Downloaded via TRINITY UNIV on November 22, 2020 at 08:34:12 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

ACSMedicinal

Chemistry tters @ Cite This: ACS Med. Chem. Lett. 2020, 11, 292-297

pubs.acs.org/acsmedchemlett

Reactive Oxygen Species (ROS)-Activatable Prodrug for Selective
Activation of ATF6 after Ischemia/Reperfusion Injury

Jonathan E. Palmer,” Breanna M. Brietske, Tyler C. BaLte,_{_ Erik A. Blackwood,” Manasa Garg,_{_
Christopher C. Glembotski," and Christina B. Cooley*"’

TDepartment of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78212, United States

*San Diego State University Heart Institute and Department of Biology, San Diego State University, San Diego, California 92182,

United States

© Supporting Information

O 2%
e
\

©N(i

ROS | H,0,

- IZ

o

147-QM

(0]

‘

o R S

NN AVAVANE

ROS Scavenger Upregulation

Misfolded Proteins

ER Stress
ROS

Protection from Tissue Damage after I/R Injury

ABSTRACT: We describe here the design, synthesis, and biological evaluation of a reactive oxygen species (ROS)-activatable
prodrug for the selective delivery of 147, a small molecule ATF6 activator, for ischemia/reperfusion injury. ROS-activatable
prodrug 1 and a negative control unable to release free drug were synthesized and examined for peroxide-mediated activation.
Prodrug 1 blocks activity of 147 by its inability to undergo metabolic oxidation by ER-resident cytochrome P450 enzymes such
as CyplA2, probed directly here for the first time. Biological evaluation of ROS-activatable prodrug 1 in primary
cardiomyocytes demonstrates protection against peroxide-mediated toxicity and enhances viability following simulated I/R
injury. The ability to selectively target ATF6 activation under diseased conditions establishes the potential for localized stress-
responsive signaling pathway activation as a therapeutic approach for I/R injury and related protein misfolding maladies.

KEYWORDS: ROS-activatable prodrug, ATF6 activation, ischemia-reperfusion injury, CyplA2

M odulation of stress-responsive signaling pathways, such
as the unfolded protein response (UPR) in the
endoplasmic reticulum, has emerged as a promising
therapeutic strategy for treatment of a range of protein
misfolding diseases.'™ In particular, activation of ATF6, a
transcription factor involved in UPR signaling, has shown
therapeutic potential in models of transthyretin and light chain
amyloid diseases,”® diabetes,” and protection of tissue damage
following ischemia/reperfusion (I/R) injury in pathologies
such as myocardial infarction and stroke.”” A selective small
molecule ATF6 activator, 147 (Scheme 1), was recently
identified by a high-throughput screening effort and has offered
the opportunity for pharmacological evaluation of ATF6
transcriptional activation.” Compound 147 has advanced to
in vivo studies in mouse models of I/R, where it was shown to
ameliorate cardiac and brain tissue damage and preserve heart
and brain function following acute myocardial or cerebral
infarction.'® While these results suggest that ATF6 activation,
and 147 in particular, have promising clinical potential,
constant and global activation of ATF6 can cause liver
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and apoptosis,'> motivating the development of
prodrug derivatives of 147 that could confer ATF6 activation
specifically under I/R conditions, mitigating off-target toxicity
and potential side effects.

Reactive oxygen species (ROS) offer a chemical stimulus to
incite drug release and target therapy. Significantly elevated
and damaging ROS levels are associated with numerous disease
states'” and are particularly damaging during the reperfusion
stage of I/R injury."*™'® We therefore sought to design and
synthesize a prodrug of 147 for targeted delivery and ATF6
activation following exposure to ROS during I/R injury. Our
approach takes advantage of the phenol functional group on
147 as a chemical handle to attach a ROS-cleavable phenyl
boronate ester (Scheme 1). Phenyl boronate linkers of this
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Scheme 1. Structures and Peroxide-Mediated Release
Mechanism of Designed Prodrug 1 and Negative Control 2
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type show selectivity for ROS such as hydrogen peroxide, and
have been utilized as peroxide sensors'’ ™’ and as prodrug
activation platforms for the delivery of anticancer’* ** and
anti-inflammatory agents.**

ROS-activatable prodrug 1 (Scheme 1) was designed to
release 147 and activate ATF6 following reaction with
peroxide during I/R, generating intermediate 1a followed by
1,6-elimination. Esterification of the phenol of 147 should
render prodrug 1 biologically inactive, as the intact phenol has
been shown to be crucial for activation of ATF6 and 147’s
postulated metabolic ox1dat10n in cells by ER-resident
cytochrome P450 enzymes.”” In order to decouple peroxide
scavenging and ATF6 activation effects of prodrug 1, we
further sought to evaluate a negative control compound 2 that
retains peroxide reactivity but, due to the extra methylene unit
in the linker, is unable to 1,6-eliminate and release 147
(Scheme 1). We set out to synthesize and evaluate these target
compounds to explore the therapeutic utility of selective, ROS-
mediated ATF6 activation following I/R injury.

