

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. © 2019 Society for Industrial and Applied Mathematics
Vol. 49, No. 4, pp. FOCS17-157--FOCS17-195

LOCAL LIST RECOVERY OF HIGH-RATE TENSOR CODES AND
APPLICATIONS\ast

BRETT HEMENWAY\dagger , NOGA RON-ZEWI\ddagger , AND MARY WOOTTERS\S

Abstract. We show that the tensor product of a high-rate globally list recoverable code is
(approximately) locally list recoverable. List recovery has been a useful building block in the design
of list decodable codes, and our motivation is to use the tensor construction as such a building
block. In particular, instantiating this construction with known constructions of high-rate globally
list recoverable codes, and using appropriate transformations, we obtain the first capacity-achieving
locally list decodable codes (over a large constant size alphabet), and the first capacity-achieving
globally list decodable codes with nearly linear time list decoding algorithms. Our techniques are
inspired by an approach of Gopalan, Guruswami, and Raghavendra [SIAM J. Comput., 40 (2011),
pp. 1432--1462] for list decoding tensor codes.

Key words. local decoding, list decoding, list recvoery

AMS subject classification. 94B35

DOI. 10.1137/17M116149X

1. Introduction. List recovery refers to the problem of decoding error correct-
ing codes from ``soft"" information. More precisely, an error-correcting code is a map
C : \Sigma k \rightarrow \Sigma n, which maps length-k messages to length-n codewords. The rate of C
is the ratio \rho := k/n which measures the amount of redundancy in the encoding. For
two strings x, y \in \Sigma n, the relative distance \delta (x, y) between x and y are the fraction of
coordinates on which x and y differ; the relative distance \delta of a code C is the mini-
mum distance \delta (c, c\prime) between any pair of distinct codewords c, c\prime \in C. In general, it
is desirable to construct codes C so that both the rate and the distance are large.

A code C is (\alpha ,L)-list decodable if for any z \in \Sigma n, there are at most L messages
x \in \Sigma k so that \delta (C(x), z) \leq \alpha . It turns out that for reasonably small L, a code
C can be (\alpha ,L)-list decodable for \alpha nearly up to the minimum distance \delta of the
code. In constrast, if L = 1, it is not hard to see that \alpha can be at most \delta /2. For
this reason, list decoding has become an important primitive in coding theory, with
applications ranging from communication to complexity theory. In this paper we
study a generalization of list decoding called list recovery. The code C is (\alpha , \ell , L)-list
recoverable if for any sequence of lists S1, . . . , Sn \subset \Sigma of size at most \ell each, there
are at most L messages x \in \Sigma k so that C(x)i /\in Si for at most an \alpha fraction of
the coordinates i \in [n]. When \ell = 1, (\alpha , 1, L)-list recovery is the same as (\alpha ,L)-list
decoding.

List recoverable codes were first studied in the context of list decoding and soft de-
coding. The celebrated Guruswami--Sudan list decoding algorithm for Reed--Solomon

\ast Received by the editors December 18, 2017; accepted for publication (in revised form) May 10,
2019; published electronically October 22, 2019.

https://doi.org/10.1137/17M116149X
Funding: The first author was supported in part by NSF grant CNS-1513671. The third author

was supported in part by NSF grant CCF-1657049. The second and third authors were supported
in part by NSF-BSF grants CCF-1814629 and 2017732.

\dagger Department of Computer Science, University of Pennsylvania, Philadelphia, PA 19104 (fbrett@
cis.upenn.edu).

\ddagger Department of Computer Science, University of Haifa, Haifa 31905, Israel (noga@cs.haifa.ac.il).
\S Departments of Computer Science and Electrical Engineering, Stanford University, Stanford, CA

94305 (marykw@stanford.edu).

FOCS17-157

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/17M116149X
mailto:fbrett@cis.upenn.edu
mailto:fbrett@cis.upenn.edu
mailto:noga@cs.haifa.ac.il
mailto:marykw@stanford.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FOCS17-158 B. HEMENWAY, N. RON-ZEWI, AND M. WOOTTERS

codes [GS99] is in fact a list recovery algorithm, as are several more recent list decoding
algorithms for variants of Reed--Solomon codes [GR08, GW13, Kop15, GX13]. Ini-
tially, list recoverable codes were used as stepping stones towards the construction of
list decodable codes [GI01, GI02, GI03, GI04]. Since then, list recoverable codes have
found additional applications in theoretical computer science in areas such as ran-
domness extractors [Tre01, TZS06, TZ04, GUV09], group testing [INR10, GNP+13],
compressed sensing [NPR12], and collision-resistant hashing [HIOS15].

It is well known that 1 - \alpha is the list recovery capacity, in the sense that there exist
codes (over large enough alphabets) of rate approaching 1 - \alpha that are (\alpha , \ell , L)-list
recoverable with small output list size L (independent of the codeword length n); on
the other hand, any code of rate larger than 1 - \alpha must have output list size L that
is exponential in n.

The focus of this paper is on local list recovery. Locality is another frequent
desideratum in coding theory. Informally, a code ``exhibits locality"" if information
about a single coordinate xi of a message x of C can be determined locally from
only a few coordinates of a corrupted version of C(x). Locality, and in particular the
notion of local list recovery that we will define below, has been implicit in theoretical
computer science for decades. For example, local list decoding algorithms are at
the heart of algorithms in cryptography [GL89], learning theory [KM93], average-to-
worst-case reductions [Lip90], and hardness amplification [BFNW93, STV01].

The idea of local list recovery is as follows: given a message index i \in [k], a local
list recovery algorithm should produce a list of L possible symbols that could appear
at that index. The catch is that we require that the lists returned are consistent across
indices.

Formally, a local list recovery algorithm returns a list A1, . . . , AL of randomized
local algorithms. Each of these local algorithms Aj takes a message index i \in [k]
as input and has oracle access to the input lists S1, . . . , Sn. The algorithm Aj then
makes at most Q queries to this oracle (that is, it sees all elements in at most Q
different input lists Si), and it must return a guess for xi, where x is a message
whose encoding C(x) agrees with many of the input lists. The guarantee is that for
all such messages x---that is, for all x whose encoding C(x) agrees with all but an
\alpha -fraction of the input lists---there exists (with high probability) some Aj so that for
all i, Aj(i) = xi with probability at least 2/3. The parameter Q is called the query
complexity of the local list recovery algorithm. On our way to constructing locally
list recoverable codes, we will construct approximately locally list recoverable codes.
We say that a code is approximately locally list recoverable if the local algorithms
A1, . . . , AL described above may fail to correctly decode a small constant fraction of
the message coordinates.

One reason to study local list recoverability is that list recovery is a useful build-
ing block in the construction of list decodable codes. In particular, the problem of
constructing high rate locally list recoverable codes (of rate arbitrarily close to 1, and
in particular non-decreasing as a function of \ell) has been sought after for some time,
because such codes would have implications in local and global list decoding.

In this work, we show that the tensor product of a high-rate globally list recov-
erable code is approximately locally list recoverable. Instantiating this with known
constructions of high-rate globally list recoverable codes, and using a few transfor-
mations, we obtain the first capacity-achieving locally list decodable codes, as well
as the first capacity-achieving globally list decodable codes with nearly linear time
list decoding algorithm. Our techniques are inspired by the list decoding algorithm
of [GGR11] for tensor codes, and our main observation is that this algorithm---with

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIGH-RATE TENSOR CODES FOCS17-159

a few tweaks---can be made local.

1.1. Results.

1.1.1. From global to approximately-local list recovery. Our main tech-
nical contribution is showing that the tensor product of a high-rate globally list re-
coverable code is (approximately) locally list recoverable. Given a linear code (i.e., a
linear map) C : \BbbF k \rightarrow \BbbF n over some finite field \BbbF , consider the tensor product code
C \otimes C : \BbbF k\times k \rightarrow \BbbF n\times n; we will define the tensor product formally in Definition 2.11,
but for now, we will treat the codewords of C\otimes C as n\times nmatrices with the constraints
that the rows and columns are all codewords of the base code C.

Informally, our main result shows that if C is globally list recoverable (and of
arbitrarily high rate), then C \otimes C is approximately locally list recoverable, in the
sense described above, with roughly the same parameters, and with query complexity
on the order of n (the codeword length of C). Note that the query complexity is about
the square root of the codeword length of C\otimes C which is n2. The query complexity can
be further reduced by applying the tensor product operation iteratively. Specifically,
by taking the tth tensor power, the resulting code C\otimes t of codeword length N := nt is
approximately locally list recoverable with query complexity roughly n = N1/t.

We state this main result below as Theorem 1.1, and prove it in section 4. In the
theorem statement, one should think of all parameters \delta , \alpha , \varepsilon , L, t, and consequently
also s, as constants (or more generally, as slowly growing functions of n). In that
case, Theorem 1.1 says that if C is (\alpha , \ell , L)-globally list recoverable, then the tensor
product C\otimes t is \varepsilon -approximately (\Omega (\alpha), \ell , LO(1))-locally list recoverable with query
complexity O(n) = O(N1/t).

Theorem 1.1 (from global to approximately-local). The following holds for any
\delta , \alpha , \varepsilon > 0, L \geq 1, and s = poly(1/\delta , 1/\alpha , 1/\varepsilon , logL). Suppose that C : \BbbF k \rightarrow \BbbF n is
a linear code of relative distance \delta that is (\alpha , \ell , L)-globally list recoverable. Then for

any t > 1, C\otimes t : \BbbF kt \rightarrow \BbbF nt

is \varepsilon -approximately (\alpha \cdot s - t2 , \ell , Lst
2

)-locally list recoverable

with query complexity n \cdot st2 .

1.1.2. Basic list recovery transformations. To apply Theorem 1.1, in section
3 we first present a few simple, yet powerful, list recovery transformations.

In more detail, in our first ``approximately-local to local"" transformation (Lemma
3.1) we observe that the ``approximate"" restriction can be eliminated by pre-encoding
the message with a locally decodable code C \prime before encoding it with the approximately
locally list recoverable code C. This way, instead of directly querying C (which may
give the wrong answer a constant fraction of the time), we use the outer locally
decodable code C \prime to query C: this still does not use too many queries, but now it is
robust to a few errors. A similar transformation was noted in [BET10] in the context
of local list decoding.

The second ``high-rate to capacity-achieving"" transformation (Lemma 3.2) relies
on an expander-based transformation of Alon, Edmunds, and Luby [AEL95, AL96].
This tranformation has been used before in this context; in particular, as previously
observed by [GI03, KMRS17, GKO+18], this technique can transform a high-rate
locally list recoverable code into a capacity-achieving locally list recoverable code.

Finally, in our third ``local to nearly-linear-time"" transformation (Lemma 3.4) we
observe that locally list recoverable codes straightforwardly extend to nearly-linear
time globally list recoverable codes, simply by running the local algorithm on each
coordinate.

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FOCS17-160 B. HEMENWAY, N. RON-ZEWI, AND M. WOOTTERS

1.1.3. Instantiations. To obtain our main results, we instantiate the transfor-
mations described above with known constructions of high-rate globally list recover-
able codes. As the tensor operation inflates the output list size, we require our base
code to have small (constant or very slowly growing) output list size. We also need
the base code to be linear to get a handle on the rate of the tensor product.

In the first instantiation, Theorem 1.2 below, we just use a (nonefficient) random
linear code. This gives capacity-achieving locally list recoverable codes with query
complexity n\beta for any constant \beta > 0, and with constant alphabet and output list
sizes, although without an explicit construction or efficient list recovery algorithm.

Theorem 1.2. For any constants \rho \in [0, 1], \varepsilon , \beta > 0, and \ell \geq 1 there exists an
infinite family of codes \{ Cn\} n such that the code Cn has block length n, alphabet size
O(1), rate \rho , and is (1 - \rho - \varepsilon , \ell , O(1))-locally list recoverable with query complexity
n\beta .

We note that in Theorem 1.2, the big-Oh notation suppresses dependence on the
constants \rho , \varepsilon , \beta , and \ell . We prove Theorem 1.2 in section 5.1. As a special case,
this theorem gives the first capacity-achieving locally list decodable codes with o(n)
queries.

The second instantiation, Theorem 1.3, does yield efficient encoding and list re-
covery (in nearly-linear time) as well as locality. It uses a modification of the algebraic
geometry subcodes studied in [GX13, GK16b] as the initial code. These latter codes
have constant alphabet size, but slightly superconstant output list size (depending on
log\ast n), which means that our construction will as well.

Theorem 1.3. There is some constant c > 0 so that the following holds. For any
constants \rho \in [0, 1], \varepsilon , \beta > 0, and \ell \geq 1 there exists an infinite family of codes \{ Cn\} n,
where Cn has block length n, alphabet size O(1), rate \rho , and is (1 - \rho - \varepsilon , \ell , L)-locally
list recoverable with query complexity n\beta for L = exp exp exp(log\ast n). Moreover, Cn

is encodable and globally list recoverable in time n1+c\beta .

As above, we note that that big-Oh notation in Theorem 1.3 suppresses depen-
dence on the constants \rho , \varepsilon , \beta . Theorem 1.3 is proven in section 5.2. As a special case,
the above theorem gives the first capacity-achieving globally list decodable codes with
list decoding algorithm running in time o(n2).

Our final instantiation, Theorem 1.4, uses as the initial code the same algebraic
geometry codes as the previous instantiation, but in a different regime of parameters.
This gives subpolynomial query complexity of no(1), albeit with larger alphabet and
output list sizes.

Theorem 1.4. For any constants \rho \in [0, 1], \varepsilon > 0, and \ell \geq 1 there exists an
infinite family of codes \{ Cn\} n, where Cn has block length n, alphabet size no(1), rate \rho ,
and is (1 - \rho - \varepsilon , \ell , no(1))-locally list recoverable with query complexity no(1). Moreover,
Cn is encodable and globally list recoverable in time n1+o(1).

Theorem 1.4 is proven in section 5.3, While we have not made an effort to optimize
the o(1) term in the exponent in the above theorem, we note that it is quite slowly
decreasing (on the order of 1/ log log n).

Our approach is modular; given as an ingredient any high-rate (efficiently) globally
list recoverable code, it yields a capacity-achieving locally (and nearly-linear time) list
recoverable code with comparable parameters. Any improvements in these ingredient
codes (for example, in the output list size of explicit linear high-rate globally list
recoverable codes, which is nearly constant but not quite constant) would translate
immediately into improvements in our constructions.

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIGH-RATE TENSOR CODES FOCS17-161

Remark 1.5 (application to near-linear time unique decoding of binary codes near
the Gilbert--Varshamov (GV) bound). Finally, we note that our codes can be used
to obtain randomized constructions of codes that nearly meet the GV bound, which
support near-linear time unique decoding. More precisely, via a technique of Thomme-
sen [Tho83] and Guruswami and Indyk [GI04], our near-linear time capacity-achieving
list-decodable codes give a randomized construction of low-rate (up to 0.02) binary
codes with rate 1 - H2(\delta) - \varepsilon and distance \delta , which admit near-linear time (n1+o(1))
algorithms for unique decoding up to radius \delta /2. Previous constructions which could
achieve this either required at least quadratic decoding time, or else did not work for
rates larger than 10 - 4. For more details, we refer the reader to [HRZW17].

1.2. Related work. For those familiar with the area, it may be somewhat sur-
prising that the results described above were not known before: indeed, we know of
locally list recoverable codes, and we also know of capacity-achieving globally list re-
coverable codes. One might think that our result is lurking implicitly in those earlier
works. However, as discussed below, it turns out that it is not so straightforward, and
existing techniques for locally or globally list recoverable codes do not seem to work
for this problem. Next, we elaborate on these prior lines of work.

1.2.1. Local list recovery. Local list decoding first arose outside of coding
theory, motivated by applications in complexity theory. For example, the Goldreich--
Levin theorem in cryptography [GL89] and the Kushilevitz--Mansour algorithm in
learning theory [KM93] can be interpreted as local list decoding algorithms for Hada-
mard codes. Later, Sudan, Trevisan, and Vadhan [STV01], motivated by applications
in pseudorandomness, gave an algorithm for locally list decoding Reed--Muller codes.
Similar ideas were used later for list decoding lifted codes [GK16a] and multiplicity
codes [Kop15], which can be viewed as high-rate variants of Reed--Muller codes.

As observed recently in [GKO+18], all of the aforementioned local list decoding
algorithms can be used for local list recovery as well. However, all of these algorithms
work only up to the Johnson bound. In the setting of list recovery, the Johnson bound
implies that the rate of the code must be at most 1/\ell . Thus this approach does not
seem to give capacity-achieving locally list recoverable codes or even high-rate ones,
and the Johnson bound appears to be a fundamental bottleneck for these techniques.

1.2.2. Global list recovery up to capacity. This line of work started with
the celebrated work of Guruswami and Rudra [GR08], showing that folded Reed--
Solomon codes achieve list decoding capacity. Since then, there has been a long
line of work [Gur10, GW13, DL12, Kop15, GX12a, GX13, GK16b, GX14], aimed
at reducing the alphabet and output list sizes, and improving the speed of the list
decoding algorithm.

In many cases, the above list decoding algorithms also extend to list recovery.
However, all of these algorithms are very global: they are all based on finding some
interpolating polynomial, and finding this polynomial requires querying almost all of
the coordinates. Thus, it is not at all obvious how to tweak these sorts of algorithms
to obtain locally list recoverable codes.

Finally, we mention the work of [HW18], which constructed capacity-achieving list
recoverable codes based on expander graphs. While that construction is not explicitly
local, it is not as clearly global as those previously mentioned (indeed, expander
codes are known to have some locality properties [HOW15]). However, that work
could only handle list recovery in the presence of erasures---that is, the setting in
which the locations of the errors are known---and adapting it to handle errors seems

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FOCS17-162 B. HEMENWAY, N. RON-ZEWI, AND M. WOOTTERS

like a challenging task.

