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Abstract—Large-scale integration of distributed energy re-
sources into distribution feeders necessitates careful control of
their operation through power flow analysis. While the knowledge
of the distribution system model is crucial for this analysis,
it is often unavailable or outdated. The recent introduction
of synchrophasor technology in low-voltage distribution grids
has created ample opportunity to learn this model from high-
precision, time-synchronized measurements of voltage and cur-
rent phasors at various locations. This paper focuses on joint
estimation of admittance parameters and topology of a poly-
phase distribution network from the available telemetry data via
the lasso, a method for regression shrinkage and selection. We
propose tractable convex programs capable of tackling the low
rank structure of the distribution system and develop an online
algorithm for early detection and localization of critical events
that induce a change in the admittance matrix. The efficacy
of these techniques to identify a large part of the distribution
network is corroborated through power flow analysis on four
three-phase radial distribution systems serving real and synthetic
household demands.

Index Terms—System identification, event detection, phasor
measurement units, distribution grids, smart grids.

I. INTRODUCTION

D ISTRIBUTION grids were traditionally sized in a way
that they would not be stressed under severe loading

conditions. This fit and forget strategy worked well enough
for many years owing to the simple design and operation
rules of these networks. But the rapid growth in deployment
of demand side technologies and distributed energy resources
(DER), such as solar panels, wind turbines, battery storage
systems, and plug-in electric vehicles, in recent years has led
to unprecedented amounts of variability and uncertainty which
complicate grid operations and threaten its reliability. This
necessitates more comprehensive monitoring of distribution
circuits beyond the substation and manifests the need for a
novel planning and operation paradigm centered around perva-
sive monitoring, real-time analytics, and proactive control [1].

Numerous smart grid technologies have been piloted in
recent years to make electrical events and responses observ-
able and comparable between multiple locations, examples of
which are the distribution supervisory control and data acquisi-
tion (D-SCADA) system and distribution-level synchrophasor
technology [2] — a network of inexpensive and high-fidelity
phasor measurement units (termed µPMUs) sampling voltage
and current waveforms at high frequency [3]. Distribution
system operators could use measurements of these sensors
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along with appropriate analytical tools for many purposes,
including topology detection, model validation, state estima-
tion, distributed generation characterization, fault detection,
equipment health monitoring, and phasor-based control [4]–
[6]. These capabilities are essential for cost-effective planning
and reliable operation of distribution systems.

While only a small number of nodes are currently equipped
with µPMUs, these sensors are expected to become more
common in low-voltage distribution grids in the future. Specif-
ically, synchrophasor capability can be built into devices such
as inverters, relays, and transformers, which are connected to
many nodes in the network. Hence, the synchrophasor network
can potentially cover the entire distribution network, including
intermediate and end nodes. Assuming that synchrophasor
data is available from all nodes, this paper focuses on joint
estimation of distribution system model parameters and its
topology. The knowledge of the distribution system model is of
vital important for many diagnostics and control applications,
yet it is often unavailable or outdated due to the continuous
integration of distribution components and frequent reconfig-
uration of feeders.

The inverse power flow (iPF) problem, originally defined
in [7], concerns recovering the admittance matrix of a power
system from a sequence of voltage and current phasor mea-
surements corresponding to different steady states of the
system. In this paper, we study the iPF problem in the context
of a poly-phase distribution system (loopy or radial) where
each node is equipped with a sensor (i.e., the full observ-
ability assumption). Drawing on sparsity-based regularization
techniques [8]–[10], we present a tractable convex program
to uniquely identify the admittance matrix of the distribution
system when the identification problem is well-posed. To
tackle the low rank structure of a distribution network, we
develop a novel algorithm based on matrix decomposition
which is capable of identifying a large submatrix of the ad-
mittance matrix. Furthermore, we propose an online algorithm
for early detection and localization of critical events that
change the admittance matrix in one way or another. Extensive
simulations are performed to evaluate the efficacy of these
algorithms on IEEE 13, 34, 37, and 123-bus feeders serving
real and synthetic loads.

This paper extends our prior work [11] in two main ways.
First, we propose the use of the adaptive lasso penalty to esti-
mate large elements of the admittance matrix, attenuating the
bias problem. Second, we propose a regularization technique
that leverages the approximate knowledge of the admittance
matrix to enhance identification when the constructed data
matrix is low rank. Third, we exploits the parametric sparsity
in the difference between the true admittance matrix and the
one after event so that one can reduce the number of samples
to localize the event.
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II. RELATED WORK

