagonalization (ED) study of the effective dimer model suggests
that the ground state is a twelve-site valence bond solid (VBS), although larger system sizes
are required to conclusively rule out a proximate quantum spin liquid state. We remark that
the related model of Ref. [24] shows such VBS order when generalized from SO(6) to SO(N)
with N>12, which provides some further indications for this VBS state in this family of model
Hamiltonians.

In addition, we study a generalization of the model which breaks SU(4) symmetry down to
SU(2)×SU(2), by including an additional “atomic” Hund’s coupling JH on the sites. In the limit
of large JH , the model reduces to the SU(2) symmetric spin S=1 Heisenberg Hamiltonian, and
the ground state has long-range three sublattice order. The generalized model thus exhibits a
quantum phase transition from a paramagnetic to antiferromagnetically ordered state at zero
temperature by varying JH . We present signs for this transition in numerics.
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2 Model

2.1 From Hubbard to Heisenberg

In the limit of strong interactions, electrons localize and the appropriate description of their
physics becomes that of their spins, localized at lattice sites. Relevant models may be derived
from Hubbard models. Here we proceed with this approach and consider two electrons per
site hopping on the triangular lattice with hopping parameter t and subjected to an on-site
Hubbard interaction U as well as a Hund’s coupling JH , which tends to enforce an alignment
of the spin degrees of freedom and thus breaks SU(4) symmetry. More precisely, we consider
the following Hamiltonian:

H = −t
∑

〈i j〉

4
∑

a=1

(c†
iac ja + h.c.) + U

∑

i

ni(ni − 2)− JH

∑

i

�

c†
i σci

�2
, (1)

where c†
i,a, ci,a are flavor a electron creation and annihilation operators at site i,

ni =
∑4

a=1 c†
i,aci,a. In the final term, we used a notation based on the physical origin of the four

electronic states from the spin-1/2 of the electron sz = ±1/2 and a two-fold orbital degeneracy
τz = ±1/2. We may associate a = 1,2,3,4 (note the use of sans-serif font for this purpose)
to the states with (2sz , 2τz) = (1, 1), (−1,1), (1,−1), (−1,−1), respectively. The σµ = σµ ⊗ I2
(µ = x , y, z) Pauli matrices act in spin space. We specialize to the case of filling ni = 2, and
carry out the standard degenerate perturbation theory in t/U to derive an effective “spin”
model. A basis for the states with ni = 2 on a single site is:

|1〉= |12〉, |2〉= |13〉, |3〉= |14〉,
|4〉= |23〉, |5〉= |24〉, |6〉= |34〉, (2)

where, on the right-hand-side of the equations, |ab〉= c†
ac†

b|0〉, where |0〉 is the vacuum.
We start by analyzing the SU(4) symmetric model, i.e. we take JH = 0, and return to the

effects of a finite JH later in Sec. 3.3.2. At second order in small t/U , Eq. (1) becomes

Ĥ = J
∑

〈i j〉

 

4
∑

a,b=1

T̂ ab
i T̂ ba

j − Îd6

!

, (3)

with J ∼ t2/U and T̂ ab = P6c†
acbP6, with P6 the projection operator onto the six-dimensional

vector space defined above. The T̂ ab are 6×6 matrices which are related to the generators
of SU(4). In Eq. (3) we extracted a constant which sets the zero of energy at a convenient
value. To see this, we bring out the analogy to SU(2) spins by extracting the trace from the
T̂ ab matrices:

T̃ ab = T̂ ab −
1
2
δab Îd6. (4)

With this definition Tr T̃ ab = 0 (note that the trace here is over the 6-dimensional SU(4) space).
The Hamiltonian in Eq. (3) can now be written as

Ĥ = J
∑

〈i j〉

4
∑

a,b=1

T̃ ab
i T̃ ba

j . (5)

One can also check that
∑

a T̃ aa = 0, so that there are clearly only 15 such independent SU(4)
matrices, which comprise a basis for the generators of SU(4) in the 6-dimensional representa-
tion.

Now, regardless of the precise microscopic Hamiltonian H, we may consider a spin model,
determined on the basis of, and constrained by symmetry. To proceed to the derivation of the
most general SU(4) model, it is useful to make use of the following.
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2.2 Map to the vector representation of SO(6)

SU(4) is a double cover of SO(6) and there exists a convenient map (which is faithful) from
the six-dimensional representation of SU(4) to the fundamental (vector) representation of
SO(6) [26]. By using the following basis, where each basis state transforms under the vector
representation of SO(6), i.e. O : |n̂〉 7→ O|n̂〉, where O is an SO(6) matrix,

|1̂〉=
1
p

2
(|2〉 − |5〉) , |2̂〉=

−i
p

2
(|2〉+ |5〉) ,

|3̂〉=
1
p

2
(|3〉+ |4〉) , |4̂〉=

−i
p

2
(|3〉 − |4〉) ,

|5̂〉=
1
p

2
(|1〉+ |6〉) , |6̂〉=

−i
p

2
(|1〉 − |6〉) , (6)

it is straightforward to write all the SU(4) invariant two-site operators:

Îdi j =
6
∑

n,m=1

(|n̂〉〈n̂|)i (|m̂〉〈m̂|) j , (7)

6P̂i j = Q̂ i j =
6
∑

n,m=1

(|n̂〉〈m̂|)i (|n̂〉〈m̂|) j , (8)

Π̂i j =
6
∑

n,m=1

(|n̂〉〈m̂|)i (|m̂〉〈n̂|) j . (9)

Here P̂i j is the singlet projector over sites i j, where a (normalized) singlet over sites i j is
written

|s〉i j =
1
p

6

6
∑

n=1

|n̂n̂〉i j , (10)

while Π̂i j is the permutation operator over sites i j and Îdi j is the identity. Then the general
SO(6) invariant Hamiltonian with nearest-neighbor interactions is a sum of these terms:

Ĥgen =
∑

〈i j〉

�

αQ̂ i j + βΠ̂i j + γÎdi j

�

, (11)

for α,β ,γ ∈ R. The “Heisenberg” model Eq. (3) is realized for −α = β = J , γ = 0. One can
readily check then that for two sites with the SU(4) (or SO(6)) singlet in Eq. (10),

Ĥi j|s〉i j = J
�

−Q̂ i j + Π̂i j

�

|s〉i j = −5J |s〉i j . (12)

In this SO(6) basis, we may also define the symmetric Ŝmn and antisymmetric operators
Âmn, as well as the Hermitian (and still traceless), versions of the latter, Âmn = iÂmn

Ŝmn =
1
p

2
(|m̂〉〈n̂|+ |n̂〉〈m̂|) , (13)

Âmn =
1
p

2
(|m̂〉〈n̂| − |n̂〉〈m̂|) . (14)

Âmn = iÂmn. (15)

The Âmn operators can be considered as the generators of SO(6), and their square,
Tr[Â · ÂT ] = 5Îd6 is the quadratic Casimir operator, up to a normalization constant. Here
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we have defined the matrix of operators Â such that (Â)mn = Âmn. Using these operators, the
“Heisenberg” Hamiltonian Ĥ becomes

Ĥ = J
∑

〈i j〉

6
∑

m,n=1

Âmn
i Âmn

j = J
∑

〈i j〉

Tr Âi · Â
T
j , (16)

where the trace, · and transpose operations act on the superscripts of the Âl matrices of Âmn
l

operators.