We began by synthesizing in good yield the parent
compound 147 from 3-phenylpropanoic acid and 2-amino-4-
methylphenol by slight modifications to the literature
procedure (see SI).”> ROS-activatable prodrug 1 was accessed
in only one step from 147 by nucleophilic displacement of
commercially available phenylboronic ester bromide 3
(Scheme 2).

Scheme 2. Synthesis of ROS-Activatable Prodrug 1
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Negative control 2 was accessed in an analogous fashion
from 147 and an extended phenylboronic ester tosylate 6 as
shown in Scheme 3. The relatively lower yield for the
nucleophilic displacement reaction in this case is due to
competing elimination chemistry that occurs with the addi-
tional carbon atom in tosylate 6 relative to bromo compound
3. Tosylate 6 was accessed from 4-bromo-phenylethanol by
Miyaura borylation followed by tosylation in good yield
(Scheme 3).

With requisite compounds in hand, we evaluated the
stability and peroxide-mediated release of the designed
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Scheme 3. Synthesis of Negative Control 2
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prodrug by analytical HPLC. Incubation of prodrug 1 under
physiologically relevant conditions (Hepes Buffered Saline
(HBS), pH 7.3, 37 °C) demonstrated that the prodrug is
relatively stable in the absence of peroxide, with a degradation
half-life (,/,) of 25.8 days. In contrast, incubation of prodrug 1
with 20 mol equiv of H,0, gives smooth conversion to free
147 within 2 h at 37 °C (Figure 1). Notably, the conversion at
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Figure 1. Conversion of prodrug 1 to 147 upon incubation with
various molar equivalents of H,0, for 2 h at 37 °C in HBS pH 7.4 by
analytical HPLC (254 nm). Compound 147 integrations were
normalized by full conversion and compared to an internal standard,
napthalene methanol. Error bars represent standard error of n = 3
trials.

2 h is dependent on the peroxide concentration, where
substoichiometric peroxide concentrations (such as the lowest
tested 0.1 mol equiv peroxide/prodrug) do not release
significant amounts of 147 (Figure 1). This implies that
background peroxide levels, such as observed in normal tissues,
would not be sufficient to activate the prodrug in a meaningful
therapeutic time frame and that locally high concentrations of
peroxide, as observed following I/R events, could be sufficient
to trigger prodrug activation and 147 release selectively in vivo.

Further analysis of the peroxide-mediated release profile of
prodrug 1 supports the designed release mechanism outlined
in Scheme 1. Intermediate 1a is detectable by LC—MS after 10
min of excess peroxide incubation (Figure Sla). Comparing
the relative integrations of 1, 147, and la over time suggests
that prodrug 1 initially coverts to intermediate 1a, which then
releases 147 by a rate-limiting 1,6-elimination step (Figure
S1b). Additionally, negative control 2 does not release any
detectable 147 upon incubation with excess H,0, (20 mol
equiv), even with incubation times in excess of 24 b, although
conversion of 2 to intermediate 2a is clearly detected under
these conditions (Figure S2).
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Following confirmation that prodrug 1 releases 147 upon
exposure to ROS, we next probed the ability of intact prodrug
1 to block the purported metabolic oxidation of 147. A
previous report investigating the mechanism of 147’s ATF6
activation bioactivity has suggested that 147 undergoes
metabolic oxidation by previously unidentified cytochrome
P450 enzymes to a quinone methide (147-QM), which serves
as an electrophile for ER protein disulfide isomerase enzymes
involved in ATF6 activation (Figure 2a).”> Luminescent ATF6
reporter experiments supported the requirement for the free
phenol and methyl group as required for bioactivity, and ATF6
activation was reduced in the presence of exogenous sulfur
nucleophiles and by a suggested cytochrome P450 inhibitor,

resveratrol.”>*® Here, we provide direct support for the
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Figure 2. (a) Schematic of proposed 147 metabolic oxidation by
CyplA2. (b) Mass spectrometry chromatogram of 147 incubated
with control or CyplA2 baculosomes for 24 h at 37 °C by LC—MS.
(c) Mass spectrometry chromatogram of prodrug 1 incubated with
control or Cyp1A2 baculosomes for 24 h at 37 °C. Compound 1-BA
indicates the boronic acid of prodrug 1.
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quinone methide bioactivation of 147 and identify a particular
ER-membrane resident P45S0 enzyme (CyplA2) capable of
this transformation. Incubation of 147 for 24 h at 37 °C with
recombinant CyplA2 shows full consumption of 147 by LC—
MS analysis, whereas 147 incubated under identical conditions
without CyplA2 remains intact (Figure 2b, Figure S3b).
Further, the CyplA2-generated quinone methide of 147 can
be trapped by incubation in the presence of an exogenous
nucleophile, glutathione (GSH), and formation of a 147-GSH
adduct was directly observed by MS analysis (Figure S4).
These experiments provide the first direct evidence of 147
metabolic activation by a cytochrome P450 enzyme and
implicate a particular Cyp, CyplA2, as capable of this
transformation. Importantly, similar experiments with intact
prodrug 1 demonstrate that 1 is not a substrate of CyplA2
(Figure 2c), which suggests that prodrug 1 remains biologically
inactive until its ROS-mediated activation to free 147.