The distribution system identification problem has received
a lot of attention lately. However, most research focuses on
topology verification which entails identifying the subset of
distribution lines that are energized using smart meter data or
phasor measurements, and little effort has been put into learn-
ing the impedance parameters of lines and transformers from
the available sensor data. Due to the imprecise and correlated
phasor measurements, model parameter estimation will be
nontrivial even if the true topology is known. For example, the
correlation between node voltage measurements is leveraged
in [12] to detect the grid topology via a sparse Markov random
field. Power measurements collected from different types of
meters are used in [13] to detect the topology of a radial distri-
bution system by solving an integer programming problem. A
data-driven algorithm based on group lasso is proposed in [14]
to identify the topology of a mesh distribution network using
voltage magnitude and power consumption measurements of
smart meters. A data-driven online algorithm is proposed
in [15] for detecting a switching event by comparing a trend
vector built from µPMU data with a given library of signatures
derived from the possible topology changes. This algorithm
cannot be utilized to efficiently detect topology change events
in a large distribution network due to the exponential number
of feasible radial structures. In [16], the optimal placement
of sensors in a distribution network is investigated in order
to infer the status of switches from the measurements using
the maximum likelihood method. This approach requires the
knowledge of the number of switches installed in the network
and their location. A mutual information-based algorithm is
proposed in [17] to identify the distribution topology by
building a graphical model that describes the probabilistic
relationship among voltage measurements. In [18], a graphical
model learning algorithm is proposed based on conditional
independence tests for nodal voltage measurements. Principal
component analysis is employed in [19] to obtain a lower
dimensional subspace of the available µPMU data and project
the original data onto this subspace by learning coefficients of
the basis matrix using an adaptive training method. An online
event detection algorithm is then proposed to approximate
phasor measurements using these coefficients, issuing an alert
whenever a significant approximation error is noticed. While
some of these works can accurately identify real-time topology
of the distribution network, none of them investigated the
system identification (or model parameter estimation) problem
in radial or mesh distribution systems.

The closest lines of work to ours are [20], [21] which
attempt to jointly address the topology detection and model
parameter estimation problems. In [20], these problems are
merely studied in a radial setting assuming the true variance of
nodal power injection (real and reactive) are known and sensor
measurements are precise. We do not make these assumptions
in this work. In [21], the maximum likelihood estimation
framework is used to jointly estimate the line parameters and
topology of a distribution system given noisy measurements of
power injections and voltage phasors obtained from µPMUs
and smart meters. Despite the novelty of this work, the authors
used a single-phase power flow model, ignoring the mutual
coupling between phase conductors. Our approach is different
from theirs in two ways. First, we adopt a three-phase ac model

for describing power flow in distribution systems. Second, we
address detection and localization of events and faults that
could induce a change in the admittance matrix.

We note that the system identification problem studied in
this paper is analogous to network tomography, which con-
cerns inferring internal performance information and topology
of a computer network from measurements [22].

III. PROBLEM FORMULATION

This section describes the iPF problem in a poly-phase dis-
tribution system and introduces a regularization technique for
simultaneous estimation and variable selection to efficiently
solve this problem under certain assumptions.

A. Preliminaries
We denote the set of complex matrices and the set of

symmetric complex matrices by C and S, respectively, the
transpose of a matrix A by A>, its Hermitian (complex
conjugate) transpose by AH , its pseudo-inverse by A†, its
Frobenius norm by ‖A‖F , and the smallest number of linearly
dependent columns of this matrix by Spark(A). All-zeros and
all-ones vectors are denoted respectively by 0 and 1, and the
cardinality of a set N is denoted by |N |. Placing a caret over
a letter indicates that it represents an estimated value.

A poly-phase power distribution system can be modeled by
an undirected graph G = (N , E) where N = {1, 2, . . . , N}
represents the set of nodes, and E ⊆ N × N represents the
set of energized lines, each connecting two distinct nodes. We
denote the phases of a node n ∈ N by Pn ⊆ {an, bn, cn}
and the phases of a line (m,n) ∈ E connecting node m to
node n by Pmn ⊆ {amn, bmn, cmn}. For node n ∈ N and
phase φ ∈ Pn, let V φn ∈ C be its line-to-ground voltage and
Iφn ∈ C be the injected current. We represent the voltages
and injected currents of different phases of node n ∈ N by
vectors Vn = {V φn }φ∈Pn and In = {Iφn}φ∈Pn , respectively,
and use the per-unit system to express the quantities. We treat
the voltage at the distribution substation as reference for phasor
representation.

We model lines as π-equivalent components and denote the
phase impedance and shunt admittance matrices of line (m,n)
by Zmn ∈ C|Pmn|×|Pmn| and Y smn ∈ C|Pmn|×|Pmn|, respec-
tively. Similarly, transformers are modeled as series compo-
nents with an admittance matrix which depends on the type
of connection. Assembling the admittance matrices of all com-
ponents, the admittance matrix can be constructed for the dis-
tribution system, denoted by Ybus ∈ S

∑
n∈N |Pn|×

∑
n∈N |Pn|,

which is a symmetric matrix that satisfies Ybus1 = 0 if shunt
elements are neglected. The bus admittance matrix relates the
node voltages and injected currents according to Ohm’s law:

I1(k)
I2(k)

...
IN (k)


︸ ︷︷ ︸
Ibus(k)

=


Y11 Y12 . . . Y1N

Y >12 Y22 . . . Y2N

...
...

. . .
...

Y >1N Y >2N . . . YNN


︸ ︷︷ ︸

Ybus


V1(k)
V2(k)

...
VN (k)


︸ ︷︷ ︸
Vbus(k)

, (1)

where k = 1, . . . ,K is the time index, Vbus(k), Ibus(k) ∈
C
∑

n∈N |Pn|×1 are steady-state complex nodal voltages and
injected currents at time k, each off-diagonal block of Ybus is a
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submatrix Ymn = −Z−1
mn corresponding to the admittance of a

poly-phase line (m,n), and each diagonal block is a submatrix

Ynn =
∑

m∈{o|(o,n)∈E}

(
1

2
Y smn + Z−1

mn

)
.

