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1 Introduction

Robots can increase dexterity via harnessing task mechanics including inertia force,
gravity and external contacts. Pushing is an example of using the arm motion and
supporting surface to change the planar pose of objects through sliding. The quasi-
static pusher-slider system is a canonical hybrid system with model uncertainty due
to indeterminate and stochastic friction distribution. In this paper, we mainly focus
on pushing with rolling/sticking contact where the object is constrained to a two
dimensional space embedded in SE(2). The nonholonomic constraint appears to be
challenging but is fortunately not. Intuitively, the applied force through the contact
point is bounded inside the friction cone and hence the turning rate of the object
must be bounded, indicating similarity to the steering car system with bounded front
wheel turning angle.

We use differential flatness techniques from nonlinear control theory [18], which
offers some advantage for trajectory generation and control of underactuated me-
chanical systems. A particular interesting system is the kinematic steering car whose
flat output is the center of the rear axle. The problem is well-studied: the time-optimal
motion planning solution is given by Dubins curve [7] and globally stable controller
synthesized with dynamic feedback linearization [20]. In this paper, we show that the
pusher-slider system with single sticking contact is differential flat, which opens new
avenue for trajectory planning and stabilization. We first give an intuitive graphical
analysis and continue with algebraic derivation.
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The literature has addressed dealing with inherent model uncertainty in sliding
manipulation, often in the form of worst-case guarantee. The first result is the Voting
Theorem [17] that dictates the sense of rotation given a single contact knowing only
the center of pressure without the exact distribution. Peshkin and Sanderson [21]
give further bounds on the possible instantaneous motion. Goyal et al. [10] noted
that all the possible static and sliding frictional wrenches form a convex set whose
boundary is called as the limit surface. Howe and Cutkosky [12] proposed using
ellipsoid approximation of the limit surface for a given pressure distribution. Zhou et
al. [25, 26] proposed a framework of representing limit surfaces using homogeneous
even-degree convex polynomials. A purely data-driven method is presented in [2].
The use of multiple contacts can be open-loop stable. Lynch and Mason [15] give
results on controllability and stability for open loop edge pushing. A discretized
search-based planner is also given in [15]. The multiple constraints imposed by an
edge can reduce uncertainty. Examples include push-grasps [3, 6], squeezing [8, 26]
and parts feeding [24].

Lynch et al. [16] achieves stable translation through a round finger with only
tactile sensing that gives the contact point position and normal feedback. Hogan and
Rodriguez [11] recently proposed using online hybrid model predictive control for
tracking a pushing trajectory. The contact modes are treated as integer variables.
To avoid excessive combinatorial mode enumeration, prescribed phases of sequence
with a single mode are used. Trajectory optimization and local feedback control
synthesis through rigid body contacts with complementarity constraints are studied
in [22, 23].

2 Background on Quasi-static Pushing

We describe the single point pusher quasi-static motion model assuming rigid body
mechanics with Coulomb friction. The following notations are used:

q: the object pose (x, y, 8) in the world frame W.

p: the contact point (p,, p,) in the local frame O.

n,: the inward normal in the local frame at p.

f: the applied force by the pusher.

fy, f;.: the left and right edges of the friction cone.

u: the pushing velocity of the pusher in the object local frame O.

uy, u,: the left and right edges of the motion cone.

F, V: the applied wrench and resultant twist in the object local frame.

The force-motion model for quasi-static pushing given certain pressure distribu-
tion can be efficiently established through limit surface representation [9, 12, 25].
Points inside the surface correspond to static friction wrenches. Points on the surface
correspond to friction wrenches with normals parallel to sliding twist directions,
forming a mapping between friction wrench and sliding twist.
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Using a homogeneous even-degree convex polynomial H (F) representation for
the limit surface [25], the resultant object twist V follows the same direction as the
gradient evaluated at the applied wrench F:

V=kVH(F), k>0, (1)

A global diagonal ellipsoid approximation [11, 16] is often adopted as a convenient

representation by existing literature on model-based pushing, i.e., assuming H (F) =
a00

FT AF, where A = | 0 a 0 |. In this paper, we find the closest vector of form [a, a, b]
00>

to the diagonal vector of V2 H (Fn,) as alocal approximation, where Fy, is the normal

contact wrench at the contact point p, i.e., the wrench applied as if the contact is

frictionless.

a=(VHF, )+ V?H(EF, )n)/2 2
b=V’H(F,,)n 3)
Choose the positive y axis of the local body frame to align with the vector pointing

from the contact point to the center of mass O. In doing so, p, = 0. After absorbing
the scalar & into f, we have that in local frame