3 Magnetic order

In this section, we first examine the classical ground states of the SU(4) model, which are
“magnetically” ordered, i.e. they break the SU(4) symmetry and have a non-zero expectation
value of the “spin” operator matrix T̃ ab

i or Âmn
i on each site. Having identified the type of

magnetic order which is most favored, we next describe numerical studies which search for it.
We find that this magnetic order is in fact absent, and that the ground state appears to lack
any form of SU(4) symmetry breaking, i.e. is non-magnetic.

3.1 Classical limit

In order to look for a product ground state we first ask about the definition of the classical limit
of SU(4) (SO(6)) spins. Like for SU(2) spins, we should replace, in the Hamiltonian, each of
the fifteen SO(6) generators Âmn, which are 6×6 matrices, by a single classical number.

To do so, we interpret the classical limit as a variational problem in the subspace of
states consisting of direct products of single-site wavefunctions. Within any such state, the
expectation value of any product of Âmn is replaced by a product of expectation values of
each Âmn, which are c-numbers, as desired. A general single-site wavefunction is given by
|ψ〉i =

∑6
p=1 v i

p|p̂〉i , where vi is a complex six-dimensional unit vector, i.e.
∑

p |v
i
p|

2 = 1, so
that |ψ〉i is normalized. Upon going to the classical limit,

Âmn→ Amn = 〈ψ|Âmn|ψ〉=
p

2Im[vmv∗n]. (17)

The matrix A is now an antisymmetric 6 × 6 matrix of scalar matrix elements Amn, and the
Heisenberg Hamiltonian becomes

Ĥ = J
∑

〈i j〉

6
∑

m,n=1

Âmn
i Âmn

j → J
∑

〈i j〉

6
∑

m,n=1

Ai
mnA

j
mn = J

∑

〈i j〉

TrAi(A j)T . (18)

Note that, while each operator Âmn for fixed m, n is Hermitian, the matrix A is real and anti-
symmetric. Moreover, while

∑6
m,n=1 ÂmnÂmn = 5Îd6, one can show that 0 ≤ TrAAT ≤ 1 (see

Appendix A). In solving a classical SO(6) in this representation model, one should find matri-
ces A which verify the above constraints (much like SU(2) S=1/2 (resp. S=1) classical spins
are described by a three-dimensional vector with unit norm |S|= 1 (resp. with 0≤ |S| ≤ 1).

3.2 Product variational states

We now specialize to the triangular lattice and nearest-neighbor “Heisenberg” Hamiltonian,
and look for the ground state of the corresponding classical model. The SU(2)-invariant spin-
1/2 model on the triangular lattice is one of the best-studied models of frustrated magnetism.
Its ground states are the so-called 120◦-ordered states. They triple the unit cell and each
elementary triangular unit is such that the spins point at 120 degrees of one another.

6
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We may rewrite the classical version of the Heisenberg Hamiltonian in Eq. (18), as

H=
J
4

∑

t t r iangle



Tr

�

∑

i∈t

Ai

��

∑

i∈t

Ai

�T

− Tr

�

∑

i∈t

AiA
T
i

�



 , (19)

where the sum runs over all unit triangles of the triangular lattice. The energy is clearly min-
imized when the first term in the square brackets vanishes and the second one is maximized.
The magnitude of the second term is maximized when the upper bound on TrAiA

T
i is satu-

rated for all i ∈ t. As shown in Appendix A, the upper bound is saturated when the complex
vector v describing the single-site wavefunction is given by v = (x + iy)/

p
2, with x,y real,

six-dimensional orthogonal unit vectors, i.e. |x|= |y|= 1 and x ·y= 0. The first term vanishes
for three-sublattice states that satisfy A1 +A2 +A3 = 06.

To minimize the first term in the square brackets in Eq. (19), and simultaneously maximize
the magnitude of the second term, we can choose

vl=1,2,3 = v
�2πl

3

�

, with v(θ ) =
1
p

2
(x+ i(cosθy+ sinθz)) , (20)

corresponding to

Al=1,2,3 = A
�2πl

3

�

, with A(θ ) =
1
p

2

�

(cosθy+ sinθz)xT − x(cosθy+ sinθz)T
�

, (21)

where x,y,z are three orthonormal unit vectors such that x · y= x · z= y · z= 0.
For x,y,z along each of the first three basis vectors of R6, we get for example

A(θ ) = cosθA21 + sinθA31, where (Aµν)pq =
1p
2
(δµpδνq − δµqδνp). Note that once the

spins on two nearest-neighbor sites are fixed, the remainder are fully determined by the con-
dition A1 +A2 +A3 = 06, which can be successively applied to the spins on triangles sharing
two of the sites which have already been fixed, to cover the entire lattice. This implies that all
classical ground states are of the three-sublattice type.

3.3 Numerical analysis using DMRG

To probe the presence of magnetic order in the system we study the model numerically, us-
ing DMRG [27, 28]. To this end, we consider finite cylinders in a geometry that allows for
the formation of a 120◦-ordered state. Denoting the basis vectors of the triangular lattice by
~a1 = (1, 0), ~a2 = (1/2,

p
3/2), we consider cylinders such that the sites of the lattice modulo

~R= Ny ~a2 are identified, and Ny is a multiple of three. This geometry is depicted in Fig. 1(c,d).
Due to the large single-site Hilbert space dimension in this problem we are limited to narrow
cylinders with Ny = 3 and Ny = 6, and we only study very short cylinders for the latter. We
note that a different geometry, namely one in which lattice sites modulo ~R′ = Ny (~a2 − ~a1/2)
are identified, is also compatible with a 120◦-ordered state for Ny = 4. However, in this case,
we find indications that the system behaves as a quasi-1D system with localized modes at
the ends of the cylinder. We thus leave out these results from the discussion of the 2D limit
presented here.

In the following, we first discuss the flavor gap in the system, and show that it remains
finite, suggesting the absence of a low-energy Goldstone mode that would be expected if the
system formed a magnetically ordered state. We then probe the presence of long range order
in the ground state by looking at the static response of the system to polarizing fields applied
at its boundary. We show that the expectation value of the magnetization decays rapidly away
from the boundary in the presence of SU(4) symmetry, implying a lack of long range order.

Our DMRG simulations were performed using the ITensor library [29].
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3.3.1 Flavor gap

We calculate the flavor gap only for cylinders of width Ny = 3, as extracting the gap requires
finite length scaling, and we are limited to very short systems for cylinders of width Ny = 6,
as mentioned above. Note that for Ny = 3, the length of the system Nx has to be even to allow
for an SU(4)-singlet ground state.

