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Abstract

We consider a specific graph learning task: reconstructing a symmetric matrix that represents an
underlying graph using linear measurements. We present a sparsity characterization for distributions of
random graphs (that are allowed to contain high-degree nodes), based on which we study fundamental
trade-offs between the number of measurements, the complexity of the graph class, and the probability
of error. We first derive a necessary condition on the number of measurements. Then, by considering
a three-stage recovery scheme, we give a sufficient condition for recovery. Furthermore, assuming the
measurements are Gaussian IID, we prove upper and lower bounds on the (worst-case) sample complexity
for both noisy and noiseless recovery. In the special cases of the uniform distribution on trees with n nodes
and the Erdős-Rényi (n, p) class, the fundamental trade-offs are tight up to multiplicative factors with
noiseless measurements. In addition, for practical applications, we design and implement a polynomial-
time (in n) algorithm based on the three-stage recovery scheme. Experiments show that the heuristic
algorithm outperforms basis pursuit on star graphs. We apply the heuristic algorithm to learn admittance
matrices in electric grids. Simulations for several canonical graph classes and IEEE power system test
cases demonstrate the effectiveness and robustness of the proposed algorithm for parameter reconstruction.

Keywords: Graph signal processing, sample complexity, network parameter reconstruction, information
theory, sparse recovery

1 Introduction
1.1 Background
Symmetricmatrices are ubiquitous in graphicalmodelswith examples such as the (0, 1) adjacencymatrix and
the (generalized) Laplacian of an undirected graph. A major challenge in graph learning is inferring graph
parameters embedded in those graph-based matrices from historical data or real-time measurements. In
contrast to traditional statistical inference methods [1, 2, 3], model-based graph learning, such as physically-
motivated models and graph signal processing (GSP) [4], takes advantage of additional data structures
offered freely by nature. Among different measurement models for graph learning, linear models have been
used and analyzed widely for different tasks, e.g., linear structural equation models (SEMs) [5, 6], linear
graph measurements [7], generalized linear cascade models [8], etc.

Despite extra efforts required on data collection, processing and storage, model-based graph learning
often guarantees provable sample complexity, which is often significantly lower than the empirical number of
measurements neededwith traditional inferencemethods. Inmany problem settings, having computationally
efficient algorithmswith low sample complexity is important. One reason for this is that the graph parameters
may change in a short time-scale, making sample complexity a vital metric to guarantee that the learning
can be accomplished with limited measurements. Indeed many applications, such as real-time optimal
power flow [9, 10, 11], real-time contingency analysis [12] and frequency control [13] in power systems etc.,
require data about the network that are time-varying. For example, the generations or net loads may change
rapidly due to the proliferation of distributed energy resources. The topology and line parameters of the
grid may be reconfigured to mitigate cascading failure [14]. Line switching has changed the traditional idea
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of a power network with a fixed topology, enabling power flow control by switching lines [15], etc. Hence
analyzing fundamental limits of parameter reconstruction and designing graph algorithms that are efficient
in both computational and sample complexity are important.

The number of measurements needed for reconstructing a graph Laplacian can be affected by various
system parameters, such as data quality (distribution), physical laws, and graph structures. In particular,
existing recovery algorithms often assume the graph to be recovered is in a specific class, e.g., trees [1],
sparse graphs [16], graphs with no high-degree nodes [17], with notable exceptions such as [18], which
considers an empirical algorithm for topology identification. However, there is still a lack of understanding
of sample complexity for learning general undirected graphs that may contain high-degree nodes, especially
with measurements constrained naturally by a linear system.

In this work, we consider a general graph learning problem where the measurements and underlying
matrix to be recovered can be represented as or approximated by a linear system. A graph matrix Y(G)
with respect to an underlying graphG, which may have high-degree nodes (see Definition 2.1) is defined as
an n × n symmetric matrix with each nonzero (i, j)-th entry corresponding to an edge connecting node i
and node j where n ∈ N+ is the number of nodes of the underlying undirected graph. The diagonal entries
can be arbitrary. The measurements are summarized as twom× n (1 ≤ m ≤ n) real or complex matrices
A and B satisfying

A = BY(G) + Z (1)

where Z denotes additive noise.
We focus on the following problems:

• Fundamental Trade-offs. What is the minimum number m of linear measurements required for
reconstructing the symmetric matrix Y(G)? Is there an algorithm asymptotically achieving recovery
with the minimum number of measurements? As a special case, can we characterize the sample
complexity when the measurements are Gaussian IID1?

• Applications to Electrical Grids. Do the theoretical guarantees on sample complexity result in a
practical algorithm (in terms of both sample and computational complexity) for recovering electric
grid topology and parameters?

Some comments about the above model and the results in this paper are as follows.

Remark 1. It has been noted that vectorization and standard compressed sensing techniques do not lead
to straightforward results (see [17] for detailed arguments about a similar linear system). This issue is
discussed extensively in Section 1.2.3.

Remark 2. The results in this paper do not assume low-degree nodes as most of existing results do, with
notable exceptions such as [18] which gives empirical and data-based subroutines for topology identification.

1.2 Related Work
1.2.1 Graph Learning

Algorithms for learning sparse graphical model structures have a rich tradition in the literature. For general
Markov random fields (MRFs), learning the underlying graph structures is known to be NP-hard [19].
However, in the case when the underlying graph is a tree, the classical Chow-Liu algorithm [1] offers an
efficient approach to structure estimation. Recent results contribute to an extensive understanding of the
Chow-Liu algorithm. The authors in [3] analyzed the error exponent and showed experimental results for
chain graphs and star graphs. For pairwise binary MRFs with bounded maximum degree, [20] provides
sufficient conditions for correct graph selection. Similar achievability results for Ising models are in [21].
Model-based graph learning has been emerging recently and assuming the measurements form linear SEMs,
the authors in [5, 6] showed theoretical guarantees of the sample complexity for learning a directed acyclic
graph (DAG) structure, under mild conditions on the class of graphs.

For converse, information-theoretic tools have been widely applied to derive fundamental limits for
learning graph structures. For a Markov random field with bounded maximum degree, necessary conditions

1This means the entries of the matrix B are IID normally distributed.
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on the number of samples for estimating the underlying graph structure were derived in [20] using Fano’s
inequality (see [22]). For Ising models, [23] combines Fano’s inequality with the idea of typicality to derive
weak and strong converse. Similar techniques have also been applied to Gaussian graphical models [24] and
Bayesian networks [25]. Fundamental limits for noisy compressed sensing have been extensively studied
in [26] under an information-theoretic framework.

1.2.2 System Identification in Power Systems

Graph learning has been widely used in electric grids applications, such as state estimation [27, 28]
and topology identification [29, 30]. Most of the literature focuses on topology identification or change
detection, but there is less work on joint topology and parameter reconstruction, with notable exceptions
of [31, 32, 33, 34]. However, the linear system proposed in [32] does not leverage the sparsity of the graph2.
Thus, in the worst case, the matrixB needs to have full column rank, implying thatm = Ω(n)measurements
are necessary for recovery.

Moreover, there is little exploration on the fundamental performance limits (estimation error and sample
complexity) on topology and parameter reconstruction of power networks, with the exception of [35] where
a sparsity condition was given for exact recovery of outage lines. Based on single-type measurements
(either current or voltage), correlation analysis has been applied for topology identification [36, 37, 38].
Approximating the measurements as normal distributed random variables, the authors of [29] proposed an
approach for topology identification with limited measurements. A graphical learning-based approach can
be found in [39]. Recently, data-driven methods were studied for parameter estimation [33]. In [32], a
similar linear system as (6) was used combined with regression to recover the symmetric graph parameters
(which is the admittance matrix in the power network).

1.2.3 Compressed Sensing and Sketching

It is well known that compressed sensing ([40, 41]) techniques allow for recovery of a sparse matrix
with a limited number of measurements in various applications such as medical imaging [42], wireless
communication [43], channel estimation [44] and circuit design [45], etc. For electricity grids, in [46],
based on these techniques, experimental results have been given for topology recovery. However, nodal
admittance matrices (generalized Laplacians) for power systems have two properties for which there are
gaps in the sparse recovery literature: 1) the presence of high-degree nodes in a graph (corresponding to
dense columns in its Laplacian) and 2) symmetry.

Consider a vectorization of system (1) using tensor product notation, with a := vec(A) and y(G) :=
vec(Y(G)). Then linear system (1) is equivalent to a = (I ⊗ B)y(G) where vec(·) produces a column
vector by stacking the columns of the input matrix and I ⊗ B is the Kronecker product of an identity
matrix I ∈ Rn×n and B. With the sensing matrix being a Kronecker product of two matrices, traditional
compressed sensing analysis works for the case when y contains only µ = Θ(1) non-zeros [47]. For
instance, the authors of [48] showed that the restricted isometry constant (see Section 3.2 for the definition),
δµ(I⊗B) is bounded from above by δµ(B), the restricted isometry constant ofB. However, if a column (or
row) ofY(G) is dense, classical restricted isometry-based approach cannot be applied straightforwardly.