Vi = af; “4)
Vy =afy )
Vo = bt = —bp, f;. (6)

The quasi-static motion equations in global frame are written as:

x =a(fccosf — fy,sinf) @)
y = a(f,sind + fycos6) 8)
6 = —bp, f.. )

and the friction cone constraint is given by

I fell = mfy (10)
fy=0 (1)

cosd —sinf 0
:| the Jacobian matrix atpand R(#) = | sinf cosé O |,
0 0 1

10 —p,

Denoteby J, = |:Ol s

Egs. 7-9 is equivalent to:
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Fig.1 A rectangle pushed by a round finger. Blue arrows correspond to the friction cone 2 (fi, f;)
edges and red arrows correspond to the motion cone % (u;, u,) edges. The instantaneous clockwise
center of rotation (COR) is marked as a circle with negative sign. The contact sticks since the
pushing direction « is inside the motion cone

q=R@O)AJ]T (12)

Note that the magnitude of f does not have physical meaning and is proportional to
the magnitude of the input velocity. Since the pusher is position controlled, we will
need to relate the applied force to pushing velocity. It can be shown [25] that for
sticking contact the applied force f and pushing velocity u are linearly related, and
have a one-to-one mapping:

u=J,AJf. (13)

Further, the friction cone constraint is translated into motion cone J# (u;, u,) where
the left edge u; and right edge u, of the cone are given by:

w=JAN 0 u=J,A) (14)

If u is within the motion cone, then the contact sticks as shown in Fig. 1. Left sliding
occurs if u is to the left of w; and right sliding occurs if u is to the right of u,. The
planner and controller described in the rest of the paper assumes the control input is
applied force, which will be converted to pusher velocity using Eq. 13.

3 Differential Flatness

The rough idea of differential flatness is to find flat output states (of the same di-
mension as control input) as a function of the original states and control inputs. Such
mapping also admits an inverse function such that the original states and control
inputs can be recovered from the flat output states and their high order derivatives
without any integration step.
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3.1 Graphical Derivation

From Egs. 4-6, an applied body wrench F = [f, £y, ] is mapped to a body twist V.
A twist in a plane can be further represented as a center of rotation (V4/Vy, Vy/Vy)
with the same sign as V). Let r = |p,| be the distance from the line of force to the
local frame origin. The distance 7 from the center of rotation to the origin is inverse

proportion to r:
B ig Cobr

If we define the unit length as a/b, then the center of rotation lies on the opposite
side along the perpendicular line to the line of force through the contact point, with
distance to the origin equals 1/r. As in projective geometry, the dual of a line is a
point. Here, the line of applied force is mapped to the resultant center of rotation
point.

Proposition 1 The instantaneous rotation centers corresponding to applied fric-
tional forces through the contact point form a line perpendicular to the vector from
the origin to the contact point. The distance from the line to the origin equals 3,
where r is the distance from the contact point to the origin.

This is similar to the force-dual method [4] that maps a line of force to the
acceleration center. The matrix A can be treated as a damping matrix that connects
force to velocity, analogous to the inertia matrix in [4] that maps force to acceleration.

In Fig. 2a, the friction cone is symmetric with respect to the origin as the contact
point’s normal passes through the origin. The friction cone constraints are represented
using the force dual graphical method. Denote by z; and z, the instantaneous rotation
centers given applied forces on the left edge f; and the right edge f, of the friction
cone respectively. The allowable motion of z can be characterized by a ray (blue) of
counter-clockwise rotation center starting from z, or a ray (magenta) of clockwise
rotation center starting from z;. Figure2b illustrates the general asymmetric case.
Choose the positive y axis to be aligned with the vector pointing from the contact
point to the center of mass, the trajectory of the pushed object can be exactly recovered
from the trajectory of such point (flat output).

Theorem 1 Any point on the line of center of rotations is a differential flat output.

Proof Section3.2 provides an algebraic proof. We also give a geometrical proof
sketch here.

1. Since the line of center of rotation is perpendicular to the positive y axis, the tan-
gents along the trajectory point in the directions of body positive y axis (heading)
of the object.

2. After knowing the orientation of the body frame, we can compute the position of
the body frame since the point is fixed in the body frame.
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(a) Symmetric case. (b) Asymmetric case.

Fig. 2 Graphical analysis

3. The instantaneous center of rotation can be further determined from the curvature
along the trajectory. Therefore the velocity control input is also known.

