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Motivated by multiple possible physical realizations, we study the SUð4Þ quantum antiferromagnet with
a fundamental representation on each site of the triangular lattice. We provide evidence for a gapless liquid
ground state of this system with an emergent Fermi surface of fractionalized fermionic partons coupled
with a U(1) gauge field. Our conclusions are based on numerical simulations using the density matrix
renormalization group method, which we support with a field theory analysis.
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Realizations of quantum spin liquids—quantum phases
of spins whose ground state is not described by local
ordering patterns but instead characterized by exotic
quantum entanglement—have been highly sought after
since such a phase was first hypothesized [1]. Within the
broad family of spin liquids, a particularly elusive category
is gapless spin liquids that exhibit gapless excitations on an
extended region in the momentum space, akin to the Fermi
surface in ordinary metals. These states of matter thus bear
a resemblance to metals when (thermal) transport or
thermodynamic properties, such as magnetic susceptibility
or specific heat, are considered, even though charge degrees
of freedom are frozen in the system. The known realizations
of such gapless phases in systems of SUð2Þ spins usually
require complicated Hamiltonians beyond the Heisenberg
interaction, such as ring exchange terms [6–14], staggered
chiral three-spin interactions [15,16], or antiferromagnetic
Kitaev interactions in an external field [17–19].
Here, we report strong evidence for a gapless liquid with

an emergent Fermi surface of fractionalized partons in the
nearest-neighbor SU(4) Heisenberg quantum antiferro-
magnet on the triangular lattice with a fundamental
representation on each site. While SUðNÞ antiferromagnets
were suspected to harbor exotic phases already in the early
days of the field [20–26] and recent work has demonstrated
the presence of a Dirac spin liquid in the same model on the
honeycomb lattice [27], our motivation for studying this
model stems primarily from the availability of several
possible experimental realizations. In transition metal
compounds, spin and orbital degrees of freedom may be
described by an effective SUð4Þ quantum magnet [28–31].
Cold atomic gases formed by atoms with large hyperfine
spin component can form effective SUðNÞ quantum anti-
ferromagnet [32], and spin-3=2 atoms can naturally form
Sp(4) or SUð4Þ quantum antiferromanget [33–35] when
only the s-wave scattering between the atoms is considered.
Most recently, it was also proposed that some of the 2D

systems with moiré superlattices may be described by an
approximate SUð4Þ quantum antiferromagnet [36–40] at
commensurate fillings where correlated insulators were
observed recently [41–43].
In the following, we will first introduce a parton mean-

field construction for a candidate liquid state for the model.
We then carefully examine the properties of this state when
placed on quasi-one-dimensional cylinder geometries,
including the effects of symmetry-allowed perturbations
specific to these geometries. These will also be the target of
unbiased numerical simulations using the density-matrix
renormalization group (DMRG) method [44,45]. We find
our numerical results to be in agreement with predictions
from the field theory that describes the proposed liquid
state. For two cases of even circumference, we find gapped
states with ordering patterns which are consistent with
the one-dimensional field theory that contains relevant
symmetry-allowed perturbations deviating from a gapless
fixed point; while in a case with odd circumference, where
there are no relevant translation-symmetric operators, we
find a gapless state whose structure factor exhibits sharp
features consistent with the field theory. We thus conclude
that our proposed theory describes the system accurately in
quasi-one-dimensional geometries and thus likely also in
the two-dimensional limit.
Model.—We study the Kugel-Khomskii model [46] on

the two-dimensional triangular lattice at the SU(4) sym-
metric point,

H ¼ J
X
hiji

�
2Si · Sj þ

1

2

��
2Vi · Vj þ

1

2

�
; ð1Þ

where J > 0 is an antiferromagnetic coupling and Si (Vi)
denote the S ¼ 1=2 spin (orbital) degrees of freedom at site
i. We denote the three Pauli matrices that act on the twofold
spin (orbital) indices as σa (τa), such that Sa ¼ σa=2
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(Va ¼ τa=2) with a ¼ x, y, z. We can view the degrees
of freedom on each site as a pseudospin in the funda-
mental representation of SU(4), with the 15 operators
fσa; τb; σaτbga;b¼x;y;z being the 15 generators of SU(4).
The Hamiltonian Eq. (1) can be interpreted as an SU(4)
antiferromagnetic Heisenberg model.
The Hamiltonian Eq. (1) is invariant under the global