Hence, the admittance matrix incorporates the mutual coupling
between phase conductors.

Rewriting (1) in vector form for K time slots yields:
I1(1) . . . I1(K)
I2(1) . . . I2(K)

...
. . .

...
IN (1) . . . IN (K)


︸ ︷︷ ︸

IKbus

=Ybus


V1(1) . . . V1(K)
V2(1) . . . V2(K)

...
. . .

...
VN (1) . . . VN (K)


︸ ︷︷ ︸

V K
bus

, (2)

where V Kbus and IKbus collect nodal voltages and injected currents
sampled at K successive time slots (with white noise) by
µPMU installed downstream of the nodes in the primary dis-
tribution network (i.e., on subfeeders originating from them).

The iPF problem that we study in this paper concerns
recovering the admittance matrix of a poly-phase distribution
system, Ybus, from voltage and current phasor measurements of
all nodes, V Kbus and IKbus. In general, V Kbus is low rank in a power
system making the identification problem ill-posed. This is
reported for transmission PMU data in [19] and is further
supported by the experiments on real µPMU data obtained
from [23]. In the following, we first study how the admittance
matrix can be identified when the identification problem is
well-posed. We discuss in Section IV how a large part of
the admittance matrix can be identified despite the low rank
structure of V Kbus. We call the iPF problem well-posed when
the measurement matrix V Kbus has full rank, and call it ill-posed
when V Kbus is low rank.

B. Sparsity-based Regularization
This section presents a robust algorithm for recovering

the admittance matrix of a distribution system from noisy
sensor data. Existing synchrophasor technology is capable
of sampling voltage and current waveforms at 120 Hz or
higher [3]. But even at a lower temporal resolution (e.g.,
one-minute), enough data can be collected to identify the
model of a distribution network comprised of several hundred
nodes, before it changes. Nevertheless, for convenience, we
henceforth refer to the available sensor data as µPMU data.
We make the following two assumptions: (a) the identification
problem is well-posed, and (b) all nodes can be monitored.

The admittance matrix can be identified by solving the
following regression problem:

Ŷbus = argmin
Y

∥∥Y V Kbus − IKbus

∥∥
F

(3)

subject to Y ∈ SN×N .

In practice, the sample size K can be smaller than the number
of unknown variables in the admittance matrix and we seek
for a sparse solution because Ybus encodes the topology of
a distribution network which is typically radial at any given
time (hence, most elements of the admittance matrix are zero).
Thus, we adopt sparsity-based regularization techniques to
identify the admittance matrix. We specifically enforce sparsity

of Ybus by applying the vec operator, which converts a matrix
into a column vector, to the objective function and constraining
the `0-norm of vec(Ybus):

Ŷbus = argmin
Y

∥∥((V Kbus)
> ⊗ 1N )vec(Y )−vec(IKbus)

∥∥
2

(4)

subject to Y ∈ SN×N , ‖vec(Y )‖0 ≤ δ,

where ⊗ is the Kronecker product and δ determines the
degree of sparsity of Ybus. The cardinality constraint makes
this problem NP-hard [24].

Exploiting the symmetric structure of Ybus, we reduce the
number of parameters that need to be estimated. Consider a
mapping f : CN×N → C(N2+N)/2×1 which collects the lower
triangular elements of a complex matrix as illustrated below:

f(A) = [a11, a21, a31, . . . aN1, a22, a32, . . . aN2, . . . aNN ]>,

where aij is the element in the ith row and jth column of
matrix A. Observe that f is a bijection for any Y ∈ SN×N and
we have vec(Y ) = QY f(Y ), where QY ∈ RN

2×(N2+N)/2 is
a unique binary matrix that converts f(Y ) to vec(Y ). Hence,
the iPF problem can be reformulated as:

f(Ŷ )=argmin
x∈C(N2+N)/2×1

∥∥∥(V Kbus
>⊗ 1N

)
QY x−vec(IKbus)

∥∥∥2

2
+λ ‖x‖0,

where λ is a suitable positive regularization parameter. The
above problem is non-convex and cannot be solved efficiently;
thus, we solve a convex relaxation of this problem known
as the lasso [25], hoping that the solutions coincide. In [9],
conditions are established for the solution of `1 optimization
to coincide with the solution of `0 optimization. The penalized
form of lasso can be written as:

min
x∈C(N2+N)/2×1

∥∥∥∥∥∥∥∥
(
V Kbus
>⊗ 1N

)
QY︸ ︷︷ ︸

A

x−vec(IKbus)︸ ︷︷ ︸
b

∥∥∥∥∥∥∥∥
2

2

+λ ‖x‖1. (5)

The lasso continuously shrinks the elements of Ybus toward
0 as λ increases, and some coefficients are shrunk to exact
0 if λ is sufficiently large. Hence, selecting λ is critical to
the performance of the lasso. One way to choose this regu-
larization parameter is to minimize the Bayesian information
criterion (BIC) as discussed in [14]. We note that (5) can be
solved using a standard convex optimizer as well as iterative
algorithms [26]–[28], which are more compelling in large
distribution networks.

In practice, it may be possible to obtain partial information
about the network topology. To improve the performance of the
identification algorithm, this information can be incorporated
in the form of equality constraints added to Eq. (5). In this
paper, we consider a general situation where the network
topology is unknown completely.

