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Li-excess layered manganese oxides1,2 have attracted widespread 
attention because of their large reversible capacity, which con-
siderably exceeds that of conventional Li-ion cathode materi-

als3–5. Li-excess materials are not only of commercial interest, but also 
raise fundamental scientific questions because their large reversible 
capacities cannot be explained by the conventional understanding 
of redox mechanisms in intercalation compounds. Conventional 
theories are also unable to explain other unusual electrochemical 
behaviour, including a 4.5 V ‘activation’ plateau during the first 
charge; a ~0.5 V hysteresis that persists even at low rates1,6; and a 
gradual decrease in the average voltage on cycling (‘voltage fade’)7,8. 
These features are rarely seen in other intercalation compounds, but 
appear almost universally across a wide range of layered Li-excess 
manganese oxides that includes layered Li2MnO3 (refs. 9–11) and its 
alloys1,2,12. Similar behaviour is also seen in related compounds such 
as Mn-containing disordered rocksalts13,14, Na-intercalated manga-
nese oxides15–18, and some 4d and 5d transition-metal oxides19–24.

The most widely accepted interpretation of the anomalous capac-
ity of Li-excess manganese oxides is reversible O2−/O− redox25–29. 
According to this hypothesis, the removal of Li results in the deple-
tion of non-bonding oxygen p states, resulting in turn in the oxida-
tion of O2− ions to O−. The experimental basis for this interpretation 
is the absence of evidence for transition-metal oxidation14,26,28,30–34 
and the appearance of a localized spectroscopic feature in the oxy-
gen K-edge, which has been attributed to an O− species26,30,31,34.

Despite extensive study of Li-excess materials and the broad 
acceptance of the oxygen redox hypothesis, a detailed picture of 
how oxygen redox would lead to an activation plateau, hyster-
esis and voltage fade remains elusive. The migration of transition-
metal ions to octahedral sites in the Li layer is widely understood 
to be involved in these phenomena7,35,36. It has been suggested 
that the coupling of oxygen redox to such transition-metal migra-
tion could explain the unusual electrochemical behaviour of 
Li-excess materials30,37. Nevertheless, although the electrochemical  

behaviour of conventional intercalation electrodes such as LixCoO2 
and LixFePO4 can be described by rigorous thermodynamic and 
kinetic models5,38, such models remain largely phenomenological for 
the Li-excess manganese oxides39. Furthermore, the spectroscopic 
feature attributed to O− is consistent with molecular oxygen and 
peroxide ions31,40–42. These considerations motivate a re-examination 
of possible redox mechanisms in the Li-excess manganese oxides.

Here we critically analyse the experimental evidence for O2−/O− 
oxygen redox in Li-excess materials and show that other phenom-
ena, such as the decomposition of the cathode material, can explain 
the observed spectroscopic features. We then explore alternative 
mechanisms, including the formation of peroxide ions or trapped 
oxygen molecules, and the oxidation of Mn4+ to Mn7+ with con-
comitant migration from octahedral to tetrahedral sites. Although 
a case for the reversible formation of molecular oxygen or peroxide 
ions has already been made43–45, we argue that Mn4+/Mn7+ redox 
(possibly in concert with the formation of peroxide ions or trapped 
oxygen molecules) should also be given serious consideration, as 
it is consistent with available experimental evidence and is capable 
of explaining the activation plateau, voltage hysteresis and voltage 
fade. We conclude by noting that there is insufficient experimen-
tal evidence to determine to what extent O2−/O− redox and each of 
the alternative mechanisms occurs, and that the fragility of cathode 
materials at high states of charge may be a major impediment to 
resolving how much each mechanism contributes to the anomalous 
capacity.

