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Abstract—Motivated by applications in distributed stor-
age and distributed computation, we introduce embedded
index coding (EIC). EIC is a type of distributed index
coding in which nodes in a distributed system act as both
senders and receivers of information. We show how embed-
ded index coding is related to index coding in general, and
give characterizations and bounds on the communication
costs of optimal embedded index codes. We also define task-
based EIC, in which each sending node encodes and sends
data blocks independently of the other nodes. Task-based
EIC is more computationally tractable and has advantages
in applications such as distributed storage, in which senders
may complete their broadcasts at different times. Finally,
we give heuristic algorithms for approximating optimal
embedded index codes, and demonstrate empirically that
these algorithms perform well.

Index Terms—Index Coding, Distributed Storage, Coded
Computation

I. INTRODUCTION

In index coding, defined by [2], sender(s) encode data
blocks into messages which are broadcast to receivers.
The receivers already have some of the data blocks, and
the goal is to take advantage of this “side information”
in order to minimize the number of messages broadcast.
For example, if node r; knows a data block b; and node
ro knows block by, a sender S can broadcast b; & bs.
Then r; can cancel out b; and ro can cancel by such
that both nodes learn a distinct new block from a single
broadcast message.

Index coding is typically studied in the models de-
picted in Figures la and 1b, where the senders are
distinct from the receivers. In this paper, we consider
a setting—depicted in Figure 1c—where the senders are
the receivers. This model is motivated by applications
in distributed storage and distributed computation. For
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(a)

Fig. 1: Communication model for (a) centralized index
coding with sender S, receivers 71, ...,75; (b) general
multi-sender index coding with senders si,..,$4 and
receivers rq,...,7r5; and (c) embedded index coding, a
special case of (b) with joint sender and receiver nodes

rT = S814...,T5 = S5.

example, in coded computation, e.g. [8], the shuffle phase
consists of nodes communicating computed values with
each other.

We call this model embedding index coding (EIC).
EIC can be seen as a special case of the multi-sender
index coding model in Figure 1b. In this paper, we will
demonstrate that by considering EIC as a special case,
we can prove new results and design faster algorithms
than are available for the more general multi-sender
index coding problem.

We also introduce a new notion of solution to an
embedded index coding problem called a task-based
solution. In a task-based solution, the communication
can be partitioned into independent tasks, so that each
receiver is only reliant on a single sender to get a par-
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ticular block.! Task-based solutions are easier to reason
about, and we will give efficient heuristics to find good
ones. Moreover, task-based solutions can be more robust
to failures or delays: if a sender’s messages are corrupted
or lost, the messages from other senders can still be used
fully to decode data blocks.

We prove several results establishing relationships
between centralized (single-sender) index coding, EIC,
and task-based EIC. In particular, we show in Theorem 2
that the optimal length of a solution to a general EIC
problem is only a factor of two worse than the optimal
length in the centralized model. In Lemma 1 we give an
upper bound on the length of the best task-based solution
to an EIC problem.

Finally, based on (the proofs of) the bounds above,
we design heuristics for designing general EIC schemes
and task-based EIC schemes, and we give evidence that
these heuristics perform well.

A. Related Work

Index coding was first introduced by [2], based on the
Informed-Source Coding on Demand (ISCOD) model
proposed by [3], and many extensions and variations
have been studied. We focus on linear index coding. As
shown in [2], the rate of an optimal index code is given
precisely by the minrank of a corresponding matrix and
we build on this result in our work. Embedded index
codes are a special case of the linear multi-sender index
codes in [5] and [7], which both consist of multiple
senders and multiple receivers, but as two distinct and
non-overlapping sets of nodes; this is the setting depicted
in Figure 1b. In [7] rank minimization is used in an
approach similar to our method; we compare the two
methods in Section IV. The model in Figure lc is used
in [4], but the setting is less general than EIC’s because
all nodes want all blocks they don’t already have.

There are several other related notions, including
composite coding [1] and Instantly Decodable Network
Codes (IDNC’s) [6]; we defer a more in-depth discussion
of related work to the full version [9].

II. FRAMEWORK

In this section we describe the model for embedded
index coding. Let n be the number of nodes and m be the
number of data blocks. Let D € F™ be the set of data
blocks, for an arbitrary finite field F. We assume that
each node can do local computation and can broadcast
information over an error-free channel to all other nodes.

'We note that this is a generalization of Instantly Decodable Network
Codes [6].

We then define an embedded index coding problem in
terms of what values of D nodes have and need.

Definition 1. An embedded index coding (EIC) problem
is specified by a pair of matrices R, B € {0,1}™*™ s.1.
supp(B) Nsupp(R) = 0.