Another way of viewing it is that vectorizing A and Y(G) and constructing a sensing matrix I ⊗ B
is equivalent to recovering each of the column (or row) of Y(G) separately from Aj = BYj(G) for
j = 1, . . . , n where Aj’s and Yj(G)’s are columns of A and Y(G). For a general “sparse" graph G, such
as a star graph, some of the columns (or rows) of the graph matrixY(G) may be dense vectors consisting of
many non-zeros. The results in [48, 47] give no guarantee for the recovery of the dense columns of Y(G)
(correspondingly, the high-degree nodes in G), and thus they cannot be applied directly to the analysis of
sample complexity. This statement is further validated in our experimental results shown in Figure 4 and
Figure 5.

The authors of [17] considered the recovery of an unknown sparse matrix M ∈ Rn×n (not necessarily
symmetric) from an m ×m matrix A = BMC

T where B ∈ Rm×n and C ∈ Rm×n with m � n. By
adding a symmetry constraint to their recovery formulation, we obtain the following modified basis pursuit

2With respect to sparsity, we consider not only graphs with bounded degrees, but a broader class of graphs which may contain
high-degree nodes. Definition 3.1 gives a comprehensive characterization of sparsity.
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as a convex optimization:

minimize ||Y(G)||1 (2)
subject to BY(G) = A, (3)

Y(G) ∈ Sn×n (4)

where ||Y(G)||1 = ||vec(Y(G))||1 is the entry-wise `1-norm of Y(G) and Sn×n denotes the set of all
symmetric matrices in Rn×n. However, the approach in [17] does not carry through to our setting for two
reasons. First, the analysis of such an optimization often requires stronger assumptions, e.g., the non-zeros
are not concentrated in any single column (or row) of Y(G), as in [17]. Second, having the symmetry
property of Y as a constraint does not explicitly make use of the fact that many columns in Y are indeed
sparse and can be recovered correctly. As a consequence, basis pursuit may produce poor results in certain
scenarios where our approach performs well, as demonstration in our experimental results on star graphs in
Section 6.2.4.

Although the columns ofY(G) are correlated because of the symmetry, in general there are no constraints
on the support sets of the columns. Thus distributed compressed sensing schemes (for instance, [49] requires
the columns to share the same support set) are not directly applicable in this situation.

The previous studies and aforementioned issues together motivate us to propose a novel three-stage
recovery scheme for the derivation of a sufficient recovery condition, which leads to a practical algorithm
that is sample and computationally efficient as well as robust to noise.

1.3 Our Contributions
We demonstrate that the linear system in (1) can be used to learn the topology and parameters of a graph.
Our framework can be applied to perform system identification in electrical grids by leveraging synchronous
nodal current and voltage measurements obtained from phasor measurement units (PMUs).

Compared to existing methods and analysis, the main results of this paper are three-fold:

1. Fundamental Trade-offs: In Theorem 3.1, we derive a general lower bound on the probability of error
for topology identification (defined in (7)). In Section 3.3, we describe a simple three-stage recovery
scheme combining `1-norm minimization with an additional step called consistency-checking, ren-
dering which allows us to bound the number of measurements for exact recovery from above as in
Theorem 3.2.

2. (Worst-case) Sample Complexity: We provide sample complexity results for recovering a random
graph that may contain high-degree nodes. The unknown distribution that the graph is sampled
from is characterized based on the definition of “(µ,K, ρ)-sparsity" (see Definition 3.1). Under
the assumption that the matrix B has Gaussian IID entries, in Section 4, we provide upper and
lower bounds on the worst-case sample complexity in Theorem 4.1. We show two applications of
Theorem 4.1 for the uniform sampling of trees and the Erdős-Rényi (n, p) model in Corollary 4.1
and 4.2, respectively.

3. (Heuristic) Algorithm: Motivated by the three-stage recovery scheme, a heuristic algorithm with
polynomial (in n) running-time is reported in Section 5, together with simulation results for power
system test cases validating its performance in Section 6.

Some comments about the above results are as follows:

1.4 Outline of the Paper
The remaining content is organized as follows. In Section 2, we specify our models. In Section 3.1, we
present the converse result as fundamental limits for recovery. The achievability is provided in 3.3. We
present our main result as the worst-case sample complexity for Gaussian IID measurements in Section 4.
A heuristic algorithm together with simulation results are reported in Section 5 and 6.
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2 Model and Definitions
2.1 Notation
LetF denote a field that can either be the set of real numbersR, or the set of complex numbersC. The set of
all symmetric n× nmatrices whose entries are in F is denoted by Sn×n. The imaginary unit is denoted by
j. Throughout the work, let log (·) denote the binary logarithm with base 2 and let ln (·) denote the natural
logarithm with base e. We use E [·] to denote the expectation of random variables. The mutual information
is denoted by I(·). The entropy function (either differential or discrete) is denoted byH(·) and in particular,
we reserve h(·) for the binary entropy function. To distinguish random variables and their realizations, we
follow the convention and denote the former by capital letters (e.g., A) and the latter by lower case letters
(e.g., a). The symbol C is used to designate a constant.

Matrices are denoted in boldface (e.g., A, B and Y). The i-th row, the j-th column and the (i, j)-th
entry of a matrix A are denoted by A(i), Aj and Ai,j respectively. For notational convenience, let S be a
subset of V . Denote by S := V\S the complement of S and byAS a sub-matrix consisting of |S| columns
of the matrixA whose indices are chosen from S. The notation> denotes the transpose of a matrix, det (·)
calculates its determinant. For the sake of notational simplicity, we use big O notation (o,ω,O,Ω,Θ) to
quantify asymptotic behavior.

2.2 Graphical Model
Denote by V = {1, . . . , n} a set of n nodes and consider an undirected graph G = (V, E) (with no self-
loops) whose edge set E ⊆ V × V contains the desired topology information. The degree of each node j is
denoted by dj . The connectivity between the nodes is unknown and our goal is to determine it by learning
the associated graph matrix using linear measurements.

Definition 2.1 (Graph matrix). Provided with an underlying graphG = (V, E), a symmetricmatrixY(G) ∈
Sn×n is called a graph matrix if the following conditions hold:

Yi,j(G) =


6= 0 if i 6= j and (i, j) ∈ E
0 if i 6= j and (i, j) /∈ E
arbitrary otherwise

.

Remark 3. Our theorems can be generalized to recover a broader class of symmetric matrices, as long as
the matrix to be recovered satisfies (1) Knowing Y(G) ∈ Fn×n gives the full knowledge of the topology
of G; (2) The number of non-zero entries in a column of Y(G) has the same order as the degree of the
corresponding node, i.e., |supp(Yj)| = O(dj). for all j ∈ V . To have a clear presentation, we consider
specifically the case |supp(Yj)| = dj .

In this work, we employ a probabilistic model and assume that the graph G is chosen randomly from a
candidacy set C(n) (with n nodes), according to some distribution Gn. Both the candidacy set C(n) and
distribution Gn are not known to the estimator. For simplicity, we often omit the subscripts of C(n) and Gn.

Example 2.1. We exemplify some possible choices of the candidacy set and distribution:

(a) (Mesh Network) When G represents a transmission (mesh) power network and no prior information
is available, the corresponding candidacy set G(n) consisting of all graphs with n nodes and G is
selected uniformly at random from G(n). Moreover, |G(n)| = 2(n

2) in this case.

(b) (Radial Network) When G represents a distribution (radial) power network and no other prior infor-
mation is available, then the corresponding candidacy set T(n) is a set containing all spanning trees
of the complete graph with n buses (nodes) and G is selected uniformly at random from T(n); the
cardinality is |T(n)| = nn−2 by Cayley’s formula.

(c) (Radial Network with Prior Information) When G = (V, E) represents a distribution (radial) power
network, and we further know that some of the buses cannot be connected (which may be inferred
from locational/geographical information), then the corresponding candidacy set TH(n) is a set of
spanning trees of a sub-graph H = (V, EH) with n buses. An edge e /∈ EH if and only if we know
e /∈ E . The size of TH(n) is given by Kirchhoff’s matrix tree theorem (c.f. [50]).
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(d) (Erdős-Rényi (n, p) model) In a more general setting, G can be a random graph chosen from an
ensemble of graphs according to a certain distribution. When a graph G is sampled according to
the Erdős-Rényi (n, p) model, each edge of G is connected IID with probability p. We denote the
corresponding graph distribution for this case by GER(n, p).

The next section is devoted to describing available measurements.

2.3 Linear System of Measurements
Suppose the measurements are sampled discretely and indexed by the elements of the set {1, . . . ,m}. As a
general framework, the measurements are collected in two matricesA and B and defined as follows.