Critical analysis of oxygen redox
Although ‘oxygen redox’ can, in principle, refer to any redox process 
involving oxygen, the anomalous capacity of Li-excess manganese 
oxides is generally attributed to a specific oxygen redox mechanism: 
the reversible oxidation of lattice O2− ions to O− ions25,26,29. The 
removal of electrons from oxygen p states, rather than transition-
metal d states, has been attributed to a specific local environment: 
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oxygen p states for which neither of the cation sites that the state 
points at is occupied by a transition-metal ion25. It is important to 
acknowledge that transition-metal oxides exhibit a high degree of 
covalency, and attributing redox to one particular species is a sim-
plification. For example, prior calculations show that the charge 
density around oxygen ions changes during the deintercalation of 
LiCoO2, despite the fact that this reaction nominally operates on 
the Co3+/Co4+ redox couple46,47. Despite the subtleties arising from 
hybridization, formal oxidation states are a powerful tool in under-
standing intercalation chemistry. In particular, first-principles cal-
culations show that the changes in electronic structure arising from 
the removal of Li from Li2MnO3 and other Mn4+ oxides (assum-
ing no other structural rearrangement) can sensibly be interpreted 
as the reduction of O2− to O− (refs. 25,44). (We emphasize that the 
O2−/O− oxygen redox mechanism is distinct from the oxygen redox 
mechanism suggested to occur during the delithiation of 4d and 5d 
transition-metal oxides, involving ‘peroxo-like’ O2

n− species19,22–24.)
Although the O2−/O− oxygen redox interpretation has been 

widely embraced as explaining the anomalous capacity of Li-excess 
manganese oxides24,30,48–50, it represents a radical departure from the 
corpus of materials chemistry. Localized oxygen holes have been 
observed as radiation-induced point defects51,52, but the notion 
of a material in which a macroscopic portion of oxygen sites can 
be interpreted as O− ions is, to our knowledge, unprecedented. 
(Superconducting cuprates and rare-earth nickelates have been 
cited as a precedent24,53, but these compounds are characterized by a 
high degree of covalency and generally are not construed to contain 
an O− species54,55.) Being an extraordinary claim, the O2−/O− oxy-
gen redox interpretation of Li-excess manganese oxides requires 
extraordinary evidence.

The crux of the evidence for the oxygen redox hypothesis is the 
spectroscopic observation of localized, unoccupied oxygen p states. 
X-ray absorption spectroscopy shows the appearance of an absorp-
tion peak at 531 eV during the first-charge plateau of many differ-
ent Li-excess manganese oxides26,30,31,34,56. Excitation near this energy 
yields emission at 523 eV (refs. 26,31,56). That the emission at 523 eV 
is driven by absorption at 531 eV is especially evident in resonant 
inelastic X-ray scattering (RIXS) maps30,31,57, demonstrating that 
these two features are localized to the same species. Similar absorp-
tion and emission features are also seen in Na manganese oxides 
that exhibit an anomalous capacity16,17,58.

Although the appearance of localized spectroscopic features has 
been interpreted as the signature of O2−/O− redox, it is also con-
sistent with the formation of molecular O2 (ref. 41), as noted by Xu 
et al.31. Similar spectroscopic features have been observed in lithium 
peroxide40,59. In contrast, simulated spectra of stretched peroxide 
molecules suggest30 that an O− species would not have an absorption 
feature near 531 eV. Although it has been suggested that molecu-
lar oxygen or peroxide ions are forming reversibly during electro-
chemical cycling34,43–45, such species could also be the product of 
the irreversible decomposition of the cathode. This would not be 
surprising, given that the release of oxygen gas is typically favoured 
thermodynamically for oxide cathode materials at high states of 
charge5,60. Decomposition could, for example, occur spontaneously 
after the charged cathode is removed from the electrochemical cell 
for ex  situ characterization. (To the best of our knowledge, all O 
K-edge measurements on Li-excess manganese oxides have been 
performed ex situ.) Decomposition could also be triggered by beam 
damage during spectroscopic experiments. That the changes in the 
oxygen spectrum are consistent with the formation of molecular O2 
or peroxide ions means that, despite widespread acceptance, there 
is no direct evidence that compellingly supports the O2−/O− oxy-
gen redox mechanism in the context of Li-excess manganese oxides. 
Although the absence of direct evidence does not disprove the O2−/
O− oxygen redox hypothesis, it motivates a critical re-examination 
of alternative reaction mechanisms.

Exploration of alternative redox mechanisms
Several other mechanisms have been hypothesized to account for 
the anomalous capacity of the Li-excess manganese oxides, includ-
ing the release and subsequent reduction of O2 (ref. 61), the forma-
tion of oxygen vacancies that enable Mn2+/Mn3+/Mn4+ redox62–65, 
the insertion of protons10,66, the reversible formation of peroxide 
ions34,43–45,67 and the oxidation of Mn beyond the +4 oxidation 
state9,67. In this analysis, we reconsider possible mechanisms, start-
ing from basic thermodynamic considerations.