Similarly to the conservation of sz which is often used when studying SU(2) spins, we can
employ the conservation of three U(1) quantum numbers for the SU(4) case: t3 ≡ n1 − n2,
t8 ≡ n1 + n2 − 2n3, and t15 ≡ n1 + n2 + n3 − 3n4, where na=1,..,4 denote the occupations
of the four flavors as before. We calculate the gap of a ∆t3

= 2 excitation. To this end, we
first obtain the ground state, which we expect to be an SU(4) singlet, and hence lie in the
(t3, t8, t15) = (0, 0,0) sector, and then calculate the lowest energy state in the (t3, t8, t15) =
(2, 0,0) sector. The latter state belongs to the 15 dimensional irreducible representation of
SU(4), as can be verified by calculating the quadratic Casimir operator

∑4
a,b=1 T̃ ab T̃ ba. The

resulting energy gap is plotted in Fig. 1(a) as function of inverse system length. Even though
we present data for relatively short systems, it is clear that the gap remains finite in the infinite
system size limit, and we can estimate it to be larger than 2.5J . The maximal bond dimension
in our simulations was M = 4000, resulting in a truncation error of 10−5 (10−4) for the largest
system size in the t3 = 0 (t3 = 2) sector.

3.3.2 Probing long range magnetic order in the ground state

For the analysis of long range magnetic order in the ground state, it is instructive to consider
the effect of SU(4) symmetry breaking by a Hund’s coupling term as introduced in Eq. (1).
More specifically, the Hamiltonian we consider is

Ĥ = J
∑

〈i, j〉

∑

a,b

T̃ ab
i T̃ ba

j − JH

∑

i

Ŝ2
i . (22)

As was mentioned previously, a finite JH > 0 breaks the SU(4) symmetry down to SU(2)×SU(2),
pairing the two electrons on each site into a spin-triplet state. Using the definitions Eq. (2,6),
the projection on the on-site spin-triplet and spin-singlet subspaces is given by

P̂i,S=1 =
3
∑

n=1

(|n̂〉〈n̂|)i , P̂i,S=0 =
6
∑

n=4

(|n̂〉〈n̂|)i , (23)

so that the Hund’s coupling term can be written simply as Ŝ2
i =
p

2P̂i,S=1.
In the large JH limit, the spin model Eq. (22) reduces to an SU(2) spin-1 Heisenberg model,

H = J
∑

〈i j〉 Si · S j , where Sµi (µ = x , y, z) are S = 1 operators (see Appendix B for further
details). The latter is known to form a 120◦-ordered state on the triangular lattice [30]. Below,
we study the model in Eq. (22) as JH is increased from JH = 0 (the SU(4) symmetric point),
where a three-sublattice order is predicted by our classical analysis, to a large JH � J , where
the 120◦ order is known to form also in the quantum limit.

Once SU(4) symmetry is broken down to SU(2)×SU(2), only two U(1) quantum num-
bers are conserved: the z components of the spin and valley degrees of freedom, namely
2sz = n1 + n3 − n2 − n4 and 2τz = n1 + n2 − n3 − n4. Employing the conservation of these
two quantum numbers, we now look for the ground state in the sector (sz ,τz) = (0,0). Once
again, we consider finite cylinders of geometry and size compatible with the 3-sublattice order
of the 120◦ state. In particular, we consider cylinders of width Ny = 3 and Ny = 6 in the same
geometry as before.

To facilitate the formation of a long range ordered state, we follow the approach introduced
in Ref. [31] and apply pinning fields at the boundaries of the cylinder. We then calculate the
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0 1/18 1/12 1/6
1/Nx

2.6

2.8

3.0

3.2
∆

t 3
(a)

0 1 2 3 4
JH

0.0

0.2

0.4

0.6

0.8

〈s
z
〉 ~r 0

=
(N

x
/
2
,1
)

Nx = 6×Ny = 3

Nx = 12×Ny = 3

Nx = 6×Ny = 6

(b)

~r0

JH = 0

(c)

~r0

JH = 2

(d)

Figure 1: Here we set J = 1. (a) Flavor gap, ∆t3
for JH = 0, as function of inverse

system size, obtained for cylinders of width Ny = 3. (b) Magnetization on a site in
the middle of the system (at position ~r0 = (x0, y0) with x0 = Nx/2, y0 = 1), as
function of the Hund’s coupling JH for different system sizes. Pinning fields are
applied along the z axis, on the sites at the boundaries of the cylinder as indicated
by the green arrows in (c) and (d), where the local magnetization in a
Nx = 6× Ny = 6 cylinder is shown for JH = 0 and JH = 2 respectively. The area of
the circles is proportional to the expectation value of sz with blue (red)
corresponding to a positive (negative) value.

expectation value of the spin component parallel to the field in the bulk, far from the boundary
for different ratios of the length of the cylinder to its circumference. A complementary analysis,
where we calculate the spin-spin correlations in the absence of pinning fields is presented in
Appendix C.1 and gives similar results. To retain the conservation of sz , we apply the pinning
fields only along the sz axis. More specifically, the field applied is −sz on the A sublattice, and
+sz/2 on the B and C sublattices as depicted in Fig. 1(c,d). Note that in the SU(4)-symmetric
case this corresponds to a field along A=A21 (see Sec. 3.2).

The expectation value of sz on a site in the middle of the system, as function of JH , for
different system sizes is shown in Fig. 1(b). The expectation value of sz remains small close
to JH = 0, even when the ratio of the length of the cylinder to its circumference is unity,
suggesting the absence of magnetic order in this case. As JH is increased, a finite expecta-
tion value develops as expected. The range of system sizes accessible by our simulations is
not large enough to perform finite size scaling, but a relatively sharp increase in the magne-
tization around JH/J ' 1 suggests a phase transition occurs in the vicinity of this value. In
Figs. 1(c,d) we plot the expectation values of sz on all the sites of a 6× 6 cylinder, for JH = 0
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and JH/J = 2 respectively. While in the former case, the magnetization decays rapidly away
from the boundary where the pinning fields are applied, in the latter case the magnetization
is finite and uniform across the system.

In these simulations the maximal bond dimension for cylinders of width Ny = 3 was
M = 2000, resulting in a truncation error smaller than 5 ·10−5. For cylinders of width Ny = 6
the maximal bond dimension was M = 8000 for JH = 0 and M = 4000 for JH > 0, resulting
in a truncation error of ∼ 2 ·10−3 for values of JH/J < 1.5 at which no long-range ordering is
observed, and a truncation error of ∼ 5 ·10−4 or smaller for JH/J ≥ 1.5 at which a 120◦ order
develops.

To summarize, our numerical study suggests that the SU(4)-symmetric Heisenberg model
does not have magnetic long-range order. A transition into a 120◦-ordered state can be driven
by a Hund’s coupling term which breaks SU(4) symmetry.

4 Singlet projection

The short-range nature of the spin correlations observed in DMRG motivates an approach
focusing on SU(4) singlets. As we saw explicitly in Eq. (10), the six-dimensional representation
of SU(4) considered in this work allows for the formation of a singlet on a pair of sites. Hence
we can build many singlet states for the entire system by partitioning the sites into pairs, and
placing each pair of corresponding spins into a singlet state. Following the pioneering work of
Rokhsar and Kivelson [23]who considered the projection of the usual SU(2) Heisenberg model
(in the S=1/2 representation) to a nearest-neighbor singlet manifold, we study the projection
of the SU(4) Heisenberg model onto the subspace of nearest-neighbor SU(4) singlet “dimer”
coverings of the lattice.