SU(4) pseudospin rotation symmetry, as well as the spatial
symmetries of the triangular lattice including the translation
symmetries T1;2, the mirror symmetry M, and the sixfold
rotation symmetry C6, as shown in Fig. 1(a). In addition, as
a spin-orbital system, the model naturally admits a time-
reversal symmetry [47].
Fermionic parton mean-field ansatz.—We now construct

a candidate for the ground state of the model in Eq. (1). We
start by introducing a four-component fermionic parton
on each site, and use fi;m¼1;…;4 (f†i;m) to denote the
corresponding annihilation (creation) operators. The four
components of the fermionic parton can also be labeled by
the twofold spin indices and twofold orbital indices. They
transform into each other under the global SU(4) pseudo-
spin rotation. The SU(4) pseudospin operators (on the
site i) can be represented in terms of the fermionic parton as

Sai ¼
1

2
f†i σ

afi; Vb
i ¼

1

2
f†i τ

bfi;

ðSaVbÞi ¼
1

4
f†i σ

aτbfi: ð2Þ

The physical Hilbert space of SU(4) pseudospins is
obtained from the Hilbert space of the fermionic partons
by imposing the constraint ni ¼

P
4
m¼1 f

†
i;mfi;m ¼ 1 on

each site i.
In terms of the fermionic partons, the Hamiltonian in

Eq. (1) consists of four-fermion interaction terms. At the
mean-field level, different decouplings of these interactions
can be considered. We examine the simplest decoupling
which preserves the full SU(4) pseudospin rotation
symmetry and the space-group symmetries of the triangular
lattice, by introducing a mean field χij ¼ hP4

m¼1 f
†
i;mfj;mi

on every bond. Assuming χij takes the same value χ on

each bond (which is enforced by the space-group sym-
metry), we arrive at the mean-field Hamiltonian,

Hmf ¼ −t
X
hiji

X4
m¼1

f†i;mfj;m þ H:c:; ð3Þ

which contains only uniform nearest-neighbor parton
hoppings and where t ∝ Jχ. We will take t > 0 and use
this Hamiltonian as an ansatz, i.e., not perform any self-
consistent analysis.
This mean-field ansatz yields a single fourfold-

degenerate parton band. At the mean-field level, the
single-occupancy constraint ni ¼ 1 requires the partons
have filling factor ν ¼ 1=4 and, hence, results in a parton
Fermi surface as shown in Fig. 1(b). Beyond mean field, the
constraint above can be implemented by a dynamical U(1)
gauge field coupled to the fermionic partons.
Finite circumference cylinders.—Our numerical simu-

lations will be performed predominantly for cylinder
geometries that are constructed by compactifying the T2

direction and imposing periodic boundary conditions on
the SU(4) pseudospin variables [see Fig. 2(a)]. The circum-
ference of the cylinder is denoted asW and the length as L.
The quasi-1D system with finite W (and infinite L)
maintains the space-group symmetry T1;2 and M but
breaks the C6 symmetry to a twofold crystal rotation
symmetry C2.
Placing the mean-field Hamiltonian (3) on this geometry

requires additionally specifying the boundary condition for
the partons in the T2 direction. The only choices that
preserve the product of mirror and rotation symmetries
MC2 are periodic and antiperiodic boundary conditions.
These can also be interpreted as placing a U(1) gauge flux

T1

T2

(a) (b)

FIG. 1. (a) T1 and T2 denote the translation symmetries along
the two basis vectors of the 2D triangular lattice. M denotes the
mirror symmetry with the T2 direction as the mirror plane and C6

denotes the sixfold crystal rotation symmetry. (b) The parton
mean-field band structure (orange) and the Fermi level corre-
sponding to filling ν ¼ 1=4 (blue).

T1

T2

(a)

(c) (d)

(b)

