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Experiments and theory have shown that cell monolayers and epithelial tissues exhibit solid-liquid and
glass-liquid transitions. These transitions are biologically relevant to our understanding of embryonic
development, wound healing, and cancer. Current models of confluent epithelia have focused on the role of
cell shape, with less attention paid to cell extrusion, which is key for maintaining homeostasis in biological
tissue. Here, we use a multiphase field model to study the solid-liquid transition in a confluent monolayer of
deformable cells. Cell overlap is allowed and provides a way for modeling the precursor for extrusion.
When cells overlap rather than deform, we find that the melting transition changes from continuous to first
order like, and that there is an intermittent regime close to the transition, where solid and liquid states
alternate over time. By studying the dynamics of five- and sevenfold disclinations in the hexagonal lattice
formed by the cell centers, we observe that these correlate with spatial fluctuations in the cellular overlap,
and that cell extrusion tends to initiate near fivefold disclinations.
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Understanding the dynamics and collective behavior of
cells in dense tissues is an important goal of biophysics, with
relevance to a number of developmental processes, such
as embryogenesis [1], wound healing [2], and cancer [3].
For example, the epithelial-mesenchymal transition can
be viewed as a solid-liquid transition occurring in vivo
[4–6], where cells become more motile and less adhesive:
this transition has been reported to play a role in tissue repair,
inflammation, and tumor progression [3,7,8]. Experimental
studies have also shown that epithelial cells can undergo an
unjamming transition between a glassy phase where their
dynamics is slow to a fluid phase with large-scale collective
motion both in vitro [9–14] and in vivo [14,15].

From a theoretical point of view, an appealing model
of a dense tissue is provided by a two-dimensional (2D)
confluent cell monolayer (i.e., a space-filling cell mono-
layer with packing fraction equal to unity). This system can
be studied by the cellular Potts model [16], the vertex
[17–20] and Voronoi [21,22] models, and their variants
[23,24]. Such frameworks have recently been used to study
the melting transition in monolayers of passive [20,25,26]
and active (motile) cells [22,27–29]. Cell motility and
deformability distinguish this problem from the 2D melting
of crystals of hard or soft disks [30–33], which proceeds
either via a discontinuous transition [34,35], or through an
intermediate hexatic phase and the unbinding of topologi-
cal defects [36–41].
Existing studies of vertex and Voronoi models of

confluent active monolayers suggest that a continuous
solid-liquid (or glass-liquid) transition can be observed
upon increasing cell motility [22,28]. While useful in

providing quantitative predictions, this work has mainly
focused on the role of cell intercalation (T1 transitions) in
controlling tissue rigidity and less on the role of cell
extrusion that in these strictly 2D models may be described
by cell removal (T2 transitions) [18,42]. In many situations,
however, cell extrusion is driven by cell crowding and
overlap, as commonly seen in confluent epithelia [43].
Cell overlap also occurs during early embryogenesis as an
epithelial monolayer is converted into a multilayered
epithelium following a tightly coordinated stratification
program [44]. Here we consider a model that explicitly
allows for cell overlap, interpreted as a precursor for cell
extrusion, to examine its role on the solid-liquid transition
of a confluent tissue.
To incorporate both particle deformation and overlap we

use a multiphase field model [45–48] to study melting of a
confluent layer of motile deformable particles. The behav-
ior of our system is controlled by the trade-off between
deformability and overlap: the less deformable a particle is,
the more it overlaps with its neighbors. At high deform-
ability we find a continuous solid-liquid transition with
increasing cell motility. The transition becomes first order
like at low deformability when cells overlap, with an
intermediate intermittent state, where the system as a whole
alternates between solid and liquid states. Finally, we
observe a strong correlation between unbound structural
defects (corresponding to five- and sevenfold disclinations
in the hexagonal lattice formed by the cell centers)
generated upon melting and local fluctuations in cell
overlap. Specifically, we find that cellular extrusion is
favored at fivefold disclinations.
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Our model may also serve as a bridge between particle-
based and confluent models. Upon decreasing cell deform-
ability, the system transitions from deformable particles
that tessellate their domain without overlap, similar to
vertex models, to almost-circular overlapping disks. The
connection with these two limiting cases is, however, only
qualitative. At high deformability, anisotropy of cell shape
is strongly correlated with fluidity (Figs. S5 and S6 [49]),
but, unlike vertex models, it does not provide an order
parameter for the liquid state. Conversely, at low deform-
ability, overlap in our model is much higher than that
allowed in systems of soft disks.
Our multiphase field model contains N scalar fields,

fϕiðrÞgNi¼1, each representing a different cell. The equilib-
rium configuration of the cell layer is determined by the
minimization of the following free energy [46,48]:
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The first three terms determine the shape of the cells. The
first term sets ϕ0 and zero as the preferred values of the field
inside and outside the cell, respectively. The second term
penalizes spatial variations of ϕ. Together, they determine
the physical properties of the cell boundary, such as the
interfacial thickness, which we define as ξ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2K=α
p