The first charge cycle, characterized by a 4.5 V plateau, provides 
a starting point for analysing possible redox mechanisms. Figure 
1 shows the plateau during the first charge of various Li2MnO3–
LiMO2 composites6,67 and pure Li2MnO3 (ref. 11). (While it is still 
under debate as to whether such compounds are better described 
as a solid solution or a coherent two-phase mixture, we will refer to 
them as composites.) The sloping part of the voltage curve for the 
composite materials arises from the delithiation of the LiMO2 com-
ponent, whereas the plateau is associated with the Li2MnO3 compo-
nent. The universality of the 4.5 V plateau is especially apparent in 
Fig. 1b, which compares the activation plateau of pure Li2MnO3 to 
that of the Li2MnO3 component of each Li2MnO3–LiMO2 compos-
ite, obtained by removing the portion of the voltage curve that cor-
responds to the theoretical capacity of the LiMO2 component and 
rescaling the composition axis.

Phase diagrams provide a starting point for understanding the 
reaction mechanisms that could occur during the activation plateau. 
The equilibrium pathway resides in the Li–M–Mn–O composition 
space. However, we can restrict ourselves to the Li–Mn–O phase 
diagram since the voltage and capacity of the activation plateau 
(relative to the fraction of ‘Li2MnO3’) is unaffected by the identity of 
the other transition metals M of the composite (Fig. 1), indicating 
that the activation plateau involves only the Li2MnO3 component. 
The relevant portion of the equilibrium Li–Mn–O phase diagram 
(as calculated by the Materials Project68–70) is shown in Fig. 2a. The 
equilibrium delithiation mechanism, represented by a dashed line, 
leads to the release of oxygen gas through the reactions

→ + + + .+ −Li MnO 1
5
Li Mn O 3

10
O 6

5
Li 6

5
e 3 72V (1)2 3 4 5 12 2

and

→ + + + .+ −Li Mn O 5MnO O 4Li 4e 4 02V (2)4 5 12 2 2

(Voltages are referenced to Li/Li+ and are computed from data in 
the Materials Project68–70.) Although such a ‘densification’ mecha-
nism was initially thought to be responsible for the first-charge 
plateau1,35,36, this pathway now seems unlikely because the amount 
of gas detected by differential electrochemical mass spectrometry 
(DEMS) during the first charge of Li2MnO3–LiMO2 composites is 
far too small to account for the observed capacity26,31,71.

The DEMS measurements cannot rule out the possibility that 
O2 could remain trapped within the active material as isolated mol-
ecules44 or small pockets of gas. If such trapped oxygen were revers-
ibly reduced and oxidized on subsequent cycles, the cell would 
function as a ‘hybrid Li-ion/Li–O2’ battery72. Alternatively, oxygen 
could be reversibly oxidized to form peroxide dimers. Early ex situ 
Raman26,73 studies failed to detect peroxide ions or molecular oxy-
gen, but recent in situ studies have observed a Raman peak consis-
tent with peroxide ions45. First-principles calculations also indicate 
that the delithiation of Li-excess Mn oxides could potentially result 
in the formation of peroxide ions or trapped oxygen molecules43,44.

While the reversible formation of peroxide ions or trapped 
oxygen molecules has been used to explain the anomalous capac-
ity of Li-excess Mn oxides34,43–45,67, here we explore an alternative 
mechanism that has received little consideration: the oxidation of 
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Mn from a formal oxidation state of +4 to +7. The importance of 
this mechanism is revealed when we explore a scenario in which the 
dimerization of oxygen is kinetically limited. To this end, we con-
sider the metastable phase diagram obtained by excluding all phases 
that exhibit covalent oxygen–oxygen bonds (that is, O2, Li2O2, LiO2 
and LiO3). Within this metastable phase diagram, the equilibrium 
reaction pathway (represented by the dashed line in Fig. 2b) occurs 

via the oxidation of Mn4+ to Mn7+ through a series of three-phase 
reactions that yield the Mn4+ compounds MnO2 and Li4Mn5O12 and 
the Mn7+ compounds LiMnO4 and Mn2O7.