Informally, given EIC problem (R, B), node i needs
block j if R;; = 1 and has block j if B;; = 1. Each
node ¢ will broadcast a set of b; € N linear combinations
of its blocks. e; denotes the 4t standard basis vector.

Definition 2. For an embedded index coding problem
(R, B) a linear broadcast solution which solves (R, B)
is a collection of matrices BV, ...,3™) and integers
by, ..., by with B € F5*™ so that:

o the j' column of B is zero if Bij =0

o for each i € [n] and each j € [m] s.t. Rjj =1,
be+m

there is some vector (") € F;e so that
—pM—
&=l | i
diag(B;)

e The length of an EIC solution is ¥¢b,, the number
of symbols broadcast. We also refer to this as the
communication cost of the solution.

To use a linear broadcast solution, each node 7 com-
putes and broadcasts 3(*) - D. This can be computed
locally because the only non-zero columns of 3() cor-
respond to non-zero entries of row B;, i.e. blocks node
17 has. Then each node 7 can decode the blocks it wants
using the set of decoding vectors {a("7) : R;; =1} and
the received messages, 51 - D, ..., 3" . D.

A. Problem Graph and Problem Matrix

In this section we extend the work of [2] to represent
EIC problems as graphs.

Definition 3. Let P = {(i,j) : R;; = 1} be the set of
requirement pairs of a EIC problem defined by (R, B).

Definition 4. Given an EIC problem (R, B) we define
the problem graph G as follows. Let the vertex set be
V(G) = {vq,j) : Rij = 1}. Let the (directed) edge set
be E(G) = {(v(i’j),v(%y)) :Byi=1orj=y}

Figure 2 shows an example of a problem graph.

It was shown by [2] that in the case of each node
requesting a single, unique block, the length of an
optimal index code is given by the minrank, defined
below. We will generalize the result of [2] to our more
general notion of a problem graph in Theorem 1.
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Fig. 2: Problem graph G. Each pair of boxes is a
node, where the black box contains indices of requested
data blocks and the white box contains indices of side
information blocks. For example, node A is requesting
block D5 and has blocks D1, Dy in its side information.

Definition 5. Given a graph G = (V, E), we say that
a matrix A € {0,1}VXIVI fits G if Ap, = 1 for all
k € [|V]|] and for any k,¢ € |V|,(k,t) ¢ E implies
that Axe = 0. The minrank of a graph G in field F,
denoted minrks (G), is the rank of the lowest rank matrix
A which fits G with entries in Fy:

minrks (G) := min{rks(A) : A fits G}

B. Task-Based Solutions

We now define a particular type of solution, motivated
by the efficiency of finding a solution and which may
be more useful in the presence of failures.

Definition 6. A rask T = (k, M) is defined by a sender
node k and a set of pairs M C {(i,j) : Ry =
1 and Byj =1} C P.

Definition 7. A task-based solution is a linear broadcast
solution B ..., B™) such that for each (i, j) € [n]x[m)]
such that R;; = 1, there exists a B and coefficient
o . ¢
vector aém) such that e; = aém) : [ :Q(Ej }
Informally, a task-based solution is a linear solution
in which each node 7 decodes each requested block j
using only messages from one sender node, i.e. one
vector 3(*) . D for some node z. A task-based solution
to (R, B) is also related to the corresponding problem
graph G by specifying a partition of the vertices. Let
N* (v ;) € V(G) denote the out-edge neighborhood
of a vertex v(; jy € V(G).

Definition 8. For each node i € [n] let N; := N* (v, )
for any j € [m] st. R;; = 1 denote the sender
neighborhood of node 1.

Remark 1. Each node i and its sender neighborhood N;
(or any subset of N;) together form an instance of an

index coding problem with a single source as originally
defined by [2].

Definition 9. The task-based solution neighborhood par-
tition of the problem graph G is the set {Ny,...N,}
where N; C N; for all i € [n] such that: v, € N;
if and only if B9 is the matrix used in the task-based
solution such that x decodes block y using

_pB@) _
N ]

A task-based solution exists for the EIC problem
shown in Figure 2, using sender neighborhoods Np =
{A,B,C} and N4 = {D}. The messages for the task
executed by node D are Dy @ Dy and Ds & D3, and the
message broadcast by node A for its task is D4. Then
nodes A, B, and C' each decode their requested block
from the task executed by node D, and node D decodes
its request from the task executed by node A.

While we only study task-based solutions on the EIC
model, task-based solutions can also be used for multi-
sender index coding in general.

C. Centralized Solutions

We also want to compare decentralized solutions to
EIC problems to the optimal centralized index coding
solution. Thus we define a solution to an EIC problem
which assumes some oracle server exists with access to
all of D (and has no requirements itself).