Once f(Ŷ ) is recovered, vec(Ŷ ) can be easily constructed:

vec(Ŷ ) = QY f(Ŷ ). (6)

It is shown in [7] that the proposed technique can solve the
identification problem when it is well-posed.
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C. Avoiding Unnecessary Bias

Despite significant statistical and computational advantages
of the lasso for solving the iPF problem, it is not an ‘oracle
procedure’ and could result in suboptimal estimation in certain
cases [29]. The lasso equally penalizes all elements of Ybus,
thereby producing biased estimates for the large elements.
Hence, it may fail to identify the true admittance matrix
when the distribution system contains several switches and
voltage regulators which have much larger admittance than
the distribution lines.

To avoid the unnecessary bias, we can assign data-dependent
weights to different elements of Ybus in the `1 penalty. The
two-stage algorithm, known as the adaptive lasso [29], applies
less shrinkage whenever the true unknown variable is large.
Specifically, f(Y ) can be recovered from:

min
x∈C(N2+N)/2×1

‖Ax−b‖22+λ
∑
i

|xi|
|x̂i|γ

, (7)

where γ is a positive parameter and x̂i is an initial estimator
for xi, e.g., the ordinary least squares (OLS) estimator defined:

x̂ = (A>A)−1A>b.

Rescaling the columns of A =
(
V Kbus
>⊗ 1N

)
QY with the

corresponding weights, i.e., |x̂i|γ , reduces (7) to the standard
lasso problem, and therefore, it can be solved using the same
algorithms developed for the lasso. Note that two-dimensional
cross-validation is typically used to tune (λ, γ).

In Section VI, we compare the lasso and the adaptive lasso
penalties and show that the adaptive lasso outperforms the
lasso in terms of identification accuracy in the test feeders.

D. Exploiting Additional Structure

Distribution circuits are upgraded and reconfigured to meet
the growing demand of a neighbourhood, accommodate new
technologies installed at customers’ premises, and minimize
losses. These changes are seldom incorporated into the dis-
tribution system model; thus, the available model is usually
obsolete and cannot be relied on for diagnostics and control
applications. We now discuss how such an approximate model
can be leveraged to improve the identification accuracy.

We represent the available (and presumably inaccurate)
admittance matrix of a distribution system by Ỹ , Ybus + Ψ
where Ybus is the true admittance matrix of the network, which
we ultimately intend to find, and Ψ is an arbitrary error matrix
that must be identified. We note that Ψ is symmetric since both
Ỹ and Ybus are symmetric. If all elements of Ψ are small,
the identification problem reduces to solving the following
regularized least squares problem:

Ŷbus = Ỹ − argmin
Ψ∈SN×N

∥∥∥(Ỹ −Ψ)V Kbus − IKbus

∥∥∥2

F
+λ ‖Ψ‖2F ,

(8)

where λ is a tuning parameter.
Alternately, Ψ might have a small number of nonzero

elements that are not necessarily small, e.g., when the only
unknown information is the status of switches which typically
have large admittance values. In such cases, the Frobenius
norm of Ψ in (8) must be replaced with the `0-norm of Ψ and

similarly the `2-norm of x in (9) must be replaced with its
`1-norm (after convex relaxation).

Exploiting the symmetric structure of Ψ and adopting the
technique outlined in Section III-B, we can solve the following
ridge regression problem to identify Ψ:

f(Ψ̂) = argmin
x∈C(N2+N)×1

‖Ax− b‖22 + λ ‖x‖22 (9)

where A = −
(
V Kbus
> ⊗ 1N

)
QΨ and b = vec(IKbus − Ỹ V Kbus).

This approach can be used to periodically update the distribu-
tion system model.

Remark 1. This problem can be solved analytically with a
very high computational complexity, i.e., O(cdim(A)3), where
cdim(A) denotes the number of columns in A. Alternatively, it
is well-known that we can solve it using the standard gradient
descent.

IV. LOW RANK STRUCTURE OF DISTRIBUTION SYSTEMS

The voltage measurement matrix, V Kbus, is low rank in most
poly-phase distribution systems due to the interdependencies
between nodal voltages; this matrix has several singular values
that are too small even when we consider the measurement
error introduced by µPMUs. This results in an ill-posed prob-
lem that cannot be solved to identify the admittance matrix
in its entirety even if K � N . To tackle this problem, we
propose a novel identification algorithm based on a particular
partitioning of V Kbus into two matrices, one of which has full
row rank; this permits us to recover at least some part of the
admittance matrix while the rest of it cannot be recovered.
The steps of this algorithm are described below.

A. Similarity Transformation
Let R be the row rank of V Kbus. We partition V Kbus into two

matrices via a similarity transformation of the matrix Ybus:

T IKbus︸ ︷︷ ︸
I

= (T YbusT −1)︸ ︷︷ ︸
Y

(T V Kbus︸ ︷︷ ︸
V

), (10)

where T is a
∑
n∈N |Pn|×

∑
n∈N |Pn| matrix that splits V Kbus

into an R ×K matrix, denoted by V2, containing R linearly
independent rows of V Kbus and an (

∑
n∈N |Pn|−R)×K matrix,

denoted by V1, containing other rows of V Kbus that are all in the
row space of V2. Algorithm 1 describes the steps for building
these two submatrices from the available synchrophasor data.
Shuffling rows of V Kbus and IKbus according to this transformation
yields:

T V Kbus =

[
V1

V2

]
, T IKbus =

[
I1
I2

]
.