A key observation is that if we choose the mid point (in red color) between z; and z,,
then the instantaneous motion constraints from the sticking contact are simply mini-
mum turning radius constraints. We now have a reduction to a Dubins car model [7,
13] where the heading aligns with the positive body y axis and the mid point (red)
of z; and z, is the center of rear axle.

3.2 Algebraic Derivation

This section derives the function mappings between cartesian pose and control to
flat outputs.

3.2.1 Symmetric Case

The symmetric case as shown in Fig.2a is when the pushing point’s normal aligns

with the vector pointing from the point p to the center of mass O. Hence we have
px=0andr = —p,.cosOx (7) +sinfx (8) and —sinOx (7) + cos 6 x (8) yield

fx

1
—(xcosf + ysin6) (16)
a
1
fy = —(—xsinf + ycosh). 17)
a
Together with Eq. (9) yields

—bié+xcose+y'sin9=o. (18)
.
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A choice of flat outputs are given by

2=x— L sing (19)
br

=y+ a4 cosf, (20)
br

whose derivative are

. . a .

7] =X — —cos66 21
br

5= — ~sin6é (22)
br

Rewrite Eq. (18) using z, z we get

Z1cosf + z8inf = 0. (23)
Therefore,
6 = arctan <_—Z1> 24)
22
az
X =2z — T (25)
bry/z + 23
az
Y=o ———— (26)
bry/z2 + 73
= 2122 — 2221 (27)

Cbr(22 423

Jia+ 3
f=1—— (28)

a

The friction cone constraints represented in flat output space can be written as

2122 — 2221 - bru
B 3 =
(@ +23): a

| (29)

Note that constraints (29) is exactly the curvature of the trajectory of z(#). We can
now conclude that pushing with sticking constraint is equivalent to finding curves
with bounded curvature that connects two 2D oriented points. In particular, Dubins
curve [7] is the time-optimal solution.

Figure3 demonstrate two examples of trajectory planning with a single point
sticking contact. The friction cone constraint is converted to minimum turning radius
constraint. Dubins curve is generated in flat output space. Then the SE(2) poses of
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Fig. 3 Example planned trajectories with the initial pose in black and the final pose in blue

the object and control actions are mapped back to the cartesian space as given in
Eqgs.24 and 25-28.

3.2.2 General Case

We also derive the general case when the contact point’s normal is not aligned with
the vector as shown in Fig. 2b. Let the local frame origin be the COM and the positive
y-axis aligned with the vector pointing from the contact point p to center of mass
O. We show that with this choice of reference frame, any point on the dual line of
the friction cone is differential flat, and conveniently we can simply choose the mid
point between the two extreme center of rotations that correspond to left and right
edges of the friction cone. Denote by c, the x component along the line of center of
rotations, and p = 7. The flat outputs are given by

Zi| _ | X cosf —sin6 c
[ZZ} B [yi| + |:Sin9 cos 6 i| |:p/r]’ (30)

c . . . .
where the vector o /rj| represents a point on the line of center of rotations (dual line

of friction cone) in body frame.
Following similar steps in Sect.3.2.1, we can map the flat outputs to cartesian
pose and applied force:

0 = arctan <_—Z1> (31)

22

x| (a1 2 || ¢
u_[zj e [—il sz| [p/r} 32
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21Z—%122

] L J (33)
K] 2+ | @r2-ccitd) |
a

Further, let ¢; and ¢, be the x components of the center of rotations corresponding
to f) and f.. If we set ¢ = (¢; + ¢,)/2, then the friction cone constraint is turned into
a curvature upper bound of 2/|¢; — ¢,| (or minimum turning radius of |¢; — ¢, |/2.)
We refer the readers to the appendix for detailed derivation.

4 Stabilization

Uncertainty for robotic pushing mainly come from two sources: (1) perception uncer-
tainty for the initial object pose and (2) model uncertainty due to changing friction
distribution. Single contact pushing cannot be open-loop stable and needs active
feedback control strategy. Section4.1 derives a linear tracking controller in flat out-
put space through dynamic feedback linearization. Section4.2 addresses improving
robustness against model uncertainty through open-loop stable two-points push that
naturally induces mechanical feedback.