Thus, even with a great deal of work on locally list recoverable codes, and on
capacity-achieving globally list recoverable codes, it was somehow unclear how to
follow those lines of work to obtain our results. Instead our work follows a different
approach, based on the techniques of [GGR11] for list decoding tensor codes.

Finally, we note that the local testing properties of tensor codes have been ex-
tensively studied [BS06, Val05, CR05, DSW06, GM12, BV09, BV15, Vid15, Mei09,
Vid13, Mei12]. To the best of our knowledge, ours is the first work to explicitly study
the local (list) decodability of tensor codes, rather than local testability.1

1.2.3. Subsequent work. In the follow-up work [KRSW18], involving a subset
of the current authors, it was shown that high-rate multiplicity codes (one of the high-
rate variants of Reed--Muller codes) are locally list recoverable. The main ingredient
in obtaining this result was showing that high-rate univariate multiplicity codes are
globally list recoverable with constant output list size. In contrast, prior work only
obtained an output list size that is polynomial in the codeword length, which was a
main barrier for bypassing the Johnson bound for local list recovery of multivariate
multiplicity codes. In addition to this, several other modifications to the local list
recovery algorithm of [STV01, Kop15] were required in order to make it work in the
high-rate regime.

As a corollary, using the basic list recovery transformations described above, the
above result gave an improvement over our main theorems, Theorems 1.3 and 1.4.
In more detail, in the polynomial query complexity regime, the result of [KRSW18]
reduced the output list size L in Theorem 1.3 to a constant. More significantly, in the
sub-polynomial query complexity regime, it reduced the no(1) term in Theorem 1.4 to\widetilde exp(log3/4 n). Determining the exact query complexity of capacity-achieving locally
list recoverable (or list decodable) codes remains an open problem.

1.3. Techniques. We end the introduction with a high-level overview of the
proof of the ``global to approximately-local"" result, Theorem 1.1. As mentioned
above, this algorithm is inspired by the analysis given by Gopalan, Guruswami, and
Raghevendra in [GGR11] for the list decoding radius of tensor codes.

In more detail, in [GGR11] it is shown that the two-dimensional tensor code C\otimes C
is roughly as list decodable as C is. That work was primarily focused on combinatorial
results about list decoding radius, but their analysis was algorithmic, and it is these
algorithmic insights that we leverage here. Specifically, our main contribution is to
observe that their analysis for two-dimensional tensors can be phrased in the language
of approximate local list decoding, and moreover, it also extends to higher-dimensional
tensor products with lower query complexity. We further observe that the analysis
straightforwardly extends to the setting of list recovery.

To understand the intuition, let us describe the algorithm just for C\otimes C, although
our final results will require a higher tensor power C\otimes t. For simplicity, additionally
assume that there are no errors, i.e., \alpha = 0. Recall that the tensor product of a linear
code C : \BbbF k \rightarrow \BbbF n is the code C \otimes C : \BbbF k\times k \rightarrow \BbbF n\times n whose codewords are all n \times n

1We note that the work [MV05] implicitly studied the local list recovery properties of the low
degree extension code (which can be viewed as a special instance of tensor codes) in the context of
derandomization. The approach in [MV05] is similar to ours, except that they considered only the
special case where all of the lists on axis-parallel lines are the same, and there are no errors (which
was appropriate for their application). Furthermore, that work was interested in locality but not
efficiency, and so it did not give an efficient local list recovery algorithm.

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIGH-RATE TENSOR CODES FOCS17-163

matrices with the constraints that the rows and columns are all codewords of the base
code C.

Following [GGR11], the local list recovery algorithm A for C \otimes C first chooses
m random columns of [n] \times [n] for a small integer m. These each correspond to
codewords in C, and A runs C's global list recovery algorithm on them to obtain
output lists \scrL 1, . . . ,\scrL m, of size at most L each, on each of these columns. Finally, for
any choice of one codeword per column c1 \in \scrL 1, c2 \in \scrL 2, . . . , cm \in \scrL m, it outputs a
local algorithm A(c1,...,cm) indexed by (c1, . . . , cm). Notice that the query complexity
is mn, which is roughly the square root of the codeword length of C\otimes C (which is n2),
while the output list size (the number of local algorithms) is Lm. We view c1, . . . , cm
as ``advice"" that fixes the value of the codeword on the chosen m columns.

Next, we describe the local algorithm A(c1,...,cm) indexed by (c1, . . . , cm), on input
(i, j) \in [n] \times [n]; this algorithm is illustrated in Figure 1.2 Recall that A(c1,...,cm) is
allowed to query the input lists at every coordinate, and must produce a guess for the
codeword value indexed by (i, j). Let v1, . . . , vm denote the values of the codewords
c1, . . . , cm on the ith position. The algorithm A(c1,...,cm) runs C's global list recovery
algorithm once more on the ith row to obtain another output list \scrL . Now the algorithm
chooses an arbitrary codeword c \in \scrL that agrees with the advice v1, . . . , vm on the
chosen columns, if such a c exists. Finally, the jth symbol of c is A(c1,...cm)'s guess
for the (i, j) symbol of the tensor codeword.

Random m columns are fixed by the advice to the local algorithm.

i

Run C's global list recovery
algorithm on row i to get \scrL \subseteq C
and hope that there is a unique

c \in \scrL that agrees with the
advice on the m ``advice""

positions.

j

Return the jth symbol of c as a guess of the (i, j)th
symbol of the entire codeword.

Fig. 1. The local algorithm A(c1,...,cm), for C \otimes C on input (i, j) \in [n]\times [n]. Here, c0, . . . , cm
are ``advice"": ci \in \scrL i is one of L possible codewords for the ith randomly selected column. The set
of selected columns is random, but we have shown them as the first m columns for simplicity.

Now, observe that the guess for (i, j) would be correct if there is at most one
codeword in \scrL that agrees with the advice v1, . . . , vm on the chosen columns, so no
confusion arises. Assuming that the code C has relative distance at least \delta , any pair
of codewords in \scrL differ with each other in at least \delta fraction of the coordinates.

2The algorithm we describe decodes codeword symbols instead of messages symbols, but since
the tensor code can be made systematic (i.e., the message is part of the codeword) this algorithm
can also decode message symbols.

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FOCS17-164 B. HEMENWAY, N. RON-ZEWI, AND M. WOOTTERS

Recalling that the m columns were chosen completely at random, a Chernoff bound,
followed by a union bound over all elements in \scrL , implies that the value on the m
columns will disambiguate any pair of codewords in \scrL with high probability, assuming
that m \approx (logL)/\delta 2.

The above idea gives a code of length N that is locally list recoverable with query
complexity on the order of

\surd
N . This algorithm for C \otimes C extends to C\otimes t, with

query complexity roughly N1/t. The trade-off is that the output list size also grows
with t. Thus, as we continue to take tensor powers, the locality improves, while the
output list size degrades; this allows for the trade-off between locality and output list
size that we obtain in Theorems 1.3 and 1.4.3 The algorithm can be made to also
work in the presence of errors, except that it may fail on a small constant fraction of
coordinates (e.g., when a whole row is corrupted). Consequently, we only obtain an
approximately local list recovery algorithm that decodes correctly most, but not all,
of the coordinates.

1.4. Organization. The rest of this paper is organized as follows. In section 2
we set up notation and definitions. In section 3 we present some basic list recov-
ery transformations (from approximately-local to local, from high-rate to capacity-
achieving, and from local to nearly-linear-time). In section 4 we present our main
transformation from global to approximately-local list recovery which proves our The-
orem 1.1. Finally, in section 5 we instantiate our transformations with known con-
structions of high-rate globally list recoverable codes, thus proving our main theorems,
Theorems 1.2, 1.3, and 1.4.

2. Preliminaries. For a prime power q we denote by \BbbF q the finite field of q
elements. For any finite alphabet \Sigma and for any pair of strings x, y \in \Sigma n, the relative
distance between x and y is the fraction of coordinates i \in [n] on which x and y differ,
and is denoted by dist(x, y) := | \{ i \in [n] : xi \not = yi\} | /n. For a positive integer \ell we
denote by

\bigl(
\Sigma
\ell

\bigr)
the collection of all subsets of \Sigma of size \ell , and for any string x \in \Sigma n

and tuple S \in
\bigl(
\Sigma
\ell

\bigr) n
we denote by dist(x, S) the fraction of coordinates i \in [n] for

which xi /\in Si, that is, dist(x, S) := | \{ i \in [n] : xi /\in Si\} | /n. If dist(x, S) \leq \alpha , we say
that x is \alpha -close to S. For a string x \in \Sigma n and a set T \subseteq [n], we use x| T \in \Sigma | T | to
denote the restriction of x to the coordinates in T . Throughout this paper, we use
exp(n) to denote 2\Theta (n), and whenever we use log, it is base 2, unless noted otherwise.

2.1. Error-correcting codes. Let \Sigma be a finite alphabet, and let k, n be pos-
itive integers (the message length and the block length, respectively). An (error-
correcting) code is an injective map C : \Sigma k \rightarrow \Sigma n. The elements in the domain
of C are called messages, and the elements in the image of C are called codewords.
We say that C is systematic if the message is a prefix of the corresponding codeword,
i.e., for every x \in \Sigma k there exists z \in \Sigma n - k such that C(x) = (x, z).

If \BbbF is a finite field, and \Sigma is a vector space over \BbbF , we say that C is \BbbF -linear if it
is a linear transformation over \BbbF between the \BbbF -vector spaces \Sigma k and \Sigma n. If \Sigma = \BbbF
and C is \BbbF -linear, we simply say that C is linear. The generating matrix of a linear
code C : \BbbF k \rightarrow \BbbF n is a matrix G \in \BbbF n\times k such that C(x) = G \cdot x for any x \in \BbbF k. Note
that a linear code can be made systematic by applying a Gaussian elimination on the
generating matrix G.

The rate of a code C : \Sigma k \rightarrow \Sigma n is the ratio \rho := k
n . The relative distance dist(C)

of C is the maximum \delta > 0 such that for every pair of distinct messages x, y \in \Sigma k it

3Other trade-offs are also possible, but for simplicity we chose to focus only on the extreme cases
where either output list size or query complexity is optimized.

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIGH-RATE TENSOR CODES FOCS17-165

holds that dist(C(x), C(y)) \geq \delta . If C : \Sigma k \rightarrow \Sigma n has relative distance \delta , then for any
parameter \alpha < \delta /2, and for any received word w \in \Sigma n, there is at most one message
x \in \Sigma k which satisfies dist(C(x), w) \leq \alpha .

2.2. List recoverable codes. List recovery is a generalization of the standard
error-correction setting where each entry wi of the received word w is replaced with a
list Si of \ell possible symbols of \Sigma . Formally, for a parameter \alpha \in [0, 1] and integers \ell , L

we say that a code C : \Sigma k \rightarrow \Sigma n is (\alpha , \ell , L)-list recoverable if for any tuple S \in
\bigl(
\Sigma
\ell

\bigr) n
there are at most L different messages x \in \Sigma k so that dist(C(x), S) \leq \alpha . We say that
C is (\alpha ,L)-list decodable if it is (\alpha , 1, L)-list recoverable.

For \alpha \in [0, 1] let

H(\alpha) = \alpha log(1/\alpha) + (1 - \alpha) log(1/(1 - \alpha))

denote the binary entropy function.
We will use the following theorem about the list recoverability of random linear

codes.

Theorem 2.1 (see [Gur01, Lemma 9.6]). For any prime power q, integers 1 \leq
\ell \leq q and L > \ell , parameters 0 \leq \alpha \leq 1 and

\rho <
1

log q
\cdot
\biggl[
(1 - \alpha) \cdot log(q/\ell) - H(\alpha) - H(\ell /q) \cdot q

logq(L+ 1)

\biggr]
,

and sufficiently large n, a random linear code C : \BbbF k
q \rightarrow \BbbF n

q of rate \rho is (\alpha , \ell , L)-list
recoverable with probability at least 1 - exp(- n).

Corollary 2.2. Let \rho \in [0, 1], \varepsilon > 0, \ell \geq 1. Then there is a prime power q so
that the following holds. For any integer n, a random linear code C : \BbbF k

q \rightarrow \BbbF n
q of rate

\rho has relative distance at least 1 - \rho - \varepsilon , and is (1 - \rho - \varepsilon , \ell , qO(\ell /\varepsilon))-list recoverable,
with probability at least 1 - exp(- n).

Proof. The relative distance follows by the GV bound [Gil52, Var57]. For the list
recovery properties, apply Theorem 2.1 with \alpha = 1 - \rho - \varepsilon ,

q \geq max\{ (1 - \rho - \varepsilon) - c0(1 - \rho - \varepsilon)/\varepsilon , (\rho + \varepsilon) - c0(\rho +\varepsilon)/\varepsilon , \ell c0/\varepsilon \} ,

and L = qc0\ell /\varepsilon for some absolute constant c0, and note that in this setting of param-
eters,

1

log q
\cdot
\biggl[
(\rho + \varepsilon) \cdot log(q/\ell) - H(1 - \rho - \varepsilon) - H(\ell /q) \cdot q

c0\ell /\varepsilon

\biggr]
\geq \rho + \varepsilon - log \ell

log q
 - (1 - \rho - \varepsilon) log(1/(1 - \rho - \varepsilon))

log q
 - (\rho + \varepsilon) log(1/(\rho + \varepsilon))

log q
 - O(\varepsilon /c0)

\geq \rho + \varepsilon - O(\varepsilon /c0).

Thus, the corollary holds for a sufficiently large constant c0.

2.3. Locally decodable codes. Intuitively, a code C is said to be locally decod-
able if, given a codeword C(x) that has been corrupted by some errors, it is possible
to decode any coordinate of the corresponding message x by reading only a small part
of the corrupted version of C(x). Formally, it is defined as follows.

Definition 2.3 (locally decodable code). A code C : \Sigma k \rightarrow \Sigma n is \alpha -locally de-
codable with query complexity Q if there exists a randomized algorithm A that satisfies
the following requirements:

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FOCS17-166 B. HEMENWAY, N. RON-ZEWI, AND M. WOOTTERS

\bullet Input: A takes as input a coordinate i \in [k], and also gets oracle access to a
string w \in \Sigma n that is \alpha -close to some codeword C(x).

\bullet Query complexity: A makes at most Q queries to the oracle w.
\bullet Output: A outputs xi with probability at least 2

3 .

Remark 2.4. By definition this is only possible if \alpha < dist(C)/2. The above
success probability of 2

3 can be amplified using sequential repetition, at the cost of
increasing the query complexity and running time. Specifically, amplifying the success
probability to 1 - exp(- t) requires increasing the query complexity and running time
by a multiplicative factor of O(t).

The following theorem shows the existence of high-rate locally decodable codes
with subpolynomial query complexity of the form no(1).

Theorem 2.5 (see [KMRS17, Theorem 1.3]). For any constant \rho \in [0, 1] and
\varepsilon > 0 there exist a constant s and an infinite family of codes \{ Cn\} n that satisfy the
following:

\bullet Cn is an \BbbF 2-linear code of block length n and alphabet size 2s.
\bullet Cn has rate \rho and relative distance at least 1 - \rho - \varepsilon .
\bullet Cn is 1 - \rho - \varepsilon

2 -locally decodable with query complexity no(1) in time no(1).

\bullet Cn is encodable in time n1+o(1).

Remark 2.6. The encoding time is not stated explicitly in [KMRS17]. However,
the construction in [KMRS17] proceeds by first considering multiplicity codes of high-
rate 1 - o(1), query complexity no(1), and subconstant decoding radius n - o(1) (see
[KMRS17, Lemma 3.3]), and then amplifying the decoding radius to a constant using
the Alon--Edmonds--Luby (AEL) transformation (see [KMRS17, Lemma 3.2]). The
encoding time of n1+o(1) for multiplicity codes in this regime follows from [Cox18],
using the choice of parameters made in [KMRS17, Lemma 3.3], while the encod-
ing time of n1+o(1) for the AEL transformation can be deduced from the proof of
[KMRS17, Lemma 3.2] (see also Lemma 3.2 in the current paper that shows a similar
transformation for the local list recovery setting).

Theorem 1.3 in [KMRS17] applies to locally correctable codes instead of locally
decodable codes. The difference is that for the former the local correction algorithm is
required to decode codeword coordinates as opposed to message coordinates. However,
since the encoding map described above is systematic, the local correction algorithm
also decodes message coordinates (see discussion in [KMRS17, section 1.3]).

2.4. Locally list recoverable codes. The following definition generalizes the
notion of locally decodable codes to the setting of list recovery. In this setting the
local list recovery algorithm is required to output in an implicit sense all messages
whose corresponding codewords are consistent with most of the input lists.

Definition 2.7 (locally list recoverable code). A code C : \Sigma k \rightarrow \Sigma n is (\alpha , \ell , L)-
locally list recoverable with query complexity Q if there exists a randomized algorithm
A that satisfies the following requirements:

\bullet Preprocessing: On input 1n, A outputs L randomized algorithms A1, . . . , AL.
\bullet Input: Each Aj takes as input a coordinate i \in [k], and also gets oracle access

to a tuple S \in
\bigl(
\Sigma
\ell

\bigr) n
.

\bullet Query complexity: Each Aj makes at most Q queries to the oracle S.
\bullet Output: For every codeword C(x) that is \alpha -close to S, with probability at

least 2
3 over the randomness of A the following event happens: there exists

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIGH-RATE TENSOR CODES FOCS17-167

some j \in [L] such that for all i \in [k],

(2.1) Pr
\bigl[
Aj(i) = xi

\bigr]
\geq 2

3
,

where the probability is over the internal randomness of Aj.