Definition 2.2 (Generator and measurement matrices). Letm be an integer with 1 ≤ m ≤ n. The generator
matrixB is anm×n randommatrix and themeasurement matrixA is anm×nmatrix with entries selected
from F that satisfy the linear system (1):

A = BY(G) + Z

whereY(G) ∈ Sn×n is a graph matrix to be recovered, with an underlying graphG andZ ∈ Fm×n denotes
the random additive noise. We call the recovery noiseless if Z = 0. Our goal is to resolve the matrixY(G)
based on given matricesA and B.

In the remaining contexts, we sometime simplify the matrixY(G) as Y if there is no confusion.

2.4 Applications to Electrical Grids
Various applications fall into the framework in (1). Here we present two examples of the graph identification
problem in power systems. The measurements are modeled as time series data obtained via nodal sensors
at each node, e.g., PMUs, smart switches, or smart meters.

2.4.1 Example 1: Nodal Current and Voltage Measurements

We assume data is obtained from a short time interval over which the unknown parameters in the network
are time-invariant. Y ∈ Cn×n denotes the nodal admittance matrix of the network and is defined

Yi,j :=

{
−yi,j if i 6= j

yi +
∑
k 6=i yi,k if i = j

(5)

where yi,j ∈ C is the admittance of line (i, j) ∈ E and yi is the self-admittance of bus i. Note that if two
buses are not connected then Yi,j = 0.

The corresponding generator and measurement matrices are formed by simultaneously measuring both
current (or equivalently, power injection) and voltage at each node and at each time step. For each t =
1, . . . ,m, the nodal current injection is collected in an n-dimensional random vector It = (It,1, . . . , It,n).
Concatenating the It into a matrix we get I := [I1, I2, . . . , Im]> ∈ Cm×n. The generator matrix V :=
[V1, V2, . . . , Vm]> ∈ Cm×n is constructed analogously. Each pair of measurement vectors (It, Vt) from I
andV must satisfy Kirchhoff’s and Ohm’s laws,

It = YVt, t = 1, . . . ,m. (6)

In matrix notation (6) is equivalent to I = VY, which is a noiseless version of the linear system defined in
(1).

Compared with only obtaining one of the current, power injection or voltage measurements (for example,
as in [36, 3, 37]), collecting simultaneous current-voltage pairs doubles the amount of data to be acquired
and stored. There are benefits however. First, exploiting the physical law relating voltage and current not
only enables us to identify the topology of a power network but also recover the parameters of the admittance
matrix. Furthermore, dual-type measurements significantly reduce the sample complexity for learning the
graph, compared with the results for single-type measurements.
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2.4.2 Example 2: Nodal Power Injection and Phase Angles

Similar to the previous example, at each time t = 1, . . . ,m, denote by Pt,j and θt,j the active nodal power
injection and the phase of voltage at node j respectively. The matrices P ∈ Rm×n and θθθ ∈ Rm×n are
constructed in a similar way by concatenating the vectors Pt = (Pt,1, . . . , Pt,n) and θt = (θt,1, . . . , θt,n).
The matrix representation of the DC power flow model can be expressed as a linear system P = θθθCSC>,
which belongs to the general class represented in (1). Here, the diagonal matrix S ∈ R|E|×|E| is the
susceptence matrix whose e-th diagonal entry represents the susceptence on the e-th edge in E and C ∈
{−1, 0, 1}n×|E| is the node-to-link incidence matrix of the graph. The vertex-edge incidence matrix3
C ∈ {−1, 0, 1}n×|E| is defined as

Cj,e :=


1, if bus j is the source of e
−1, if bus j is the target of e
0, otherwise

.

Note that CSC> specifies both the network topology and the susceptences of power lines.

2.5 Probability of Error as the Recovery Metric
We define the error criteria considered in this paper. We refer to finding the edge set E of G via matricesA
and B as the topology identification problem and recovering the graph matrix Y via matrices A and B as
the parameter reconstruction problem.

Definition 2.3. Let f be a function or algorithm that returns an estimated graph matrixX = f(A,B) given
inputsA and B. The probability of error for topology identification εT is defined to be the probability that
the estimated edge set is not equal to the correct edge set:

εT := P
(
∃ i 6= j

∣∣ sign(Xi,j) 6= sign (Yi,j(G))
)

(7)

where the probability is taken over the randomness in G,B and Z. The probability of error for parameter
reconstruction εP(η) is defined to be the probability that the Frobenius norm of the difference between the
estimateX and the original graph matrixY(G) is larger than η > 0:

εP(η) := sup
Y∈Y(G)

P (||X−Y(G)||F > η) (8)

where || · ||F denotes the Frobenius norm, η > 0 and Y(G) is the set of all graph matrices Y (G) that satisfy
Definition 2.1 for the underlying graph G, and the probability is taken over the randomness in G, B and
Z. Note that for noiseless parameter reconstruction, i.e., Z = 0, we always consider exact recovery and set
η = 0 and abbreviate the probability of error as εP.

3 Fundamental Trade-offs
We discuss fundamental trade-offs of the parameter reconstruction problem defined in Section 2.2 and 2.3.
The converse result is summarized in Theorem 3.1 as an inequality involving the probability of error, the
distributions of the underlying graph, generator matrix and noise. Next, in Section 3.3, we focus on a
particular three-stage scheme, and show in Theorem 3.2 that under certain conditions, the probability of
error is asymptotically zero (in n).

3.1 Necessary Conditions
The following theorem states the fundamental limit.

3Although the underlying network is a directed graph, when considering the fundamental limit for topology identification, we still
refer to the recovery of an undirected graph G.
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Theorem 3.1 (Converse). The probability of error for topology identification εT is bounded from below as

εT ≥ 1− H (A)−H (Z) + ln 2

H (Gn)
(9)

whereH (A),H (Z) are differential entropy (in base e) functions of the random variablesA, Z respectively
andH (Gn) is the entropy (in base e) of the probability distribution Gn.

Remark 4. It can be inferred from the theorem that εT = 1 − O(mn/H (Gn)), given that the generator
matrix B has Gaussian IID entries and the noise Z is additive white Gaussian (see Lemma 3). Therefore,
the structure of the graphs reflected in the corresponding entropy of the graph distribution determines the
number of samples needed. Consider the four cases listed in Example 2.1. The number of samples must
be at least linear in n (size of the graph) to ensure a small probability of error, given that the graph, as
a mesh network, is chosen uniformly at random from C(n) (see Example 2.1 (a)) since H(UG(n)) =

(
n
2

)
.

On the other hand, as corollaries, under the assumptions of Gaussian IID measurements, m = Ω(log n) is
necessary for making the probability of error less or equal to 1/2, if the graph is chosen uniformly at random
from T(n);m = Ω(nh(p)) is necessary if the graph is sampled according to GER(n, p), as in Examples 2.1
(b) and (c), respectively. The theorem can be generalized to complex measurements by adding additional
multiplicative constants.

Note that εP ≥ εT for any fixed noiseless parameter reconstruction algorithm, the necessary conditions
work for both topology and (noiseless) parameter reconstruction. The proof is postponed to Appendix A
and the key steps are first applying the generalized Fano’s inequality (see [22, 26]) and then bounding the
mutual information I (G;A|B) from above byH(A)−H(Z). The general converse stated in Theorem 3.1
is used in asserting the results on worst-case sample complexity in Theorem 4.1. Next, we analyze the
sufficient condition for recovering a graph matrix Y(G). Before proceeding to the results, we introduce a
novel characterization of the distribution Gn, from which a graph G is sampled. In particular, the graph G
is allowed to have high-degree nodes.

3.2 Characterization of Graph Distributions
Let dj(G) denote the degree of node j ∈ V in G. Denote by VLarge (µ) := {j ∈ V

∣∣ dj(G) > µ} the set of
nodes having degrees greater than the threshold parameter 0 ≤ µ ≤ n− 2 and VSmall (µ) := V\VLarge (µ)
the set of nodes for all µ-sparse column vectors of Y. With a counting parameter 0 ≤ K ≤ n, we define a
set of graphs wherein each graph consists of no more than K nodes with degree larger than µ, denoted by
C(n, µ,K) := {G ∈ C(n) | |VLarge (µ)| ≤ K}. The following definition characterizes graph distributions.

Definition 3.1 ((µ,K, ρ)-sparse distribution). A graph distribution Gn is said to be (µ,K, ρ)-sparse if
assuming that G is distributed according to Gn, then the probability that G belongs to C(n, µ,K) is larger
than 1− ρ, i.e.,

PGn (G /∈ C(n, µ,K)) ≤ ρ. (10)

1) Uniform Sampling of Trees:
Based on the definition above, for particular graph distributions, we can find the associated parameters.

We exemplify by considering two graph distributions introduced in Example 2.1. Denote by UT(n) the
uniform distribution on the set T(n) of all trees with n nodes.

Lemma 1. For any µ ≥ 1 andK > 0, the distribution UT(n) is (µ,K, 1/K)-sparse.

2) Erdős-Rényi (n, p) model:
Denote by GER(n, p) the graph distribution for the Erdős-Rényi (n, p) model. Similarly, the lemma

below classifies GER(n, p) into a (µ,K, ρ)-sparse distribution with appropriate parameters.