FIG. 2. (a) Compactification of the 2D lattice along the T2

direction, resulting in a cylinder geometry. (b)–(d) The parton
mean-field band structure on the compactified, quasi-1D geom-
etry, when the number of unit cells along T2 is W ¼ 2, 3, 4,
respectively. Boundary conditions along the T2 direction con-
sidered here are periodic (Φ ¼ 0) for W ¼ 2 and antiperiodic
(Φ ¼ π) for W ¼ 3, 4.
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Φ ¼ 0 and Φ ¼ π, respectively, through the cylinder. In
general, there is not a simple reasoning which value of Φ is
more favorable for a certain geometry. We can view it as a
discrete parameter (our only parameter) when comparing
the parton ansatz and the results of the DMRG study.
For finite W, the two-dimensional parton band structure

reduces toW (fourfold-degenerate) one-dimensional bands,
distinguished by their crystal momentum k2 along the T2

direction, and parametrized by the crystal momentum k1
along the T1 direction. The parton Fermi level is still
determined by the parton filling constraint ν ¼ 1=4. In
general, the number of (partially) occupied one-
dimensional parton bands depends on both W and Φ. In
the following, we will focus on the Φ ¼ 0 scenario for
W ¼ 2 and Φ ¼ π for W ¼ 3, 4, as we find that these
choices are most consistent with the DMRG results. The
corresponding one-dimensional band structures are shown
in Figs. 2(b)–2(d). A more comprehensive comparison with
different choices of Φ for W ¼ 2, 3, 4 is given in the
Supplemental Material [47]. The Fermi momenta for each
W can be calculated directly from the mean-field
Hamiltonian Eq. (3). For W ¼ 2 with Φ ¼ 0, the single
partially occupied band has k2 ¼ 0 and the k1 values of the
Fermi momenta are �π=2. For W ¼ 3, 4 with Φ ¼ π, the
two bands that are (partially) occupied by the partons have
crystal momenta k2 ¼ �π=W and the k1 values of the four
Fermi momenta are �π=ð2WÞ � πW=8. In fact, in all the
cases we consider, these Fermi momenta are also
completely fixed by the symmetries [47].
For each W, by linearizing the parton bands around

each Fermi point, we obtain a continuum Lagrangian of
low-energy partons:

Lð0Þ
W ¼

X
r;n;m

½ψ†
r;n;mði∂0 þ vri∂1Þψ r;n;m�: ð4Þ

Here μ ¼ 0, 1 label the temporal and spatial components.
The fermionic fields ψr;n;m describe the low-energy partons
near the Fermi points, where m is the SU(4) pseudospin
index, n is the band index, and r ¼ R (L) stands for right
(left) movers with a velocity vr;n ¼ �vn, respectively. In all
the scenarios we consider, the Fermi points in a given
geometry are all related by symmetries (T ,M, and C2), so
are the respective velocities. Thus, we find that the
Lagrangian in Eq. (4) describes SU(4)-invariant massless
Dirac fermions for W ¼ 2, whereas for W ¼ 3, 4 it
describes massless Dirac fermions with an enhanced
SU(8) symmetry.
Going beyond the mean-field level, the parton filling

constraint, ni ¼ 1, leads to the coupling of the low-energy
fermions in Eq. (4) to a dynamical U(1) gauge field aμ, via
the substitution i∂μ → i∂μ − aμ. Thus, the low-energy
theory for W ¼ 2 (W ¼ 3, 4) is given by the Nf ¼ 4
(Nf ¼ 8) QED2, or equivalently the 1þ 1D SUð4Þ1
[SUð8Þ1] conformal field theory (CFT), whose energy

spectrum is gapless. The Dirac mass terms are forbidden
in all of these cases due to the translation symmetry T1.
We next consider symmetry-allowed relevant perturba-

tions to these gapless theories. More specifically, we will
focus on possible umklapp scatterings for each W.
Although these perturbations are not expected to appear
in the 2D limit, we will see that they can change the low-
energy physics dramatically for the cases with finite
circumferences we study numerically.
ForW ¼ 2, the distance between the two Fermi points is

π, and thus allows for the following symmetry-preserving
umklapp interaction,

Lint
W¼2;Φ¼0 ¼

 X4
m¼1

ψ†
L;mψR;m

!
2

þ H:c:; ð5Þ

where we suppressed the band index in the fields ψ†
L;m and

ψR;m because there is only one (partially) occupied band.
Using the Fierz identity, this interaction can be written as a
backscattering between left-moving and right-moving
primary fields in the SUð4Þ1 CFT, both carrying the six-
dimensional representation of SU(4) [47]. In the SUð4Þ1
CFT, each of such primary fields has scaling dimension
1=2. Therefore, the umklapp interaction has scaling
dimension 1 and, hence, is a relevant perturbation. It can
lead to a phase with a finite vacuum expectation value
hP4