The observed voltage curves suggest that the system does not 
follow this sequence of reactions. Figure 2c compares the experi-
mentally observed first-charge voltage curves for Li2MnO3 (ref. 11)  
and the Li2MnO3 components of composite materials6,67 with the 

0.0 0.5 1.0

x in Li1+y–xM1–xO2

3.0

3.5

4.0

4.5

5.0

E
 (

V
 v

s 
Li

/L
i+

)

Li2MnO3
Li1.23Co0.30Mn0.47O2
Li1.20Ni0.20Mn0.60O2
Li1.14Ni0.29Mn0.57O2

a

0.0 0.5 1.0 1.5 2.0

x in ‘Li2–xMnO3’

3.5

4.0

4.5

5.0

E
 (

V
 v

s 
Li

/L
i+

)

b

Fig. 1 | Comparison of the first-charge voltage curves of pure Li2MnO3 and Li2MnO3/LiMO2 composites. a, The first-charge voltage curves for Li2MnO3/
LiMO2 composites. b, The portion of the first-charge voltage curves arising from the Li2MnO3 component of Li2MnO3/LiMO2 composites. The shaded 
region in b highlights that the plateau ends when approximately 1.5 Li has been removed. Data for Li1.20Ni0.20Mn0.60O2, and Li1.14Ni0.29Mn0.57O2 from ref. 67; 
data for Li1.23Co0.30Mn0.47O2 and Li2MnO3 from refs. 6,11, respectively.
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Fig. 2 | Theoretical phase diagrams and voltage curves for the Li2O–MnO2–O2 system. a, The equilibrium Li2O–MnO2–O2 phase diagram shows that the 
equilibrium delithiation mechanism (represented by the dashed line) involves the evolution of O2 gas. b, The metastable phase diagram shows that if the 
formation of oxygen–oxygen bonds were kinetically impeded, then delithiation could occur via the oxidation of Mn to the +7 oxidation state in the form of 
LiMnO4 and Mn2O7. In both a and b, the hypothesized Li1/2MnO3 phase, which is not a ground state in either phase diagram, is represented by a red dot. 
c, Comparison between the experimental voltage curves for Li2MnO3 and the Li2MnO3 component of composites6,11,67, and the theoretical voltage curves 
for three mechanisms: the equilibrium pathway on the phase diagram in a, the equilibrium pathway on the metastable phase diagram shown in b, and 
the delithiation of Li2MnO3 to Li1/2MnO3. The experimental voltage curves are the same as those shown in Fig. 1b. The spread of predicted voltages for the 
Li2MnO3 to Li1/2MnO3 pathway using different first-principles approaches (that is, PBE+U and HSE) is shown as a red band.
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calculated voltage curves for the metastable reaction pathway 
(dashed orange line) and the true equilibrium pathway (dashed 
yellow line). The absence of a step at x = 9/8 in the observed volt-
age curves implies that the reaction does not proceed by the above 
three-phase reactions.

It would not be surprising for these three-phase reactions to be 
kinetically slow, as they require the long-range diffusion of Mn or 
O. For example, if the oxygen sublattice were to remain intact, Li 
extraction would need to be accompanied by a redistribution of Mn 
such that some regions become enriched in Mn and others become 
depleted. The sluggish mobility of Mn relative to that of Li makes this 
scenario unlikely, suggesting a kinetically simpler reaction that results 
in a metastable Li2−xMnO3 compound according to equation (3):

→ + +−
+ −x xLi MnO Li MnO Li e (3)x2 3 2 3

The notion of a metastable Li2−xMnO3 phase forming on first 
charge is not new: the oxygen-redox hypothesis represents the for-
mation of a metastable Li2−xMnO3 phase in which some of the oxy-
gen anions are in the −1 oxidation state25,29,37. However, the fact that 
the equilibrium phases (within the metastable phase diagram of Fig. 
2b) contain Mn4+ and Mn7+ suggests that the Li2−xMnO3 reaction 
product could be a mixed-valence Mn4+/Mn7+ compound. This is 
further motivated by the fact that many of the Mn4+ and Mn7+ phases 
in the metastable phase diagram favour fcc oxygen sublattices74–77 
and therefore could form a solid solution or nanocomposite.