Lemma 2. For any µ(n, p) that satisfies µ(n, p) ≥ 2nh(p)/(ln 1/p) andK > 0, the distribution GER(n, p)
is (µ,K, n exp(−nh(p))/K)-sparse.

The proofs of Lemmas 1 and 2 are in Appendix D.
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Remark 5. It is worth noting that the (µ,K, ρ)-sparsity is capable of characterizing any arbitrarily chosen
distribution. The interesting part is that for some of the well-known distributions, such as GER(n, p),
this sparsity characterization offers a method that can be used in the analysis and moreover, it leads to an
exact characterization of sample complexity for the noiseless case. Therefore, for the particular examples
presented in Lemma 1 and Lemma 2, the selected threshold and counting parameters for both of them are
“tight" (up to multiplicative factors), in the sense that the corresponding sample complexity matches (up
to multiplicative factors) the lower bounds derived from Theorem 3.1. This can be seen in Corollary 4.1
and 4.2.

Data: Matrices of measurementsA and B
Result: Estimated graph matrixX

Step (a): Recovering columns independently:

for j ∈ V do
Solve the following `1-minimization and obtain an optimalX:

minimize
∣∣∣∣Xj

∣∣∣∣
1

subject to ||BXj −Aj ||2 ≤ γ,
Xj ∈ Fn.

end

Step (b): Consistency-checking:

for S ⊆ V with |S| = n−K do
for i, j ∈ S do

if |Xi,j −Xj,i| ≤ 2γ then
break;

end
Declare an error;

end
for j ∈ S do

Step (c): Resolving unknown entries:

Update XSj by solving the linear system:

BSX
S
j = Aj −BSX

S
j .

end
returnX = (X1, . . . , Xn);

end

Algorithm 1:A three-stage recovery scheme. The first stage focuses on solving each column of the matrix
Y independently using `1-minimization. In the second stage, the recovery correctness of the first stage
is further verified via consistency-checking, which utilizes the fact that the matrix to be recovered Y is
symmetric. The parameter γ is set to zero for the analysis of noiseless parameter reconstruction.

3.3 Sufficient Conditions
In this subsection, we consider the sufficient conditions (achievability) for parameter reconstruction. The
proofs rely on constructing a three-stage recovery scheme (Algorithm 1), which contains three steps –

9



column-retrieving, consistency-checking and solving unknown entries. The worst-case running time of this
scheme depends on the underlying distribution Gn4. The scheme is presented as follows.

Figure 1: The recovery of a graph matrix Y using the three-stage scheme in Algorithm 1. The n − K
columns of Y colored by gray are first recovered via the `1-minimization (11a)-(11c) in step (a), after they
are accepted by passing the consistency check in step (b). Then, symmetry is used for recovering the entries
in the matrix marked by green. Leveraging the linear measurements again, in step (c), the remaining K2

entries in the white symmetric sub-matrix are solved using Equation (12).

1) Three-stage Recovery Scheme:
Step (a): Retrieving columns. In the first stage, using `1-norm minimization, we recover each column

of Y based on (1):

minimize
∣∣∣∣Xj

∣∣∣∣
1

(11a)
subject to ||BXj −Aj ||2 ≤ γ, (11b)

Xj ∈ Fn. (11c)

Let XSj := (Xi,j)i∈S be a length-|S| column vector consisting of |S| coordinates in Xj , the j-th retrieved
column. We do not restrict the methods for solving the `1-norm minimization in (11a)-(11c), as long as
there is a unique solution for sparse columns with fewer than µ non-zeros (provided enough number of
measurements and the parameter µ > 0 is defined in Definition 3.1).

Step (b): Checking consistency.
In the second stage, we check for error in the decoded columnsX1, . . . , Xn using the symmetry property

(perturbed by noise) of the graphmatrixY. Specifically, we fix a subsetS ⊆ V with a given size |S| = n−K
for some integer5 0 ≤ K ≤ n. Then we check if |Xi,j −Xj,i| ≤ 2γ for all i, j ∈ S . If not, we choose a
different set S of the same size. This procedure stops until either we find such a subset S of columns, or we
go through all possible subsets without finding one. In the latter case, an error is declared and the recovery
is unsuccessful. It remains to recover the vectors Xj for j ∈ S.

Step (c): Resolving unknown entries. In the former case, for each vector Xj , j ∈ S , we accept its
entries Xi,j , i ∈ S, as correct and therefore, according to the symmetry assumption, we know the entries
Xi,j , i ∈ S, j ∈ S (equivalently {XSj : j ∈ S}), which are used together with the sub-matricesBS andBS
to compute the other entries Xi,j , i ∈ S, of Xj using (11b):

BSX
S
j = Aj −BSX

S
j , j ∈ S. (12)

4Although for certain distributions, the computational complexity is not polynomial in n, the scheme still provides insights on
the fundamental trade-offs between the number of samples and the probability of error for recovering graph matrices. Furthermore,
motivated by the scheme, a polynomial-time heuristic algorithm is provided in Section 5 and experimental results are reported in
Section 6.

5The choice of K depends on the structure of the graph to be recovered and more specifically, K is the counting parameter
in Definition 3.1. In Theorem 3.2 and Corollary 3.1, we analyze the sample complexity of this three-stage recovery scheme by
characterizing an arbitrary graph into the classes specified by Definition 3.1 with a fixedK.

10



Note that to avoid being over-determined, in practice, we solve

BKSX
S
j = AKj −BKSX

S
j , j ∈ S

whereBKS is aK×K matrix whose rows are selected fromBS corresponding toK ⊆ V with |K| = K and
BKS selects the rows ofBS in the same way. We combineXSj andXSj to obtain a new estimateXj for each
j ∈ S. Together with the columns Xj , j ∈ S, that we have accepted, they form the estimated graph matrix
X. We illustrate the three-stage scheme in Figure 1. In the sequel, we analyze the sample complexity of the
three-stage scheme based on the (µ,K, ρ)-sparse distributions defined in Definition 3.1.

2) Analysis of the Scheme:
Let F ≡ R for the simplicity of representation and analysis. We now present another of our main

theorems. Consider the models defined in Section 2.2 and 2.3. The Γ-probability of error is defined to be
the maximal probability that the `2-norm of the difference between the estimated vector X ∈ Rn and the
original vector Y ∈ Rn (satisfying A = BY + Z and both A and B are known to the estimator) is larger
than Γ > 0:

εP(Γ) := sup
Y ∈Y(µ)

P (||X − Y ||2 > Γ)

where Y(µ) is the set of all µ-sparse vectors in Rn and the probability is taken over the randomness in the
generator matrix B and the additive noise Z. Given a generator matrix B, the corresponding restricted
isometry constant denoted by δµ is the smallest positive number with

(1− δµ) ||x||22 ≤ ||BSx||
2
2 ≤ (1 + δµ) ||x||22 (13)

for all subsets S ⊆ V of size |S| ≤ µ and all x ∈ R|S|. Below we state a sufficient condition6 derived form
the three-stage scheme for parameter reconstruction.

Theorem 3.2 (Achievability). Suppose the generator matrix satisfies thatBKS ∈ R
K×K is invertible for all

S ⊆ V and K ⊆ V with |S| = |K| = K. Let the distribution Gn be (µ,K, ρ)-sparse. If the three-stage
scheme in Algorithm 1 is used for recovering a graph matrixY(Gn) ofGn that is sampled according to Gn,
then the probability of error satisfies εP(η) ≤ ρ+ (n−K)εP(Γ) with η greater or equal to

2

(
nΓ +

Γ||B||2 + γ

1− δ2K

)(
2(n−K) +Kξ(B)

)
where δ2K is the corresponding restricted isometry constant of B with µ = 2K defined in (13) and

ξ(B) := max
S,K⊆V,|S|=|K|=K

∣∣∣∣BS ∣∣∣∣2∣∣∣∣ (BKS )−1 ∣∣∣∣2.
The proof is in Appendix B. The theory of classical compressed sensing (see [40, 41, 51]) implies

that for noiseless parameter reconstruction, if the generator matrix B has restricted isometry constants δ2µ
and δ3µ satisfying δ2µ + δ3µ < 1, then all columns Yj with j ∈ VSmall are correctly recovered using the
minimization in (11a)-(11c). Denote by spark(B) the smallest number of columns in the matrixB that are
linearly dependent (see [52] for the requirements on the spark of the generator matrix to guarantee desired
recovery criteria). The following corollary is an improvement of Theorem 3.2 for the noiseless case. The
proof is postponed to Appendix C.

Corollary 3.1. Let Z = 0 and suppose the generator matrix B has restricted isometry constants δ2µ and
δ3µ satisfying δ2µ + δ3µ < 1 and furthermore, spark(B) > 2K. If the distribution Gn is (µ,K, ρ)-sparse,
then the probability of error for the three-stage scheme to recover the parameters of a graph matrixY(Gn)
of Gn that is sampled according to Gn satisfies εP ≤ ρ.