m¼1 ψ
†
L;mψR;mi that gaps out all low-energy degrees of

freedom and spontaneously breaks the T1-translation
symmetry by doubling the unit cell in the T1 direction.
Other symmetries stay intact in this gapped phase. In fact,
for W ¼ 2, doubling of the unit cell along the T1 direction
in a gapped phase is expected due to the 1D Lieb-Schultz-
Mattis constraint for SU(4) spin chains [48].
For W ¼ 3, due to the (relative) positions of the Fermi

points, the symmetry-allowed umklapp terms are of high
orders (i.e., at least 16) in terms of the low-energy fermion
fields. Therefore, their effect can be neglected, and the
SUð8Þ1 CFT (or equivalently the Nf ¼ 8 QED2) remains a
good description of the system. With W ¼ 3, each unit
cell in the T1 direction has three SU(4) pseudospins. In the
absence of T1 symmetry breaking, the system has to
be gapless based on the SU(4) Lieb-Schultz-Mattis
constraint [48].
For W ¼ 4, the distance between the two Fermi points

within each band is π, and thus allows for the following
symmetry-preserving umklapp interactions,�X

m

ψ†
L;n;mψR;n;m

��X
m

ψ†
L;n0;mψR;n0;m

�
þ H:c:; ð6Þ

where n; n0 ¼ 1, 2 label the two 1D parton bands that are
(partially) occupied. These interactions can all be written as
the backscattering between left-moving and right-moving
primary fields in the SUð8Þ1 CFT which both carry the
28-dimensional representation of SU(8) [47]. In the SUð8Þ1
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CFT, each of such primary fields has a scaling dimension
3=4. Therefore, each of these umklapp interactions has a
scaling dimension 3=2 and again is a relevant perturbation.
These perturbations can lead to a phase with nonzero
hP4

m¼1 ψ
†
L;n;mψR;n;mi (for both n ¼ 1, 2) that gap out the

system while breaking the T1-translation symmetry by
doubling the unit cell. Other symmetries remain intact in
this gapped phase. Interestingly, for W ¼ 4, each unit cell
along the T1 has four SU(4) pseudospins. Thus, in this case,
the SU(4) Lieb-Schultz-Mattis constraint does not require a
gapped phase to break the T1-translation symmetry. As we
will demonstrate, the DMRG with W ¼ 4 also shows a
doubling of the unit cell, which is consistent with our field
theory analysis.
Numerical study.—We perform DMRG simulations

using the ITensor library [49]; to accelerate the simulations,
we explicitly conserve three U(1) quantum numbers cor-
responding to total Sz, Vz, and SzVz. A key observable is
the pseudospin gap Δ, which we obtain as the energy
difference between the ground states in the sectors with
ðSz; Vz; SzVzÞ ¼ ð0; 0; 0Þ [which contains the SU(4)
singlet] and ðSz; Vz; SzVzÞ ¼ ð1; 0;−1=2Þ. For each
cylinder circumference W, we obtain the gap Δ for
cylinders of varying length and then perform an extra-
polation to the thermodynamic limit.
The gap obtained forW ¼ 2, 4 is shown in Figs. 3(a) and

3(c). In both cases, we find that the gap remains finite in the
limit of L → ∞, consistent with the expectation of a gapped
phase due to the umklapp scattering. Translation-symmetry
breaking can be observed directly in the bond expectation
values hPα S

α
i · S

α
j i, where Sα are the 15 SU(4) pseudospin

operators fσa; τb; σaτbga;b¼x;y;z, and i, j are a pair of
nearest-neighbor sites. The pattern of bond expectation
values is shown for the middle four rungs in a cylinder of
length L ¼ 24 and circumference W ¼ 2, 4 in Figs. 3(b)
and 3(d). Unit cell doubling along T1 can be clearly seen in
both cases. We emphasize that for W ¼ 4, no translation-
symmetry breaking along the circumference of the cylinder
(i.e., along T2) is observed [47], indicating that the state
does not originate from plaquette coverings of the lattice as
proposed in Refs. [26,50]. We also consider an alternative
compactification on the cylinder with circumference
W ¼ 4 [47] that is chosen to be compatible with the
12-site valence-bond-solid-ordered (VBS-ordered) state
that was proposed as candidate ground state in
Ref. [26]. In this geometry, we find further evidence for
the validity of the parton construction, and no indications
for the formation of a 12-site VBS.
The finite-size behavior of the gap forW ¼ 3 is shown in