We say that A has preprocessing time Tpre if A outputs the description of the
algorithms A1, . . . , AL in time at most Tpre, and has running time T if each Aj has
running time at most T . As before, we say that the code C is (\alpha ,L)-locally list
decodable with query complexity Q if it is (\alpha , 1, L)-locally list recoverable with query
complexity Q.

Remark 2.8. The success probability of A can be amplified by sequentially re-
peating A and outputting the union of all output lists, at the cost of increasing the
output list size and preprocessing time. Specifically, amplifying the success probabil-
ity to 1 - exp(- t) requires increasing the output list size and preprocessing time by
a multiplicative factor of O(t).

Remark 2.9. In our definition of a locally list recoverable code, we are concerned
with recovering message symbols xi for i \in [k]. Another definition might be to recover
any codeword symbol C(x)i for i \in [n]. Since all of the codes we consider can be made
systematic, this second definition would be stronger than Definition 2.7. Most of our
techniques work for this stronger definition as well; the only one that does not work for
this stronger definition is the reduction from approximately-local to local list recovery
(Lemma 3.1).

Finally, we define an approximate version of local list recovery. In the following
definition, the local algorithms Aj are deterministic, but each of them has to work on
only a 1 - \varepsilon fraction of the coordinates i \in [k].

Definition 2.10 (approximately locally list recoverable code). A code C : \Sigma k \rightarrow
\Sigma n is \varepsilon -approximately (\alpha , \ell , L)- locally list recoverable with query complexity Q if there
exists a randomized algorithm A that satisfies the following requirements:

\bullet Preprocessing: On input 1n, A outputs L deterministic algorithms A1, . . . , AL.
\bullet Input: Each Aj takes as input a coordinate i \in [k], and also gets oracle access

to a tuple S \in
\bigl(
\Sigma
\ell

\bigr) n
.

\bullet Query complexity: Each Aj makes at most Q queries to the oracle S.
\bullet Output: For every codeword C(x) that is \alpha -close to S, with probability at

least 2
3 over the randomness of A the following event happens: there exists

some j \in [L] such that

(2.2) Pr
i\in [k]

\bigl[
Aj(i) = xi

\bigr]
\geq 1 - \varepsilon .

As in Definition 2.7, we say that A has preprocessing time Tpre if A outputs the
description of the algorithms A1, . . . , AL in time at most Tpre, and has running time
T if each Aj has running time at most T . We note that Remark 2.8 also holds for
approximately locally list recoverable codes, so we may amplify the success probability
of 2/3 to exp(- t) at the cost of multiplying the list size and preprocessing time by a
factor of O(t).

2.5. Tensor codes. Our construction is based on the tensor product operation,
defined as follows.

Definition 2.11 (tensor codes). Let C1 : \BbbF k1 \rightarrow \BbbF n1 , C2 : \BbbF k2 \rightarrow \BbbF n2 be
linear codes, and let G1 \in \BbbF n1\times k1 , G2 \in \BbbF n2\times k2 be the generating matrices of C1, C2,

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FOCS17-168 B. HEMENWAY, N. RON-ZEWI, AND M. WOOTTERS

respectively. Then the tensor code C1 \otimes C2 : \BbbF k1\times k2 \rightarrow \BbbF n1\times n2 is given by (C1 \otimes
C2)(M) = G1 \cdot M \cdot GT

2 for any k1 \times k2 matrix M over \BbbF .

Note that the codewords of C1 \otimes C2 are n1 \times n2 matrices over \BbbF whose columns
belong to the code C1 and whose rows belong to the code C2.

Fact 2.12. Suppose that C1 : \BbbF k1 \rightarrow \BbbF n1 , C2 : \BbbF k2 \rightarrow \BbbF n2 are linear codes of
rates \rho 1, \rho 2 and relative distances \delta 1, \delta 2, respectively. Then the tensor code C1 \otimes C2

has rate \rho 1 \cdot \rho 2 and relative distance \delta 1 \cdot \delta 2. Moreover, if C1, C2 are encodable in times
T1, T2, respectively, then C1 \otimes C2 is encodable in time n1T2 + n2T1.

Proof. The rate and distance properties are well known (see, e.g., [Sud01, DSW06]).
The encoding time follows since one can encode a message M \in \BbbF k1\times k2 by first en-
coding all rows of M using C2, and then encoding all columns of the resulting matrix
using C1.

For a linear code C, let C\otimes 1 := C and C\otimes t := C \otimes C\otimes (t - 1). By induction on t
we have the following.

Corollary 2.13. Suppose that C : \BbbF k \rightarrow \BbbF n is a linear code of rate \rho and relative
distance \delta . Then the tensor code C\otimes t : \BbbF kt \rightarrow \BbbF nt

has rate \rho t and relative distance
\delta t. Moreover, if C is encodable in time T , then C\otimes t is encodable in time t \cdot nt \cdot T .

3. Basic list recovery transformations. We begin by presenting some ba-
sic list recovery reductions showing how to transform an approximately locally list
recoverable code into a locally list recoverable code (section 3.1), then a locally list
recoverable code of high-rate into a capacity-achieving locally list recoverable code
(section 3.2), and finally a locally list recoverable code into a nearly-linear-time glob-
ally list recoverable code (section 3.3).

3.1. From approximately-local to local. We start with the transformation
from approximately local list recovery to local list recovery. The following lemma
shows that one can pre-encode a Q-query \varepsilon -approximately (\alpha , \ell , L)-locally list recov-
erable code with a Q\prime -query \varepsilon -locally decodable code to obtain a (Q \cdot Q\prime)-query locally
list recoverable code with the same parameters \alpha , \ell , L.

Lemma 3.1 (from approximately-local to local). Suppose that C : \Sigma k \rightarrow \Sigma n

is \varepsilon -approximately (\alpha , \ell , L)-locally list recoverable with query complexity Q, and C \prime :
\Sigma k\prime \rightarrow \Sigma k is \varepsilon -locally decodable with query complexity Q\prime . Then the composition
C \circ C \prime : \Sigma k\prime \rightarrow \Sigma n given by C \circ C \prime (x) = C(C \prime (x)) is (\alpha , \ell , L)-locally list recoverable
with query complexity Q \cdot Q\prime .

Moreover, if the approximately-local list recovery algorithm for C has preprocess-
ing time Tpre and running time T , and the local decoding algorithm for C \prime has running
time T \prime , then the local list recovery algorithm for C \circ C \prime has preprocessing time Tpre

and running time T \cdot T \prime .

Proof. At a high level, we recover a (1 - \varepsilon)-fraction of the coordinates using
the approximately local list recovery algorithm for C, and correct the rest of the
coordinates using the local decoding algorithm for C \prime .

In more detail, the local list recovery algorithm for C \circ C \prime replaces each of the
local algorithms Aj generated by the approximately-local list recovery algorithm for C
with a local algorithm A\prime

j , operating as follows: on input i \in [k\prime], the local algorithm
A\prime

j first invokes the local decoding algorithm A\prime for C \prime on input i, and then invokes
Aj on each of the queries of A\prime in [k]. (See Figure 2.)

Correctness follows since Aj outputs the correct value on at least a (1 - \varepsilon)-fraction

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIGH-RATE TENSOR CODES FOCS17-169

xi

xi =?

x \in \Sigma k\prime

C \prime
c\prime = C \prime (x) \in \Sigma k

c\prime a c\prime b c\prime c

A\prime uses Q\prime queries to recover xi

C
C(C \prime (x)) \in \Sigma n

Aj uses Q
queries to
guess c\prime a

Aj uses Q
queries to
guess c\prime b

Aj uses Q
queries to
guess c\prime c

A\prime
j uses Aj to obtain the Q\prime guesses that A\prime requires, and then runs A\prime

Fig. 2. The local algorithm A\prime
j used in the proof of Lemma 3.1.

of the coordinates in [k], and A\prime outputs the correct value with probability at least
2/3 provided that at most an \varepsilon -fraction of the codeword coordinates are corrupted.
The query complexity is Q \cdot Q\prime , because for each of the Q\prime queries that A\prime would make,
A\prime

j runs a copy of Aj which makes Q queries, and the running time is T \cdot T \prime for the
same reason. The preprocessing time is simply the preprocessing time for C's local
list recovery algorithm.

3.2. From high-rate to capacity-achieving. Next, we turn to the transfor-
mation from a locally list recoverable code of high-rate into a capacity-achieving
locally list recoverable code. To this end we use the AEL distance amplification
method [AEL95, AL96]. This technique was originally used in [AEL95, AL96] to im-
prove error correction capabilities in the global unique decoding setting, and was later
applied also in the list decoding/recovery regime [GI02, GR08, HW18]. More recent
works have shown its usefulness for local decoding [KMRS17] and local list recovery
[GKO+18].

We shall use the following lemma from [GKO+18], which roughly says that given
an ``outer"" code C of rate approaching 1 that is locally list recoverable from a tiny
fraction of errors, and a small ``inner"" code C \prime that is a capacity-achieving globally
list recoverable code, they can be combined using the AEL transformation to get a
new code CAEL with the following properties. On the one hand, CAEL inherits the
tradeoff between rate and error correction that C \prime enjoys; on the other hand, CAEL

does not use many more queries than C. Thus this procedure amplifies the distance
from which we can list recover without significantly worsening other parameters. For
completeness, we provide below a high-level description of the construction, and the
reader is referred to [GKO+18, section 7] for the full proof.

Lemma 3.2 (from high-rate to capacity-achieving [GKO+18, Lemma 5.4]). There
exists an absolute constant b0 such that the following holds for any \delta , \alpha , \varepsilon > 0 and
t \geq (\delta \cdot \alpha \cdot \varepsilon) - b0 .

Suppose that C : (\Sigma s)k \rightarrow (\Sigma s)n is an ``outer code"" of length n with alphabet \Sigma s

of rate 1 - \varepsilon and relative distance \delta that is (\alpha , \ell , L)-locally list recoverable with query
complexity Q, and C \prime : \Sigma s \rightarrow \Sigma t is an ``inner code"" of length t with alphabet \Sigma of rate
\rho and relative distance at least 1 - \rho - \varepsilon that is (1 - \rho - \varepsilon , \ell \prime , \ell)-globally list recoverable.
Then there exists a code CAEL : (\Sigma s)k \rightarrow (\Sigma t)n of length n over alphabet \Sigma t of rate
\rho - \varepsilon and relative distance at least 1 - \rho - 2\varepsilon that is (1 - \rho - 2\varepsilon , \ell \prime , L)-locally list
recoverable with query complexity Q \cdot poly(t).

Suppose, furthermore, that C has encoding time Tenc, and the local list recovery
algorithm for C has preprocessing time Tpre and running time T , and C \prime has encoding

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FOCS17-170 B. HEMENWAY, N. RON-ZEWI, AND M. WOOTTERS

time T \prime
enc and list recovery time T \prime . Then CAEL has encoding time Tenc + n \cdot (T \prime

enc +
poly(t, log n)), and the local list recovery algorithm for CAEL has preprocessing time
Tpre and running time T+Q \cdot (T \prime +poly(t, log n)). Moreover, if C and C \prime are \BbbF -linear,
then so is CAEL.

Remark 3.3. The definition of a locally list recoverable code in [GKO+18, Def-
inition 2.10] is slightly different from ours since in [GKO+18] the local list recovery
algorithm is required to decode codeword coordinates as opposed to message coor-
dinates, and must satisfy an additional soundness property which guarantees that
with high probability, all local algorithms A1, . . . , AL compute an actual codeword.
However, the proof of the above lemma goes through without change also for our
definition of a locally list recoverable code.

Proof overview. (Included for completeness; see [GKO+18, section 7] for a full
proof.) Given a message x \in (\Sigma s)k, we encode it first with the outer code C :
(\Sigma s)k \rightarrow (\Sigma s)n, and then encode each symbol of the resulting codeword c \in (\Sigma s)n

using the inner code C \prime : \Sigma s \rightarrow \Sigma t. Clearly, the final rate would be the product of
the rates of C and C \prime which is at least \rho - \varepsilon . We would like to show that final error
correction radius would also be close to that of C \prime , specifically 1 - \rho - 2\varepsilon .

Suppose first that we have 1 - \rho - 2\varepsilon fraction of errors which are randomly chosen.
Then by a Chernoff bound, we can say that almost all (except for at most some small
\alpha fraction) the inner encodings will have at most a 1 - \rho - \varepsilon fraction of errors. Thus,
we can list recover most of the inner encodings (except for at most some small \alpha
fraction). Finally, we can list recover the outer code C from an \alpha fraction of errors.
Since we are interested in local list recovery, we need only list recover those inner
encodings which are queried by the local list recovery algorithm for C. Thus we will
not lose much in locality, as long as the length of the inner encodings is small.

However, we need to deal with adversarial errors, not random errors, and so the
analysis above might seem useless. Indeed, adversarial errors can easily completely
wipe more than \alpha fraction of inner encodings. To overcome this problem, we use
samplers. Roughly speaking, a sampler is an n vertex bipartite d-regular graph in
which the density of any subset T of right vertices is approximated by the value of
E(v, T)/d for a uniformly random left vertex v. Above, E(v, T) denotes the number
of edges between v and T . We will use a fully explicit sampler that enables one to
compute the list of neighbors of some given vertex in time poly(d, log n).

We will choose the degree d of the regular bipartite graph (sampler) to be equal
to the length t of the inner code. We associate each inner encoding with a left vertex
of the graph and distribute its symbols to each of the neighbors on the right. The
right vertices collect these symbols from their neighbors and repackage them as single
symbol over a larger alphabet. This will be the final codeword which will have the
same length n as C but over a slightly larger alphabet of \Sigma t. The construction is
illustrated in Figure 3.

The property of the sampler will ensure that whenever a 1 - \rho - 2\varepsilon fraction of
symbols in the final codeword are corrupted, then after undoing the permutation of
the sampler, almost all (except for at most a tiny \alpha fraction) the inner encodings will
have at most a 1 - \rho - \varepsilon fraction of errors. Now we can proceed as we did in the
analysis of random errors.

3.3. From local to nearly-linear-time. Our final basic transformation is from
local list recovery to nearly-linear-time global list recovery. We say that a code
C : \Sigma k \rightarrow \Sigma n is (\alpha , \ell , L)-globally list recoverable probabilistically if there exists a

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIGH-RATE TENSOR CODES FOCS17-171

x

y = C(x)

c

(\Sigma s)
k

(\Sigma s)
n

(\Sigma t)
n

(\Sigma t)
n

\in

\in

\in \in

y1
C \prime (y1) c1

yn
C \prime (yn) cn

Redistribute
according to a sampler

Fig. 3. The construction of [GKO+18]. A message x \in (\Sigma s)k is encoded into a codeword
y = C(x) \in (\Sigma s)n. Then each symbol is encoded with an inner code C\prime : \Sigma s \rightarrow \Sigma t. Finally, the
symbols from \Sigma are redistributed according to a sampler. More precisely, if (u, v) is an edge in the
sampler, so that v is the ith neighbor of u and u is the jth neighbor of v, then the jth symbol in cv
is defined to be the ith symbol of yu.

probabilistic algorithm that on input S \in
\bigl(
\Sigma
\ell

\bigr) n
outputs a list of at most L mes-

sages, such that with probability at least 2/3, the output list contains all x so that
dist(C(x), S) \leq \alpha .

Lemma 3.4 (from local to nearly-linear-time). Suppose that C : \Sigma k \rightarrow \Sigma n is
(\alpha , \ell , L)-locally list recoverable with query complexity Q, preprocessing time Tpre, and
running time T . Then C is (\alpha , \ell ,O(L logL))-globally list recoverable probabilistically
in time

O
\bigl(
Tpre \cdot logL+ T \cdot (k log k) \cdot (L log2 L)

\bigr)
.

Proof. Suppose that C is as in the statement of the lemma. The proof outline is
as follows: for each local algorithm Aj in the output list, we run Aj on each position
i \in [k] to obtain a message. This gives us a list of possible messages. There are a
constant number of local algorithms Aj , and each call to a fixed Aj runs in sublinear
time. Since we call each Aj k times, the total running time is nearly linear in k. The
only subtlety is that, since the local decoding procedure is probabilistic, we will need
to amplify the probability of success to the point that we can take a union bound over
the probability of failure in each coordinate and for each message in the output list.

In more detail, first note that by Remark 2.8, we may assume that the local list
recovery algorithm A for C has failure probability at most 1/(101L), at the cost of
increasing the output list size to O(L logL) and the preprocessing time to O(Tpre \cdot
logL). By Remark 2.4, we may further assume that each local algorithm Aj in the
output list of A fails with probability at most 1/(100kL), at the cost of increasing the
running time of each Aj to O(T log(kL)).

To globally list recover C we first run the local list recovery algorithm A for C.
Then for each of the local algorithms Aj in the output list of A, we output a message
that results by applying Aj on each of the k message coordinates. It can be verified
that running time and output list size of this algorithm are as claimed.

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FOCS17-172 B. HEMENWAY, N. RON-ZEWI, AND M. WOOTTERS

Let B \subseteq C be the list of codewords that are \alpha -close to the input lists. For each
c \in B, A returns a local algorithm Aj which corresponds to c with probability at least
1 - 1/(101 \cdot L), so we conclude that

| B| \leq L \cdot
\biggl(
1 - 1

101L

\biggr) - 1

\leq 1.01 \cdot L.

By a union bound, the probability that there is some c \in B so that no Aj corresponds
to c is at most

| B| \cdot 1

101L
\leq 1.01L

101L
=

1

100
.

Next, conditioning on the event that all c \in B have some corresponding local
algorithm Aj , we apply a union bound over all L of these local algorithms, and all k
coordinates that each of them might decode. We conclude that the probability that
the global list recovery algorithm described above fails is at most

L \cdot k \cdot 1

100Lk
\leq 1

100
.

Thus, by a union bound over the two bad events, the probability that the global
list recovery algorithm fails is at most 2/100 < 1/3.