6Note that γ cannot be chosen arbitrarily and Γ depends on γ; otherwise the probability of error εP(Γ) will blow up. Theorem 4.2
indicates that for Gaussian ensembles setting Γ = O(γ) = O(

√
nσN) is a valid choice where σN is the standard deviation of each

independent Zi,j in Z.
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4 Gaussian IID Measurements
In this section, we consider a special regime when the measurements in the matrix B are Gaussian IID
random variables. Utilizing the converse in Theorem 3.1 and the achievability in Theorem 3.2, the Gaussian
IID assumption allows the derivation of explicit expressions of sample complexity as upper and lower bounds
on the number of measurements m. Combining with the results in Lemma 1 and 2, we are able to show
that for the corresponding lower and upper bounds match each other for graphs distributions UT(n) and
GER(n, p) (with certain conditions on p and n).

For the convenience of presentation, in the remainder of the paper, we restrict that the measurements
are chosen from R, although the theorems can be generalized to the complex measurements. In realistic
scenarios, for instance, a power network, besides the measurements collected from the nodes, nominal
state values, e.g., operating current and voltage measurements are known to the system designer a priori.
Representing the nominal values at the nodes by A ∈ Rn andB ∈ Rn respectively, the measurements inA
and B are centered aroundm× n matricesA and B defined as

A :=


· · · A · · ·
· · · A · · ·

...
· · · A · · ·

 , B :=


· · · B · · ·
· · · B · · ·

...
· · · B · · ·

 .
The rows in A and B are the same, because the graph parameters are time-invariant, so are the nominal
values. Without system fluctuations and noise, the nominal values satisfy the linear system in (1), i.e.,

A = BY. (14)

Knowing A and B is not sufficient to infer the network parameters (the entries in the graph matrix Y),
since the rank of the matrix B is one. However, measurement fluctuations can be used to facilitate the
recovery of Y. The deviations from the nominal values are denoted by additive perturbation matrices
Ã and B̃ such that A = A + Ã. Similarly, B = B + B̃ where B̃ is an m × n matrix consisting of
additive perturbations. Therefore, considering the original linear system in (1), the equations above imply
that A + Ã = BY + Z = BY + B̃Y + Z leading to Ã = B̃Y + Z where we have made use of (14)
and extracted the perturbation matrices Ã and B̃. We specifically consider the case when the additive
perturbations B̃ is a matrix with Gaussian IID entries. Without loss of generality, we suppose the mean of
the Gaussian random variable is zero and the standard deviation is σS. We consider additive white Gaussian
noise (AWGN) with mean zero and standard deviation σN. For simplicity, in the remainder of this paper, we
slightly abuse the notation and replace the perturbation matrices Ã and B̃ by A and B (we assume that B
is Gaussian IID), if the context is clear. Under the assumptions above, the following lemma can be inferred
from Theorem 3.1 and the proof is in Appendix F.

Lemma 3. Consider the linear model A = BY + Z. Suppose Bi,j ∼ N (0, σ2
S) and Zi,j ∼ N (0, σ2

N) are
mutually independent Gaussian random variables for all i, j ∈ V . The probability of error for topology
identification εT is bounded from below as

εT ≥1−
nm ln

(
1 +

σ2
S

σ2
N
Y
)

2H (Gn)
(15)

where Y := maxi,j |Yi,j | denotes the maximal absolute value of the entries in the graph matrix Y. In
particular, if Z = 0, then for parameter reconstruction,

εP ≥1−
nm ln

(
2πeY σ2

S

)
2H (Gn)

. (16)

4.1 Sample Complexity for Sparse Distributions
We consider the worst-case sample complexity for recovering graphs generated according to a sequence
of sparse distributions, defined similarly as Definition 3.1 to characterize asymptotic behavior of graph
distributions.
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Definition 4.1 (Sequence of sparse distributions). A sequence {Gn} of graph distributions is said to be
(µ,K)-sparse if assuming a sequence of graphs {Gn} is generated according to {Gn}, the sequences
{µ(n)} and {K(n)} guarantee that

lim
n→∞

PGn (Gn /∈ C(n)(µ(n),K(n))) = 0. (17)

In the remaining contexts, we write µ(n) and K(n) as µ and K for simplicity if there is no confusion.
Based on the sequence of sparse distributions we defined above, we show the following theorem, which
provides upper and lower bounds on the worst-case sample complexity, with Gaussian IID measurements.

Theorem 4.1 (Noiselessworst-case sample complexity). LetZ = 0. Suppose that the generatormatrixB has
Gaussian IID entries with mean zero and variance one and assume µ < n−3/µ(n−K) andK = o(n). For
any sequence of distributions that is (µ,K)-sparse, the three-stage scheme guarantees that limn→∞ εP = 0
using m = O (µ log(n/µ) +K) measurements. Conversely, there exists a (µ,K)-sparse sequence of
distributions such that the number of measurements must satisfy m = Ω

(
µ log(n/µ) +K/n3/µ

)
to make

the probability of error εP less than 1/2 for all n.

The proof is postponed to Appendix G.

Remark 6. The upper bound on m that we are able to show differs from the lower bound by a sub-linear
term n3/µ. In particular, when the term µ log(n/µ) dominatesK, the lower and upper bounds become tight
up to a multiplicative factor.

4.2 Applications of Theorem 4.1
1) Uniform Sampling of Trees:

As one of the applications of Theorem 4.1, we characterize the sample complexity of the uniform
sampling of trees.

Corollary 4.1. Let Z = 0. Suppose that the generator matrix B has Gaussian IID entries with mean
zero and variance one and assume Gn is distributed according to UT(n). There exists an algorithm that
guarantees limn→∞ εP = 0 usingm = O (log n) measurements. Conversely, the number of measurements
must satisfym = Ω (log n) to make the probability of error εP less than 1/2.

Proof. The achievability follows from combining Theorem 4.1 and Lemma 1, by setting K(n) = log n.
SubstitutingH(UT(n)) = Ω (n log n) into (16) yields the desired result for converse.

2) Erdős-Rényi (n, p) model:
Similarly, recalling Lemma 2, the sample complexity for recovering a random graph generated according

to the Erdős-Rényi (n, p) model is obtained.

Corollary 4.2. Let Z = 0. Assume Gn is a random graph sampled according to GER(n, p) with 1/n ≤
p ≤ 1 − 1/n. Under the same conditions in Corollary 4.1, there exists an algorithm that guarantees
limn→∞ εP = 0 using m = O (nh(p)) measurements. Conversely, the number of measurements must
satisfym = Ω (nh(p)) to make the probability of error εP less than 1/2.

Proof. Taking K = nh(p)/ log n and µ = 2nh(p)/(ln 1/p), we check that µ < n−3/µ(n − K) and
K = o(n). The assumptions on h(p) guarantee that h(p) ≥ log n/n, whence nh(p) = ω (log(n/K)).
The choices of {µ(n)} and {K(n)} make sure that the sequence of distributions is (µ(n),K(n))-sparse.
Theorem 4.1 implies that m = O(nh(p)) is sufficient for achieving a vanishing probability of error. For
the second part of the corollary, substituting H(GER(n, p)) = h(p)

(
n
2

)
= Ω

(
n2h(p)

)
into (16) yields the

desired result.

4.3 Measurements corrupted by AWGN
The results on sample complexity can be extended to the case with noisy measurements. The following
theorem is proved by combining Theorem 3.2 and Lemma 3. The details can be found in Appendix H.

13



Theorem 4.2 (Noisy worst-case sample complexity). Suppose thatB and Z are defined as in Lemma 3. Let
µ < n−3/µ(n−K) andK = o(n). Conversely, there exists a (µ,K)-sparse sequence of distributions such
that the number of measurements must satisfy

m = Ω

(
µ log(n/µ) +K/n3/µ

log(1 + σ2
S/σ

2
N)

)
to make the probability of error εT less than 1/2 for all n. Moreover, if σN = o(1/n5/2), σS = 1/

√
m and

K ≤ µ, then for any sequence of distributions that is (µ,K)-sparse, the three-stage scheme guarantees that
limn→∞ εT = 0 usingm = O (µ log(n/µ)) measurements. Moreover, limn→∞ εP(η) = 0 with η = o(1).

Remark 7. The proof of Theorem 4.2 implies that η = O(n5/2σN). Therefore, if we consider the
normalized Frobenius norm of (1/n2)||Y − X||F where X and Y are the recovered and original graph
matrices respectively, then σN = o(1/

√
n) guarantees that the normalized Frobenius norm vanishes. For

topology identification, we need to consider the Frobenius norm bound, η, to rule out the worst-case situation
and the sufficient condition becomes σN = o(1/n5/2). Another implication is that the choice of γ in (11b)
satisfying γ = O(

√
nσN) (used in the proof) guarantees the reconstruction criteria and its effectiveness is

also validated in our experiments in Section 6.2.5.