Critical analysis of Mn oxidation
To explore the possible formation of Li2−xMnO3 compounds con-
taining Mn4+ and Mn7+, we calculated from first principles the 
energies of Li1/2MnO3 structures that have an fcc oxygen sublat-
tice. This composition (represented by a red circle in Fig. 2a and 
b) approximates the capacity at the end of the first-charge plateau 
and requires the oxidation of half of the Mn4+ ions to Mn7+. Because 
Mn4+ prefers octahedral coordination74 and Mn7+ prefers tetrahe-
dral coordination76, we considered structures wherein half of the 
Mn reside in tetrahedral sites and half in octahedral sites. The low-
est-energy structure found is shown in Fig. 3a. (See Supplementary 
Information for additional details.)

The voltage for the reaction → + +∕
+ −Li MnO Li MnO Li e2 3 1 2 3

3
2

3
2  

calculated with the Perdew–Burke–Ernzerhof functional with on-
site Coulomb corrections (PBE+U) is 4.34 V for U = 3.9 eV. (The 
predicted voltage is 4.55 V when U = 5 eV.) The hybrid Heyd–
Scuseria–Ernzerhof (HSE) functional predicts a slightly higher volt-
age of 4.75 V. These values are consistent with the experimentally 
observed voltage, considering that the error in intercalation voltages 
for transition-metal oxides predicted by PBE+U and HSE is often 
several tenths of a volt78. Preliminary calculations (using PBE+U, 
HSE and strongly constrained and appropriately normed (SCAN) 
functionals; see Supplementary Information) also suggest that Mn 
oxidation is thermodynamically favoured over O2−/O− oxygen 
redox. However, as discussed in the Supplementary Information, 
a definitive determination of which mechanism is thermodynami-
cally favoured will require more advanced approaches to electronic 
structure calculations.

The energy for a phase to decompose into its equilibrium state 
can serve as a rough guide to whether that phase can be pro-
duced in a laboratory79. The energy for the decomposition of 
Li1/2MnO3 into the metastable phases of Fig. 2b through the reac-
tion → +∕Li MnO LiMnO MnO1 2 3

1
2 4

1
2 2 is −0.15 eV per atom. Further 

decomposition into the true equilibrium state through the reaction

+ → + +1
2
LiMnO 1

2
MnO 1

8
Li Mn O 3

8
MnO 3

8
O (4)4 2 4 5 12 2 2

has an energy of −0.10 eV per atom. (Including the entropy of gas-
phase O2 under standard conditions80 yields a reaction free energy of 
−0.15 eV per atom.) Given that these reaction energies are compa-
rable to the decomposition energies of other metastable compounds 
that can be synthesized under laboratory conditions79, it is plausible 
that Li1/2MnO4 could form during an electrochemical experiment.

The hypothesized Li1/2MnO3 structure is intended to be a rep-
resentative model of the local structure of the charged Li2MnO3 
component of Li-excess manganese oxides, and other Li2−xMnO3 
configurations with similar local structure could also form upon 
charge before Li1/2MnO3. The presence of a non-negligible slope in 
the 4.5 V ‘plateau’ of Fig. 1b could be due to the formation of such 
configurations. A key property of the Li1/2MnO3 structure shown in 
Fig. 3a is that it provides each oxygen site with a local environment 
that is consistent with Pauling’s second rule81. Structures with severe 
violations of Pauling’s second rule were predicted to be significantly 
higher in energy.

Mixed-valence Mn4+/Mn7+ phases similar to that of Fig. 3a are 
kinetically accessible from the original Li2MnO3 phase because 
their formation requires only a single octahedral to tetrahedral 
hop for each Mn that migrates. Figure 3b and c illustrates how 
Li2MnO3 could topotactically transform into Li1/2MnO3. Two-thirds 
(one-third) of the octahedral sites of the transition-metal layer of 
Li2MnO3 are occupied by Mn (Li), as shown in Fig. 3b. Figure 3c 
shows how the hypothesized Li1/2MnO3 structure can emerge if one-
quarter of the Mn atoms migrate to tetrahedral sites in the Li layer 
above (upward-pointing triangles) and one-quarter to tetrahedral 
sites in the Li layer below (downward-pointing triangles).