Fig. 4(a). Although the results for the gap are not fully
conclusive, they are consistent with either a vanishing or a
very small gap. Here, a bond dimension of up toM ¼ 8000
was used, resulting in a truncation error of ϵtr ≃ 5 × 10−5

for the ground state. Since the truncation errors in the
Sz ¼ 1 sector were slightly higher, to obtain a more
accurate value for the gap we performed an extrapolation
of the energy with truncation error in each sector before
subtracting the two [47].
To understand the nature of the state in this case, we

consider the static SU(4)-pseudospin structure factor,

F ðk⃗Þ ¼
X
i

eik⃗·ðr⃗i−r⃗i0 Þ
X
α

hSα
i · S

α
i0
i; ð7Þ

where r⃗i, r⃗i0 denote the positions of the sites i, i0. For a
gapless state with a parton Fermi surface, the structure

(a) (b)

(c) (d)

FIG. 3. (a),(c) Finite-size scaling of the pseudospin gap for
cylinders of width W ¼ 2, 4 obtained using a bond dimension of
up to M ¼ 4000, resulting in truncation errors of ϵtr ≃ 10−5

(ϵtr ≃ 10−9) for W ¼ 4 (W ¼ 2). Red dashed line is a fit to Δ0 þ
a=L2 yielding Δ0 ¼ 1.42 for W ¼ 2 and Δ0 ¼ 1.29 for W ¼ 4.
(b),(d) Bond expectation values for the middle four rungs in a
cylinder of length L ¼ 24 and width W ¼ 2, 4, respectively.

(a)

(b) (c)

FIG. 4. (a) Finite-size scaling of the pseudospin gap for
cylinders of circumference W ¼ 3. Red dashed line is a linear
fit, while the green dashed line is a fit to Δ ¼ a=L. (b),(c)
Pseudospin structure factor obtained for a finite cylinder with
W ¼ 3 and length L ¼ 32 with respect to a site in the middle of
the system. (b) Noninteracting partons in the mean-field band
structure with Φ ¼ π. (c) DMRG.
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factor is expected to exhibit cusps at particular momenta
corresponding to the “2kF” values of the Fermi sea.
Figure 4(c) shows the structure factor calculated in the
ground state of a length L ¼ 32 cylinder using DMRG.
Comparing it to the structure factor calculated for the mean-
field ansatz with Φ ¼ π using Wick’s theorem [Fig. 4(b)],
we observe good qualitative agreement and in particular see
that the cusps appear at the same momenta.
Finally, we note that starting from the mean-field ansatz,

the coupling to the gauge field may be numerically
implemented by a Gutzwiller projection, i.e., projecting
the mean-field wave function to a single occupancy on each
site. The correlations in the resulting state can be probed
using Monte Carlo sampling of the projected wave func-
tion. Carrying out this projection, we find that although no
symmetry breaking is observed for W ¼ 2, 4, the power-
law decay of the SU(4)-pseudospin correlation functionP

αhSα
i · S

α
i0
i in both cases agrees with the CFT prediction.

This suggests that the Gutzwiller projection does not
capture the effect of the umklapp interactions which are
particularly important to the cylinder geometries with
W ¼ 2, 4. For W ¼ 3, we verify that the cusps in the
structure factor remain at the same position in the momen-
tum space as for the mean-field ansatz [47].
Discussion.—For the quasi-1D geometries with W ¼ 2,

3, 4, the DMRG results agree well with the analysis based
on the parton mean-field ansatz plus possible umklapp
interactions. We emphasize that the symmetry-allowed
umklapp interactions considered are all particular to certain
geometries (W ¼ 2, 4). They are not expected to appear in
the 2D limit as there is no Fermi-surface nesting in the 2D
band structure [shown in Fig. 1(b)] at filling ν ¼ 1=4. In the
2D limit, the U(1) gauge flux Φ also does not affect the
parton Fermi surface. Therefore, we expect that the parton
Fermi surface obtained from the mean-field ansatz Eq. (3)
is stable in the 2D limit and provides a good candidate for
the ground state of the SU(4)-symmetric Kugel-Khomskii
model Eq. (1) on the triangular lattice.
In real materials with spin and orbital degrees of

freedom, one can only expect an approximate SU(4)-
peseudospin symmetry. A small SU(4)-symmetry-breaking
perturbation is expected to split the fourfold degeneracy of the
2D parton Fermi surface. Amore comprehensive investigation
of the stability of the parton Fermi surface to SU(4)-
symmetry-breaking perturbations and other non-Kugel-
Khomskii-type interactions will be left for future studies.
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