Since V1 is in the row space of V2, we can estimate the
basis X such that V1 = XV2 from µPMU data by computing
the pseudo-inverse of V2: X = V1V†2. Note that the pseudo-
inverse is well-defined here since V2 is full row rank.

B. Recovering Parts of Ybus

We write (10) as[
I1
I2

]
=

[
Y1,1 Y1,2

Y>1,2 Y2,2

]
︸ ︷︷ ︸

Y

[
XV2

V2

]
=

[
Y1,1X + Y1,2

Y>1,2X + Y2,2

]
V2, (11)
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Algorithm 1 Basis Selection Algorithm
1: Perform orthogonal-triangular decomposition of V Kbus;
2: Sort diagonal elements of the upper triangular matrix;
3: Choose the first R elements; return the corresponding

elements in the permutation matrix as indices of the
linearly independent rows of V Kbus;

where {Yi,j}i,j∈{1,2} are four submatrices of Y obtained
according to the decomposition of V. Note that V2 has full
row rank. We have

I1 = (Y1,1X + Y1,2) V2, (12)

I2 =
(
Y>1,2X + Y2,2

)
V2. (13)

Solving (12) for Y1,2 and substituting it into (13) yields:

−X>Y1,1X + Y2,2 = C, (14)

in which C = I2V†2 − (V†2)>I>1 X can be computed from the
µPMU data. Vectorizing both sides of the equation yields:

−
(
X> ⊗X>

)
vec(Y1,1) + vec(Y2,2) = vec(C).

This problem can be written in the following form to reduce
the number of parameters that need to be estimated using
bijection f and matrix Q:

−
(
X> ⊗X>

)
QY11

f(Y1,1) +QY22
f(Y2,2) = vec(C).

Enforcing sparsity of the components of Ybus, it is possible to
identify Y1,1 and Y2,2 from this optimization problem:[

f(Ŷ1,1)

f(Ŷ2,2)

]
= arg min

x
λ
∑
i

wi|xi|+ (15)∥∥[−(X>⊗X>)QY11 , QY22

]
x− vec(C)

∥∥2

2
.

Depending on whether we use the lasso or the adaptive lasso
penalty, wi is set to 1 or 1/|x̂i|γ for some γ > 0.

Once this problem is solved, Y1,2 can be identified from (13)
using the method of least squares. However, there is no
guarantee that Y1,2 is estimated with sufficient accuracy as the
error introduced in the process of estimating Y2,2 propagates.
We show in Section VI that Y2,2 can be accurately estimated
in all cases despite the low rank structure, while Y1,1 and Y1,2

cannot be recovered with sufficient accuracy.

V. TIMELY DETECTION AND LOCALIZATION OF EVENTS

Several types of power system events, such as switching
actions, tap operations, arc and ground faults can change the
effective admittance between the nodes, thereby resulting in
a different admittance matrix. In this section, we propose an
online algorithm for tracking changes in the admittance matrix
of a distribution system and identifying the events that induced
these changes. This algorithm requires a small amount of data
and has a low false alarm rate, enabling operators to take
remedial actions in quasi real-time.

Consider an affine parameterization of the admittance ma-
trix, denoted by Y δ(k)

bus , where

δ(k) =

{
0, k < t
1, k ≥ t

is the discrete mode and t is the time that the event has
occurred. Our goal is to determine t and find out how the
admittance matrix has changed by estimating Y 1

bus−Y 0
bus using

as few successive voltage and current phasor measurements as
possible. The updated entries of the admittance matrix indicate
the type and approximate location of the event. For instance,
if two elements of the admittance matrix change in a certain
way during an event, it can be attributed to a switch that was
opened while another one was closed.

A. Event Detection

To detect a change in the admittance matrix, we estimate
the injected current vector at time k from Ohm’s law using
the known admittance matrix, Y 0

bus, and the measured voltage
vector at time k. We then compare the estimated injected
current vector Îbus with the measured current vector Ibus at
time k to calculate the prediction error:

e(k) = Ibus(k)− Îbus(k) = Ibus(k)− Y 0
busVbus(k). (16)

The series e(·) is white noise if the admittance matrix does
not change; this can be verified by the turning point test. For
a detailed discussion on how network topology errors can be
detected, the readers can refer to [30]. When the prediction
error ‖e(k)‖ exceeds a predefined threshold, we assert that
the admittance matrix has changed at time k.

B. Event Localization

The simplest approach to event localization is to run the
identification algorithm presented in the previous section upon
detection of an event to update the admittance matrix. In a
large distribution system, this requires collecting and process-
ing a considerable number of µPMU samples following the
detection, implying that the identification task may not be
accomplished in a timely manner. To address this shortcoming,
we propose an identification algorithm that scales with the size
of the network by taking advantage of the knowledge of the
admittance matrix before an event and the fact that only a
small number of its elements will change during the event.