If discharge proceeds via the reduction of Mn7+ to Mn4+, then 
the availability of multiple tetrahedral to octahedral migration path-
ways can explain the absence of the 4.5 V plateau on subsequent 

b c
Li2MnO3 Li1/2MnO3

Oct Li
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Li1/2MnO3
a

Fig. 3 | Hypothesized Li1/2MnO3 structure representing the Li2MnO3 
component of the cathode material at the end of the activation plateau. 
a, Relaxed crystal structure for the hypothesized Li1/2MnO3 structure, with 
green, purple and red corresponding to Li, Mn and O, respectively.  
b,c, Comparison of the Li2MnO3 and hypothesized Li1/2MnO3 structures. 
The circles represent the octahedral (Oct) sites within the transition-metal 
layer. The triangles represent the tetrahedral (Tet) sites in the Li layer that 
reside directly above and below the octahedral sites in the transition-metal 
layer. The black lines denote the unit cell.
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cycles: tetrahedral Mn ions are unlikely to return to their original 
octahedral sites during the first discharge. A tetrahedral Mn ion can 
migrate to any of the four octahedral sites with which it shares a 
face. (In the Li1/2MnO3 structure of Fig. 3a, one of these sites is likely 
to be inaccessible because it shares a face with another tetrahedral 
Mn ion.) After the first discharge, the cation ordering (within the 
Li2MnO3 component) is likely to resemble a disordered rocksalt 
more than layered Li2MnO3. The second-charge voltage curve will 
then differ from the first-charge voltage curve, with the diversity of 
local Mn environments yielding contributions to the capacity across 
a wide voltage range. Voltage fade upon further cycling7 could arise 
from further rearrangement of Mn ions.

The migration of Mn between tetrahedral and octahedral sites 
can also explain the large hysteresis in the voltage curve6,82,83.  
If the kinetics of Mn migration between octahedral and tetrahedral 
sites is rate-limiting, then discharge could proceed via the reduc-
tion of Mn7+ to Mn5+, which would not require the migration of 
manganese ions because Mn5+ favours tetrahedral coordination84. 
The difference in voltage between the Mn4+/Mn7+ and Mn5+/
Mn7+ redox couples would manifest as a polarization in the volt-
age curve, and energy would be lost in the form of heat released 
by the gradual migration of manganese ions to octahedral sites.  
(The reduction of octahedral Mn4+ remaining at the end of charge 
to Mn3+ could similarly occur without Mn migration.) Such a pro-
cess is analogous to how sluggish diffusion can lead to hysteresis in 
conversion electrodes83.

The notion that octahedral/tetrahedral migration is respon-
sible for the unusual electrochemical behaviour of the Li-excess 
manganese oxides is supported by similar behaviour in LiCrO2 · 
Li2MnO3 composites. In these materials, (de)intercalation below 
4.4 V operates on the Cr3+/Cr6+ redox couple and is accompa-
nied by the migration of Cr between octahedral and tetrahedral  
sites85–87. The voltage profile of these composites changes mark-
edly after the first charge, and this ‘activation’ phenomenon has 
been attributed to the migration of Cr ions to octahedral sites in 
the Li layer during the first discharge87. During subsequent cycling, 
LiCrO2 · Li2MnO3 composites also exhibit considerable polariza-
tion (~0.3 V)85. Similar activation and hysteresis have also been 
observed in LiCrO2 · Li2TiO3 composites88.

If reversible Mn4+/Mn7+ redox were responsible for the anoma-
lous capacity of Li-excess manganese oxides, then experimental 
verification would be challenging because of the fragility of oxides 
containing Mn7+. For example, beam damage can reduce Mn7+ to 
Mn4+ in KMnO4 during Mn K- and L-edge X-ray absorption experi-
ments89,90, as well as in Mn L-edge electron energy-loss spectros-
copy91. Experiments have also found KMnO4 to decompose during 
O K-edge X-ray absorption measurements92. (Although studies on 
Mn7+ compounds such as KMnO4 can provide a useful guide as 
to the fragility of a Mn7+-containing cathode, a charged Li-excess 
cathode could potentially be degraded more rapidly than refer-
ence compounds owing to differences in bonding, particle size and 
microstructure.) The spectroscopic observation of Mn4+ in charged 
cathodes therefore does not definitively rule out the presence of 
Mn7+. Experiments showing that beam damage can induce a RIXS 
feature in LiAlO2 that is identical to the feature observed in charged 
Li-excess cathodes42 support this scenario, as does the observa-
tion40 of a similar RIXS feature in Li2O. Lastly, we note that in situ 
beam damage may not greatly affect electrochemical performance 
because in typical experiments, the beam covers only a small frac-
tion of the electrode area.