4.1 Dynamic Feedback Linearization Control

Equation 12 is in the form of driftless underactuated system with three degrees of
freedom state and two degrees of freedom control input:

q=G(qQf. (34)

For such systems, dynamic feedback linearization finds a feedback compensator of
the form:

¢ =alq, )+ B(q, o)W (35)
f=y(q,2)+8(q, OHw, (36)

where the kth derivative of flat output z can be directly controllable via w
& =w. (37)

Differentiating the flat output z with respect to time yields

. |0 —asin® || fi
°= [O acosf i| [f‘il ’ (38)
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We need to keep taking derivative since only f, affects z. Denote by ¢ = f the
dynamic feedback compensator and s = ¢.

. | —sinf —gbrcosf || s
t=a |: cosf —cbr sin@] |:fx:| (39)

Let

-1
S —sinf —cosf |1 O w1
|:fxi| <a [ cosf — sin9i| |:O ;bri|> [W2i| (40)

_ —sinf/a cosf/a wi @l
T | —cos8/(atbr) —sin@/(acbr) | |wy |’
which leads to
. w1 _
£ [W] —w “2)
The dynamic feedback compensator is of the following form:
¢ = —wy sinf/a + wy cos6/a (43)
fy=¢ (44)
fr = —wjcos@/(agbr) —wysin0/(atbr) 45)

We can therefore design a simple PD controller to track a planned trajectory z4(¢).
w=2Zg—kp(z—zq) —ka(z — za). (46)

This PD controller is globally exponentially stable assuming the model does not
change. A robustness analysis for a changing model is beyond the scope of this
paper. The manipulator velocity control input can be further determined via Egs. 13
and 43-45.

A simulation experiment using a high-fidelity simulator [25] is shown in Fig. 4b.
The initial state is perturbed by —1 mm in x, —2.5mm in y and 3.6° in 8. The

1.0537 0 0
system model parameter A in Eq. 12 is perturbed from |: 0 10537 0 } to
0 0 1.5087

—0.1782 0.1599 1.5104
the gain for velocity error term is k, = [0.1, 0.05]. The controller runs at 60 Hz for
30s and the final pose error is 0.0034 mm in x, 0.0012mm in y and 2.55° in 6.
The ABB robot is currently not suitable for closed-loop control due to low position
control input frequency. In the future, we will conduct robotic experiments with
recently released externally guided motion package [1].

1.0719 —-0.0177 —0.1782
—0.0177 1.0417 0.1599 |. The gain for position error term is k, = [2.0, 0.5] and
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(a) Planned reference trajectory. (b) Trajectory tracking with dynamic feed-

back linearization.

Fig.4 Example trajectory stabilization with initial pose and system model parameter perturbations

4.2 Open Loop Stabilization with Kinematic Constraints

Lynch and Mason [15] showed that a two-points push action against an edge of the
object can be stable such that the object will remain attached to the pusher without
slipping or breaking contact, despite the presence of uncertainty.

This can be seen as natural mechanical feedback that tolerates model uncertainty.
The object will follow a body twist motion V as long as the corresponding frictional
wrench F is inside the composite wrench cone F, = ¢ (F!, F?) formed by the two
wrench cones Fcl, F CZ atthe contact points, i.e., IF suchthat VH (F) = VandF € F,.
The span of the composite wrench cone provides redundancy to balance uncertain
frictional wrench between the object and the supporting surface.

Throughout our experiments, we use the mid point of the two points as a virtual
contact point and the average normal as the contact normal to plan reference trajec-
tory. Perception uncertainty is not addressed for this form of mechanical feedback
although a sequence of designed open-loop translational pushes can reduce the initial
perception uncertainty [3].

5 Experiments

5.1 Pushing Using Multiple Actions

A pushing point in the body frame defines an action associated with a Dubins car
reduction. If we allow switching between multiple pushing points (actions), the object
can be moved faster to the goal state. It is also natural to specify a switching cost
between actions. This section presents a simple planner that gives the near-optimal
path for a given query initial pose to the goal pose at the origin. We first construct a
graph using the following steps:
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Fig. 5 Experimental setup

1. Sample SE(2) poses within the boundary as graph nodes.

2. For each node, splitinto k copies tagged with action id, where k equals the number
of actions.

3. Run Dijkstra’s algorithm [5] and add switching cost to the edge weight if the two
nodes are tagged with different action ids.

The graph is organized as a tree structure whose paths to the goal are the shortest
path subject to the sampling resolution. Then for any new query pose, we treat it as
a new node to connect to the goal through either direct connection to the goal using
one action or paths in the graph using multiple actions.