Given that the effective admittance between just a small
number of nodes is expected to change in an event, the
difference between the two admittance matrices corresponding
to the systems before and after the event must be sparse. We
leverage this sparsity to recover the new admittance matrix:

min
Y 1

bus

‖vec(Y 1
bus − Y 0

bus)‖0 (17)

subject to It→t+Kbus = Y 1
busV

t→t+K
bus

Y 1
bus ∈ S

∑
n∈N |Pn|×

∑
n∈N |Pn|,

in which Y 0
bus is known, t is the time slot when the event is

detected, and

It→t+Kbus =


I1(t) . . . I1(t+K)
I2(t) . . . I2(t+K)

...
. . .

...
IN (t) . . . IN (t+K)

 ,
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V t→t+Kbus =


V1(t) . . . V1(t+K)
V2(t) . . . V2(t+K)

...
. . .

...
VN (t) . . . VN (t+K)

 .
It can be readily seen that ∆Y , Y 1

bus − Y 0
bus is a symmetric

complex matrix as it is the difference of two symmetric
complex matrices. Hence, we have:

min
∆Y ∈S

∑
n∈N |Pn|×

∑
n∈N |Pn|

‖vec(∆Y )‖0 (18)

subject to It→t+Kbus − Y 0
busV

t→t+K
bus = ∆Y V t→t+Kbus ,

which can be relaxed and converted to the following weighted
regularized `1-norm optimization:

vec(∆Ŷ ) = Q∆Y × arg min ‖Ax− b‖22 + λ
∑
i

wi|xi|, (19)

where A =
(
V t→t+Kbus

> ⊗ 1N
)
Q∆Y , b = vec(It→t+Kbus −

Y 0
busV

t→t+K
bus ), and wi is the weight of the `1 penalty which

is defined earlier. This problem is convex and can be solved
efficiently with only a small number of µPMU samples com-
pared to the original identification algorithm. The following
proposition gives the necessary and sufficient condition for
the solution of the `0 minimization to converge to the true
sparse difference matrix by establishing a minimum bound on
the number of µPMU samples that are required.

Proposition 1 (From [8]). For any vector z, there exists a
unique signal w such that z = Φw with ‖w‖0 = S if and only
if Spark(Φ) > 2S.

Following this, the proposed event localization algorithm
needs as many µPMU samples as required for Spark(A) to
exceed twice the number of elements of the admittance matrix
that will change during an event.

VI. PERFORMANCE EVALUATION

We evaluate the efficacy of the proposed algorithms in es-
timating the model parameters and tracking topology changes
through power flow studies on test distribution systems under
various loading conditions. To carry out this evaluation, we
develop a simulation framework in MATLAB which integrates
built-in graphics and advanced analysis capabilities with the
CVX toolbox for convex optimization [31], and the Open
Distribution System Simulator (OPENDSS) [32] for power
flow analysis (our code is available on GitHub [33]). The
OPENDSS can be controlled from MATLAB through a COM
interface, allowing us to load a distribution system model,
change its parameters, perform power flow calculations, and
retrieve the results. The control mode is disabled in OPENDSS
to ensure that the transformer taps are not automatically ad-
justed during a simulation. This guarantees that the admittance
matrix does not change unless we trigger an event. Figure 1
depicts the principal components of this framework.

The simulator takes as input a distribution system model,
the demand profile of a certain number of homes (for a fixed
number of time slots), the point of connection of each home
(i.e., the node that it is connected to), and a set of events
that should be simulated at specified times. These events
change the admittance matrix in a deterministic way and we
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Fig. 1. A block diagram of the integrated simulation framework.

record all these changes. Given this input data, the aggregate
demand is calculated at each node and a power flow study is
performed in a loop for each time slot to compute the voltage
magnitude and phase angle at each node, which are treated
as µPMU measurements. The proposed convex programs are
then solved to recover the original admittance matrix from the
available µPMU data and update it after detecting each event.
The sequence of recovered admittance matrices are eventually
compared against the sequence of true admittance matrices to
quantify the estimation error. We describe our test cases next.

A. Distribution Feeders
We evaluate our algorithms on four IEEE test feeders,

namely 13-bus, 34-bus, 37-bus, and 123-bus systems [34];
these unbalanced radial systems operate at a nominal voltage
of 4.16 kV, 24.9 kV, 4.8 kV, and 4.16 kV, respectively, and
differ in size and sparsity as shown in Table I. The columns
of this table respectively represent the test feeder, the number
of nodes in its OPENDSS model, the rank of V Kbus (when K
is much larger than the number of nodes), the percentage of
Ybus elements that are zero (i.e., the sparsity level), and the
absolute value of the largest element of the admittance matrix.
The following observations can be made for each test feeder:
a) V Kbus is rank deficient which implies that it is impossible
to recover the full admittance matrix from the µPMU data,
b) the admittance matrix is extremely sparse, and c) the
admittance matrix has at least one element (such elements
typically correspond to the admittance of switches and voltage
regulators) that is several orders of magnitude larger than
other nonzero elements, hinting at the possibility that the lasso
produces biased estimates for these large elements.

Moreover, two of these test feeders contain switches which
can be operated to induce a change in the admittance matrix.
The 123-bus test system contains 12 switches that can be
operated in a certain way to change the topology while main-
taining its radial structure. Hence, it provides an ideal setting
for validating the event detection and localization algorithm.
Similarly, the 13-bus feeder has a normally closed switch. We
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TABLE I
PROPERTIES OF THE RADIAL TEST FEEDERS.

feeder no. nodes rank(V K
bus) sparsity level |max(Ybus)|

13-bus 35 27 81.63% 107

34-bus 95 84 91.72% 402.1
37-bus 117 109 92.47% 1012.5
123-bus 275 254 97.39% 106

650

632 633 634645646

611

652

684 671

680

692 675

substation

N.C.