In this section, we start with a simple analytic comparison between energies of the sin-
glet states and those of the classical ones discussed earlier, showing that the dimer states are
superior in a variational sense. Then we provide further numerical justification for the projec-
tion to the singlet subspace. We next discuss the projection of the SU(4) Hamiltonian to the
nearest-neighbor singlet coverings subspace and derive an effective dimer model. Finally we
study the resulting dimer model using exact diagonalization.

4.1 Crude estimate of energy competition between singlet and ordered states

We first estimate the energy of such a singlet state, and compare to that of an ordered state.
The optimal ordered product states were found in Sec. 3.2. They comprise 3-sublattice ordered
states which spontaneously break SU(4) symmetry analogously to the 120◦ ordered states for
classical SU(2) Heisenberg spins. In those states, the energy per bond is the same for all bonds
and is equal to

〈Hi j〉= JTrAi(A j)T = Eclass
bond = −

1
2

J . (24)

Hence

Eclass = −
1
2

JNbonds = −
3
2

JNsites. (25)

Now we consider a singlet state which is the product of two-site singlet “dimers”. Specifi-
cally, a singlet covering is given by a partition of the set of N sites i into pairs C = {(i1 j1), (i2 j2),
· · · (iN/2, jN/2)}, where (i, j) denotes a pair of nearest-neighbor sites. Such a state can be vi-
sualized by drawing a dimer – a colored bond – between the pairs of sites (ia ja). We define

|C〉=
⊗

(i j)∈C

|s〉i j , (26)
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using normalized singlets |s〉i j as in Eq. (10). Note that in contrast to the SU(2) case, in the
SO(6) representation the singlet state has a purely positive wavefunction, and is without any
sign ambiguity. Thus there is no need to define the directionality of a singlet which is required
to determine the sign of the wavefunction in the SU(2) case.

For a crude estimate, we consider the variational energy of a single dimer covering,

Edimer = 〈C|H|C〉=
∑

〈i j〉

〈C|Hi j|C〉. (27)

Unlike for the classical state, all the bond expectation values are not equal. As shown in
Eq. (12), the singlet |s〉i j is an eigenstate of Hi j , with energy −5J . Hence 〈C|Hi j|C〉= −5J for
those bonds covered by dimers. For bonds that are not covered by singlets, the two spins on
the bond are uncorrelated, and one has 〈C|Hi j|C〉 = 0 for those bonds. Hence the variational
energy of the dimer state is −5J per bond times the fraction of bonds occupied by singlets,
which is 1/6. Thus, since Nbonds = 3Nsites

Edimer = −
5
6

JNbonds = −
5
2

JNsites. (28)

Comparing Eq. (28) and Eq. (25), we see that the dimer state has lower energy. This gives
some simple understanding of the avoidance of magnetic order.

It is instructive to compare to the SU(2) case, with spin S spins. In this case for the usual
Heisenberg model the classical product ground state with 120◦ order has J〈Si·S j〉class = −JS2/2,
so the classical energy is

Eclass
SU(2) = −

JS2

2
Nbonds. (29)

For a spin singlet bond, we can write Si · S j =
1
2[(Si + S j)2 − S2

i − S2
j ], so that 〈JSi · S j〉singlet =

−JS(S + 1). Thus the dimer energy is

Edimer
SU(2) = −

JS(S + 1)
6

Nbonds. (30)

Comparing Eq. (29) and Eq. (30), we see that the energies are equal for S = 1/2 (E =
−JNbonds/8), with the classical state superior for all larger S.

In summary the simplest possible variational dimer state of a single singlet covering is al-
ready better than a classically ordered state for the SU(4) problem, which is distinctly different
from the SU(2) case. In the following sections we will refine the approach to singlet states,
and consider superpositions of many terms, each with the form of Eq. (26).

4.2 Numerical justifications for the projection onto the singlets subspace

We define a nearest-neighbor singlet subspace as the Hilbert space spanned by superpositions
of all nearest-neighbor singlet coverings of the form of Eq. (26). In this subsection we compare
the low energy spectrum of the Hamiltonian in the full Hilbert space with that of its projection
onto this nearest-neighbor singlet space. To this end we perform a numerical study on systems
with size of up to 18 sites, using ED for systems with less than 12 sites, and Matrix Product
State (MPS)-based simulations for larger systems, as described in detail in Appendix C.2.

We first compare the flavor gap in the SU(4) spin model with the gap in the projected prob-
lem. For cylinder of width Ny = 3, the flavor gap was discussed in Sec. 3.3 and estimated to
be larger than 2.5J for an infinitely long cylinder. The gap obtained for the projected problem
is 0.281J , 0.203J for system sizes of Nx = 4 and Nx = 6 respectively. For cylinders of width
Ny = 4, in the same geometry, we find the flavor gap to be very weakly dependent on system
size already for small system sizes, and larger than 3.8J . The gap in the projected problem is
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Table 1: Wavefunction overlaps between the ground state of the SU(4) spin model
and the ground state of the Hamiltonian projected onto the subspace of
nearest-neighbor singlet coverings for different system sizes (Nx × Ny). “OBC”
indicates open boundary conditions along both x and y , while “Cylinder” indicates
periodic boundary conditions along y and open boundary conditions along x . The
error indicated in brackets is estimated from the DMRG truncation error for the
ground state of the spin model. Values for which no error is indicated were
obtained using ED.

2× 2 2× 3 4× 3 6× 3 2× 4 3× 4 4× 4

OBC 0.976 0.946 0.85(2) 0.76(2) 0.921 0.85(2) 0.80(4)
Cylinder - 0.875 0.70(1) 0.55(1) 0.918 0.87(1) 0.82(1)

1.738J , 1.724J for system sizes of Nx = 3 and Nx = 4 respectively. Thus, we find that in both
cases the gap of the projected Hamiltonian is smaller than the flavor gap, suggesting that the
low energy physics is governed by the singlets.

In addition, we calculate the overlaps between the ground state of the SU(4) spin model
and that of the projected Hamiltonian. These are summarized in Table 1 for a number of
system sizes and different boundary conditions. We find that the overlaps decrease with in-
creasing system size as expected. However, given the immense reduction in the dimension
of the Hilbert space upon the projection, we find surprisingly large overlaps even for systems
with N ' 10− 20 sites.

4.3 Derivation of the effective dimer model

We now turn to the analytic derivation of the projected Hamiltonian. Rokhsar and Kivelson
[23] constructed an expansion to express the effective projected Hamiltonian as a sum of local
terms of increasing length of dimer re-arrangements. We obtain a similar expansion here for
the SU(4) ∼ SO(6) case. We follow specifically a reformulation of the expansion by Ralko et
al. [20].