4. From global to approximately-local list recovery. We now turn to our
main transformation from global list recovery to approximately-local list recovery,
which proves our main Theorem 1.1. For the purposes of this section, it will be
more natural to require that the approximately-local list recovery algorithm recovers
codeword coordinates as opposed to message coordinates. Formally, we assume that
each local algorithm Aj receives as input a coordinate i \in [n], and the requirement
(2.2) is now replaced with the condition that

(4.1) Pr
i\in [n]

\bigl[
Aj(i) = (C(x))i

\bigr]
\geq 1 - \varepsilon ,

where the probability is over the choice of uniform random i \in [n]. Note that for a
systematic code of rate \rho , condition (4.1) with approximability parameter \varepsilon implies
condition (2.2) with approximability parameter \varepsilon /\rho . As all of the codes that we will
apply Theorem 1.1 to are high rate (in particular, of rate greater than 1/2), and can
be made systematic, the difference between these definitions is negligible.4

Our main result in this section is the following lemma, which is a more detailed
version of Theorem 1.1.

Lemma 4.1 (from global to approximately-local). There exists an absolute con-
stant b0 such that the following holds for any sufficiently small \varepsilon > 0 and for any \delta , \alpha
and s \geq (\delta \cdot \alpha \cdot \varepsilon) - b0 .

Suppose that C : \BbbF k \rightarrow \BbbF n is a linear code of relative distance \delta that is (\alpha , \ell , L)-

globally list recoverable. Then for any t > 1, C\otimes t : \BbbF kt \rightarrow \BbbF nt

is \varepsilon -approximately

(\alpha \cdot s - t2 , \ell , Lst
2
\cdot logt L)-locally list recoverable with query complexity n \cdot (st2 logt L).

Moreover, if C can be list recovered in time poly(n), then the approximately-local

list recovery algorithm for C\otimes t has preprocessing time O
\bigl(
log(n) \cdot st2 \cdot logt L+ Lst

2
\cdot logt L

\bigr)
and running time poly(n) \cdot (st2 logt L).

4As noted in Remark 2.9, the reason that we do not consider this all-codeword-symbol definition
throughout the entire paper is that our reduction from approximately-local to local (Lemma 3.1)
only works for our original message-symbol definition.

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIGH-RATE TENSOR CODES FOCS17-173

Lemma 4.1 follows from Lemma 4.2 below which we view as our main technical
lemma. Lemma 4.2 shows that the tensor product of an approximately locally list
recoverable code with a globally list recoverable code results in an approximately
locally list recoverable code with roughly the same performance. Lemma 4.1 then
follows by applying the main technical lemma iteratively.

Lemma 4.2 (main technical lemma). There exist absolute constants b0 and d0
such that the following holds for any sufficiently small \varepsilon > 0, and for any \delta \prime , \alpha \prime > 0
and s \geq (\delta \prime \cdot \alpha \prime \cdot \varepsilon) - b0 .

Suppose that C : \BbbF k \rightarrow \BbbF n is a linear code that is \varepsilon -approximately (\alpha , \ell , L)-locally
list recoverable with query complexity Q. Suppose that C \prime : \BbbF k\prime \rightarrow \BbbF n\prime

is a linear code
of relative distance \delta \prime that is (\alpha \prime , \ell , L\prime)-globally list recoverable. Suppose that Q \geq n\prime .
Then C \otimes C \prime : \BbbF k\times k\prime \rightarrow \BbbF n\times n\prime

is (d0\varepsilon /\delta
\prime)-approximately (\alpha /s, \ell , Ls logL\prime

)-locally list
recoverable with query complexity Q \cdot (s logL\prime).

Moreover, if the approximately local list recovery algorithm for C has preprocessing
time Tpre \geq log n\prime and running time T , and C \prime can be list recovered in time T \prime \leq T ,
then the approximately local list recovery algorithm for C \otimes C \prime has preprocessing time
Tpre \cdot (s logL\prime) + Ls logL\prime

and running time T \cdot (s logL\prime).

In Lemma 4.2, one should think of all of the ``global"" parameters (that is, \delta \prime , \alpha \prime , \varepsilon ,
L\prime , and s) as constants (or as slowly growing functions of n). In that case, if we start
with a code that is \varepsilon -approximately (\alpha , \ell , L)-locally list recoverable with query com-
plexity Q, then the final code would be O(\varepsilon)-approximately (\Omega (\alpha), \ell , LO(1))-locally
list recoverable with query complexity O(Q).

We prove Lemma 4.2 in section 4.1 below. Lemma 4.1 follows from Lemma 4.2
by inductively applying Lemma 4.2 to C\otimes (i - 1) (playing the role of C) and C (playing
the role of C \prime) to obtain a result for C\otimes i. We include the proof of Lemma 4.1 in
Appendix C.

4.1. Proof of main technical Lemma 4.2. In this section we prove Lemma 4.2.

4.1.1. Approximate local list recovery algorithm. Our goal is to find a
randomized algorithm \~A that outputs a list of (deterministic) local algorithms, and
satisfies the following: for any codeword of C \otimes C \prime that is consistent with most of the
input lists, with high probability over the randomness of \~A, one of the local algorithms
in the output list of \~A correctly computes most of the codeword coordinates.

First, as per Remark 2.8, we assume that the \varepsilon -approximately (\alpha , \ell , L)-locally
list recoverable code C that we are given in the statement of the lemma has a local
list recovery algorithm A with failure probability \varepsilon , at the cost of increasing the
output list size and the preprocessing time by a factor of O(log(1/\varepsilon)). Thus, for some
constant b1, we assume that A produces a list of at most b1L log(1/\varepsilon) deterministic
local algorithms, so that with probability at least 1 - \varepsilon , for all codewords c \in C
consistent with the input lists, there is a local algorithm in the list which correctly
computes a 1 - \varepsilon fraction of the coordinates.

The algorithm \~A produces the list of local algorithms as follows. It first chooses
a random subset J = \{ j1, . . . , jm\} \subseteq [n\prime] of m := b2s logL

\prime columns, where b2 =
\Theta (1/ log(1/\varepsilon)) will be chosen later. It then runs the approximately local list recovery
algorithm A for C independently m times, one for each of the columns j1, . . . , jm.
(Notice that since the input to A is just 1n, it does not matter at this stage which
column we think of running it on.) Let \scrL 1, . . . ,\scrL m denote the lists of local algorithms
output by A in each of these runs. Finally, for every choice of local algorithms A1 \in
\scrL 1, . . . , Am \in \scrL m, the algorithm \~A outputs a local algorithm indexed by (A1, . . . , Am).

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FOCS17-174 B. HEMENWAY, N. RON-ZEWI, AND M. WOOTTERS

The formal description of the algorithm \~A appears in Algorithm 4.1.

Algorithm 4.1. The approximately-local list recovery algorithm \~A for C \otimes C \prime .

function \~A
 \triangleleft \~A receives as input a parameter m.
 \triangleleft \~A outputs a list of local algorithms, defined in Algorithm 4.2 below.
Choose a random subset J = \{ j1, . . . , jm\} \subseteq [n\prime] of size m.
for r = 1, . . . ,m do

Run the approximately-local list recovery algorithm A for C, and let \scrL r be
the list of local algorithms output by A.

end for
For any choice of local algorithms A1 \in \scrL 1, . . . , Am \in \scrL m, output a local algo-

rithm A(A1,...,Am).
end function

We now describe the local algorithm A(A1,...,Am). Recall that the algorithm
A(A1,...,Am) is given as input a codeword coordinate (i, j) \in [n] \times [n\prime] in the ten-
sor product code C \otimes C \prime , is allowed to query the input lists at every coordinate of
C \otimes C \prime , and must produce a guess for the codeword value indexed by (i, j).

To this end, the algorithm A(A1,...,Am) first uses the local algorithms A1, . . . , Am

to obtain guesses for all positions in \{ i\} \times J . Specifically, this is done by running on
each column jr \in J the local algorithm Ar on input i and oracle access to the column
jr. Let vr be the guess for the symbol at position (i, jr) produced by Ar. At this
point we have candidate symbols (v1, . . . , vm) for all positions in \{ i\} \times J .

Next, the algorithm A(A1,...,Am) runs the global list recovery algorithm for C \prime on
row i, and chooses a codeword c\prime from the output list \scrL \prime that agrees the most with
the candidate symbols (v1, . . . , vm) on J . Finally, the jth symbol of c\prime is the guess
of the algorithm A(A1,...,Am) for the (i, j) symbol of the tensor codeword. The formal
description of the local algorithm A(A1,...,Am) is given in Algorithm 4.2.

Algorithm 4.2. The local algorithm A(A1,...,Am) for C \otimes C \prime .

function A(A1,...,Am)((i, j) \in [n]\times [n\prime])

 \triangleleft A(A1,...,Am) receives oracle access to a matrix of lists S \in
\bigl(\BbbF
\ell

\bigr) n\times n\prime

, and J =
\{ j1, . . . , jr\}

for r = 1, . . . ,m do
Run Ar on input i and oracle access to the jrth column S| [n]\times \{ jr\} .
Let vr \leftarrow Ar(i).
 \triangleleft vr is a candidate for the symbol at position (i, jr) \in [n]\times [n\prime].

end for
 \triangleleft At this point, we have candidate symbols (v1, . . . , vm) for every position in

\{ i\} \times J .
Run the global list recovery algorithm for C \prime on the ith row S| \{ i\} \times [n\prime], let

\scrL \prime \subseteq \BbbF n\prime
denote the output list of codewords.

Choose a codeword c\prime \in \scrL \prime such that c\prime | J is closest to (v1, . . . , vm) (breaking
ties arbitrarily).

Return: c\prime j
end function

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIGH-RATE TENSOR CODES FOCS17-175

4.1.2. Output list size, query complexity, and running time. The output
list size is number of local algorithms output by \~A which is

(b1L log(1/\varepsilon))m = (b1L log(1/\varepsilon))b2s logL\prime
\leq Ls logL\prime

,

as long as L > 1 and \varepsilon is sufficiently small, with some choice of b2 = \Theta (1/ log(1/\varepsilon)).
(We note that there is some slack in the choice of b2 here; we will need the choice of
b2 = \Theta (1/ log(1/\varepsilon)) later in the proof.)

The local algorithm A(A1,...,Am) invokes a local algorithm Aj for C on m different
columns, and the global algorithm for C \prime on a single row. Thus, the query complexity
is Q \cdot m+ n\prime which is at most

Q \cdot m+ n\prime \leq Q \cdot (m+ 1) = Q \cdot (b2s logL\prime + 1) \leq Q \cdot s logL\prime ,

using the assumption that Q \geq n\prime and that b2 \leq 1/2. By the same reasoning as above,
we also have that running time of the algorithm A(A1,...,Am) is

T \cdot m+ T \prime \leq T \cdot (m+ 1) = T \cdot (b2s logL\prime + 1) \leq T \cdot s logL\prime .

Finally, we bound the preprocessing time, which is the running time of the algo-
rithm \~A. The algorithm \~A can sample the set J in time m log n\prime , then runs in time
Tpre \cdot b1 log(1/\varepsilon) \cdot m to generate the m output lists of A, and finally generates all
output local algorithms in time (b1L log(1/\varepsilon))m. So the total preprocessing time is

m log n\prime + Tpre \cdot b1 log(1/\varepsilon) \cdot m+ (b1L log(1/\varepsilon))m

\leq (1 + b1)Tpre log(1/\varepsilon) \cdot m+ (b1L log(1/\varepsilon))m

= (1 + b1)Tpre log(1/\varepsilon) \cdot (b2s logL\prime) + (b1L log(1/\varepsilon))b2s logL\prime

\leq Tpres logL
\prime + Ls logL\prime

,

where the first inequality is by the assumption that Tpre \geq log n\prime , and the second is
by choosing b2 = \Theta (1/ log(1/\varepsilon)) sufficiently small. Thus, the output list size, query
complexity, and running time are all as desired.

4.1.3. Correctness. Let \~c be a codeword of the tensor code C \otimes C \prime that is
consistent with all but an (\alpha /s)-fraction of the input lists. Our goal is to show
that with high probability (at least 2/3) over the randomness of \~A, there exists a
local algorithm A(A1,...,Am) in the output list of \~A that correctly computes all but a
O(\varepsilon /\delta \prime)-fraction of the coordinates of \~c.

For r = 1, . . . ,m, let Ar be the local algorithm in \scrL r that correctly decodes the
largest number of coordinates of \~c on the column jr, i.e., the local algorithm Ar \in \scrL r

for which the set \{ i \in [n] | Ar(i) = \~ci,jr\} is largest (breaking ties arbitrarily). We will

show that with high probability over the randomness of \~A, the corresponding local
algorithm A(A1,...,Am) correctly computes all but a O(\varepsilon /\delta \prime)-fraction of the coordinates
of \~c.

To show the above, we claim that with high probability over the randomness of
\~A, at least a (1 - O(\varepsilon /\delta \prime))-fraction of the rows of \~c are ``good,"" in the sense that the
local algorithm A(A1,...,Am) defined above will correctly decode all of the coordinates
of \~c on these rows. More formally, we define a ``good row"" as follows.

Definition 4.3 (good row). A row i \in [n] is good (with respect to \~c, J , and
A1, . . . Am) if it satisfies the following properties:

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FOCS17-176 B. HEMENWAY, N. RON-ZEWI, AND M. WOOTTERS

1. The codeword \~c is consistent with all but an \alpha \prime -fraction of the input lists on
row i.

2. Let \scrL \prime \subseteq \BbbF n\prime
denote the list of all codewords in C \prime that are consistent with all

but \alpha \prime -fraction of the input lists on row i. Then dist(\scrL \prime | J) > \delta \prime /2. That is, for
any pair of distinct codewords c\prime , c\prime \prime \in \scrL \prime , it holds that dist(c\prime | J , c\prime \prime | J) > \delta \prime /2.

3. For r = 1, . . . ,m let vr := Ar(i). Then dist
\bigl(
\~c| \{ i\} \times J , (v1, . . . , vm)

\bigr)
\leq \delta \prime /4.

Claim 4.4 below shows that the local algorithm A(A1,...,Am) succeeds in correctly
decoding all of the coordinates of \~c on a good row, while Claim 4.5 states that with
probability at least 2/3 over the randomness of \~A, at least a (1 - O(\varepsilon /\delta \prime))-fraction
of the rows are good. The combination of these two claims then implies the desired
conclusion.

Claim 4.4. The local algorithm A(A1,...,Am) correctly decodes all of the coordinates
of \~c on a good row.

Proof. Suppose that row i is good. By Property (1) in the definition of good, \~c is
consistent with all but an \alpha \prime -fraction of the input lists on row i, and so c\prime := \~c| \{ i\} \times [n\prime],
the restriction of \~c to the i-th row, belongs to \scrL \prime . By Property (3) in the definition
of good,

dist
\bigl(
c\prime | J , (v1, . . . , vm)

\bigr)
\leq \delta \prime /4.

On the other hand, by Property (2) in the definition of good, and by the triangle
inequality, for any other codeword c\prime \prime \in \scrL \prime we have

dist
\bigl(
c\prime \prime | J , (v1, . . . , vm)

\bigr)
\geq dist(c\prime | J , c\prime \prime | J) - dist

\bigl(
c\prime | J , (v1, . . . , vm)

\bigr)
> \delta \prime /4.

Thus the local algorithm A(A1,...,Am) will choose the codeword c\prime = \~c| \{ i\} \times [n\prime] on the
ith row, and consequently all its decodings on the ith row will be consistent with
\~c.

Claim 4.5. With probability at least 2/3 over the randomness of \~A, at least a
(1 - O(\varepsilon /\delta \prime))-fraction of the rows are good.

For the proof of the above claim we shall also use the notion of a ``good column,""
which we define below as a column jr \in J on which most of the coordinates of \~c are
decoded correctly by the local algorithm Ar.

Definition 4.6 (good column). A column jr \in J is good if the local algorithm
Ar correctly decodes all but an \varepsilon -fraction of the coordinates of \~c on column jr.

Once more, we shall show that with high probability over the randomness of \~A,
a large fraction of the columns in J are good.

Claim 4.7. With probability at least 0.9 over the randomness of \~A, at least a
(1 - O(\varepsilon))-fraction of the columns in J are good.

Proof. We first claim that with probability at least 0.99 over the randomness of
\~A, for at least a (1 - 2\varepsilon)-fraction of the columns jr \in J it holds that \~c is consistent
with all but \alpha -fraction of the input lists on column jr. To see this note first that by
assumption \~c agrees with all but a \alpha /s \leq \alpha \cdot \varepsilon fraction of the input lists, where the
inequality follows from the definition of s and by taking b0 \geq 1. Thus, by averaging,
for at least a (1 - \varepsilon)-fraction of the columns j \in [n\prime] it holds that \~c is consistent
with all but an \alpha -fraction of the input lists on column j. By a Chernoff bound (see
Theorem D.2 in Appendix D), this implies in turn that with probability at least

1 - exp
\bigl(
 - m \cdot \varepsilon 2

\bigr)
\geq 0.99

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIGH-RATE TENSOR CODES FOCS17-177

over the choice of J , for at least a (1 - 2\varepsilon)-fraction of the columns jr \in J it holds
that \~c is consistent with all but an \alpha -fraction of the input lists on column jr. In the
inequalty above, we are using the choice

m = \Theta

\biggl(
s logL\prime

log(1/\varepsilon)

\biggr)
= \Omega

\Biggl(
1

log(1/\varepsilon)

\biggl(
1

\varepsilon \delta \prime \alpha \prime

\biggr) b0

logL\prime

\Biggr)
,

along with a sufficiently large choice of the constant b0.
As noted at the beginning of the proof, we are considering an amplified version of

the approximate local list recovery algorithm A for C, so that the failure probability is
at most \varepsilon . By Hoeffding's inequality (Theorem D.1), this implies that with probability
at least 1 - exp(- m \cdot \varepsilon 2) \geq 0.99, the algorithm A succeeds in at least (1 - 2\varepsilon)-fraction
of the invocations. Above, the inequality follows as before because of the choice of s
and a sufficiently large choice of b0.