Despite the fragility of Mn7+ compounds, there is experimental 
evidence to suggest the presence of Mn7+ at the end of charge. First, 
although the small size of the pre-edge peak in the Mn K-edge 
indicates that most of the signal originates from octahedral Mn, 
changes in the Mn K-edge measured in situ are consistent with the 
formation of a small amount of Mn7+. These changes include a shift 

of the main peak to higher energy and a growth of the pre-edge 
peak11,26,28,30. Second, a recent in situ diffraction study on a Li-excess 
cathode concluded that transition-metal ions migrate to tetrahe-
dral sites in the Li layer during charge and return to octahedral sites 
on discharge93. Lastly, the Raman feature attributed to the revers-
ible formation of peroxide ions is also consistent with tetrahedral 
Mn7+ (refs. 45,94).

Figure 4a, b illustrates the two alternatives to the lattice oxygen 
redox hypothesis that we have explored so far. Although the forma-
tion of Mn7+ (Fig. 4a) as a charge mechanism is quite distinct from 
the formation of internally trapped O2 molecules or peroxide ions 
(Fig. 4b), the two mechanisms could be linked. The migration of 
Mn to tetrahedral sites could trigger the spontaneous formation of 
O2 molecules or peroxide ions, in which case the Mn7+ ions would 
be reduced and likely to return to octahedral sites, as shown in 
Fig. 4c. This scenario is consistent with spectroscopic observations 
showing Mn mainly in the +4 oxidation state and also can explain 
the activation process and hysteresis. The disappearance of the acti-
vation plateau after the first cycle could arise from the availability of 
multiple tetrahedral to octahedral migration pathways as discussed 
above, and the spontaneous formation of oxygen dimers could lead 
to hysteresis because charge and discharge would follow different 
reaction pathways: whereas charge would occur through the oxida-
tion of Mn4+ to Mn7+ (as shown in Fig. 4c), discharge would occur 
through the reduction of O2 or O2

2− to O2−.
In the case of pure Li2MnO3, the observation through DEMS of 

considerable O2 release during the first charge and poor electro-
chemical reversibility11 are consistent with the spontaneous decom-
position of a Mn7+ phase. Other kinetic processes leading to oxygen 
evolution, such as the densification mechanism discussed above, 
may also occur. However, the agreement between the first-charge 
voltage curves (when appropriately normalized) of Li2MnO3 and 
of composite materials suggests that the electrochemical process 
occurring in these compounds is the same. Therefore, the embed-
ding of Li2MnO3 in a nanocomposite may play an important role in 
stabilizing the Mn7+ phase formed on charge or stabilizing a struc-
ture containing peroxide ions or trapped oxygen molecules.

Mn Li

Mn oxidation
a

Oxygen oxidation
b

c

O2
n−

7+

4+

7+

4+

Mn oxidation followed by spontaneous O/Mn redox

4+
7+

Fig. 4 | Alternative charge mechanisms in Li-excess manganese oxides. 
a, The oxidation of Mn4+ to Mn7+. b, The oxidation of oxygen ions to form 
peroxide ions or internally trapped oxygen molecules. c, The oxidation of 
Mn4+ to Mn7+ followed by the spontaneous formation of peroxide ions or 
trapped oxygen molecules and the reduction of Mn. Colours as in Fig. 3.
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Conclusions
The experimental evidence for O2−/O− lattice oxygen redox in 
Li-excess materials is not yet conclusive, and alternative mecha-
nisms require renewed attention. (We emphasize that although 
available experimental observations do not provide compelling 
direct evidence for O2−/O− redox, they also do not definitively rule 
it out.) We have highlighted several mechanisms that appear to be 
consistent with available data (illustrated in Fig. 4): the oxidation 
of Mn4+ to Mn7+ accompanied by a migration from octahedral to 
tetrahedral sites; the formation of peroxide ions or trapped molecu-
lar oxygen; and the formation of Mn7+ followed by the spontaneous 
dimerization of oxygen. We have explored in depth the oxidation 
of Mn4+ to Mn7+ and found this hypothesis to be compatible with 
experimental and first-principles thermodynamics, supported 
by the observation of tetrahedral occupancy at the end of charge 
through X-ray diffraction93 and consistent with the electrochemi-
cal behaviour in Cr-based cathode materials which are known to 
undergo tetrahedral/octahedral migration85–88. The anomalous 
capacity may, however, involve contributions from multiple redox 
mechanisms. Furthermore, the redox mechanism on charge may be 
different from that on discharge (for example, the oxidation of Mn 
on charge and reduction of peroxide ions or trapped oxygen mole-
cules on discharge). Advances in both experimental and theoretical 
methods could lead to a clearer understanding of the roles played by 
different mechanisms. Innovations in in  situ experimental probes 
may be especially valuable because the excess capacity originates 
at high states of charge, where almost all intercalation compounds 
are metastable and highly susceptible to decomposition reactions. 
Techniques to probe for peroxide ions or molecular oxygen deep 
within cathode particles could also provide great insight.