We seek the best variational state of the form

|ψ〉=
∑

C

ψC |C〉. (31)

The wavefunction ψC is required to minimize

E(ψ) =
〈ψ|H|ψ〉
〈ψ|ψ〉

=
ψ†Hψ

ψ†Sψ
, (32)

where
HC ′C = 〈C′|H|C〉, SC ′C = 〈C′|C〉. (33)

The minimum of the variational energy is given by the condition ∂ E/∂ψ∗ = 0. This gives

Hψ= E0Sψ, (34)

where E0 =minψE(ψ) is the best variational energy. This is a generalized eigenvalue problem
for E0. We can convert it to a conventional one by defining Ψ = S1/2ψ, which leads to

HeffΨ = E0Ψ, (35)

with the effective Hamiltonian
Heff = S−1/2HS−1/2. (36)
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Therefore the variational ground state energy (and from it ultimately the variational ground
state wavefunction) is obtained from the ground state of Heff, which is the desired effective
quantum dimer Hamiltonian.

To obtain Heff, we expand both H and S in a series of increasingly small terms, which
are related to the number of dimer rearrangements forming “loops”. The small parameter
of this expansion is the overlap x in the smallest such non-trivial loop: two dimers cyclically
permuted on four sites. More generally, the inner product of a sequence of dimers pairing sites
C = {(i1 j1), (i2 j2), · · · (iN/2, jN/2)} and C ′ = {(i1 j2), (i2 j3), · · · (iN/2, j1)} is 〈C′|C〉= xN/2−1, with
x = 1/6. In a full calculation ofH and S, products of such overlaps appear, resulting in multiple
factors of x , which determines the order of these terms in the expansion. Details of this quite
technical procedure, which we formulate for SU(4) on a general lattice, will be presented in
a separate publication. Starting from the general SO(6) invariant Hamiltonian in Eq. (11),
carrying out this expansion, and then calculating Heff consistently to a given order gives the
final result for the quantum dimer model Hamiltonian:

Heff =
′
∑

−t
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, (37)

where the prime on the sum indicates a sum over all the symmetry-equivalent plaquettes shown
in the bras and kets, throughout the lattice. All the coefficients are given in terms of α, β , and
x and are summarized in Table 2.

4.4 Numerical study of the dimer model

We now turn to an analysis of the dimer model obtained in the previous section, Eq. (37), and
taking α= −1,β = 1, corresponding to the Heisenberg model.

To zeroth order in the expansion parameter x , the dimer model obtained is the standard
dimer model considered by Rokhsar and Kivelson [23], i.e. H = −t(| 〉〈 | + | 〉〈 |) +
v(| 〉〈 |+ | 〉〈 |), with v = 0 and t = 1 – for these values the Hamiltonian contains only
the “flip” term, consistent with the truncation of Eq. (37) to zeroth order in x . Previous studies
of this model on the triangular lattice [21,22,32,33] found that the ground state for v/t = 0 is
a
p

12×
p

12 VBS state. At large enough negative v/t, the ground state is a columnar ordered
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Table 2: Coefficients of the terms in the effective dimer model given in Eq. (37).
The numerical value in the last column is calculated for the parameters
corresponding to the SU(4) Heisenberg model, namely α= −1,β = 1, x = 1/6.

expression numerical value

t −(2α+ β)− x(α+ 2β) + x2(α+ 2β) 31/36
v, t6,a −x(2α+ β)− x2(α+ 2β) 5/36
t6,b −3x(α+ β)− 3x2(α+ β) 0
u −1

2 x2(2α+ β) 1/72
t8,a −4αx2 1/9
t8,b −1

2 x2(5α+ 6β) -1/72
t8,c −x2(4α+ 5β) -1/36
t8,d −1

2 x2(5α+ 4β) 1/72
t8,e −x2(2α+ β) 1/36
t8, f −1

2 x2(2α+ β) 1/72
t8,g −2x2(α+ β) 0

state, while for positive v/t, first a phase transition into the Z2 RVB spin liquid phase occurs
at v/t ' 0.83, followed by a transition at v/t = 1 into a staggered ordered phase.

4.4.1 Geometry and sectors

To understand how higher order terms in the expansion affect the ground state, we now study
the model in Eq. (37) numerically, using ED. We consider systems with periodic boundary
conditions along both directions (i.e. systems on a torus), and focus on two types of clusters
which keep all the symmetries of the infinite lattice, following Ref. [21]. Denoting the basis
vectors of the triangular lattice by ~a1 = (1,0), ~a2 = (1/2,

p
3/2), these clusters are defined by

identifying the sites of the lattice modulo the vectors (~R1, ~R2), where (~R1, ~R2) = m(~a1, ~a2) for
clusters of type A, and (~R1, ~R2) = (m~a1+m~a2,−m~a1+2m~a2) for clusters of type B. These two
types of clusters are shown in Fig. 2. Note that the number of sites in cluster of type A (B) is
m2 (3m2).

~R1

~R2

A cluster

~R1

~R2

B cluster

Figure 2: The two types of clusters considered in the numerical study of the dimer
model. A schematic representation of the

p
12×
p

12 order, depicting the 12-site
unit cell is shown for the 6× 6 type A cluster.

On a torus, the Hilbert space of dimer coverings breaks up into four distinct topological sec-
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Figure 3: (a,b) Dimer-dimer correlations 〈b1 bi〉 (where bi = 1 if the ith bond is
occupied by a dimer and bi = 0 otherwise) in the lowest energy state in the
topological sectors TS(0, 0) and TS(1, 1) respectively of the extended dimer model
H2 on a 6× 6 lattice obtained using ED. (c,d) Fourier transform of 〈b1 bi〉 − 〈b1〉〈bi〉
for the vertical bonds in the two topological sectors respectively.

tors defined by the parities of the number of dimers intersected by closed loops winding around
the torus along the two axes. We will denote these sectors by TS(px , py), with px , py = 0(1)
for even (odd) parity along x and y respectively. As pointed out in Ref. [21], on a cluster
with C6 symmetry, three of these topological sectors are always degenerate since they can be
related by C6 rotations of the lattice. Which three sectors are degenerate depends on the parity
of m/2, but in order to understand the spectrum of the problem it is enough to consider the
two sectors TS(0,0) and TS(1,1), as these two sectors are never related by C6 rotations.

We consider system sizes of up to 36 sites, i.e. clusters of type B with m = 2 (12 sites)
and clusters of type A with m = 4 and m = 6 (16 and 36 sites respectively). We note that
to allow for a

p
12×
p

12 order, the number of sites in the system must be a multiple of 12.
In addition, for m/2 odd, only the topological sector TS(1,1) can accommodate this ordering
without defects (see Fig. 2).

4.4.2 Exact diagonalization results

We study the successive approximations obtained by working to increasingly higher order in
x , denoting by Hn the sum of all terms in the effective Hamiltonian up to and including O(xn).
More explicitly, H0 consists solely of the kinetic term on a plaquette with t = 1, while H1
contains in addition the potential energy term v as well as the kinetic terms corresponding
to hopping on loops of length six. The values of the coefficients in H1 are given by t = 5/6,
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and v = t6,a = 1/6 (note that t6,b = 0). The Hamiltonian H2 contains all the terms in Eq. 37
with the corresponding values given in Table 2. We calculate the lowest energy state in each
topological sector of Hn=0,1,2, for the physical situation x = 1/6. The values obtained are
summarized in Appendix C.3.1. We find that the correction due to second order terms is
indeed small compared to the first order ones.