By a union bound, we conclude that with probability at least 0.9 over the ran-
domness of \~A, for at least a (1 - 4\varepsilon)-fraction of the columns jr \in J it holds that
both \~c is consistent with all but \alpha -fraction of the input lists on column jr, and A
does not fail on this column: that is, there is a local algorithm returned by A which
correctly computes at least a 1 - \varepsilon fraction of the coordinates of column jr. For such a
column jr, since Ar is chosen to be the local algorithm returned by A which correctly
computes the largest fraction of coordinates of \~c on the column jr, we conclude that
the column jr is good. All together, this shows that at least a (1 - 4\varepsilon)-fraction of the
columns jr \in J are good.

We now proceed to the proof of Claim 4.5.

Proof of Claim 4.5. We will show that each of the three properties in the defini-
tion of a good row holds for at least (1 - O(\varepsilon /\delta \prime))-fraction of the rows, with probability
at least 0.9 over the randomness of \~A. Then the claim will follow by a union bound
over the fraction of bad rows and error probability of \~A.

Property (1). By assumption \~c agrees with all but an \alpha /s \leq \alpha \prime \cdot \varepsilon of the input
lists, where the inequality follows from the definition of s and an assumption that
b0 \geq 1. By an averaging arguement, for at least a (1 - \varepsilon)-fraction of the rows i \in [n] it
holds that \~c is consistent with all but an \alpha \prime -fraction of the input lists on row i. So at
least a (1 - \varepsilon)-fraction of the rows satisfy Property (1) (regardless of the randomness
of \~A).

Property (2). By assumption, C \prime has relative distance at least \delta \prime , and so dist(c\prime , c\prime \prime)
\geq \delta \prime for any pair of codewords c\prime , c\prime \prime \in \scrL \prime . A Chernoff bound (Theorem D.2) then
implies that with probability at least

1 - exp
\bigl(
 - m \cdot (\delta \prime)2

\bigr)
= 1 - exp

\bigl(
 - b2s logL

\prime \cdot (\delta \prime)2
\bigr)
\geq 1 - 0.1\varepsilon

(L\prime)2

over the choice of J it holds that dist(c\prime | J , c\prime \prime | J) > \delta \prime /2. Above, the inequality follows
by choosing the constant b0 sufficiently large and b2 = \Theta (1/ log(1/\varepsilon)). By a union
bound over all (L\prime)2 pairs of elements in \scrL \prime , this implies in turn that dist(\scrL \prime | J) > \delta \prime /2
with probability at least 1 - 0.1\varepsilon over the choice of J . Finally, by an averaging
argument we conclude that with probability at least 0.9 over the choice of J (and so
also over the randomness of \~A), at least a (1 - \varepsilon)-fraction of the rows satisfy Property
(2).

Property (3). By Claim 4.7, with probability at least 0.9 over the randomness of
\~A, at least a (1 - O(\varepsilon))-fraction of the columns in J are good, where in a good column

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FOCS17-178 B. HEMENWAY, N. RON-ZEWI, AND M. WOOTTERS

jr \in J all but an \varepsilon -fraction of the coordinates of \~c are decoded correctly by Ar. This
implies in turn that the fraction of points (i, jr) \in [n] \times J on which Ar(i) \not = \~ci,jr
is at most O(\varepsilon), and so at least a (1 - O(\varepsilon /\delta \prime))-fraction of the rows i have at most
(\delta \prime /4)-fraction of entries jr \in J for which Ar(i) \not = \~ci,jr . Thus with probability at

least 0.9 over the randomness of \~A, at least a (1 - O(\varepsilon /\delta \prime))-fraction of the rows satisfy
Property (3).

Together, the three paragraphs above imply that at least a 1 - O(\varepsilon) - O(\varepsilon) -
O(\varepsilon /\delta \prime) fraction of the rows satisfy all three properties, which proves the claim.

5. Instantiations. We finish by instantiating our main ``global to approximately-
local"" transformation (Lemma 4.1), followed by the basic list recovery transformations
(Lemmas 3.1, 3.2, and 3.4), with known constructions of high-rate globally list recov-
erable codes to obtain capacity-achieving locally list recoverable codes, which proves
our main theorems, Theorems 1.2, 1.3, and 1.4.

5.1. Instantiating with a random linear code: Proof of Theorem 1.2.
We start by instantiating our transformations with the random linear code given by
Corollary 2.2, restated below.

Corollary 5.1 (Corollary 2.2, restated). For any \rho \in [0, 1], \varepsilon > 0, \ell \geq 1, and
for sufficiently large prime power q and integer n, a random linear code C : \BbbF k

q \rightarrow \BbbF n
q

of rate \rho has relative distance at least 1 - \rho - \varepsilon , and is (1 - \rho - \varepsilon , \ell , qO(\ell /\varepsilon))-list
recoverable, with probability at least 1 - exp(- n).

Using the above corollary we obtain the following lemma, which is a more detailed
version of Theorem 1.2.

Lemma 5.2. For any constants \rho \in [0, 1], \varepsilon , \beta > 0, and \ell \geq 1 there exist integers
\sigma , L, and an infinite family of codes \{ Cn\} n that satisfy the following:

\bullet Cn is an \BbbF 2-linear code of block length n and alphabet size \sigma .
\bullet Cn has rate \rho and relative distance at least 1 - \rho - \varepsilon .
\bullet Cn is (1 - \rho - \varepsilon , \ell , L)-locally list recoverable with query complexity n\beta .

Proof. The proof outline is as follows. We start with the high-rate globally list
recoverable code C given by Corollary 2.2, and use Lemma 4.1 to turn C into a
high-rate approximately locally list recoverable code C \prime by raising C to a sufficiently
large tensor power. We then use Lemma 3.1 to turn C \prime into a high-rate locally
list recoverable code C \prime \prime by pre-encoding C \prime with a high-rate locally decodable code.
Finally, we use the AEL transformation (Lemma 3.2) to turn C \prime \prime into a capacity-
achieving locally list recoverable code \~C.

Below, we focus in more detail on each of the codes described above.
High-rate globally list recoverable code C. The initial code C will be the high-rate

globally list recoverable code given by Corollary 2.2. Specifically, we choose the block
length of C to be n\beta /2, smaller than the final desired query complexity, and the rate
to be high, at least 1 - \varepsilon \beta /16.

As we will see in a moment, the rationale for these choices is that if we raise C
to the tensor power of 2/\beta , Lemma 4.1 will yield a code of block length n and query
complexity smaller than n\beta , with rate at least 1 - \varepsilon .

Note that Corollary 2.2 guarantees the existence of a code C with this block
length and rate that has relative distance \Omega (1), and is (\Omega (1), \ell \prime , O(1))-globally list
recoverable for any constant \ell \prime \geq 1, provided that the alphabet size is a sufficiently
large constant prime power, and n is sufficiently large.

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIGH-RATE TENSOR CODES FOCS17-179

High-rate approximately locally list recoverable code C \prime . Let C \prime = C\otimes (2/\beta) be the
code obtained by taking the (2/\beta)th tensor power of C. Then C \prime has block length n,
and by Lemma 4.1, it is (\varepsilon /100)-approximately (\Omega (1), \ell \prime , O(1))-locally list recoverable
with query complexity O(n\beta /2) for any constants \varepsilon > 0 and \ell \prime \geq 1. Moreover, by
Corollary 2.13 C \prime has rate (1 - \varepsilon \beta /16)2/\beta \geq 1 - \varepsilon /8 and relative distance \Omega (1).

High-rate locally list recoverable code C \prime \prime . We obtain C \prime \prime by pre-encoding C \prime with
a high-rate locally decodable code D\prime that is guaranteed by Theorem 2.5. Specifically,
to satisfy the conditions of Lemma 3.1, we choose the block length of D\prime to be equal
to the message length of C \prime which is (1 - \varepsilon /8)n, and the decoding radius of D\prime to
be equal to \varepsilon /100. Since the rate of C \prime \prime is the product of the rates of C \prime and D\prime , we
also require that the rate of D\prime is high, specifically 1 - \varepsilon /8. Note that Theorem 2.5
guarantees the existence of such a code D\prime with query complexity no(1) for infinitely
many values of n, and for a constant alphabet size that is a power of 2. Moreover, the
alphabet size can be increased to any arbitrarily large constant by grouping together
consecutive symbols and noting that this does not effect the asymptotic behavior of
the code in the parameter regime that we are operating in.

Lemma 3.1 then implies that C \prime \prime is a code of block length n that is (\Omega (1), \ell \prime , O(1))-
locally list recoverable with query complexity n\beta /2+o(1) for any constant \ell \prime \geq 1. Note
also that the rate of C \prime \prime is the product of the rates of C \prime and D\prime , and so is at least
1 - \varepsilon /4, while the relative distance of C \prime \prime is the same as that of C \prime , and so is constant
\Omega (1).

Capacity-achieving locally list recoverable code \~C. Finally, we obtain \~C by ap-
plying the AEL transformation (Lemma 3.2) with the outer code being the code C \prime \prime

constructed so far, and the inner code being a capacity-achieving globally list recov-
erable code D\prime \prime given by Corollary 2.2. Specifically, as we would like the final code
\~C to have rate \rho and relative distance and list recovery radius 1 - \rho - \varepsilon , and as C \prime \prime

has rate 1 - \varepsilon /4, we require that D\prime \prime has rate \rho + \varepsilon /4 and relative distance and list
recovery radius 1 - \rho - \varepsilon /2.

Note that Corollary 2.2 guarantees the existence of a code D\prime \prime as above that is
(1 - \rho - \varepsilon /2, \ell , \ell \prime)-globally list recoverable for sufficiently large constant \ell \prime , provided
that the alphabet size is a sufficiently large constant prime power, and the block length
is a sufficiently large constant. To satisfy the conditions of Lemma 3.2, we further
require that the block length of D\prime \prime is a sufficiently large constant, as required by the
lemma, and that the alphabet size of C \prime \prime equals the domain size of D\prime \prime .

Lemma 3.2 then implies that \~C is a code of block length n that is (1 - \rho - \varepsilon , \ell , O(1))-
locally list recoverable with query complexity n\beta /2+o(1) \ll n\beta . Moreover, the code \~C
has rate \rho , relative distance at least 1 - \rho - \varepsilon , and constant alphabet size.

Finally, note that all codes in the process can be taken to be \BbbF 2-linear, and all
transformations preserve \BbbF 2-linearity, so the final code can be guaranteed to be \BbbF 2-
linear as well.

5.2. Instantiating with an algebraic geometry code for polynomial query
complexity: Proof of Theorem 1.3. Next we instantiate our transformations
with the algebraic geometry (AG) subcodes of [GX13, GK16b] to obtain the following
lemma, which is a more detailed version of our main theorem, Theorem 1.3.

Lemma 5.3. There is a constant c so that the following holds. For any constants
\rho \in [0, 1], \varepsilon , \beta > 0, and \ell \geq 1 there exist an integer \sigma , and an infinite family of codes
\{ Cn\} n that satisfy the following:

\bullet Cn is an \BbbF 2-linear code of block length n and alphabet size \sigma .

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FOCS17-180 B. HEMENWAY, N. RON-ZEWI, AND M. WOOTTERS

\bullet Cn has rate \rho and relative distance at least 1 - \rho - \varepsilon .
\bullet Cn is (1 - \rho - \varepsilon , \ell , L)-locally list recoverable with query complexity n\beta for
L = exp exp exp(log\ast n) with preprocessing time (log n)1+o(1) and running
time nc\beta .

\bullet Cn is (1 - \rho - \varepsilon , \ell , L)-globally list recoverable for L = exp exp exp(log\ast n) in
time n1+c\beta .

\bullet Cn is encodable in time n1+c\beta .

To prove the above lemma we use the algebraic geometry subcodes of [GX13,
GK16b]. However, we cannot quite use these codes as a black box, for two reasons.
First, the analysis in [GX13] only establishes list-decodability, rather than list recov-
erability. Fortunately, list recoverability follows from exactly the same argument as
list-decodability. Second, these codes are linear over a subfield, but are not themselves
linear, while our arguments require linearity over the whole alphabet. Fortunately,
we can achieve the appropriate linearity by concatenating the AG subcode with a
small high-rate globally list recoverable linear code, which exists by Corollary 2.2.
We handle these modifications to the approach of [GX13, GK16b] in Appendix A,
and the final properties we need are summarized in Theorem A.1, which we prove in
Appendix A and restate below.

Theorem 5.4 (Theorem A.1, restated). There exists an absolute constant b0 so
that the following holds. For any \varepsilon > 0, \ell \geq 1, q \geq \ell b0/\varepsilon that is an even power of a
prime5, and integer n \geq qb0\ell /\varepsilon , there exists a linear code C : \BbbF k

q \rightarrow \BbbF n
q of rate 1 - \varepsilon

and relative distance \Omega (\varepsilon 2) that is (\Omega (\varepsilon 2), \ell , L)-list recoverable for L = qq
(\ell /\varepsilon)\cdot exp(log\ast n)

.
Moreover, C can be encoded in time poly(n, log q) and list recovered in time poly(n,L).

Next, we prove Lemma 5.3 based on the above theorem.

Proof of Lemma 5.3. The proof is identical to that of Lemma 5.2, replacing the
initial random linear code C given by Corollary 2.2 with the AG code given by Theo-
rem A.1. It can be verified that the proof of Lemma 5.2 goes through, when increasing
the output list size L from constant to exp exp exp(log\ast n).

As for the running times, note that by Theorem A.1, C can be encoded and list
recovered in time nc\beta for some constant c that does not depend on \beta . Lemma 4.1 then
implies that the approximately local list recovery algorithm for C \prime has preprocessing
time (log n)1+o(1) and running time nc\beta , while by Corollary 2.13, the encoding time
of C \prime is n1+c\beta . Lemmas 3.1 and 3.2 imply in turn that the same holds for C \prime \prime and \~C,
and by Lemma 3.4, the code \~C is also globally list recoverable in time n1+c\beta . (Above,
the constant c may have to change slightly from line to line; we suppress this for
notational clarity.)

5.3. Instantiating with an AG code for subpolynomial query complex-
ity: Proof of Theorem 1.4. Our final instantiation uses once more the algebraic
geometry codes given by Theorem A.1, but with a different choice of parameters,
which gives the following lemma that implies our main theorem, Theorem 1.4.

Lemma 5.5. For any constants \rho \in [0, 1], \varepsilon > 0, and \ell \geq 1 there exists an infinite
family of codes \{ Cn\} n that satisfy the following:

\bullet Cn is an \BbbF 2-linear code of block length n and alphabet size no(1).
\bullet Cn has rate \rho and relative distance at least 1 - \rho - \varepsilon .

5That is, q is of the form p2t for a prime p and for an integer t.

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIGH-RATE TENSOR CODES FOCS17-181

\bullet Cn is (1 - \rho - \varepsilon , \ell , no(1))-locally list recoverable with query complexity, prepro-
cessing time, and running time no(1).

\bullet Cn is (1 - \rho - \varepsilon , \ell , no(1))-globally list recoverable in time n1+o(1).
\bullet Cn is encodable in time n1+o(1).

Proof. The proof is identical to that of Lemmas 5.2 and 5.3, taking \beta to be slightly
subconstant, specifically \beta := (log log n) - o(1) (where the o(1) term in the exponent is
an arbitrarily slowly decreasing function of n). As the setting of parameters is slightly
different from the previous lemmas, we provide a complete proof below.

High-rate globally list recoverable code C. As in the proof of Lemma 5.2, we choose
the initial code C to be a code of block length n\beta /2 = no(1) and rate 1 - \varepsilon \beta /16 =
1 - (log log n) - o(1). Theorem A.1 guarantees the existence of such a code C that has
relative distance (log log n) - o(1), and is ((log log n) - o(1), \ell \prime , exp exp((log log n)o(1)))-
globally list recoverable for any constant \ell \prime \geq 1, provided that the alphabet size is
a sufficiently large even power of a prime exp((log log n)o(1)). Moreover, C can be
encoded and list recovered in time nO(\beta) = no(1).

High-rate approximately locally list recoverable code C \prime . As before, let C \prime be the
code obtained by taking C to a tensor power of 2/\beta = (log log n)o(1). Then C \prime

has block length n, rate at least 1 - \varepsilon /8, relative distance exp(- (log log n)o(1)), and
by Lemma 4.1, it is (\varepsilon /100)-approximately (exp(- (log log n)o(1)), \ell \prime , no(1))-locally list
recoverable with query complexity no(1) for any constants \varepsilon > 0 and \ell \prime \geq 1. Moreover,
the approximately-local list recovery algorithm for C \prime has preprocessing and running
time no(1), while by Corollary 2.13, the encoding time of C \prime is n1+o(1).

High-rate locally list recoverable code C \prime \prime . Once more, we obtain C \prime \prime by pre-
encoding C \prime with a high-rate locally decodable code D\prime of block length (1 - \varepsilon /8)n,
rate 1 - \varepsilon /8, and decoding radius \varepsilon /100. Theorem 2.5 guarantees the existence of
such a code D\prime with query complexity no(1) for infinite values of n, and with constant
alphabet size that is a power of 2. Moreover, the alphabet size can be increased to
exp((log log n)o(1))---the alphabet size of C \prime ---by grouping together consecutive sym-
bols, and noting that this does not effect the asymptotic behavior of the code.