N.O
.

Fig. 2. A one-line diagram of the modified IEEE 13-bus test feeder. The
dashed line represents the switch added to the original feeder. The number of
phases connecting two nodes is shown by slashes on the lines.

modify this system by adding a normally open switch with
the exact same configuration between Bus 680 and Bus 692
as shown in Figure 2. This creates two feasible radial structures
that span all nodes. We use this feeder to validate both event
detection and system identification algorithms. The 34-bus and
37-bus feeders do not have a switch and are merely used for
the purpose of validating the identification algorithm.

B. Residential Loads & Phasor Measurements

A node in the distribution system model represents an ag-
gregation point where usually a pole-top transformer supplies
a small number of residential customers. Since distribution
circuits are not modelled beyond these transformers, we aggre-
gate demands of downstream customers at the corresponding
nodes. We assume that each node is monitored by a µPMU
which measures the magnitude and phase angle of the node
voltage and the current drawn by the downstream customers
once every time slot.

We use real data from the ADRES dataset [35] to model
the customers connected to the 13-bus, 34-bus, and 37-bus test
feeders. This dataset consists of high-resolution (1 second)
measurements of real power, reactive power, and per-phase
voltage values of 30 Austrian households over 14 days. To
obtain a sufficient number of customers for our simulation,
we treat a 3-phase load as three separate single-phase loads,
and split 14 days of available data for each household into 14
individual loads each representing the demand of a customer
over a particular day. We connect a random number of
customers between 5 and 15 to each node, except the nodes
that are terminals of voltage regulators and switches; no load
is connected to these nodes.

TABLE II
ESTIMATION ERROR OF Y2,2 BY THE LASSO AND ADAPTIVE LASSO.

feeder lasso adaptive lasso
M1 M2 M1 M2

13-bus (radial) 5.51 4.71 3.88 1.76
13-bus (non-radial) 5.38 4.71 3.81 1.77
34-bus 243.65 18.84 21.47 9.11
37-bus 28.70 8.09 2.71 1.63

In the case of the IEEE 123-bus feeder, we need high-
resolution measurements of many households, which we lack.
To address this problem, we synthesize residential loads (real
power) using the continuous-time Markov models derived
from fine-grained measurements of the power consumption of
20 households in Ontario [36]. We connect a random number
of customers between 5 and 10 to each node, except the nodes
that represent the terminals of voltage regulators and switches.
Hence, the load distribution is nonuniform across different
phases of a node. We consider a constant power factor of
95% at each node, which is typical for residential loads, and
set the reactive power accordingly in each time slot.

C. Results
To deal with the low rank structure of the test feeders, we

utilize the algorithm proposed in Section IV to identify the
largest part of the admittance matrix that could be possibly
recovered from the available data. We also utilize the event
detection and localization algorithm proposed in Section V
to track how the admittance matrix changes in an event. To
validate these algorithms, we perform several simulation runs
for each test feeder where each simulation spans one day
divided into 1-second time slots. In each case, we estimate
the admittance matrix using both the lasso and the adaptive
lasso penalties and compare their performance. We use two
metrics to quantify the error incurred in estimating Y2,2, which
is a submatrix of Y that excludes the rows and columns
corresponding to the primary side of the voltage regulator and
the distribution transformer (i.e., Bus 633):

Metric 1 (M1): ‖vec(Ŷ2,2 − Y2,2)‖1
Metric 2 (M2): ‖Ŷ2,2 − Y2,2‖F

Metric M1 is used to evaluate the error of topology identifi-
cation, while Metric M2 is the error of parameter estimation.

To tune the parameters of the convex programs, we search
through a reasonable set of values. Specifically, γ and λ of
the adaptive lasso are chosen from {0.5, 1, 2} and the set of
logarithmically spaced points between 105 and 10−5, respec-
tively. The same set of values are considered to determine λ
of the lasso. Moreover, the OLS estimator is adopted as the
weight of the `1 penalty in the adaptive lasso.

1) Identification with Precise Measurements: We first ex-
plore the scenario in which µPMU measurements are not
affected by noise. Table II shows the two error metrics when
the lasso or the adaptive lasso penalty is used to identify the
admittance matrix of the three test feeders. In the case of
the 13-bus feeder, both methods can detect the true topology
of the network and estimate all elements of Ŷ2,2 except
one, with less than 1% relative error. The one element that
is not accurately identified corresponds to the substation.
Nevertheless, the adaptive lasso estimates that element with
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a lower error compared to the lasso as suggested by the
two error metrics representing the overall accuracy of these
methods. Should we leverage the knowledge of the substation
type and configuration, both methods can accurately estimate

all elements of Ŷ2,2 (M1,M2 < 0.01).

We next validate our method on a mesh network by adding
a single-phase line between Bus 611.3 and Bus 646.3. Table II
shows that our algorithm can identify the topology and param-
eters except for one element that corresponds to the substation.
Similar to the previous case, the adaptive lasso estimates that
element more accurately than the lasso as suggested by the
two error metrics.