Definition 10. For an EIC problem defined by (R, B), a
centralized linear broadcast solution which solves (R, B)
is a matrix 3 and integer b with 3 € ngm such that
for each i € [n] and each j € [m] s.t. R;; = 1, there is
some vector a'b7) € Fg"'m so that

Finally, we use the following symbols to denote the
optimal lengths for each type of solution:

Definition 11. Let (C) g, p) denote the minimum length
of a centralized linear broadcast solution to the EIC
problem (R, B) as defined in Definition 10.

Let (D)(g,p) denote the minimum length of a decen-
tralized linear broadcast solution to the EIC problem
(R, B) as defined in Definition 2.

Let (T)(r,p) denote the minimum length of a de-
centralized and task-based solution to the EIC problem
(R, B) as defined in Definition 7.

III. MINIMUM CODE LENGTHS AND RELATIONSHIPS

In this section, we analyze the values of (C)(g, B,
(D)(r,B)- and (T')(g,p) for a given (R, B). We drop
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(R, B) from the notation when comparing two of these
under the same (R, B) in general. In the full version, we
show by example that the values of (C) g, gy, (D)(r,B)
and (T')(gr,p) may all be distinct, and we prove general
separation results. In this extended abstract, we focus on
upper bounds on (D) (g, gy and (T)r,p). These will be
useful in the next section when we design algorithms.

First, we discuss centralized solutions to an EIC
problem, and introduce some useful machinery.

Our problem graph is a generalization of the side
information graph of [2], and we prove the following
generalizion of Theorem 5 of [2].

Theorem 1. Given EIC (R, B) and the corresponding
problem graph G, (C)gr,py = minrky(G).

The proof of Theorem 1 follows closely the proof of
Theorem 5 in [2], see [9] for details.

Next, we prove an upper bound on (D). It can
easily be seen that minimum length of a decentralized
embedded index code is at least the minimum length
of the corresponding centralized index code since EIC
is a harder problem: that is, (C) < (D). Thus we are
interested in how much longer a decentralized embedded
index code must be than an index code in the centralized
model. Perhaps surprisingly, it turns out that not much
is lost in the EIC model!

Theorem 2. Given an EIC problem defined by (R, B),
(D)r,By <2 (C)(r,B)-

The proof of Theorem 2 (available in [9]) uses
Theorem 1, and is essentially a transformation which
takes any centralized algorithm for a EIC problem and
produces a decentralized algorithm with at most twice
the length. We note that the proof of Theorem 2 crucially
uses the EIC formulation; this shows why considering
EIC separately as a special case of multi-sender index
coding can be valuable.

Finally, we prove an upper bound on (7). In the full
version [9], we give a characterization of (1')(g p) in
terms of the minrank of the N; in an optimal neighbor-
hood partition as defined in Section II-B. Using this, we
obtain the following upper bound on (T')(r, 5y wWhich we
will use in Section IV-B to design a heuristic algorithm
for finding task-based solutions.

Lemma 1. Given an EIC problem defined by (R, B),
let N be the set of all possible neighborhood partitions
(Definition 9). Then

Z X (N i)

i=1

min

(T)(r,B) < L
{Ny,....,N,}eN

IV. ALGORITHMS

In this section, we use results from the previous sec-
tion to design heuristics for finding good EIC solutions.
We also demonstrate empirically that our algorithms per-
form well. More precisely, we describe two algorithms,
one to approximate the best decentralized solution and
one to approximate the best task-based solution.

A. Approximating (D)

The proof of Theorem 2 gives a method to design a de-
centralized solution to an EIC problem. More precisely,
this method (pseudocode given in the full version [9])
first computes or approximates an optimal centralized
solution with length (C) g, 5y and then uses the trans-
formation used in the proof of Theorem 2 to arrive at a
decentralized solution with length at most 2 - (C') (g, p)-

We compare the cost of this method to the methods
given by [5] and [7]. More precisely, the main compu-
tational task of both methods is computing the minrank
of a graph, by searching over a set of possible fitting
matrices. In practice, we may wish to use a heuristic to
approximate the minrank; however, one way to compare
the speed of these algorithms is to compute the size
of the search space that would be required to compute
the minrank exactly.> Figure 3 shows how the base-2
logarithm of the search space for our algorithm compares
to that of the Combined LT-CMAR procedure of [7].
Except for the smallest values of n and p, Sgic is
smaller, meaning that our algorithm has a smaller search
space than the combined LT-CMAR algorithm.

B. Approximating (T')

Computing a task-based solution consists of two main
steps: finding a neighborhood partition (Definition 9) and
finding an index coding solution to the task defined by
each N; for sender node 4. Using the upper bound of
Lemma 1, we will show how to find a good choice for
the neighborhood partition. We begin with a definition.