5 Heuristic Algorithm
We present in this section an algorithm motivated by the consistency-checking step in the proof of achiev-
ability (see Section 3.3). Instead of checking the consistency of each subset of V consisting of n−K nodes,
as the three-stage scheme does and which requires O(nK) operations, we compute an estimateXj for each
column of the graph matrix independently and then assign a score to each column based on its symemtric
consistency with respect to the other columns in the matrix. The lower the score, the closer the estimate
of the matrix column Xj is to the ground truth Yj . Using a scoring function we rank the columns, select
a subset of them to be “correct", and then eliminate this subset from the system. The size of the subset
determines the number of iterations. Heuristically, this procedure results in a polynomial-time algorithm to
compute an estimateX of the graph matrixY.

The algorithm proceeds in four steps.

Figure 2: Iterative dimension reduction of the heuristic algorithm. At step r, the s columns with the smallest
scores defined in (20) are assumed to be “correct" and eliminated from the linear system. The dimension of
variables is reduced by s and this procedure is repeated until the dn/se iterations are complete.
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5.0.1 Step 1. Initialization

Let matricesA ∈ Rm×n andB ∈ Rm×n be given and set the number of columns fixed in each iteration to
be an integer s such that 1 ≤ s ≤ n. For the first iteration, set S(0)← V , A(0)← A, and B(0)← B.

For each iteration r = 0, . . . , dn/se − 1, we perform the remaining three stages. The system dimension
is reduced by s after each iteration.

5.0.2 Step 2. Independent `1-minimization

For all j ∈ S(r), we solve the following `1-minimization:

Xj(r) = arg min
x∈Fn−sr

∣∣∣∣x∣∣∣∣
1

(18)

subject to ||B(r)x−Aj(r)||2 ≤ γ, (19)
x ∈ Xj(r).

Constraint (18) is optional; the set Xj(r) may encode additional constraints on the form of x such as entry-
wise positivity or negativity (e.g., Section 6). The forms of reduced matrix B(r) and reduced vector Aj(r)
are specified in Step 4.

5.0.3 Step 3. Column scoring

We rank the symmetric consistency of the independently solved columns. For all j ∈ S(r), let

scorej(r) :=
n−sr∑
i=1

|Xi,j(r)−Xj,i(r)| . (20)

Note that if scorej(r) = 0 then Xj(r) and its partner symmetric row in X(r) are identical. Otherwise
there will be some discrepancies between the entries and the sum will be positive. The subset of the Xj(r)
corresponding to the s smallest values of scorej(r) is deemed “correct". Call this subset of correct indices
S ′(r).

5.0.4 Step 4. System dimension reduction

Based on the assumption that s of the previously computed columns Xj(r) are correct, the dimension of
the linear system is reduced by s. We set S(r + 1)← S(r)\S ′(r). For all i, j ∈ S ′(r), we fix

Xi,j = Xi,j(r), Xj,i = Xi,j(r). (21)

The measurement matrices are reduced to

B(r + 1)← BS(r+1),

Aj(r + 1)← Aj(r)−
∑

i∈S′(r)

BiXi,j .

When r ≤ n−m, BS(r+1) = BS(r+1), Aj(r) = Aj(r) and Bi = Bi. When r > n−m, to avoid making
the reduced matrix B(r + 1) over-determined, we set B(r + 1) to be an (n − r) × (n − r) sub-matrix of
BS(r+1) by selecting n − r rows of BS(r+1) uniformly at random. A new length-(n − r) vector Aj(r)
is formed by selecting the corresponding entries from Aj(r). Once the dn/se iterations complete, an
estimateX is returned using (21). The algorithm requires at most dn/se iterations and in each iteration, the
algorithm solves an `1-minimization and updates a linear system. Solving an `1-minimization can be done
in polynomial time (c.f. [53]). Thus, the heuristic algorithm is a polynomial-time algorithm.

6 Applications in Electric Grids
Experimental results for the heuristic algorithm are given here for both synthetic data and IEEE standard
power system test cases. The algorithm was implemented in Matlab; simulated power flow data was
generated using Matpower 7.0 [54] and CVX 2.1 [55] with the Gurobi solver [56] was used to solve the
sparse optimization subroutine.
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6.1 Scalable Topologies and Error Criteria
We first demonstrate our results using synthetic data and two typical graph ensembles – stars and chains.
For both topologies, we increment the graph size from n = 5 to n = 300 and record the number of
samples required for accurate recovery of parameters and topology. For each simulation, we generate a
complex-valued random admittance matrix Y as the ground truth. Both the real and imaginary parts of
the line impedances of the network are selected uniformly and IID from [−100, 100]. A valid electrical
admittance matrix is then constructed using these impedances. The real components of the entries ofB are
distributed IID according to V (1, 1) and the imaginary components according to V (0, 1). A = YB gives
the corresponding complex-valued measurement matrix. The parameter γ in (19) is 0 since we consider
noiseless reconstruction here.

Given data matricesA,B the algorithm returns an estimateX of the ground truthY. We set s = dn/2e
for each graph. If an entry of X has magnitude |Xi,j | < 10−5, then we fix it to be 0. Following this, if
supp (X) = supp (Y) then the topology identification is deemed exact. The criterion for accurate parameter
reconstruction is ||Y−X||F/n2 < 10−6. The number of samplesm (averaged over repeated trials) required
to meet both of these criteria is designated as the sample complexity for accurate recovery. The sample
complexity trade-off displayed in Figure 3 shows approximately logarithmic dependence on graph size n for
both ensembles.

6.2 IEEE Test Cases

1 50 100 150 200 250 300
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Figure 3: The number of samples required to accurately recover the nodal admittance matrix is shown on
the vertical axis. Results are averaged over 20 independent simulations. Star and chain graphs are scaled in
size between 5 and 300 nodes. IEEE test cases ranged from 5 to 200 buses. In the latter case, there are no
assumptions on the random IID selection of the entries ofY (in contrast to the star/chain networks). Linear
and logarithmic (in n) reference curves are plotted as dashed lines.

We also validate the heuristic algorithm on 17 IEEE standard power system test cases ranging from 5 to
200 buses. The procedure for determining sample complexity for accurate recovery is the same as above,
but the data generation is more involved.

6.2.1 Power flow data generation

A sequence of time-varying loads is created by scaling the nominal load values in the test cases by a times
series of Bonneville Power Administration’s aggregate load on 02/08/2016, 6am to 12pm [57]. For each
test case network, we perform the following steps to generate a set of measurements:

a) Interpolate the aggregate load profile to 6-second intervals, extract a length-m random consecutive
subsequence, and then scale the real parts of bus power injections by the load factors in the subsequence.
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b) Compute optimal power flow in Matpower for the network at each time step to determine bus voltage
phasors.

c) Add a small amount of Gaussian random noise (σ2 = 0.001) to the voltagemeasurements and generate
corresponding current phasor measurements using the known admittance matrix.

6.2.2 Sample complexity for recovery of IEEE test cases

Figure 3 shows the sample complexity for accurate recovery of the IEEE test cases. The procedure and
criteria for determining the necessary number of samples for accurate recovery of the admittance matrix are
the same as for the synthetic data case. Unlike the previous setting, here we have no prior assumptions about
the structure of the IEEE networks: networks have both mesh and radial topologies. However, because
power system topologies are typically highly sparse, the heuristic algorithm was able to achieve accurate
recovery with a comparable (logarithmic) dependence on graph size.

Figure 4: Probability of error for parameter reconstruction εP for the IEEE 30-bus test case is displayed on
the vertical axis. Probability is taken over 50 independent trials. The horizontal axis shows the number of
samples used to compute the estimate X. The probability of error for independent recovery of all Xj via
`1-norm minimization (double dashed line) and full rank non-sparse recovery (dot dashed line) are shown
for reference. Adding the symmetry score function (second-to-left) improves over the naive column-wise
scheme. Adding entry-wise positivity/negativity constraints on the entries of X (left-most curve) reduces
sample complexity even further (≈ 1/3 samples needed compared to full rank recovery).

6.2.3 Influence of structure constraints on recovery

There are structural properties of the nodal admittance matrix for power systems—symmetry, sparsity, and
entry-wise positivity/negativity—that we exploit in the heuristic algorithm to improve sample complexity
for accurate recovery. The score function scorej(r) rewards symmetric consistency between columns inX;
the use of `1-minimization promotes sparsity in the recovered columns; and the constraint set Xj in (18)
forces Re(Xi,j) ≤ 0, Im(Xi,j) ≥ 0 for i 6= j and Re(Xi,j) ≥ 0 for i = j. These entry-wise properties are
commonly found in power system admittance matrices. In Figure 4 we show the results of an experiment
on the IEEE 30-bus test case that quantify the effects of the structure constraints on the probability of error.
In Figure 5 we show that the score function and the constraints are effective across a range of IEEE test
cases, compared with the standard compressed sensing recovery discussed in Section 1.2.3. Furthermore,
this demonstrates the heuristic algorithm is robust to noise for a broad range of real-world graph structures
with respect to Frobenius norm error.