Then C \prime \prime is a code of block length n, rate 1 - \varepsilon /4, and relative distance exp(- (log
log n)o(1)), and by Lemma 3.1, it is (exp(- (log log n)o(1)), \ell \prime , no(1))-locally list recov-
erable with query complexity no(1) for any constant \ell \prime \geq 1. Moreover, the local list
recovery algorithm for C \prime \prime has preprocessing and running time no(1), and since the
encoding time of D\prime is n1+o(1), the encoding time of C \prime \prime is n1+o(1) as well.

Capacity-achieving locally list recoverable code \~C. As before, \~C is obtained by
applying the AEL transformation (Lemma 3.2) with the outer code being the code
C \prime \prime constructed so far, and the inner code being a capacity-achieving globally list
recoverable code D\prime \prime of rate \rho + \varepsilon /4 and relative distance and list recovery radius
1 - \rho - \varepsilon /2.

Corollary 2.2 guarantees the existence of codeD\prime \prime as above that is (1 - \rho - \varepsilon /2, \ell , \ell \prime)-
globally list recoverable for sufficiently large constant \ell \prime , provided that the alphabet
size is a sufficiently large constant prime power, and the block length is a sufficiently
large constant. To satisfy the conditions of Lemma 3.2, we further require that the
block length of D\prime \prime is sufficiently large exp((log log n)o(1)), and that the alphabet size
of C \prime \prime is exp exp((log log n)o(1))---the domain size of D\prime \prime ---which can be achieved by
grouping together consecutive symbols of C \prime \prime .

Lemma 3.2 then implies that \~C is a code of block length n, alphabet size no(1),
rate \rho , and relative distance 1 - \rho - \varepsilon , that is (1 - \rho - \varepsilon , \ell , no(1))-locally list recoverable
with query complexity no(1). Moreover, the local list recovery algorithm for \~C has

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FOCS17-182 B. HEMENWAY, N. RON-ZEWI, AND M. WOOTTERS

preprocessing and running time no(1), and the encoding time of \~C is n1+o(1). Finally,
Lemma 3.4 implies that the code \~C is also globally list recoverable in time n1+o(1).

Once more we note that all codes in the process can be taken to be \BbbF 2-linear,
and all transformations preserve \BbbF 2-linearity, so the final code can be guaranteed to
be \BbbF 2-linear as well.

Appendix A. List recovery of algebraic geometry codes. In this appendix,
we outline how the approach of [GX13] needs to be changed in order to obtain linear
list recoverable codes. The main theorem is as follows.

Theorem A.1. There exists an absolute constant b0 so that the following holds.
For any \varepsilon > 0, \ell \geq 1, q \geq \ell b0/\varepsilon that is an even power of a prime,6 and integer
n \geq qb0\ell /\varepsilon , there exists a linear code C : \BbbF k

q \rightarrow \BbbF n
q of rate 1 - \varepsilon and relative distance

\Omega (\varepsilon 2) that is (\Omega (\varepsilon 2), \ell , L)-list recoverable for L = qq
(\ell /\varepsilon)\cdot exp(log\ast n)

. Moreover, C can be
encoded in time poly(n, log q) and list recovered in time poly(n,L).

We remark that when \varepsilon , \ell , q are constant the output list size L is exp exp exp(log\ast n)
which is very slowly growing (although admittedly with extremely large constants).

We follow the approach of [GX13, GK16b]. In [GX13], Guruswami and Xing show
how to construct high-rate list decodable codes over a constant alphabet, modulo a
construction of explicit subspace designs. In [GK16b], Guruswami and Kopparty gave
such constructions and used them to construct high-rate list decodable codes over
constant-sized alphabets with small list sizes. We would like to use these codes here.
However, there are two things which must be modified. First, the guarantees of [GX13,
GK16b] are for list decodability, and we are after list recoverability. Fortunately, this
follows from a standard modification of the techniques that they use. Second, the
codes that they obtain are not linear, but rather are linear over a subfield of the
alphabet. To correct this, we concatenate these codes with list recoverable linear
codes of a constant length. A random linear code has this property, and since we only
require them to be of constant length, we may find such a code, and run list recovery
algorithms on it, in constant time.

We begin by addressing the leap from list decodability to list recovery, and then
discuss the code concatenation step. We refer the reader to [GX13, GK16b] for the
details (and, indeed, for several definitions); here we just outline the parts which are
important for list recovery. The basic outline of the construction and the argument
is as follows:
Step 1. Show that AG codes are list decodable, with large but very structured lists.

We will extend this to list recoverability with structured lists.
Step 2. Show that one can efficiently find a subcode of the AG code which will avoid

this sort of structure: this reduces the list size. This part of the argument
goes through unchanged, and will yield a list recoverable code over \BbbF qm with
small list size.

Once we have \BbbF q-linear codes over \BbbF m
q that are list recoverable, we discuss the third

step:
Step 3. The code produced is \BbbF q-linear (rather than \BbbF qm-linear). This was fine

for [GX13, GK16b], but we require a code which is linear over the alpha-
bet it is defined over. To this end we concatenate the codes above with a
random linear code of length m over \BbbF q. This will result in an \BbbF q-linear code
over \BbbF q that is list recoverable with small list sizes.

6That is, q is of the form p2t for a prime p and for an integer t.

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIGH-RATE TENSOR CODES FOCS17-183

We briefly go through the details. First, we give a short refresher/introduction
to the notation. Then we handle the three steps above, in order. We note that
throughout this appendix we will refer to theorem and lemma numbers in the extended
version [GX12b] rather than the conference version [GX13].

Step 0. Algebraic geometry codes and basic notation. Since we do not need to
open up the AG code machinery very much in order to extend the results of [GX13]
to list recovery, we do not go into great detail here, and we refer the reader to [GX13]
and the references therein for the technical details, and to [Sti09] for a comprehensive
treatment of AG codes. However, for the ease of exposition here (for the reader
unfamiliar with AG codes), we will introduce some notation and explain the intuitive
definitions of these notions. In particular, we will use the running example of a
rational function field. We stress that this is not the final function field used; thus
the intuition should be taken as intuition only.

Let F/\BbbF q be a function field of genus g. One example, which may be helpful
to keep in mind, of a genus 0 function field is the rational function field \BbbF q(X)/\BbbF q,
which may be thought of as rational functions f(X)/g(X), where f, g \in \BbbF q[X] are
irreducible polynomials. For the code construction, we will use a function field of
larger genus (given by the Garcia--Stichtenoth tower, as in [GX13]), but we will use
this example to intuitively define the algebraic objects that we need.

Let P\infty , P1, . . . , Pn be n + 1 distinct \BbbF q-rational places (that is, of degree 1).
Formally, these are ideals, but they are in one-to-one correspondence with \BbbF q \cup \{ \infty \} ,
and let us think of them that way. For each such place P , there is a map (the residue
class map with respect to P) which maps F/\BbbF q to \BbbF q; we may think of this as function
evaluation, and in our example of \BbbF q(X)/\BbbF q, if P is a place associated with a point
\alpha \in \BbbF q, then indeed this maps f(X)/g(X) to f(\alpha)/g(\alpha).

Let \scrL (lP\infty) be the Riemann--Roch space over \BbbF q. Formally, this is

\scrL (lP\infty) = \{ h \in F \setminus \{ 0\} : \nu P\infty (h) \geq - l\} \cup \{ 0\} ,

where \nu P\infty is the discrete valuation of P\infty . Informally (in our running example), this
should be thought of as the set of rational functions f(X)/g(X) so that deg(g(X)) -
deg(f(X)) \geq - l. In particular, the number of poles of f/g is at least the number of
roots, minus l. It would be tempting, in this example, to think of these as degree \leq l
polynomials; all but at most l of the powers of X in the numerator are ``canceled"" in
the denominator. Of course, there are many problems with this intuition, but it turns
out that this indeed works out in some sense. In particular, it can be shown that the
dimension of this space is at least l - g+1. When g = 0 (as in our running example),
it is exactly l + 1, the same as the dimension of the space of degree \leq l polynomials.

More generally (whatever the genus), for any rational place P , we may write a
function h \in \scrL m(lP\infty) as

(A.1) h =

\infty \sum
j=0

hjT
j ,

where T is a local parameter of P , and it turns out that h is uniquely determined by
the first l + 1 coefficients h0, h1, . . . , hl+1.

Now let Fm be the constant extension \BbbF qm \cdot F , and let \scrL m(lP\infty) be the corre-
sponding Riemann--Roch space. This has the same dimension over \BbbF qm as \scrL (lP\infty)
does over \BbbF q. Now we consider the algebraic geometry code defined by

C(m; l) := \{ (h(P1), . . . , h(Pn)) : h \in \scrL m(lP\infty)\} .

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FOCS17-184 B. HEMENWAY, N. RON-ZEWI, AND M. WOOTTERS

Following the intuition that h(Pi) denotes function evaluation, this definition looks
syntactically the same as a standard polynomial evaluation code, and should be
thought of that way. This is an \BbbF qm -linear code over \BbbF qm , with block length n and
dimension at least l - g + 1.

Step 1. List decoding with structured lists to list recovery with structured lists.
With the preliminaries (and some basic, if possibly misleading, intuition for the reader
unfamiliar with AG codes) out of the way, we press on with the argument.

Fix a parameter k, and consider a general AG code C(m; k + 2g - 1), with the
notation above. (We will fix a particular AG (sub)code later, by choosing a function
field and by choosing a subcode.) Let S1, . . . , Sn \subset \BbbF qm be lists of size at most \ell
corresponding to each coordinate. We first show that C(m; k+2g - 1) is (1 - \beta , \ell , L)-
list recoverable for some \beta to be chosen below, where the list size is very large, but the
list is structured. In [GX13], the approach (similar to that in [GW13]) is as follows.

1. We will first find a low degree interpolating linear polynomial (whose coeffi-
cients live in Riemann--Roch spaces)

Q(Y1, . . . , Ys) = A0 +A1Y + \cdot \cdot \cdot +AsYs

so that Ai \in \scrL m(DP\infty) and A0 \in \scrL m((D+k+2g - 1)P\infty), for some parameter
k to be chosen later, for

D =

\biggl\lfloor
\ell n - k + (s - 1)g + 1

s+ 1

\biggr\rfloor
,

and subject to \ell n linear constraints over \BbbF qm . Before we list the constraints,
notice that the number of degrees of freedom in Q is

s(D - g + 1) +D + k + g,

because the \BbbF qm-dimension of \scrL m((D+ k+2g - 1)P\infty) is at least D+ k+ g,
and the \BbbF qm-dimension of \scrL m((DP\infty)) is at least D - g+1. Thus, the choice
of D shows that the dimension of this space of interpolating polynomials is
greater than \ell n. Thus, we will be able to find such a Q that satisfies the \ell n
following \ell n constraints. For each i \in [n] and for all y \in Si, we have the
constraint that

A0(Pi) +A1(Pi)y +A2(Pi)y
q + \cdot \cdot \cdot +As(Pi)y

qs - 1

= 0.

2. With this polynomial Q in hand, we observe that if h \in \scrL m((k+ 2g - 1)P\infty)
whose encoding has h(Pi) \in Si for at least \beta n positions i, for \beta n > D + k +

2g - 1, then Q(h, h\sigma , . . . , h\sigma s - 1

) = 0, where h\sigma denotes the extension of the
Frobenius automorphism \alpha \mapsto \rightarrow \alpha q on \BbbF qm to \scrL m(lP\infty). This proof (Lemma
4.7 in [GX12b]) remains unchanged when we pass to list recovery from list
decoding. Briefly, this agreement means that

Q(h, . . . , h\sigma s - 1

)(Pi) = A0(Pi) +A1(Pi)h(Pi) + \cdot \cdot \cdot +As(Pi)h(Pi)
qs - 1

= 0

for at least \beta n values of i, and so the function Q(h, h\sigma , . . . , h\sigma s - 1

) (which lies
in \scrL m((D + k + 2g - 1)P\infty); as per the intuition above, we are thinking of
these as roughly analogous to degree-(D + k + 2g - 1) polynomials) has at
least \beta n \geq D + k + 2g - 1 roots, and hence is the zero function.

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIGH-RATE TENSOR CODES FOCS17-185

3. Thus, any element h \in \scrL m((k+2g - 1)P\infty) that agrees with at least \beta n lists

also satisfies Q(h, . . . , h\sigma s - 1

) = 0. It remains to analyze the space of these
solutions, and to show that they are nicely structured. This requires one
more step, which goes through without change. More precisely, [GX13] takes
a subcode of C(m; k+2g - 1); this subcode will still have a large list size, but
the list will be structured. This resulting code, denoted C(m; k+2g - 1| \BbbF k

qm),
has dimension k. (Recall that C(m; k+2g - 1) has dimension k+g, so we have
reduced the dimension by g.) We refer the reader to [GX13] for the details,
as they do not matter for us. At the end of the day, the analysis of [GX13]
(Lemma 4.8 in the full version [GX12b]) applies unchanged to show that the
set of messages h in this new code that are solutions to this equation lie in
a structured space: more precisely, the coefficients (h0, h1, . . . , hk+2g - 1) as

in (A.1) belong to an (s - 1,m)-ultra periodic subspace of \BbbF m(k+2g - 1)
q . For

us, the precise definition of this does not matter, as we may use the rest of
[GX13] as a black box.

4. Before we move on, we summarize parameters. We have so far established that
there is a code C(m; k+2g - 1| \BbbF k

qm) that is list recoverable up to disagreement
1 - \beta and with inner list sizes \ell , resulting in a structured list. The requirement
on \beta is

\beta n > D + k + 2g - 1

=

\biggl\lfloor
\ell n - k + (s - 1)g + 1

s+ 1

\biggr\rfloor
+ k + 2g - 1,

and so it suffices to take

\beta n >
\ell n - k + (s - 1)g + 1

s+ 1
+ k + 2g - 1

=
1

s+ 1
(\ell n+ s(k - 1) + g(3s+ 1)) .

Again, the dimension of the code is k and the length is n. It is \BbbF qm-linear
over \BbbF qm .

Step 2. Taking a subcode. For this step we may follow the argument of [GX13]
without change. Briefly, to instantiate the AG code we use a function field from a
Garcia--Stichtenoth tower. The parameters of this are as follows: we choose a prime
power r, and let q = r2. Then we choose an integer e > 0. There is a function field
F = Ke so that Ke has at least n = re - 1(r2 - r) + 1 rational places, and genus
ge bounded by re. This is the function field we will use. We remark that [GX13]
has to do a bit of work here to show that one can actually find a description of the
structured list efficiently, but it can be done. We plug in parameters to obtain the
following lemma, which is analogous to Theorem 4.14 in [GX12b].

Lemma A.2. Let q be the even power of a prime, and choose \ell , \varepsilon > 0. There
is a parameter s = 1\ell /\varepsilon so that the following holds. Let m \geq s and let R \in (0, 1).
Suppose that \beta \geq R + \varepsilon + 3/

\surd
q. Then, for infinitely many n (all integers of the

form n = qe/2(
\surd
q - 1)), there is a deterministic polynomial time construction of an

\BbbF qm-linear code C of block length n, dimension k = Rn, so that the following holds:
for any sets S1, . . . , Sn \subseteq \BbbF qm with | Si| \leq \ell for all i, the set of messages leading to
codewords c \in C so that ci \in Si for at least \beta n coordinates i is contained in one
of qO(mn) possible (s - 1,m)-ultra periodic \BbbF q-affine subspaces of \BbbF mk

q . Further, this
collection of subspaces can be described in time poly(n,m).

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FOCS17-186 B. HEMENWAY, N. RON-ZEWI, AND M. WOOTTERS

Proof. Our condition on \beta is that it is at least

\ell n+ s(k - 1) + ge(3s+ 1)

n(s+ 1)
\leq \ell n+ s(k - 1) + n(3s+ 1)/(r - 1)

n(s+ 1)
using ge \leq n/(r - 1)

=
\ell + s(R - 1/n) + (3s+ 1)/(r - 1)

s+ 1
.

Choosing s = O(\ell /\varepsilon) and using the fact that r =
\surd
q gives the conclusion.

With this lemma in hand, we may proceed exactly as the proof in [GX13]; indeed,
it is exactly the same code, and we reach exactly the same conclusion on the structure
of the candidate messages. The basic idea is to choose a subset of messages carefully
via a cascaded subspace design. This ensures that the number of legitimate messages
remaining in the list is small, and further that they can be found efficiently.

We briefly go through parameters, again referring the reader to the discussion in
[GX13, GK16b] for details. We will fix

(A.2) s = O(\ell /\varepsilon) and m = O

\biggl(
\ell

\varepsilon 2
\cdot logq(\ell /\varepsilon)

\biggr)
.

We now trace these choices through the analysis of [GX13, GX14].

Remark A.3. The reader familiar with these sorts of arguments might expect us
to setm = \ell /\varepsilon 2, and indeed this would be sufficient if we could allow q to be sufficiently
large. However, in this case, setting m this way would result in a requirement that
q \geq \ell /\varepsilon 2. We would like q to be independent of \ell for the next concatenation step to
work (of course, the alphabet size qm must be larger than \ell), and this requires us to
take m slightly larger. This loss comes out in the final list size.

Without defining a cascaded subspace design, we will just mention that it is a
sequence of T subspace designs; a cascaded subspace design comes with vectors of
parameters (r0, . . . , rT), (m0, . . . ,mT), and (d0, . . . , dT1

). For i = 1, . . . , T , the ith
subspace design in this sequence is a (ri - 1, ri)-strong subspace design in \BbbF mi - 1

q , of
cardinality mi/mi - 1, and dimension di - 1. For our argument all that matters is that
we may find explicit cascaded subspace designs:

Theorem A.4 (follows from Theorem 6 in [GK16b]). For all \zeta \in (0, 1) and for
all r,m with r \leq \zeta m/4, and for all prime powers q so that 2r/\zeta < q\zeta m/(2r), there exists
an explicit collection of M \geq q\Omega (\zeta m/r)/(2r) subspaces in \BbbF m

q , each of codimension at
most \zeta m, which form a (r, r2/\zeta)-strong subspace design.