We then interpolate between the Hamiltonians H0 and H2, calculating the low energy
spectrum of H(η) = (1 − η)H0 + ηH2. We find that there are no level crossings in the low
energy spectrum, and the ground state remains in the topological sector TS(1, 1) for system
sizes which can accommodate the

p
12×
p

12 order (see Fig. 5 in Appendix C.3.1). The smooth
continuity suggests that H0 and H2 describe the same phase of matter. Furthermore, we find
that, in each topological sector, the wavefunction overlap between the lowest energy state of
H0 and that of H2 is very close to one, in particular in the topological sector TS(1,1). More
specifically, for the 6 × 6 system, the overlaps are 0.88 and 0.97 for TS(0,0) and TS(1, 1)
respectively.

In addition, we compare the dimer-dimer correlations in these states. We find that the
correlations in the lowest energy states of H2 become slightly more uniform compared to those
in the lowest energy states of H0, but overall display the same features (see Appendix C.3.2).
In Fig. 3 we plot the real space dimer-dimer correlations, as well as their Fourier transform,
calculated in the lowest energy state of H2 in the two topological sectors for a 6 × 6 lattice.
As can be clearly seen, for the state in TS(1,1) sharp peaks at ~k = ±(π/(2

p
3),π/2) are

present, suggesting breaking of translational invariance compatible with the formation of a
12-site unit cell. We note that the six-fold rotational symmetry expected in the ground state is
broken in Figs. 3(b,d) by the choice of the set of bonds used in the calculation of the dimer-
dimer correlation function. The structure factor shown in Figs. 3(b,d) is obtained for the bonds
parallel to the lattice basis vector ~a2. When the correlation function is calculated with respect
to a set of bonds related by a π/3 rotation on each site, the peaks in the structure factor appear
at momenta related by the corresponding π/3 rotation.

Although a better finite size scaling analysis is required to make a conclusive statement re-
garding the nature of the ground state of the dimer model, we believe that these observations
– (i) the similarity of the ground state correlations to those of the “standard” dimer model at
v/t = 0 for small system sizes, and (ii) the smooth evolution of the spectrum upon interpola-
tion between the two models – strongly suggest that the ground state remains a

p
12×
p

12
VBS ordered state.

5 Conclusion

In this work, we considered SU(4) spins in the six-dimensional (self-conjugate) representation,
on the triangular lattice, with nearest-neighbor antiferromagnetic interactions. Our DMRG
study suggests that the ground state is non-magnetic, but remains inconclusive as to the exact
nature of the ground state. We developed and carried out a dimer expansion, which we argued
is capable of capturing the low energy properties of the model. The study of the the associated
dimer model led us to conjecture that the ground state of the SU(4) model may be a 12-site
valence bond solid (VBS).

As the mapping to the dimer model involves an uncontrolled projection, we do not know
how to systematically improve it. Hence, a fully conclusive study should return to the original
SU(4) spin model. This, however, remains numerically challenging due to the large on-site
Hilbert space dimension. As a first step in this direction, we carried out preliminary calcula-
tions in addition to those reported in this paper, using the infinite DMRG (iDMRG) method
on width-four cylinders. By choosing appropriate boundary conditions, this geometry is com-
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patible with the 12-site VBS order. However, we did not find signatures of this order in our
iDMRG simulations. One possible interpretation is that the non-observation of VBS order is
simply due to the effects of finite size or finite bond dimension. Another possibility is that the
VBS order is truly absent, indicating some type of spin liquid state without broken symmetries.
The proximity of a Z2 spin liquid phase in the effective dimer model suggests this as an intrigu-
ing possibility. Regardless, this conundrum highlights the challenges of a direct simulation of
the original SU(4) problem.

In the study of the effective dimer model, we focused on the parameters corresponding to
the SU(4) Heisenberg model, α = −1,β = 1. In the future it would be interesting to explore
the full phase diagram of the general dimer model derived, understand if it can realize the
Z2 spin liquid phase, and identify the nature of the interactions in terms of the SU(4) spins
required for this.

In addition, it would be desirable to study in more detail the evolution of the ground state
with increasing JH . If the ground state of the spin model at JH = 0 is indeed a 12-site VBS,
and if there is, as suggested by our numerics, a direct transition to a three-sublattice ordered
state with increasing JH , then this is a Landau-forbidden quantum phase transition. If this is
realized via a continuous quantum critical point, then it must be an example of deconfined
quantum criticality. It would be interesting to understand the nature of this critical point and
test it in numerics.
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A Classical limit

A.1 SO(6) formulation

The classical limit is taken by replacing the 15 generators Âmn by their expectation values in a
given state, i.e.:

Âmn→ Amn = 〈ψ|Âmn|ψ〉. (38)

Since the operators Âmn are hermitian and satisfy Âmn = −Ânm , the matrix A is real and
anti-symmetric, i.e. AT = −A. Note that since A is real, TrAAT > 0, and therefore TrA2 =
−TrAAT < 0.

Writing the quantum state explicitly as |ψ〉 =
∑6

p=1 vp|p̂〉, the matrix elements of A are
given by

Amn =
∑

p,p′

iv∗p vp′
p

2
〈p̂| (|m̂〉〈n̂| − |n̂〉〈m̂|) |p̂′〉=

i
p

2

�

v∗mvn − v∗nvm

�

=
p

2 Im[v∗nvm], (39)
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or in matrix notations A= i(v∗vT − vv†)/
p

2=
p

2 Im[vv†]. We next note that

TrAAT =
6
∑

m,n=1

AmnAmn = 1−

�

�

�

�

�

6
∑

n=1

v2
n

�

�

�

�

�

2

≤ 1. (40)

Further let v = (x + iy)/
p

2 with x, y real six-dimensional vectors with unit norm. Then
TrAAT = 1− (x · y)2. It is now easy to see that the upper bound on TrAAT is reached when
x⊥ y.

In the classical limit the Hamiltonian is given by:

HHeis = J
∑

〈i j〉

6
∑

m,n=1

Ai
mnA

j
mn = J

∑

〈i j〉

Tr[AiA
T
j ]. (41)

On the triangular lattice we can rewrite:

H=
J
4

∑

t t r iangle



Tr

�

∑

i∈t

Ai

��

∑

i∈t

Ai

�T

− Tr

�

∑

i∈t

AiA
T
i

�



 . (42)

For antiferromagnetic coupling, J > 0, to minimize the energy, we would like the first term
to vanish, and the second to be as negative as possible. Let us denote by x,y,z three real,
orthogonal, six-dimensional unit vectors, and define

v(θ ) =
1
p

2
(y+ i(cosθx+ sinθz)) , (43)

A(θ ) =
p

2
�

Im[v(θ )]Re[v(θ )]T −Re[v(θ )]Im[v(θ )]T
�

. (44)

Then, the matrices Al=1,2,3 = A
�2πl

3

�

satisfy
∑3

l=1 Al = 0 and TrAlA
T
l = 1, thus minimizing

the energy on a triangle.
Note that choosing x = e1, y = e2, z = e3, with en denoting the unit vector along the nth

dimension in R6 we obtain a state v(θ ) that belongs to the spin-triplet valley-singlet subspace
on a given site (see also Appendix B below and in particular Eq. (58) therein). The classical
ground state corresponding to the states vl=1,2,3 = v(2πl

3 ) on each triangle of the lattice is then,
in this case, exactly the 120◦ ordered state of the SU(2) spin-ones.