The experimental setup is shown in Fig.5. We use the ABB-120 robot mounted
with a two-points pusher. The object bottoms are attached with AprilTags [19]. The
supporting surface is a transparent acrylic table with a camera underneath to acquire
the initial and final poses. We use four objects with different pressure distributions,
material and shapes. Trajectories are generated using the mid point of the two points
as a single point pusher and executed open-loop. Each object is given three or four
pushing points (actions). The triangular object has actions of asymmetric push point.
Three different initial locations that require difficult maneuvers are chosen for each
object with the same target location such that the local frame exactly aligns with
table frame at the center. Each initial condition is executed five times. Trajectories
generated from experimental logs are shown in Figs. 6, 7, 8 and 9. The object initial
poses (in sequence) for each action are filled with red, purple and blue colors. The
final pose is filled with black color. The average error is within 1.67 mm in translation
and 0.5° in orientation over the 60 experiments.'

TAll 60 runs videos are available at https://www.dropbox.com/sh/2t6cwqwv3w95iji/
AABLHdInRhSQzHKhcmg2zOT4a?d1=0.


https://www.dropbox.com/sh/2t6cwqwv3w95iji/AABLHdlnRhSQzHKhcmg2zOT4a?dl=0
https://www.dropbox.com/sh/2t6cwqwv3w95iji/AABLHdlnRhSQzHKhcmg2zOT4a?dl=0

Pushing Revisited: Differential Flatness, Trajectory Planning and Stabilization 617

anl . P — 7 - .08+

01 008 006 004 002 0 002 004 006 004 D02 0 002 BB 006 008
X/m Xim

Fig. 6 Rectangle with three-point pressure. The average error (mm, mm, degree) with 95%
confidence interval from left to right are [0.03 £0.02, —3.19 £0.29, 0.53 £0.11], [0.50 £
0.13, —0.96 + 0.6, —0.48 + 0.61], [-0.23 £ 0.11, —4.17 £ 0.87, —1.29 £ 0.5]

nm!-
Do
E ll %
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Fig. 7 Rectangle with boundary pressure. The average error (mm, mm, degree) with 95%
confidence interval from left to right are [—0.26 +0.12, —3.31 £ 0.75, —0.46 £ 0.19], [0.42 £
0.12, —1.49 +1.63, —0.14 £ 0.27], [-0.27 £ 0.21, —4.56 = 0.43, —0.93 £ 0.76]
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Fig.8 The butterfly object with boundary pressure. The average error (mm, mm, degree) with 95%
confidence interval from left to right are [—0.69 £ 0.17, —1.46 £ 0.06, 4.40 + 1.24], [-0.65 £
0.17, —1.38 £ 0.07, 5.89 &+ 2.37], [-0.96 £ 0.08, —0.09 & 0.73, 0.83 £ 1.00]

008 006 -004 002 0 002 004 -1 L oes ol s

Xim Xim

Fig. 9 Triangle with uniform pressure. The final error (mm, mm, degree) with 95% confi-
dence interval are [0.64 & 0.05, 1.04 £ 0.63,0.11 £ 0.31], [0.11 £ 0.65, —0.50 & 0.30, —0.42 &+
0.44],[2.34 +0.23,0.12 + 0.06, —1.06 £ 0.42].
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Fig. 10 Planned pushing actions among obstacles using RRT with exact steering

5.2 Pushing Among Obstacles

The proposed reduction to Dubins curve benefits randomized motion planners since
the two point boundary value problem can be solved exactly via the reduction, i.e.,
the steering is exact. We use a RRT [14] planner to generate a collision free pushing
path shown in Figs. 10 and 11. The triangular object and the two-points pusher are
not allowed to touch the red obstacle nor the blue boundary of the map. The goal is
to align the center of the triangle with the red point in an up-right orientation.

6 Conclusion and Future Work

This paper studies the geometrical structure for the pusher-slider system with one
rolling/sticking constraint: there exists body-fixed point whose trajectory completely
determines the system behavior. Planning and control in this differential flat (carefully
chosen reduced minimal coordinates) space is significantly easier. In the future, we
plan to conduct robotic experiments for the dynamic feedback linearization control
with single point contact in a receding horizon fashion since unexpected slip may
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(a) (b) (c) (d)
(e) () (9) (h)

Fig. 11 Snapshots of the robot executing the plan

occur and the control needs to reveal the change of contact positions. Extension to
three-dimensional space where out-of-plane moments cannot be neglected remains
as a challenging problem.

Acknowledgements The authors would like to thank Guofan Wu, Devin Balkcom, Kevin Lynch
and Sanjiban Choudhury for thoughtful discussions.
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