Remark A.5. In [GK16b], the theorem is stated for (r, r/\zeta)-weak subspace de-
signs; however, as noted in that work, a (A,B)-weak subspace design is also a (A,AB)-
strong subspace design, which yields our version of the theorem.

Below, we will use Theorem A.4 in order to instantiate a cascaded subspace design.
The reason we want to do this is because of Lemma 5.6 in [GX12b].

Lemma A.6 (Lemma 5.6 in [GX12b]). Let\scrM be a (r0, r1, . . . , rT)-cascaded sub-
space design with length vector (m0,m1, . . . ,mT). Let A be an (r,m)-ultra periodic
affine subspace of \BbbF mT

q . Then the dimension of the affine space A\cap U(\scrM) is at most
rT , where U(\scrM) denotes the canonical subspace of\scrM .

We have not defined a canonical subspace, and we refer the reader to [GX12b] for
details; the important thing for us is that we wish to construct a cascaded subspace
design\scrM so that rT is small, mT is equal to mk, and so that r0 = s - 1 and m0 = m.

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIGH-RATE TENSOR CODES FOCS17-187

This will allow us to choose a subcode of the code from Lemma A.2 by restricting
the space of messages to the canonical subspace U(\scrM), and this will be the \BbbF q-linear
code (over \BbbF m

q) that we are after.
We may use Theorem A.4 to instantiate such a cascaded subspace design as

follows (the derivation below follows the proof of Lemma 5.7 in [GX12b]). We choose
\zeta i = \varepsilon /2i, r0 = s - 1, and ri = r2i - 1/\zeta i. We choose m0 = m and we will define
mi = mi - 1 \cdot q

\surd
mi - 1 . We will continue up to i = T , choosing T so that mT = mk. At

this point, we must deal with the detail that there may be no such T ; to deal with this
we do exactly as in the proof of Lemma 5.7 in [GX12b] and modify our last two choices
of mT - 1,mT so that mT \leq mk but is close (within an additive log2q(km)); for our final
subspace, we will pad the mT -dimensional vectors with 0's in order to form a subspace
in \BbbF mk

q with the same dimension. Choosing mT \approx mk puts T = O(log\ast (mk)), and an
argument by induction shows that

rT \leq
s2

T

24
T

\varepsilon 2T - 1
,

which with this choice of T implies that

rT =

\biggl(
\ell

\varepsilon

\biggr) 2O(log\ast (mk))

.

With these choices, we instantiate T subspace designs via Theorem A.4, with m \leftarrow
mi, r \leftarrow ri, and \zeta \leftarrow \zeta i. We check that the requirements of Theorem A.4 are satisfied,
beginning with the requirement that ri \leq \zeta imi/4. Since mi\zeta i grows much faster than
ri as i increases, it suffices to check this for i = 0, when we require r0 \leq \zeta 0m0, or
s - 1 \leq m\varepsilon /8. Our choices of m and s in (A.2) satisfy this.

The next requirement is that 2ri/\zeta i \leq q\zeta imi/(2ri) for all i. Again, the right-hand
side grows much faster than the left, and so we establish this for i = 0, requiring that

4(s - 1)

\varepsilon
\leq q\varepsilon m/4(s - 1).

With our choices of m and s, this requirement is that

\ell

\varepsilon 2
\leq qO(logq(\ell /\varepsilon)),

which is true.
Thus, Theorem A.4 provides us with a cascaded subspace design with the given

parameters. As mentioned above, we may then use Lemma A.6 to choose an appro-
priate subcode of our AG code from Lemma A.2. We have chosen the parameters
above so that (r0,m0) = (s - 1,m), precisely the guarantee of Lemma A.2. Thus, the
final bound on the dimension of the intersection with any affine ultra-periodic sub-

space (that is, with any space of potential messages) is rT \leq (\ell /\varepsilon)2
O(log\ast (mk))

, which
gives a final bound on the dimension of the output list. Finally, we observe (as in
Observation 5.5 of [GX12b]) that the dimension of the resulting subcode is at least
(1 -

\sum
i \zeta i)mT = (1 - \varepsilon)mk. Thus, the final code has dimension at least (1 - \varepsilon)mk

over \BbbF km
q , and hence the final rate is at least (1 - \varepsilon)R. Observing that q must be at

least \varepsilon - 2 for the 1/
\surd
q term in Lemma A.2 to be absorbed into the additive \varepsilon factor,

we arrive at the following theorem.

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FOCS17-188 B. HEMENWAY, N. RON-ZEWI, AND M. WOOTTERS

Theorem A.7. Let q be an even power of a prime, and choose \ell , \varepsilon > 0, so that
q \geq \varepsilon - 2. Choose \rho \in (0, 1). There is an mmin = O(\ell logq(\ell /\varepsilon)/\varepsilon

2) so that the

following holds for all m \geq mmin. For infinitely many n (all n of the form qe/2(
\surd
q - 1)

for any integer e), there is a deterministic polynomial time construction of an \BbbF q-linear
code C : \BbbF \rho n

qm \rightarrow \BbbF n
qm of rate \rho and relative distance 1 - \rho - O(\varepsilon) that is (1 - \rho - \varepsilon , \ell , L)-

list recoverable in time poly(n,L), returning a list that is contained in a subspace over
\BbbF q of dimension at most \biggl(

\ell

\varepsilon

\biggr) 2O(log\ast (mk))

.

We note that the distance of the code comes from the fact that it is a subcode of
C(m; k+3ge - 1), which has distance at least n - (k+2ge - 1) = n - 2ge - k+1. In the
above parameter regime, the genus ge satisfies ge \leq n/(r - 1) = n/(

\surd
q - 1) = O(\varepsilon n).

Thus, the relative distance of the final code is at least (n - 2ge - k+1)/n \geq 1 - O(\varepsilon) - \rho .
Step 3. Concatenating to obtain \BbbF q-linear codes over \BbbF q. Theorem A.7 gives codes

over \BbbF qm which are \BbbF q-linear. For our purposes, to prove Theorem A.1, we require
codes over \BbbF q which are \BbbF q-linear. Thus, we will concatenate these codes with random
\BbbF q-linear codes from Corollary 2.2, and apply Lemma B.1 about the concatenation of
list recoverable codes which we state and prove in Appendix B.

In more detail, we choose parameters as follows. Let \varepsilon > 0 and let \varepsilon \prime = \varepsilon /2, and
choose any integer \ell and any block length N . Fix a constant c and parameters m and
e which will be determined below. Choose an even prime power q so that

q \geq max
\Bigl\{
\ell c/\varepsilon , \varepsilon - c

\Bigr\}
.

Let Cin be a random q-ary linear code of rate \rho in = 1 - \varepsilon \prime of length m/\rho in. By
Corollary 2.2, there exists an \BbbF q linear code Cin with rate \rho in = 1 - \varepsilon \prime and block
length m/\rho in which is (\alpha in, \ell in, Lin)-list recoverable, for \alpha in = \varepsilon \prime /2, \ell in = \ell , and
Lin = q2c\ell /\varepsilon

\prime
. We note that we can choose c large enough to ensure that the hypothesis

of Corollary 2.2 hold.
Let Cout be the codes from Theorem A.7, instantiated with rate \rho in = 1 - \varepsilon \prime ,

\varepsilon \leftarrow \varepsilon \prime /2 and \ell \leftarrow Lin. With these parameters, we will get a code over \BbbF qm of length
n = qe/2(

\surd
q - 1) which is (\alpha out, Lin, Lout)-list recoverable, where

Lout = expq

\Bigl(
(Lin/\varepsilon

\prime)2
O(log\ast (mk))

\Bigr)
= expq

\left(\Biggl(q2c\ell /\varepsilon
\prime

\varepsilon \prime

\Biggr) 2O(log\ast (mk))\right)
and where

\alpha out = 1 - \rho in - \varepsilon \prime = \varepsilon \prime /2.

Let mmin be as in Theorem A.7, so that

mmin = O(Lin logq(Lin/\varepsilon
\prime)/(\varepsilon \prime)2) = O

\Biggl(
qc\ell /\varepsilon

\prime
c\ell

(\varepsilon \prime)3

\Biggr)
.

We will choose m so that

(A.3) mmin \leq m \leq q \cdot mmin.

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIGH-RATE TENSOR CODES FOCS17-189

Notice that, given the definition of mmin = O(qc\ell /\varepsilon
\prime
c\ell /(\varepsilon \prime)3), choosing m slightly

larger than mmin---as large as q \cdot mmin---amounts to replacing the constant c with c+1.
Thus, the choices of m and c (subject to (A.3)) will not affect the list recoverability
of Cout, but they will affect the block length of the concatenated code.

Formally, Lemma B.1 implies that the concatenated code has rate \rho in \cdot \rho out =
(1 - \varepsilon \prime)2 \geq 1 - \varepsilon , and is (\alpha in\alpha out, \ell , Lout)-list recoverable. Here, we have

\alpha in\alpha out = (\varepsilon \prime)2/4 = \Omega (\varepsilon 2),

which is what is claimed in Theorem A.1. The output list size claimed in Theorem A.1
follows from the choice ofm and our guarantee on Lout. We note that the concatenated
code will have message length K = mk, and so we write log\ast (mk) = log\ast (K).

Finally, we choose m and e. At this point, the choice of these parameters (subject
to (A.3)) will not affect that list recoverability of the concatenated code, but they do
control the block length of the code and the running time of the decoding algorithm.
The block length is

m

\rho in
\cdot qe/2(\surd q - 1).

In order to prove that we can come up with such codes for all sufficiently large block
lengths N , as required in the statement of Theorem A.1, we must show that for all
sufficiently large N , we can choose m satisfying (A.3) and e so that

N =
m

\rho in
\cdot qe/2(\surd q - 1).

That is, we want to find an integer e so that

N \cdot (1 - \varepsilon /2)

qe/2(
\surd
q - 1)

\in [mmin, q \cdot mmin].

However, we have chosen this window for m to be large enough so that such an e
exists as long as N is sufficiently large (in terms of q, \ell , \varepsilon). More precisely, for some
large enough constant C, we require

N \geq qC\ell /\varepsilon ,

which is our choice of N0 in Theorem A.1.
Now we verify the running time of the list recovery algorithm. The outer code

Cout can be list recovered in time poly(n,Lout) by Theorem A.7. The base code can be
list recovered by brute force in time qO(m) = expq

\bigl(
O
\bigl(
q2(c+1)\ell /\varepsilon \ell /\varepsilon 3

\bigr) \bigr)
= poly(Lout).

Lemma B.1 implies that the final running time is poly(N,L), where L = Lout is the
final list size and N is the block length of the concatenated code.

Appendix B. Concatenation of list recoverable codes. In this appendix, we
prove the following lemma, which says that the concatenation of two list recoverable
codes is again list recoverable.

Lemma B.1. Let Cout : \BbbF \rho out\cdot n
qs \rightarrow \BbbF n

qs be an (\alpha out, \ell out, Lout)-list recoverable

code, with a list recovery algorithm running in time Tout. Let Cin : \BbbF s
q \rightarrow \BbbF s/\rho in

q

be (\alpha in, \ell in, Lin)-list recoverable for Lin = \ell out, with a list recovery algorithm running

in time Tin. Let C : \BbbF s\cdot \rho out\cdot n
q \rightarrow \BbbF sn/\rho in

q be the code obtained from concatenating Cout

with Cin: that is, each symbol of c \in Cout is then encoded using Cin. Then C is
(\alpha out \cdot \alpha in, \ell in, Lout)-list recoverable in time Tout +O(n \cdot Tin) and has rate \rho in \cdot \rho out.

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FOCS17-190 B. HEMENWAY, N. RON-ZEWI, AND M. WOOTTERS

Proof. For i \in [n] and j \in [s/\rho in], let Si,j \subseteq \BbbF q be a list of at most \ell in possible
symbols for the coordinate C(x)i,j := C(x)(i - 1)\cdot (s/\rho in)+j , which is the jth coordinate
of Cin(Cout(x)i).

Suppose that for at most a \alpha out \cdot \alpha in fraction of coordinates (i, j), C(x)i,j /\in Si,j .
Then by Markov's inequality, for at most an \alpha out fraction of i \in [n], the blocks
Cin(Cout(x)i) have more than \alpha in fraction of the j \in [s/\rho in] so that C(x)i,j /\in Si,j .
Thus, we may list recover each block Cin(Cout(x)i) to obtain a list Si \subseteq \BbbF qs of at
most Lin = \ell out possible symbols for Cout(x)i, and the above reasoning shows that
Cout(x)i /\in Si for at most \alpha outn values of i. Now we may run Cout's list recovery
algorithm to obtain a final list of size Lout.

Finally, the claim about the rate follows from the definition of concatenation.

Appendix C. Proof of Lemma 4.1. In this appendix we prove Lemma 4.1.
The main idea is to start with the code C, and iteratively tensor with a new copy of
C for t - 1 times.

In more detail, let C be the globally list recoverable code guaranteed by the
lemma statement. We observe that C is also

\bigl(
\varepsilon \cdot (\delta /d0)t - 1

\bigr)
-approximately (\alpha , \ell , L) list

recoverable with query complexity n in time T0(n) = poly(n), and with preprocessing
time P0(n) = O(max \{ log(n), L\}), where d0 is the constant from Lemma 4.2. Above,
we have used the ``trivial"" approximately-local list recovery algorithm that queries all
the coordinates of C and globally list recovers C.

Choose the constant b0 for the statement of Lemma 4.1 to be the same as the
constant b0 guaranteed by Lemma 4.2. With this choice of b0, let

s0 = (\delta \alpha \varepsilon) - b0

so that the requirement in the statement of Lemma 4.1 is that s \geq s0.
A straightforward argument by induction shows that after we have applied Lemma

4.2 i times, we then obtain a code C\otimes (i+1) which is
\bigl(
\varepsilon \cdot (\delta /d0)t - 1 - i

\bigr)
-approximately

(\alpha \cdot s - ti
0 , \ell , Lsti0 \cdot logi(L))-locally list recoverable, with query complexity n \cdot sti0 logi(L),

and in time T0(n) \cdot sti0 logi(L), and with preprocessing time P0(n) \cdot sti0 logi(L) +

Lsti0 logi(L). (Recall that T0(n) is the running time of the algorithm for C, and
P0(n) = O(max \{ log(n), L\}) is the preprocessing time). We first finish the proof,
and then for completeness include the details of the inductive argument below.

Thus, we conclude that C\otimes t is \varepsilon -approximately (\alpha \cdot s - t2

0 , \ell , Lst
2

0 \cdot logt(L))-locally list

recoverable with query complexity n \cdot s0t
2

logt(L) and in time poly(n) \cdot s0t
2

logt(L),

with preprocessing time O
\bigl(
log(n) \cdot sti0 logi(L) + Lsti0 logi(L)

\bigr)
. In particular, for any

s \geq s0, the conclusion of Lemma 4.1 holds.
Finally, we work out the computations for the induction. As above, suppose by

induction that we have applied Lemma 4.2 i times in order to obtain a code C\otimes (i+1)

which is (\varepsilon \cdot (\delta /d0)t - 1 - i)-approximately (\alpha \cdot s - ti
0 , \ell , Lsti0 \cdot logi(L))-locally list recoverable,

with query complexity n \cdot sti0 logi(L), in time T0(n) \cdot sti0 logi(L), and with preprocessing

time P0(n) \cdot sti0 logi(L) + Lsti0 logi(L). Then we apply Lemma 4.2 with the following
parameters. The approximately locally list recoverable code C in Lemma 4.2 is the
code C\otimes (i+1) constructed so far. Thus, in the statement of Lemma 4.2 we take
\alpha \leftarrow \alpha \cdot s - ti

0 and L\leftarrow Lsti0 \cdot logi(L). The globally list recoverable code C \prime in Lemma 4.2
is a copy of the globally list recoverable code C guaranteed by the lemma statement.
Thus, in the statement of Lemma 4.2 we take \alpha \prime \leftarrow \alpha , \delta \prime \leftarrow \delta , and L\prime \leftarrow L. In the

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIGH-RATE TENSOR CODES FOCS17-191

statement of Lemma 4.2 we will choose s\leftarrow s\prime so that

s\prime = s0

\biggl(
\delta

d0

\biggr) - b0(t - 1 - i)

.

Notice that s\prime does indeed satisfy the requirement of Lemma 4.2 as applied to C\otimes (i+1),
by our assumption about C\otimes (i+1) and our choices of \alpha \prime , \delta \prime above. Moreover, provided
that \varepsilon is sufficiently small compared to d0, we have

(C.1) s\prime = s0

\Biggl(\biggl(
d0
\delta

\biggr) b0
\Biggr) t - 1 - i

\leq 1

2
\cdot s0

\Biggl(\biggl(
1

\varepsilon \delta \alpha

\biggr) b0
\Biggr) t - 1 - i

\leq 1

2
st0.

Now we apply Lemma 4.2 to get a code C\otimes (i+2) which is \varepsilon \prime \prime -approximately (\alpha \prime \prime , \ell , L\prime \prime)-
locally list recoverable with the following parameters.

\bullet The approximability parameter \varepsilon \prime \prime is given by

\varepsilon \prime \prime = \varepsilon

\biggl(
\delta

d0

\biggr) t - 1 - i\biggl(
d0
\delta

\biggr)
= \varepsilon

\biggl(
\delta

d0

\biggr) t - 1 - (i+1)

.