6.2.4 Comparison with basis pursuit on star graphs

In Figure 6, we consider star graphs and compare our heuristic algorithm with the modified basis pursuit
subroutine in (2)-(4) with noiseless measurements. For a star graph with n = 24 nodes, the iterative
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Figure 5: Sample complexity for accurate recovery is shown for a selection of IEEE power system test cases
ranging from 5 to 57 buses. The number of samples for accurate recovery is obtained by satisfying the
criterion ||X − Y||F/n2 < 10−4. The noise Z is an IID Gaussian matrix with zero mean and standard
deviation 0.01. The parameter γ in (19) is set to be 10−4. As a benchmark, the number of measurements
required for separately reconstructing every column ofY (standard compressed sensing) is also given.

Figure 6: A comparison between our iterative heuristic and basis pursuit. The Frobenius norm error plotted
is averaged over 250 independent trials. The underlying graph is a star graph with n = 24. The solid
and dotted gray curves are results for basis pursuit with and without a constraint emphasizing symmetry,
respectively.

recovery scheme with s = 12 outperforms the basis pursuit, with or without a symmetry constraint. The
solid and dotted gray curves show the normalized Frobenius error for cases where Y(G) is constrained
to be symmetric and where it is not, respectively. Our experiments show that convex optimization-based
approach breaks down if there are highly dense columns in Y. The star graph contains a high-degree node
(degree n− 1), hindering the standard compressed sensing (basis pursuit without the symmetry constraint)
from recovering the whole matrix until the number of measurements reaches n. Surprisingly, adding the
symmetry constraint suggests basis pursuit performs less well than basis pursuit without the symmetry
condition. This is evidence to support the assumption made in [17]. There, the non-zeros in the matrix to
be recovered should not be concentrated in any single column (or row) ofY(G).
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6.2.5 Effects of noise and selection of γ

In this section, we consider noisy measurements and fix the additive noise Z be IID Gaussian with mean
zero and variance σ2

N ∈ [10−9, 10−2]. We set γ =
√
nσN in (19), as indicated in Remark 7. Due to the

presence of noise, there is error in the recovered matrixX. However, the mean absolute percentage error is
small.

Figure 7: The impact of measurement noise on sample complexity for recovery of the IEEE 24-bus RTS
test case is demonstrated. Trajectories correspond to increasing noise levels from dark (least) to light (most).
From left to right, we observe—as expected—that for each variance value, the normalized Frobenius error
of the recovered matrix decreases as the number of samples used for recovery increases. From bottom to
top, we observe that the error increases (for every value ofm) as variance of the additive noise Z increases.
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A Proof of Theorem 3.1
Proof. The graphG is chosen from a discrete setC(n) according to some probability distribution Gn. Fano’s
inequality [22] plays an important role in deriving fundamental limits. We especially focus on its extended
version. Similar generalizations appear in many places, e.g., [26, 20] and [58]. We repeat the lemma here
for the sake of completion:

Lemma 4 (Generalized Fano’s inequality). LetG be a random graph and letA andB be matrices defined in
Section 2.2 and 2.3. Suppose the original graphG is selected from a nonempty candidacy setC(n) according
to a probability distribution Gn. Let Ĝ denote the estimated graph. Then the conditional probability of error
for estimating G fromA given B is always bounded from below as

P

(
Ĝ 6= G

∣∣B) ≥ 1−
I
(
G;A

∣∣B)+ ln 2

H (Gn)
(22)

where the randomness is over the selections of the original graph G and the estimated graph Ĝ.

In (22), the term I
(
G;B

∣∣A) denotes the conditional mutual information (base e) between G and B
conditioned on A. Furthermore, the conditional mutual information I (G;A|B) is bounded from above by
the differential entropies ofA and B. It follows that

I (G;A|B) = H (A|B)−H (A|G,B) (23)
≤ H (A|B)−H (A|Y,B) (24)
= H (A|B)−H (Z) (25)
≤ H (A)−H (Z) . (26)

Here, Eq. (23) follows from the definitions of mutual information and differential entropy. Moreover,
knowing Y, the graph G can be inferred. Thus, H (A|G,B) ≥ H (A|Y,B) yields (24). Recalling the
linear system in (1), we obtain (25). Furthermore, (26) holds sinceH (A) ≥ H (A|B).

Plugging (26) into (22),

εT =EB

[
P

(
Ĝ 6= G

∣∣B)]
≥1− H (A)−H (Z) + ln 2

H (Gn)
,

which yields the desired (9).

B Proof of Theorem 3.2
Conditioning on that no less than n −K many columns are recovered with respect to the Γ-probability of
error, i,e., for each entry, the absolute value of the difference between the recovered one and the original
one is bounded from above by γ, the union bound ensures the desired bound on the probability of error
for noisy parameter reconstruction. It remains to show that the consistency-check in our scheme gives the
expression for η. First, if no less than n −K many columns are recovered, there must be a subset S ⊆ V
passing through the consistency-check. Let us consider the vectors that are not µ-sparse. For any such
vector Y ∗ ∈ Rn, denote by e = Y ∗ − Y ′ the difference of Y ∗ and the original vector Y ′. It follows that
e can be decomposed as a summation of a 2K-sparse vector e ∈ Rn and a vector f ∈ Rn that satisfies
|fi| ≤ 2Γ for all i ∈ V . Therefore, the definition of restricted isometry constant ensures the following:

||e||2 ≤||e||2 + ||f ||2

≤ 1

1− δ2K
||Be||2 + 2nΓ

≤ 1

1− δ2K
||Be||2 +

(
2n+

2||B||2
1− δ2K

)
Γ
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which can be further bounded by noting that

||Be||2 =||(BY ∗ −A)− (BY ′ −A)||2 ≤ 2γ

since both Y ′ and Y ∗ satisfy (11b) where A is a column ofA. Thus, the consistency-check guarantees that
for each j in the set S ⊆ V that passes the check,

||Xj − Yj ||2 ≤ 2

(
n+

||B||2
1− δ2K

)
Γ +

2γ

1− δ2K
.

Consider the reduced linear system in (12). For each j in the set S ⊆ V ,

||XSj − Y Sj ||2 ≤
∣∣∣∣∣∣(BKS )−1∣∣∣∣∣∣2 ∣∣∣∣BS(XSj − Y Sj )

∣∣∣∣
2

≤
∣∣∣∣∣∣(BKS )−1∣∣∣∣∣∣2 ||BS ||2 ∣∣∣∣XSj − Y Sj ∣∣∣∣2 .

Summing up the bounds on the `2 norms for each column and considering the worst case of the invertible
matrix BKS , the bound η on the Frobenius norm follows by arranging the terms.

C Proof of Corollary 3.1
Proof. Conditioned on G ∈ C(n)(µ,K) and the assumption δ3µ + 3δ4µ < 2, there are no less than n−K
many columns correctly recovered. Therefore, any such set S with |S| = n − K must contain at least
n−2K many corresponding indexes of the correctly recovered columns. The consistency-checking verifies
that if the collection of an arbitrary set of nodes S of cardinality n−K satisfies the symmetry property as
the true graph Y must obey. If the consistency-checking fails, it is necessary that there exist two distinct
length-n vectors Y ′ and Y ∗ in Fn such that Y ∗ is the minimizer of the `1-minimization (11a)-(11c) that
differs from the correct answer Y ′, i.e., Y ′ 6= Y ∗ where A = BY ′ and

Y ∗ = arg min
Y

||Y ||1

subject to A = BY

Y ∈ Fn

for some A ∈ Fm and furthermore, the vectors Y ′ and Y ∗ can have at most 2K distinct coordinates,

|supp (Y ′ − Y ∗)| ≤ 2K.

However, the constraints BY ′ = A and BY ∗ = A imply that B (Y ′ − Y ∗) = 0, contradicting to
spark(B) > 2K. Therefore, n −K many columns can be successfully recovered if the decoded solution
passes the consistency-checking. Moreover, since spark(B) > 2K and number of unknown coordinates
in each length-K vector XSj (for j = 1, . . . , |S|) to be recovered is K, the solution of the system (12) is
guaranteed to be unique. Thus, Algorithm 1 always recovers the correct columns Y1, . . . , YN conditioned
on spark(B) > 2K. It follows that εP ≤ 1 − PG(G ∈ C(n, µ,K)) provided spark(B) > 2K. In
agreement with the assumption that the distribution G is (µ,K, ρ)-sparse, (10) must be satisfied. Therefore,
the probability of error must be less than ρ.