A.2 SU(4) formulation

Here we derive the classical energy function and constraints using the SU(4) formulation, i.e.
starting from the Hamiltonian Eq. (5), and using the basis states on the right-hand-sides of the
equalities in Eq. (2).

We start by writing the quantum state on a single site explicitly as |ψ〉=
∑4

a,b=1ψabc†
ac†

b|0〉.
The 4 × 4 matrix ψ must be antisymmetric, ψT = −ψ, and the normalization constraint
〈ψ|ψ〉 = 1 imposes Trψ†ψ = 1/2. The classical limit is obtained by replacing the 15 gen-
erators T̃ ab (a, b = 1, ..,4) by their expectation values in a given state |ψ〉:

T̃ ab→ Tab = 〈ψ|T̃ ab|ψ〉= 4(ψ†ψ)ab −
1
2
δab, i.e. T= 4ψ†ψ−

1
2

Id. (45)

We have in turn T† = T and TrT= 0.
We now proceed to finding lower and upper bounds on TrT2, as these will be important

for the minimization of the energy. We will show that 0 ≤ TrT2 ≤ 1. To do so, we consider
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the eigenvalues of T. Since T is hermitian, its eigenvalues tn are real. Using the inequality
∑N

n=1 t2
n ≥

1
N

�

∑N
n=1 tn

�2
, we find the lower bound

TrT2 ≥
1
4
(TrT)2 = 0, (46)

which is saturated for example for Tlower = 04, and corresponds to ψlower =
1

2
p

2
σ0(iτy). The

specific form of T in terms of the square of ψ imposes a stringent upper bound. Indeed, the
antisymmetry ofψmakes the latter diagonalizable, and that combined with its even dimension
imposes that its eigenvalues come in pairs ±y1,2. In turn the eigenvalues of T are doubly
degenerate and equal to 4|y1,2|2 − 1/2. Therefore,

TrT2 = 2
∑

i=1,2

�

4|yi|2 − 1/2
�2
= 32(|y1|4 + |y2|4)− 1, (47)

since TrT = 8(|y1|2 + |y2|2) − 2 = 0. Given Trψ†ψ = 2(|y1|2 + |y2|2) = 1/2, the maximum
of TrT2 is reached for {|y1| = 0, |y2| = 1/2} or {|y1| = 1/2, |y2| = 0} and equal to 1. This is
achieved for example for Tupper =

1
2σ

0τz , which corresponds to ψupper =
1
4(iσ

y)(τ0 +τz).
In summary, a classical SU(4) “spin” T satisfies:

T† = T, TrT= 0, 0≤ TrT2 ≤ 1. (48)

In this formulation, in the classical limit the Hamiltonian is given by:

HHeis = J
∑

〈i j〉

4
∑

a,b=1

Ti
abT

j
ba = J

∑

〈i j〉

Tr[TiT j]. (49)

On the triangular lattice we can rewrite:

H=
J
4

∑

t t r iangle



Tr

�

∑

i∈t

Ti

�2

− Tr

�

∑

i∈t

T2
i

�



 . (50)

For antiferromagnetic coupling, J > 0, to minimize the energy, we would like the first term to
vanish, and the second to be as negative as possible. Let us denote by z,x two real, orthogonal,
three-dimensional unit vectors, and define

n(θ ) = cosθz+ sinθx, (51)

T(θ ) =
1
2
σ0(n(θ ) ·τ). (52)

Then, the matrices Tl=1,2,3 = T
�2πl

3

�

satisfy
∑3

l=1 Tl = 0 and TrT2
l = 1, thus minimizing the

energy on a triangle. The corresponding state ψl can be chosen to be

ψl =
1
4
(iσ y)

�

τ0 + n(θl) ·τ
�

, (53)

where θl = 2πl/3, so that

|ψl〉=
1
2
[(|13〉+ |24〉) + (|13〉 − |24〉) cosθl + (|14〉+ |23〉) sinθl] . (54)

Indeed, choosing z = (0,0, 1) and x = (1,0, 0), we have ψ0 =
1
2(iσ

y)⊗
�

1 0
0 0

�

= |13〉, and

ψl is obtained from ψ0 through the rotation ψl = RT
l ψ0Rl , with Rl = σ0rl , where

rl = exp[
i
2

2πl
3

y ·τ] = cos
πl
3
+ iy ·τ sin

πl
3

, (55)

where y= (0, 1,0).
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A.3 Mapping between the SO(6) and SU(4) formulations

Here we describe the mapping between the SO(6) and SU(4) formulations and show that the
classical ground state obtained in the two formulations is indeed the same state.

The six basis states |n̂〉 in Eq. (6) correspond to the following 4×4 antisymmetric matrices
ψ:

|1̂〉 →ψ1 =
i

2
p

2
σ y ⊗τz , |2̂〉 →ψ2 =

1

2
p

2
σ y ⊗τ0,

|3̂〉 →ψ3 =
i

2
p

2
σ y ⊗τx , |4̂〉 →ψ4 =

i

2
p

2
σ y ⊗τy ,

|5̂〉 →ψ5 =
1

2
p

2
σ0 ⊗τx , |6̂〉 →ψ6 =

1

2
p

2
σz ⊗τz . (56)

Using this mapping one can translate the classical states that optimize the energy on the tri-
angular lattice corresponding to v(θ ) in Eq. (51) to the corresponding ψ(θ ). More explicitly,
for x = e1, y = e2, z = e3 with en denoting the unit vector along the nth dimension in R6 we
obtain a state

ψ(θ ) =
1
4
σ y
�

τ0 − n(θ ) ·τ
�

, (57)

where n(θ ) = (sinθ , 0, cosθ ) and τ = (τx ,τy ,τz). Thus, ψ(θl), with θl = 2πl/3+π repro-
duce the states in Eq. (53) up to an overall phase.

B Large Hund’s coupling limit

In the large Hund’s coupling limit, i.e. JH/J � 1, the term −JH
∑

i S2
i in Eq. (22) requires the

total spin at each site to be in the S = 1 representation of SU(2). The associated vector space
is spanned by

|S = 1, sz = 1〉 = |2〉 =
1
p

2
(|1̂〉+ i|2̂〉),

|S = 1, sz = 0〉 =
1
p

2
(|3〉+ |4〉) = |3̂〉,

|S = 1, sz = −1〉 = |5〉 =
1
p

2
(−|1̂〉+ i|2̂〉), (58)

and thus the operator P̂i,S=1 =
∑3

n=1 |n̂i〉〈n̂i| projects the state on site i onto the S = 1 sub-
space. Note also that |S = 1, sx = 0〉 = |1̂〉 and |S = 1, s y = 0〉 = |2̂〉, and thus the S = 1 spin
operators can be written as

Sz =
p

2Â21, S x =
p

2Â32, S y =
p

2Â13. (59)

Denoting by P̂S=1 =
∏

i P̂i,S=1, where i runs over all lattice sites, to lowest order in J/JH
the SO(6) “Heisenberg” Hamiltonian becomes:

ĤS=1 = P̂S=1ĤP̂S=1 = J
∑

〈i j〉

3
∑

m,n=1

Âmn
i Âmn

j = J
∑

〈i j〉

Si · S j . (60)
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Figure 4: Flavor-flavor correlations obtained using DMRG and shown on a
logarithmic scale for a cylinder of circumference Ny = 3 and length Nx = 12.
Different colors correspond to different values of JH (given in units of J) and
different markers to different bond dimensions M . For JH = 0 the decay of the
correlations is consistent with an exponential.