\bullet The parameter \alpha \prime \prime is given by

\alpha \prime \prime = \alpha \cdot s - ti
0 /(s\prime)

\geq \alpha \cdot s - ti
0 s - t

0

= \alpha \cdot s - t(i+1)
0 ,

using (C.1).
\bullet The output list size L\prime \prime satisfies

L\prime \prime =
\Bigl(
Lsti0 \cdot logi(L)

\Bigr) s\prime log(L)

\leq Lsti0 \cdot logi(L)\cdot st0 log(L)

= Ls
t(i+1)
0 \cdot logi+1(L),

again using (C.1).
\bullet The query complexity is at most

n \cdot sti0 logi(L) \cdot s\prime log(L) \leq n \cdot sti0 logi(L) \cdot st0 \cdot log(L)

\leq n \cdot st(i+1)
0 logi+1(L)

using (C.1) again. The running time obeys the same recurrence relation as
the query complexity, and so the recovery algorithm for C(i+1) also runs in

time T0(n) \cdot st(i+1)
0 logi(L).

\bullet Finally, the preprocessing time is at most\Bigl(
P0(n) \cdot sti0 logi(L) + Lsti logi(L)

\Bigr)
s\prime log(L) + Lsti0 logi(L)s\prime log(L)

\leq
\Bigl(
P0(n) \cdot sti0 logi(L) + Lsti logi(L)

\Bigr)
st0 log(L) + Lsti0 logi(L)

st0
2 log(L)

\leq P0(n) \cdot st(i+1)
0 logi+1(L) + Lsti logi(L)st0 log(L) + L

1
2 s

t(i+1)
0 logi+1(L)

\leq P0(n) \cdot st(i+1)
0 logi+1(L) + Ls

t(i+1)
0 logi+1(L).

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FOCS17-192 B. HEMENWAY, N. RON-ZEWI, AND M. WOOTTERS

Above, we used (C.1), along with the assumption that L > 1 and that s0
is sufficiently large (which follows from our assumption that \varepsilon is sufficiently
small).

Thus, we conclude that C\otimes (i+2) is (\varepsilon \cdot (\delta /d0)t - 1 - (i+1))-approximately (\alpha \cdot s - t(i+1)
0 , \ell ,

Ls
t(i+1)
0 \cdot logi+1(L))-locally list recoverable, with query complexity at most n\cdot st(i+1)

0 logi(L)

in time T0(n)\cdot st(i+1)
0 logi(L), and with preprocessing time at most P0(n)\cdot st(i+1)

0 logi+1

(L) + Ls
t(i+1)
0 logi+1(L), which establishes the inductive hypothesis for i+ 1.

By induction, we conclude that C\otimes t is \varepsilon -approximately (\alpha \cdot s - t2

0 , \ell , Lst
2

0 \cdot logt(L))-

locally list-recoverable with query complexity n\cdot st20 logt(L) and in time T0(n)\cdot st
2

0 logt(L).
In particular, for any s \geq s0, the conclusion of Lemma 4.1 holds.

Appendix D. Useful concentration inequalities. We make use of the fol-
lowing two concentration inequalities. The first is the standard Hoeffding bound for
independent 0/1-valued random variables.

Theorem D.1 (Hoeffding's inequality). Let X1, . . . , Xm \in [0, 1] be independent
random variables with mean \mu . Then

\BbbP

\Biggl\{ \bigm| \bigm| \bigm| \bigm| \bigm| 1m
m\sum
i=1

Xi - \mu

\bigm| \bigm| \bigm| \bigm| \bigm| \geq \gamma

\Biggr\}
\leq 2 exp(- 2\gamma 2m).

The second is a version of this inequality for random variables chosen without
replacement. We use a version found in [GGR11].

Theorem D.2 (see [GGR11, Lemma 5.1]). Let z1, . . . , zn \in [0, 1], and suppose
that S \subseteq [n] is a uniformly random set of size m. Then

\BbbP

\Biggl\{ \bigm| \bigm| \bigm| \bigm| \bigm| 1m\sum
i\in S

zi -
1

n

n\sum
i=1

zi

\bigm| \bigm| \bigm| \bigm| \bigm| \geq \gamma

\Biggr\}
\leq 2 exp(- 2\gamma 2m).

Acknowledgments. The second author thanks Swastik Kopparty for raising the
question of obtaining capacity-achieving locally list decodable codes, and Sivakanth
Gopi, Swastik Kopparty, Rafael Oliveira and Shubhangi Saraf for many discussions
on this topic. The current collaboration began during the Algorithmic Coding Theory
Workshop at ICERM, we thank ICERM for their hospitality. Finally, we thank the
anonymous reviewers whose suggestions greatly improved this paper.

REFERENCES

[AEL95] N. Alon, J. Edmonds, and M. Luby, Linear time erasure codes with nearly optimal
recovery, in Proceedings of the 36th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), IEEE Computer Society, Los Alamitos, CA, 1995, pp.
512--519.

[AL96] N. Alon and M. Luby, A linear time erasure-resilient code with nearly optimal recovery,
IEEE Trans. Inform. Theory, 42 (1996), pp. 1732--1736.

[BET10] A. Ben-Aroya, K. Efremenko, and A. Ta-Shma, A note on amplifying the error-
tolerance of locally decodable codes, Electronic Colloquium on Computational Com-
plexity (ECCC), 17 (2010), 134.

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson, BPP has subexponential time
simulations unless EXPTIME has publishable proofs, Computat. Complexity, 3
(1993), pp. 307--318.

[BS06] E. Ben-Sasson and M. Sudan, Robust locally testable codes and products of codes,
Random Structures Algorithms, 28 (2006), pp. 387--402.

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIGH-RATE TENSOR CODES FOCS17-193

[BV09] E. Ben-Sasson and M. Viderman, Tensor products of weakly smooth codes are robust,
Theory Comput., 5 (2009), pp. 239--255.

[BV15] E. Ben-Sasson and M. Viderman, Composition of semi-LTCs by two-wise tensor prod-
ucts, Comput. Complexity, 24 (2015), pp. 601--643.

[Cox18] N. Coxon, Fast systematic encoding of multiplicity codes, J. Symbolic Comput. 94
(2019), pp. 234--254.

[CR05] D. Coppersmith and A. Rudra, On the robust testability of tensor products of codes,
in Proceedings of the Electronic Colloquium on Computational Complexity, 2005,
report ECCC TR05-104.

[DL12] Z. Dvir and S. Lovett, Subspace evasive sets, in Proceedings of the 44th Annual ACM
Symposium on Theory of Computing (STOC), ACM, New York, 2012, pp. 351--358.

[DSW06] I. Dinur, M. Sudan, and A. Wigderson, Robust local testability of tensor products
of LDPC codes, in Proceedings of the 9th International Workshop on Randomiza-
tion and Computation (RANDOM), Lecture Notes in Comput. Sci. 4110, Springer,
Berlin, 2006, pp. 304--315.

[GGR11] P. Gopalan, V. Guruswami, and P. Raghavendra, List decoding tensor products and
interleaved codes, SIAM J. Comput., 40 (2011), pp. 1432--1462, https://doi.org/10.
1137/090778274.

[GI01] V. Guruswami and P. Indyk, Expander-based constructions of efficiently decodable
codes, in Proceedings of the 42nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), IEEE Computer Society, Los Alamitos, CA, 2001, pp.
658--667.

[GI02] V. Guruswami and P. Indyk, Near-optimal linear-time codes for unique decoding and
new list-decodable codes over smaller alphabets, in Proceedings of the 34th Annual
ACM Symposium on Theory of Computing (STOC), ACM, New York, 2002, pp.
812--821.

[GI03] V. Guruswami and P. Indyk, Linear time encodable and list decodable codes, in Pro-
ceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC),
ACM, New York, 2003, pp. 126--135.

[GI04] V. Guruswami and P. Indyk, Efficiently decodable codes meeting Gilbert-Varshamov
bound for low rates, in Proceedings of the 15th Annual ACM-SIAM Symposium on
Discrete Algorithm (SODA), SIAM, Philadelphia, 2004, pp. 756--757.

[Gil52] E. N. Gilbert, A comparision of signalling alphabets, Bell Syst. Tech. J., 31 (1952),
pp. 504--522.

[GK16a] A. Guo and S. Kopparty, List-decoding algorithms for lifted codes, IEEE Trans. In-
form. Theory, 62 (2016), pp. 2719--2725.

[GK16b] V. Guruswami and S. Kopparty, Explicit subspace designs, Combinatorica, 36 (2016),
pp. 161--185.

[GKO+18] S. Gopi, S. Kopparty, R. Oliveira, N. Ron-Zewi, and S. Saraf, Locally testable and
locally correctable codes approaching the Gilbert-Varshamov bound, IEEE Trans.
Inform. Theory, 64 (2018), pp. 5813--5831.

[GL89] O. Goldreich and L. A. Levin, A hard-core predicate for all one-way functions, in
Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC),
ACM, New York, 1989, pp. 25--32.

[GM12] O. Goldreich and O. Meir, The tensor product of two good codes is not necessarily
locally testable, Inform. Process. Lett., 112 (2012), pp. 351--355.

[GNP+13] A. Gilbert, H. Ngo, E. Porat, A. Rudra, and M. Strauss, \ell 2/\ell 2-foreach sparse
recovery with low risk, in Proceedings of the 40th International Colloquium on
Automata, Languages, and Programming (ICALP), Lecture Notes in Comput. Sci.
7965, Springer, Heidelberg, 2013, pp. 461--472.

[GR08] V. Guruswami and A. Rudra, Explicit codes achieving list decoding capacity: Error-
correction with optimal redundancy, IEEE Trans. Inform. Theory, 54 (2008), pp.
135--150.

[GS99] V. Guruswami and M. Sudan, Improved decoding of Reed-Solomon and algebraic-
geometry codes, IEEE Trans. Inform. Theory, 45 (1999), pp. 1757--1767.

[Gur01] V. Guruswami, List Decoding of Error-correcting Codes, Ph.D. thesis, MIT, Cambridge,
MA, 2001.

[Gur10] V. Guruswami, Cyclotomic function fields, artin--frobenius automorphisms, and list
error correction with optimal rate, Algebra Number Theory, 4 (2010), pp. 433--463.

[GUV09] V. Guruswami, C. Umans, and S. Vadhan, Unbalanced expanders and randomness
extractors from parvaresh-vardy codes, J. ACM, 56 (2009), 20.

[GW13] V. Guruswami and C. Wang, Linear-algebraic list decoding for variants of reed-

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/090778274
https://doi.org/10.1137/090778274

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FOCS17-194 B. HEMENWAY, N. RON-ZEWI, AND M. WOOTTERS

solomon codes, IEEE Trans. Inform. Theory, 59 (2013), pp. 3257--3268.
[GX12a] V. Guruswami and C. Xing, Folded codes from function field towers and improved

optimal rate list decoding, in Proceedings of the 44th Annual ACM Symposium on
Theory of Computing (STOC), ACM, New York, 2012, pp. 339--350.

[GX12b] V. Guruswami and C. Xing, List decoding Reed-Solomon, algebraic-geometric, and
Gabidulin subcodes up to the singleton bound, Electronic Colloquium on Computa-
tional Complexity (ECCC), 2012.

[GX13] V. Guruswami and C. Xing, List decoding Reed-Solomon, algebraic-geometric, and
Gabidulin subcodes up to the Singleton bound, in Proceedings of the 45th Annual
ACM Symposium on Theory of Computing (STOC), ACM, New York, 2013, pp.
843--852.

[GX14] V. Guruswami and C. Xing, Optimal rate list decoding of folded algebraic-geometric
codes over constant-sized alphabets, in Proceedings of the 25th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), SIAM, Philadelphia, 2014, pp. 1858--
1866.

[HIOS15] I. Haitner, Y. Ishai, E. Omri, and R. Shaltiel, Parallel hashing via list recoverabil-
ity, in Proceedings of the 35th International Cryptology Conference (CRYPTO),
Lecture Notes in Comput. Sci. 9216, Springer, Heidelberg, 2015, pp. 173--190.

[HOW15] B. Hemenway, R. Ostrovsky, and M. Wootters, Local correctability of expander
codes, Inform. and Comput., 243 (2015), pp. 178--190.

[HRZW17] B. Hemenway, N. Ron-Zewi, and M. Wootters, Local list recovery of high-rate tensor
codes \& applications, in 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS), IEEE, Los Alamitos, CA, 2017, pp. 204--215.

[HW18] B. Hemenway and M. Wootters, Linear-time list recovery of high-rate expander codes,
Informa. and Comput., 261 (2018), pp. 202--218.

[INR10] P. Indyk, H. Ngo, and A. Rudra, Efficiently decodable non-adaptive group testing,
in Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), SIAM, Philadelphia, 2010, pp. 1126--1142.

[KM93] E. Kushilevitz and Y. Mansour, Learning decision trees using the Fourier spectrum,
SIAM J. Comput., 22 (1993), pp. 1331--1348, https://doi.org/10.1137/0222080.

[KMRS17] S. Kopparty, O. Meir, N. Ron-Zewi, and S. Saraf, High-rate locally correctable and
locally testable codes with sub-polynomial query complexity, J. ACM, 64 (2017), 11.

[Kop15] S. Kopparty, List-decoding multiplicity codes, Theory Comput., 11 (2015), pp. 149--182.
[KRSW18] S. Kopparty, N. Ron-Zewi, S. Saraf, and M. Wootters, Improved list decoding

of folded Reed-Solomon and multiplicity codes, in Proceedings of the 59th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), IEEE Computer
Society, Los Alamitos, CA, 2018, pp. 212--224.

[Lip90] R. J. Lipton, Efficient checking of computations, in Proceedings of the 7th Annual
ACM Symposium on Theoretical Aspects of Computer Science (STACS), Lecture
Notes in Comput. Sci. 415, Springer, Berlin, 1990, pp. 207--215.

[Mei09] O. Meir, Combinatorial construction of locally testable codes, SIAM J. Comput., 39
(2009), pp. 491--544, https://doi.org/10.1137/080729967.

[Mei12] O. Meir, On the rectangle method in proofs of robustness of tensor products, Inform.
Process. Lett., 112 (2012), pp. 257--260.

[MV05] P. B. Miltersen and N. V. Vinodchandran, Derandomizing arthur--merlin games
using hitting sets, Comput. Complexity, 14 (2005), pp. 256--279.

[NPR12] H. Ngo, E. Porat, and A. Rudra, Efficiently decodable compressed sensing by list-
recoverable codes and recursion, in Proceedings of the 29th International Symposium
on Theoretical Aspects of Computer Science (STACS), LIPIcs. Leibniz Int. Proc.
Inform., 14, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2012, pp. 230--241.

[Sti09] H. Stichtenoth, Algebraic Function Fields and Codes, 2nd edition, Grad. Texts in
Math. 254. Springer-Verlag, Berlin, 2009.

[STV01] M. Sudan, L. Trevisan, and S. Vadhan, Pseudorandom generators without the XOR
lemma, J. Comput. System Sci., 62 (2001), pp. 236--266.

[Sud01] M. Sudan, Algorithmic Introduction to Coding Theory, Lecture Notes, 2001.
[Tho83] C. Thommesen, The existence of binary linear concatenated codes with Reed-Solomon

outer codes which asymptotically meet the Gilbert-Varshamov bound, IEEE Trans.
Inform. Theory, 29 (1983), pp. 850--853.

[Tre01] L. Trevisan, Extractors and pseudorandom generators, J. ACM, 48 (2001), pp. 860--
879.

[TZ04] A. Ta-Shma and D. Zuckerman, Extractor codes, IEEE Trans. Inform. Theory, 50
(2004), pp. 3015--3025.

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/0222080
https://doi.org/10.1137/080729967

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIGH-RATE TENSOR CODES FOCS17-195

[TZS06] A. Ta-Shma, D. Zuckerman, and S. Safra, Extractors from Reed-Muller codes, J.
Comput. System Sci., 72 (2006), pp. 786--812.

[Val05] P. Valiant, The tensor product of two codes is not necessarily robustly testable, in
Proceedings of the 9th International Workshop on Randomization and Computation
(RANDOM), Springer, Berlin, Heidelberg, 2005, pp. 472--481.

[Var57] R. R. Varshamov, Estimate of the number of signals in error correcting codes, Dokl.
Akad. Nauk SSSR, 117 (1957), pp. 739--741.

[Vid13] M. Viderman, Strong LTCs with inverse poly-log rate and constant soundness, in Pro-
ceedings of the 54th IEEE Symposium on Foundations of Computer Science (FOCS),
IEEE Computer Society, Los Alamitos, CA, 2013, pp. 330--339.

[Vid15] M. Viderman, A combination of testability and decodability by tensor products, Random
Structures Algorithms, 46 (2015), pp. 572--598.

D
ow

nl
oa

de
d

11
/2

1/
20

 to
 1

28
.1

2.
93

.1
69

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

	Introduction
	Results
	From global to approximately-local list recovery
	Basic list recovery transformations
	Instantiations

	Related work
	Local list recovery
	Global list recovery up to capacity
	Subsequent work

	Techniques
	Organization

	Preliminaries
	Error-correcting codes
	List recoverable codes
	Locally decodable codes
	Locally list recoverable codes
	Tensor codes

	Basic list recovery transformations
	From approximately-local to local
	From high-rate to capacity-achieving
	From local to nearly-linear-time

	From global to approximately-local list recovery
	Proof of main technical Lemma 4.2
	Approximate local list recovery algorithm
	Output list size, query complexity, and running time
	Correctness

	Instantiations
	Instantiating with a random linear code: Proof of Theorem 1.2
	Instantiating with an algebraic geometry code for polynomial query complexity: Proof of Theorem 1.3
	Instantiating with an AG code for subpolynomial query complexity: Proof of Theorem 1.4

	Appendix A. List recovery of algebraic geometry codes
	Appendix B. Concatenation of list recoverable codes
	Appendix C. Proof of Lemma 4.1
	Appendix D. Useful concentration inequalities
	Acknowledgments
	References