, and
surface tension σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8Kα=9
p

[52]. The third term is a soft
constraint that sets the preferred area of the cell to that of a
circle with target radius R. Finally, the fourth term models
the steric repulsion between cells by energetically penal-
izing cell overlap.
To model the dynamics of motile cells, we assume

simple relaxational and overdamped dynamics,

∂ϕi

∂t þ vi ·∇ϕi ¼ −
1

γ

δF
δϕi

; ð2Þ

where γ is a friction coefficient and we have included an
advection term that propels the cells with velocity vi, see
[49]. All cells have the same propulsion speed v0, while
their direction of motion θi is controlled by rotational noise
with diffusivity Dr,

dθiðtÞ ¼
ffiffiffiffiffiffiffiffi
2Dr

p
dWiðtÞ; ð3Þ

whereWi is a Wiener process. Cell motility is quantified by
the Péclet number Pe≡ ðv0=DrÞ=R, which is the ratio
between the cells’ persistence length and their target radius.
These equations are a generalization of the active Brownian
particle model [53,54] to a system of deformable cells.
Our model allows cells to both deform and overlap.

In general, these are competing effects: deformation is

energetically penalized by surface tension, while overlap is
penalized by repulsion. We quantify cell deformability
through the dimensionless ratio d≡ ε=α. When d ≪ 1,
cells tend to acquire a circular shape and overlap with their
neighbors [Figs. 1(a), 1(c), and 1(e)]. Conversely, when
d ≫ 1, cells change their shape to match with their
neighbors and minimize overlap [Figs. 1(b), 1(d), and 1(f)].
We first examine the role of deformability and motility

on the solid-liquid transition at confluence. To this end, we
employ a finite difference method to solve numerically
Eqs. (2) and (3) for N ¼ 36 and 100 cells in a rectangular
box of aspect ratio that accommodates an undeformed
hexagonal cell lattice, with periodic boundary conditions.
Choosing R as unit of length and D−1

r as unit of time, we
use δx ¼ 1=12 and Δt ¼ 5 × 10−5 as our simulation lattice
unit and time step, respectively. We tune deformability by
varying α and K such that ξ is constant. We initiate the cells
in a hexagonal lattice with λ ≥ 3000 K and allow the
system to achieve confluence by setting the cell target area

(a) (b)

(c) (d)

(e) (f)

FIG. 1. Simulation snapshots of the stationary state for different
deformability (quantified by d) and motility (quantified by Pe).
The contours of the cells correspond to the level fϕi ¼ 1gNi¼1,
while the coloring corresponds to the cell index at t ¼ 0 (for
visualizing cell rearrangements). (a), (b) The initial condition of
the monolayer at (a) d ¼ 0.1 and (b) d ¼ 2.0. Note that cells
overlap at low d, whereas at high d cells deform rather than
overlap. (c)–(f) Snapshots of the system at Drt ¼ 250. The
system remains in a crystal-like state at low motility [(c), (d)].
At sufficiently high motility, the system melts and cells exchange
neighbors [(e), (f)]. See also Supplemental Movies 1–4 [49].
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πR2 to be larger than the area available to each cell. Further
simulation details and the list of parameters are given in the
Supplemental Material.
To quantify the melting transition, we compute both