C Additional numerical results

C.1 Probing magnetic order

To complement the analysis presented in Sec. 3.3 of the main text, indicating that a finite
Hund’s coupling, JH , is required to drive the system into a magnetically ordered state, we
calculate flavor-flavor correlations in the absence of pinning fields at the ends of the cylinder.
More specifically, the correlations calculated are

∑4
a,b=1〈T̃

ab
~0

T̃ ba
~r 〉, where ~0 denotes the origin

which we choose to be at the left end of the cylinder, and we consider positions ~r on the lattice
which correspond to the same sub-lattice as the site at ~0 when 120◦-order is present. When
more than one site on the lattice correspond to the same distance |~r|, a symmetrization is
performed and an average value for the correlations is used. Resulting correlations are shown
in Fig. 4 for cylinders of circumference Ny = 3 as JH is increased and the bond dimension is
varied. For the maximal bond dimension used of M = 4000, the truncation error was of order
10−4.

C.2 Projection of the SU(4) spin model onto the subspace of singlet coverings
using MPS

As mentioned in the main text, to study the projection of the SU(4) Heisenberg model onto
the subspace of nearest-neighbor singlet coverings, for system sizes of 12 sites and larger, we
use MPS-based simulations.

We start by constructing the MPS representations of the nearest-neighbor singlet coverings.
We note that the tensor product of two 6-dimensional vector representations of SO(6) is given
by the sum of a symmetric traceless, antisymmetric and a one-dimensional representation (the
singlet state). Therefore, the projection onto the singlet state, given by the operator P̂i j (see

21

https://scipost.org
https://scipost.org/SciPostPhys.8.5.076


SciPost Phys. 8, 076 (2020)

0.00 0.25 0.50 0.75 1.00
η

0.0

0.5

1.0

1.5

∆
E
n

TS(0,0)

TS(1,1)

(a)

0.00 0.25 0.50 0.75 1.00
η

0.0

0.2

0.4

∆
E
n

TS(0,0)

TS(1,1)

(b)

0.00 0.25 0.50 0.75 1.00
η

0.0

0.2

0.4

0.6

0.8

∆
E
n

TS(0,0)

TS(1,1)

(c)

Figure 5: Low energy excitation spectrum of the interpolated Hamiltonian
(1−η)H0 +ηH2 for systems with N = 12,16, 36 sites in (a,b,c) respectively. Energy
states in the topological sector TS(0,0) are plotted in blue (circles), and the ones in
TS(1, 1) are plotted in red (squares).

Eq. (8) in the main text), can be written as

P̂i j∝

 

4
∑

a,b=1

T̃ ab
i T̃ ba

j + Îdi j

! 

4
∑

a,b=1

T̃ ab
i T̃ ba

j − Îdi j

!

=

�

−Q̂ i j + Π̂i j + Îdi j

� �

−Q̂ i j + Π̂i j − Îdi j

�

, (61)

where the first (second) term in the product above projects out the anti-symmetric (symmet-
ric) representation. Given a nearest-neighbor covering C = {(ik, jk)}k=1,..,N/2, as was defined
in the main text, we can obtain the corresponding singlet covering MPS by applying the matrix
product operator (MPO) representation of the product of projectors

∏N/2
k=1 P̂ik jk to a random

initial MPS. Note that to allow for an SU(4) singlet covering state on a system of width Ny a
bond dimension of 6Ny is required for the MPS. Once the MPS representations of the singlet
coverings are obtained, both the overlap matrix, required to solve the generalized eigenvalue
problem, and the matrix elements of the projected Hamiltonian can be computed. For the
latter, an MPO representation of the original spin Hamiltonian is used. We then solve the
generalized eigenvalue problem (since the dimension of the projected Hamiltonian is greatly
reduced compared to the one of the original spin Hamiltonian, it can be easily diagonalized
using standard sparse diagonalization), both to find the ground state of the projected Hamil-
tonian in terms of the singlet coverings, and to calculate the gap in the projected problem.

To calculate the overlap of the ground state of the projected Hamiltonian with the ground
state of the original spin Hamiltonian, we obtain an MPS representation of the latter using
DMRG. For the results presented in Table 1 in the main text, bond dimensions used for the
calculation of the ground state were between M = 1000 and M = 2000 depending on system
size, resulting in truncation errors ε smaller than 2 ·10−3 in all cases. A finite truncation error
gives rise to an error in the calculation of the overlap that we estimate to be of order

p
ε.

C.3 Exact diagonalization of the dimer model

C.3.1 Energies and excitation spectrum of the interpolated Hamiltonian

In Table 3 we summarize the energies of the lowest energy states of the dimer Hamiltonians
Hn=0,1,2 (where n denotes the order of the expansion in x) obtained using ED. We list the
energies of the lowest energy states in the topological sectors TS(0, 0) and TS(1, 1), for three
different system sizes with N = 12,16 and 36 sites. We note that the energies obtained for H0
reproduce the ones presented in [21] for v/t = 0.
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Table 3: Energies of the lowest energy states in the two topological sectors, as well
as the gap ∆E = E(0,0) − E(1,1), obtained using ED of the dimer models Hn (where
n= 0,1, 2 is the order of the expansion in the parameter x = 1/6) for three
different system sizes.

N=12 H0 H1 H2

(0,0) -4.05317 -3.25070 -3.29407
(1,1) -4.37228 -3.64575 -3.76333
∆E 0.31911 0.39505 0.46926
N=16 H0 H1 H2

(0,0) -5.52971 -4.43419 -4.54785
(1,1) -5.42488 -4.32630 -4.42862
∆E -0.10482 -0.10789 -0.11923

N=36 H0 H1 H2

(0,0) -11.76017 -9.40533 -9.59950
(1,1) -12.03778 -9.91507 -10.08708
∆E 0.27761 0.50974 0.48758

C.3.2 Dimer-dimer correlations

In Fig. 6 we present side by side the real space dimer-dimer correlations for the lowest energy
state of H0 and H2 respectively, in the two topological sectors TS(0, 0) and TS(1,1). As was
mentioned in the main text the correlations in TS(0,0) become more uniform for H2, while
for TS(1, 1) the correlations remain practically unchanged.
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0.00
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0.15

0.20
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0.15
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Figure 6: Dimer-dimer correlations 〈b1 bi〉, in the lowest energy state in the
topological sectors TS(0, 0) and TS(1, 1) respectively for the standard dimer model
with v/t = 0, H0, on the left, and of the extended dimer model H2, on the right.
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