The biological activity of ROS-activatable prodrug 1 was
next examined in living cells. Cultured neonatal rat ventricular
myocytes (NRVM) were treated with 147, ROS-activatable
prodrug 1, negative control 2, or preactivated 1 and 2 by
peroxide incubation prior to NRVM administration. The
induction of ATF6 target genes GRP78 and Catalase were then
analyzed by qRT-PCR (Figure 3). ATF6 target gene induction
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Figure 3. ATF6 target gene induction in NRVM incubated with the
indicated compounds (10 M) for 16 h followed by RNA extraction
and qRT-PCR. Control 2 and prodrug 1 (+ Active) indicates
compound preactivation in media containing S0 #M H,O, in the
absence of cells for 8 h prior to NRVM administration. Error bars
represent SEM for n = 3 trials. ¥p < 0.05, ***p < 0.001 relative to
vehicle as determined by ANOVA and Tukey’s posthoc analysis.

was observed by 147 treatment as expected, and by prodrug 1,
only after preactivation with peroxide, indicating that prodrug
1 is biologically inactive until 147 is released following
peroxide activation. Notably, negative control 2 was unable to
induce ATF6 target genes, even following peroxide pretreat-
ment.

Following confirmation that prodrug 1 releases 147 capable
of ATF6 activation in living cells, we tested the ability of
prodrug 1 to enhance cardiac cell viability under peroxide
stress. Incubation of NRVM cells with prodrug 1 followed by
peroxide challenge demonstrated that the ROS-activatable
prodrug offers significant protection from peroxide-induced
toxicity, albeit to a lesser extent than the protection observed
for 147 alone (Figure SS). This effect reflects the ability of 147
to activate ATF6 target genes prior to peroxide exposure,
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whereas prodrug 1 remains inactive until peroxide admin-
istration.

Finally, we assessed the ability of prodrug 1 to enhance
viability and reduce cardiac tissue damage following simulated
I/R injury. NRVM cells were treated with 10 uM of control 2,
147, or prodrug 1 and subjected to 8 h of simulated ischemia
followed by 24 h of reperfusion, then viability was determined
by lactate dehydrogenase (LDH) leakage and calcein-AM
labeling relative to cells under normoxia conditions (Figure 4,
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Figure 4. Viability of NVRM determined by LDH activity in media
following 8 h of simulated ischemia then 24 h of reperfusion. Vehicle,
negative control 2, 147, or prodrug 1 (10 uM) was added to cells
during the entirety of the experiment or at the reperfusion step only
(147 R, Prodrug 1 R). Error bars represent SEM for n = 3 trials. *p <
0.05, **p < 0.01, ***p < 0.001 as determined by ANOVA and
Tukey’s posthoc analysis.

Figure S6).° Cardiomyocyte treatment with prodrug 1
significantly reduced the media levels of LDH, a marker for
necrosis,”’ relative to treatment with vehicle or control 2
following simulated I/R injury (Figure 4). The ability of
prodrug 1 to protect cells from I/R injury damage was further
observed whether 1 was administered during the duration of
the experiment or only during the reperfusion step (Prodrug 1
R, Figure 4). This result indicates that the high ROS levels
during reperfusion are sufficient to cleave prodrug 1 to free
147 and activate ATF6 in living cells. Similar results are
observed for NRVM viability as measured by calcein-AM
labeling (Figure S6b). In all cases, the protective ability of
prodrug 1 is moderately reduced relative to 147 alone, which is
expected due to the requirement for prodrug 1 to be activated
by ROS prior to onset of activity, giving 147 a “head start” to
the beneficial effects of ATF6 activation. Speeding up the
kinetics of prodrug release upon peroxide exposure could
potentially mitigate the differences observed in activity and
represent an opportunity for further development.

In summary, a ROS-activatable prodrug was designed and
synthesized for targeted activation of ATF6 during I/R injury.
The prodrug does not undergo metabolic oxidation by
CyplA2 as revealed for the free drug until prodrug conversion
is facilitated by peroxide exposure. Further, prodrug admin-
istration offers protection from I/R injury in living cells. This
study offers proof-of-concept that activation of stress-
responsive signaling pathways under disease conditions could
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offer a targeted approach for the treatment of a myriad of
protein misfolding disorders. We hope to further assess the
opportunities of targeted stress-responsive signaling pathway
activation by translation of this study into animal models for I/
R injury and expand this approach to the targeted treatment of
other protein misfolding diseases.
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