Definition 12. Given a problem graph G for some
EIC problem (R,B) with sender node neighborhoods
N1, ..., Ny, let the set of neighborhood-cliques be € :=
{V(C) : C is a maximal clique in G[N;] for some N}

The following theorem (proven in [9]) shows that
using neighborhood-cliques, finding a neighborhood de-
composition to minimize the upper bound in Lemma 1
reduces to solving a minimum cover problem.

2We note that if the minrank is computed exactly, then Combined
LT-CMAR becomes an exact algorithm, while our algorithm is a two-
approximation.
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Fig. 3: Spr—cmar is the value log, of the search space
size for a given (R, B) using the method of [7]. Sgrc
is the value log, of the search space size using our
method of approximating with the corresponding cen-
tralized solution. Ratios Sir_camar/Serc are plotted
for the averages over sets of 20 Erdés-Renyi graphs with
the given number of vertices n and probability p for
each directed edge. When Spr—_caar/Serc > 1 our
algorithm has a strictly smaller search space.

Theorem 3. Given EIC problem (R,B) and corre-
sponding problem graph G, solving for the neigh-
borhood partition Ny, ...N,, to minimize 3" x(N;)
is exactly equivalent to the min cover problem
over vertices of G with sets € = {V(C))

C; is a maximal clique in G|N;]}.

This theorem gives us a constructive algorithm for
Ny, ..., N,,. Since mincover is NP-hard solving for these
will be as well, but we can use existing mincover approx-
imation algorithms. Our algorithm to approximate an
optimal task-based solution to an EIC problem computes
a mincover of the vertices of the corresponding problem
graph G, using the set of maximal cliques, %. The
cliques used then specify the neighborhood partition,
since each is fully contained the neighborhood of some
node. See the full version for algorithm details [9].

Figure 4 shows the ratio of the length of our ap-
proximately optimal task based solution compared to
the length of the optimal centralized solution. This ratio
upper bounds the ratio of a true optimal task based
solution to the corresponding centralized solution. In all
of our experiments this approximation ratio is upper-
bounded by 1.4. As in the experiments in Figure 3,
Erd&s-Renyi graphs are randomly generated for a variety
of values for n, the number of nodes, and p, the directed
edge probability. As the size of the graph increases for
a fixed edge probability, the ratio appears to converge.

(a)

(b)

Fig. 4: Ratio of the length of our task-based solution
returned by our algorithm to the length of the optimal
centralized solution.?

For a fixed number of nodes, there also appears to be
some upper bound on the ratio even as the probability
of each edge goes to 1.

REFERENCES

1

—

Fatemeh Arbabjolfaei, Bernd Bandemer, Young-Han Kim, Eren
Sasoglu, and Lele Wang. On the capacity region for index coding.
In 2013 IEEE International Symposium on Information Theory,
pages 962-966. IEEE, 2013.

Ziv Bar-Yossef, Yitzhak Birk, T Jayram, and Tomer Kol. Index
coding with side information. In 2006 47th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS’00).

Yitzhak Birk and Tomer Kol. Coding on demand by an informed
source (ISCOD) for efficient broadcast of different supplemental
data to caching clients. IEEE Transactions on Information Theory,
52(6):2825-2830, 2006.

Salim El Rouayheb, Alex Sprintson, and Parastoo Sadeghi. On
coding for cooperative data exchange. In 2010 IEEE Information
Theory Workshop on Information Theory (ITW 2010, Cairo), pages
1-5. IEEE, 2010.

Jae-Won Kim and Jong-Seon No. Linear index coding with
multiple senders and extension to a cellular network. arXiv
preprint arXiv:1901.07136, 2019.

Anh Le, Arash S Tehrani, Alexandros G Dimakis, and Athina
Markopoulou. Instantly decodable network codes for real-time
applications. In 2013 International Symposium on Network Coding
(NetCod), pages 1-6. IEEE, 2013.

Min Li, Lawrence Ong, and Sarah J Johnson. Multi-sender
index coding for collaborative broadcasting: A rank-minimization
approach. IEEE Transactions on Communications, 2018.

Songze Li, Mohammad Ali Maddah-Ali, and A Salman Aves-
timehr. Fundamental tradeoff between computation and commu-
nication in distributed computing. In Information Theory (ISIT),
2016 IEEE International Symposium on, pages 1814—1818. IEEE,
2016.

Alexandra Porter and Mary Wootters. Embedded index coding.
arXiv preprint arXiv:1904.02179, 2019.

(2]

[3

—_

[4

—

[5

—

[6

[t}

(7]

[8

—

[9

—

3Sample sizes in these experiments are 10 random graphs, except
p = 0.9,n = 6 which only uses 5, since the search space for the
brute-force minrank algorithm explodes, increasing exponentially in
the number of graph edges.

Authorized licensed use limited to: Stanford University. Downloaded on November 22,2020 at 00:41:10 UTC from IEEE Xplore. Restrictions apply.