In the case of the 34-bus and 37-bus feeders, the lasso
fails to accurately identify more than one element of the
admittance matrix, resulting in estimation errors which are
remarkably higher than the previous case. We verify that those
elements have large admittance values. However, the adaptive
lasso successfully estimates those elements in both feeders and
detects the true topology of the network, resulting in relatively
smaller estimation errors.

2) Identification with Noisy Measurements: We now ex-
plore the scenario in which μPMU measurements are noisy.
We only show the results for the 13-bus feeder due to space
limitations. To simulate the measurement error, we add a
white Gaussian noise with zero mean and variance σ2 to node
voltages and treat them as μPMU measurements under the
assumption that the instrumental transformers are calibrated
according to the data sheets. We have observed that perturbing
node voltages by a small Gaussian noise does not completely
eliminate the low rank problem for smaller feeders such as
the IEEE 13-bus network. We try different values of σ and
perform ten simulation runs for each value. In particular,
we increase the standard deviation from 10−6 to 10−2 and
report the mean value of the two error metrics over these
runs. Figure 3 shows the mean estimation error of the lasso
and the adaptive lasso. It can be seen that both methods are
quite sensitive to noise. When σ = 10−6, the estimation
error of both methods is quite similar to the scenario with
precise measurements (see Table II). The adaptive lasso can

accurately identify all elements of Ŷ2,2, except for one element
(as discussed earlier) as long as σ ≤ 10−3. Should σ exceeds
this level, the adaptive lasso fails to identify several elements
and both error metrics increase significantly. This is because
the noise standard deviation of around 10−2 is quite large for
the line impedance values, making the identification problem
impossible to solve. Unlike the adaptive lasso, the lasso is less
robust to noise and only yields sufficiently accurate estimates
when σ ≤ 10−4.

3) Event Detection and Localization: We finally validate
the proposed event detection and localization algorithm by
simulating a line tripping event and a switching operation in
the 13-bus test feeder, and a switching operation in the 123-
bus test feeder. These events are triggered after the admittance
matrix has been identified for the initial configuration of the
distribution system.

We first focus on the 13-bus test feeder. We introduce a line
tripping event by disconnecting the single-phase line between
Bus 611 and Bus 684, and a switching event by closing the
switch between Bus 692 and Bus 680 while opening the switch
between Bus 671 and Bus 692. Both events will change the

Fig. 3. Identification error of the lasso and the adaptive lasso for different
noise levels in the IEEE 13-bus test feeder.

admittance matrix and therefore must be identifiable from the
available data. We observe that the proposed algorithm detects
the event in both cases in the same time slot that it occurs, i.e.,
immediately after processing the μPMU data for that time slot.

For the switching event, ΔŶ can be estimated with relatively
high accuracy (M1 = 0.17,M2 = 0.10) using 23 μPMU
samples following the detection of this event, as shown in
Figure 4. In this figure, the color of a cell located at row i and

column j represents the value of |Ŷ 1(i, j)−Ŷ 0(i, j)|. It can be

readily seen that all elements of ΔŶ are zero except for 6 three
by three submatrices which have changed due to this event,
enabling us to locate the event within a small geographical
area. We verified that these submatrices correspond to the
admittance of the two switches that are operated. Note that
these switches are located on three-phase lines. The estimation
error will increase significantly if we use fewer samples to

identify ΔŶ .

Turning our attention to the 123-bus test feeder, we simulate
a line switching event by closing the switch between Bus
13 and Bus 152 while opening the switch between Bus 151
and Bus 300 (refer to [37] for the topology of this feeder).
The simultaneous switching operation maintains the radial
structure of this distribution system. The proposed algorithm
detects the event in the same time slot that it occurs and
accurately identifies ΔŶ (M1,M2 < 0.1) using a small
number of μPMU samples following the detection.

VII. CONCLUSIONS

Widespread adoption of distributed energy resources in
power distribution grids calls for an advanced operation
paradigm centered around monitoring, diagnostics, and con-
trol. While the knowledge of the distribution system model
is crucial for most diagnostics and control applications, this
model is often unavailable or outdated in practice. This paper
explored how the admittance matrix of a poly-phase power
distribution system can be identified from limited voltage
and current phasor measurements of inexpensive distribution
PMUs. We proposed tractable convex programs to recover the
admittance matrix in various settings and to track changes
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Fig. 4. A colored representation of Δ̂Y when 23 μPMU samples are used to
recover the admittance matrix following the detection of the switching event.

in the network topology, and investigated the fundamental
limitations of these techniques. We showed that the network
topology can be accurately determined in all test networks,
and the parameters of a reduced admittance matrix can be
estimated with sufficient accuracy as long as the measurement
error is below a certain level.

There are several avenues for future work. The μPMU
installation is currently limited in low-voltage distribution
networks. Furthermore, μPMUs occasionally send corrupt data
that is not suitable for identification. To address these prob-
lems, we intend to develop techniques that leverage both smart
meter and μPMU data to improve identifiability of low-voltage
distribution grids. We also plan to develop an identification
algorithm that can deal with hidden states in the network.
Moreover, the proposed technique can be computationally
expensive and sensitive to noise when it is applied to a distri-
bution network with noisy measurements from thousands of
nodes. We intend to develop a robust distributed identification
algorithm for large distribution networks.
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