Although our analysis focused on the Li-excess manganese 
oxides, the mechanisms discussed above could explain the anoma-
lous capacity of certain manganese oxides used as electrodes in 
Na-ion batteries15–18,95. These materials behave similarly to the 
Li-excess manganese oxides in that they exhibit an anomalous 
capacity and significant polarization. However, they differ in that 
there is no apparent ‘activation’: the charge curve does not qualita-
tively change after the first cycle. This could arise from the large size 
of the Na+ ions relative to Mn4+ ions, which makes it unfavourable 
for Na+ and Mn4+ ions to reside in the same layer. This scenario 
is supported by recent experiments on a Zn-doped Na manganese 
oxide18: transmission electron microscopy indicated that cations 
migrated from the transition-metal layer to the Na layer during 
charge and returned to the transition-metal layer on discharge.

These mechanisms could also explain the behaviour of certain 
4d/5d transition-metal oxides19–24. The electrochemical activity of 
these materials has been attributed to a combination of the oxi-
dation of octahedral Ir/Ru ions and oxygen redox involving the  
formation of a peroxo-like (O2)n− species or a true peroxide O2

2− 
(refs. 20,23,24,31,53,96,97). The electrochemical behaviour of these materi-
als is nevertheless also consistent with the migration of oxidized Ir 
and Ru ions between octahedral and tetrahedral sites, as discussed 
in the Supplementary Information. A RIXS feature similar to that 
observed in Li-excess manganese oxides has also been observed 
in charged Li2Ir1/2Sn1/2O3 and could represent the decomposition 
products of a compound containing highly oxidized Ir (ref. 20). 
Additionally, Raman signals associated with the anomalous capacity 
of Na3RuO4 and attributed to peroxide ions are also consistent with 
tetrahedral Ru7+ (refs. 97,98).

If the Mn-oxidation mechanism is correct, it suggests a guiding 
principle for the design of high-capacity cathode materials: the use 
of a nanocomposite or alloy may allow one to access high oxidation 
states that otherwise would lead to the decomposition of the mate-
rial. A challenge with such an approach is to manage the migration 
of transition-metal ions, as large changes in oxidation state are often 
accompanied by a change in coordination preferences. It may be 

possible to design cathode materials that use high oxidation states 
without inducing transition-metal migration or to design materials 
in which the migration of transition-metal ions is sufficiently facile 
and reversible to yield satisfactory electrochemical performance.

Methods
Density functional theory calculations were performed with the Vienna ab 
initio Simulation Package (VASP)99–102 with projector augmented-wave (PAW) 
pseudopotentials103. All calculations were spin-polarized and used plane-wave basis 
sets with 530 eV energy cut-offs. PBE+U calculations104 on oxides sampled the 
Brillouin zone with a k-point mesh density of at least 26 Å. HSE calculations105,106 
on oxides used a coarser density of at least 10 Å. Calculations on the primitive cell 
of bcc Li used a denser k-point mesh of 10 × 10 × 10. The PBE+U calculations used 
the on-site Coulomb correction of ref. 107 for Mn d states with Ueff = 3.9 eV and 5 
eV. HSE calculations used the standard mixing parameter α of 0.25. Relaxations 
used Gaussian smearing of width 0.2 eV and were converged to within a force 
convergence criterion of 0.02 eV Å−1 for both PBE+U and HSE calculations; 
these were followed by single-point calculations using the tetrahedron method 
with Blöchl corrections108 to obtain accurate energies. Because magnetic studies 
show that interactions between edge-sharing Mn4+ ions are ferromagnetic109, our 
calculations were restricted to ferromagnetic spin orderings.

Data availability
The analysis presented here can be reproduced with the data provided in the paper, 
supporting information and cited references. Additional calculation data generated 
during this study are available upon reasonable request.
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