D Proof of Lemma 1
Proof. Consider the following function

F (E) =
n∑
j=1

f(dj(G))

where dj(G) denotes the degree of the j-th node and consider the following indicator function:

f(dj(G)) :=

{
1 if dj(G) > µ

0 otherwise
.
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Applying the Markov’s inequality,

P (G /∈ T(n)(µ,K)) = PUT(n)
(F (E) ≥ K)

≤
EUT(n)

[F (E)]

K
. (27)

Continuing from (27), the expectation EUT(n)
[F (E)] can be further expressed and bounded as

EUT(n)
[F (E)] =

n∑
j=1

EUT(n)
[f(dj(G))]

=
n∑
j=1

PUT(n)
(dj(G) > µ) . (28)

Since G is chosen uniformly at random from T(n), it is equivalent to selecting its corresponding Prüfer
sequence (by choosing n−2 integers independently and uniformly from the set V , c.f. [59]) and the number
of appearances of each j ∈ V equals to dj(G)− 1. Therefore, for any fixed node j ∈ V , the Chernoff bound
implies that

PUT(n)
(dj(G) > µ) ≤ exp

(
−(n− 2)DKL

(
µ

n− 2

∣∣∣∣ 1
n

))
(29)

whereDKL(·||·) is the Kullback-Leibler divergence and

DKL

(
µ

n− 2

∣∣∣∣ 1
n

)
≥ µ

n− 2
lnn. (30)

Therefore, substituting (30) back into (29) and combining (27) and (28), setting µ ≥ 1 leads to

P (G /∈ T(n)(µ,K)) ≤ n exp(−µ lnn)

K
≤ 1

K
.

E Proof of Lemma 2
Proof. For any fixed node j ∈ V , applying the Chernoff bound,

PGER(n,p) (dj(G) > µ) ≤ exp
(
−nDKL

(µ
n

∣∣∣∣p)) .
Continuing from (27), the expectation EGER(n,p [F (E)] can be further expressed and bounded as

EGER(n,p) [F (E)] ≤ n · exp
(
−nDKL

(µ
n

∣∣∣∣p)) (31)

where the probability p satisfies 0 < p ≤ µ/n < 1. Note that

DKL

(µ
n

∣∣∣∣p) =
µ

n
ln

1

p
+
(

1− µ

n

)
ln

1

1− p
− h(p) (32)

where the binary entropy h(p) is in base e. Taking µ ≥ 2nh(p)/(ln 1/p) ≥ 2np, substituting (32) into (31)
leads to

EGER(n,p) [F (E)] ≤ n exp (−nh(p)) .

Therefore, (27) gives

P (G /∈ C(n)(µ,K)) ≤ n exp (−nh(p))

K
.
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F Proof of Lemma 3
Proof. Continuing from Theorem 3.1,

H(A)−H(Z)

=
m∑
i=1

[
H

(
A(i)

)
−H

(
Z(i)

)]
(a)

≤
m∑
i=1

n

2

[
ln

(
2πe

Tr (ΣA(i))

n

)
− ln(2πeσ2

N)

]
(33)

where Tr (ΣA(i)) is the trace of the covariance matrix of A(i) and we have used the fact that normal
distributions maximize entropy and the inequality det(ΣA(i)) ≤ (Tr (ΣA(i)) /n)n to obtain (a). Note
that because of the assumption of independence, the trace is bounded from above by nσ2

SY + nσ2
N where

Y := maxi,j |Yi,j |. Substituting this into (33) completes the proof. The special case when Z = 0 follows
similarly.

G Proof of Theorem 4.1
Proof. The first part is based on Corollary 3.1. Under the assumption of the generator matrix B, using
Gordon’s escape-through-the-mesh theorem, Theorem 4.3 in [41] implies that for any columns Yj with
j ∈ VSmall are correctly recovered using the minimization in (11a)-(11c) with probability at least 1 −
2.5 exp (−(4/9)µ log(n/µ)), as long as the number of measurements satisfiesm ≥ 48µ (3 + 2 log(n/µ)),
and n/µ > 2, µ ≥ 4 (if µ ≤ 3, the multiplicative constant increases but our theorem still holds). Similar
results were first proved by Candes, et al. in [40] (see their Theorem 1.3). Therefore, applying the
union bound, the probability that all the µ-sparse columns can be recovered simultaneously is at least
1 − 2.5n exp (−(4/9)µ log(n/µ)). On the other hand, conditioned on that all the µ-sparse columns
are recovered, Corollary 3.1 indicates that spark(B) > 2K is sufficient for the three-stage scheme to
succeed. Since each entry in B is an IID Gaussian random variable with zero mean and variance one, if
m ≥ 48µ (3 + 2 log(n/µ)) + 2K, with probability one that the spark ofB is greater than 2K, verifying the
statement.

The converse follows by applying Lemma 3 with Z = 0. Consider the uniform distribution UC(n)(µ,K)

on C(n)(µ,K). Then H
(
UC(n)(µ,K)

)
= ln |C(n)(µ,K)|. Let 0 ≤ α, β ≤ 1 be parameters such that

µ < β(n − αK). To bound the size of C(n)(µ,K), we partition V into V1 and V2 with |V1| = n − αK
and |V2| = αK. First, we assume that the nodes in V1 form a µ/2-regular graph. For each node in V2,
construct β(n − αK) ∈ N+ edges and connect them to the other nodes in V with uniform probability. A
graph constructed in this way always belongs to C(n)(µ,K), unless the added edges create more than K
nodes with degrees larger than µ. Therefore, as n→∞,

|C(n)(µ,K)| ≥ρ ·
e1/4

(
N − 1

φ

)N( (N
2

)
φN/2

)
(
N(N − 1)

φN

) ·
(
n− 1

M

)αK
(34)

where N := n − αK, M := β(n − αK) and φ := µ/2. The first term ρ denotes the fraction of the
constructed graphs that are in C(n)(µ,K). The second term in (34) counts the total number of φ-regular
graphs [60], and the last term is the total number of graphs created by adding new edges for the nodes in V2.
IfK = O(µ), there exists a constant α > 0 small enough such that ρ = 1. If µ = o(K), for any fixed node
in V1, the probability that its degree is larger than µ is

αK∑
i=φ+1

(
αK

i

)
βi(1− β)αK−i

≤
αK∑

i=φ+1

αKh

(
i

αK

)
βi ≤ (αK)2βφ+1
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where h(i/αK) is in base e. Take β = n−3/µ and α = 1/2. The condition µ < n−3/µ(n−K) guarantees
that µ < β(n− αK). Letting z(n) := 1/n be the assignment function for each node in V1, we check that

(αK)2βφ+1 ≤ 1

4n
≤ z(n) ·

(
1− 1

z(n)

)N
≤ 1

en
.

Therefore, applying the Lovász local lemma, the probability that all the nodes in V1 have degree less than
or equal to µ can be bounded from below by (1−z(n))

N ≥ 1/4 if n ≥ 2, which furthermore is a lower
bound on ρ. Therefore, taking the logarithm,

H
(
UC(n)(µ,K)

)
≥ (N − 1)2

2
h(ε)−O(N lnµ)

+
K

2

(
(n− 1)h

(
M

n− 1

)
−O(lnn)

)
−O(1) (35)

=Ω
(
n2h(ε) + n1−3/µK

)
(36)

where ε := φ/(N − 1) ≤ 1/2. In (35), we have used Stirling’s approximation and the assumption that
K = o(n). Continuing from (36), since 2nh(ε) ≥ µ ln(n/µ), for sufficiently large n,

H
(
UC(n)(µ,K)

)
= Ω

(
nµ log

n

µ
+ n1−3/µK

)
. (37)

Substituting (37) into (16), when n→∞, it must hold that

m = Ω
(
µ log(n/µ) +K/n3/µ

)
to ensure that εP is smaller than 1/2.

H Proof of Theorem 4.2
The structure of the proof is the same as Theorem 4.1. The converse follows directly by putting the bounds
in (37) and (15) together. For proving the achievability, it is sufficient to show that with high probability (in
n), |Yi,j −Xi,j | = o(1) for all i, j ∈ V whereXi,j and Yi,j are the recovered and original (i, j)-th entry of
the graph matrix. For the Gaussian IID ensemble considered, the `2-norm of the inverse matrix (BKS )−1,
equivalently, the minimal singular value of BKS is strictly positive with probability o(1) (see the proof of
Lemma III-9 in [26]). Using the Chernoff bound, with high probability,

||B||22 ≤||B||2F ≤ C1nmσ
2
S, (38)

||Zj ||22 ≤C2nσ
2
N, for all j ∈ V (39)

for some positive constants C1 and C2. Noting that if K ≤ µ, then δ2K < 1 with high probability,
the bound in (38) and the bound on the `2-norm of the inverse matrix (BKS )−1 imply η = O(n2γ),
by applying our Theorem 3.2. Moreover, with Gaussian measurements, for each µ-sparse vector Yj in
Rn, ||Xj − Yj ||2 ≤ C3||Zj ||2 for some constant C3 > 0 (cf. Theorem 1 in [61]) where Yj satisfies
BYj + Zj = Aj and Xj is the optimal solution of (11a)-(11c) (with F ≡ R). Therefore, Γ = O(γ) and
γ = O(

√
nσN) using (39). Since η = O(n2γ), the condition σN = o(1/n5/2) guarantees that η = o(1),

whence |Yi,j −Xi,j | = o(1) for all i, j ∈ V and the proof is complete.
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