dynamical and structural observables [49]. Dynamical
arrest is quantified through an effective diffusivity D̄eff
[22,27] obtained from the long-time behavior of the mean
square displacement MSDðtÞ of individual cells as
D̄eff ¼ limt→∞MSDðtÞ=ð4D0tÞ, with D0 ¼ v20=ð2DrÞ the
diffusivity of an isolated cell. As structural observables, we
measure the global bond-orientational order parameter jΨ6j
and the structure factor SðqÞ. Choosing D̄eff > 0.0005 as
the threshold for a liquid state, the transition lines obtained
from the dynamical and structural measurements coincide.
The phase diagram displayed in Fig. 2 shows that both
deformability and motility facilitate melting. We also find a
region of intermittence at low deformability, discussed
further below. The width of the plateau in the MSD at
intermediate times shrinks with increasing deformability,
suggesting that deformability facilitates melting by
allowing particles to squeeze more easily through the cages
provided by their neighbors.
One of our key results is that the nature of the transition

is different at low and high deformability. This can be
appreciated by analyzing the standard error of jΨ6j across
the parameter space ðd; PeÞ, which shows that there is an
intermediate Pe range at d < 1 for which this quantity is
large. Intriguingly, d < 1 is precisely the region in param-
eter space where the overlap between cells becomes
appreciable, implying that the character of monolayer
melting depends on whether the rearrangement of particles
occurs by cells squeezing past their neighbors by
deforming (d > 1) or crawling over them by overlapping
(d < 1).

To determine the nature of the intermediate regime
found at d < 1, we analyze the corresponding time series
of jΨ6j [Fig. 3(a)]. The time series shows clear evidence of
an intermittent behavior, where the system jumps between
two distinct states with different mean values of jΨ6j
(see also Supplemental Movie 5 [49]). The two states are
also apparent from the bimodal character of the jΨ6j
probability density function [PDF; Fig. 3(d)]. Since jΨ6j
correlates with the melting transition and our solid state is
close to a hexagonal crystal, we can associate jΨ6j ≃ 1 to a
solid state, and values of jΨ6j close to or below 0.5 to a
liquid state. Moreover, the values of jΨ6j in the solid and
liquid regimes fluctuate around well-defined means, and
hence exhibit unimodal PDFs (albeit with different
widths), so that bimodality in the PDF signals intermit-
tence. We also identify intermittence by computing the
fraction of defects in the system hjΔNnnji [Figs. 3(b)
and 3(c)], i.e., the fraction of the total number of cells with
a coordination number other than six. The time series for
hjΔNnnji shows that defects appear when the monolayer is
in the liquid state. In addition, and in line with Ref. [33],
we observe that defects in the intermittent phase tend to
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FIG. 2. Phase diagram of melting in our confluent system. The
transition lines separating the solid, intermittent (labeled as SL),
and liquid phases are interpolation of the boundaries identified
based on the system’s diffusivity D̄eff, its global bond-orienta-
tional order jΨ6j, and the fraction of structural defects hjΔNnnji in
the system.
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FIG. 3. Intermittence at low deformability. (a)–(c) Intermittent
behavior at ðd; PeÞ ¼ ð0.1; 2.4Þ. (a) Time series of jΨ6j. (b) Time
series of the fraction of defects hjΔNnnji. (c) Voronoi tessellation
of the system depicting instantaneous configurations in the solid
and liquid states, and highlighting the presence of topological
defects in the latter. The color scheme denotes the topological
charge—i.e., the deviation from a coordination number of six.
(d) PDFs of jΨ6j at d ¼ 0.1 with increasing motility. As the
system goes through the intermittent regime, the PDF goes from
unimodal (solid), to bimodal (intermittent), and back to unimodal
(liquid).
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form grain boundaries and percolate the system [Figs. 3(c)
and S11 [49] ].
We locate the intermittent region in the phase diagram

(Fig. 2) via two separate methods. First, given that there are
large fluctuations in jΨ6j in this region, we identify states to
be intermittent if both the standard error of jΨ6j and D̄eff are
above 0.0005. Second, we binarize the time series of
hjΔNnnji and map each time point to either zero (solid) or
unity (liquid). For a time series to be intermittent,we require a
minimum of two jumps between the states, and a large
enough fraction of time spent in either state. Both methods
converge and pinpoint a similar parameter region to be
intermittent. Further, this region shrinks with increasing N
(see Figs. S8 and S10 [49]). This suggests that intermittence
arises because the solid-liquid transition is first order like at
low deformability, so that coexistence between the two
phases is expected at criticality. The first order character is
also supported by finite size scaling of jΨ6j ¼ NζfðpNνÞ at
low d, where p ¼ Pe=Pe� − 1 and ζ ¼ −0.044ð3Þ, com-
puted for systems up to 900 cells (see Fig. S12 [49]).
As anticipated, and clear from the phase diagram, the

intermittent phase is only present at low deformability,
when cells overlap. A possible mechanism through which
cell overlap might affect the nature of the transition is the
following. When cells are highly deformable and do not
overlap with their neighbors, they can escape the local cage
in which they are trapped by squeezing through their
neighbors. These cage escapes lead to neighbor exchanges,
hence to fluidification. On the other hand, if cells are not
deformable but can overlap, moving a cell is similar to
inserting or moving a coin on a substrate crowded with
other coins (as in a “coin-pusher” arcade game). In this case,
motion of the coin can either result in simple coin overlap or
layering and no motion, or in the collective motion of a raft
of coins. The coexistence of different scenarios (overlap or
collective motion) may underlie the onset of intermittence
in our simulations, and the first-order-like nature of the
solid-liquid transition in the low deformability regime. We
note a first-order-like glass-to-liquid transition has also been
found in systems of active soft disks [55].
Finally, we analyze the relation between defects in the

bond-orientational order and cell overlap. Experiments
with monolayers of progenitor stem cells [56] have shown
that these systems can be viewed as active nematics, and
that topological defects in the nematic order correlate with
the location of cell extrusion and death. Similar behavior
has been obtained in MDCK (Madin Darby canine kidney)
cells [48,57]. On the other hand, nematic order is often not
readily apparent in epithelia, where cells are typically not
elongated, and extrusion is presumably associated with
high local overlap of a cell with its neighbors [43]. Our
work offers an alternative interpretation that correlates cell
extrusion not with defects in nematic order, but with cell
overlap and associated structural defects in cell packing.
Defects in the hexagonal lattice formed by the cell

centers in the ordered solid state are five- and sevenfold

disclinations and correspond to pentagonal and heptagonal
cells, respectively, in the associated Voronoi tessellation
[58]. They are readily identified in the cell packing,
as shown in Figs. 4(a) and 4(b). We quantify the local
overlap of the ith cell by computing the field χiðrÞ≡P

N
j¼1H½ϕiðrÞ − 1�H½ϕjðrÞ − 1�, with H the Heaviside

function. We then search for correlations between defects
and overlap by recording both overlap and coordination
number for each cell, and constructing the PDFs for the
local overlap for pentagonal and heptagonal cells, as well
as for the entire cell population [Fig. 4(c)]. The PDFs show
that pentagons experience, on average, more overlap with
respect to other cells. This can be understood by noting
that, while all cells have approximately the same area
[Fig. 4(a)], fivefold coordinated particles have a smaller
mean distance to their neighbors [Fig. 4(d)]. Hence cell
overlap is largest at fivefold defects, suggesting that these
may be likely loci of cell extrusion, which is known that can
be triggered by cell crowding. Our results suggest that cell
extrusions in cell monolayers are likely to occur in the
intermittent regime or near the solid-liquid transition, and
may originate near fivefold coordinated cells.
In summary, we have used a multiphase field model to

explore the effect of overlap and motility on the solid-liquid
transition in confluent monolayers of active deformable
cells. Melting is triggered by increasing motility and/or
deformability, which promotes fluidification by allowing
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cells to squeeze past their neighbors. We have shown that
overlap strongly affects the nature of the melting transition
in the monolayer. Specifically, when cells overlap rather
than deform, the solid-liquid transition changes from
continuous to first order like, and it is accompanied by
an intermediate intermittent regime in which the monolayer
alternates between solid and liquid states. This intermittent
phase could be relevant to morphological processes that
require periodic fluidization to restructure the tissue. We
have also found a correlation between the location of
topological defects in cell packing and fluctuations in local
cell overlap, which suggests that cellular extrusion could be
linked to the presence of these defects. Extrusion is an
important process in epithelial tissues required for proper
biological functioning. While it is normally thought that
extrusion is determined by biochemical signaling, recent
experiments have suggested a correlation between extru-
sion and topological defects in the orientational order of
elongated or spindle-like cells. Here we suggest an alter-
native, possibly more general, correlation between extru-
sion and topological defects in the structure of cell packings
that applies even when cells are not elongated.
From a theoretical point of view, it would be of interest to

ask whether our active monolayers of deformable cells also
exhibit a hexatic phase, which has been recently found in
high-density suspensions of active Brownian particles
[33,59]. Addressing this question will require simulations
of much larger systems.
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