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Abstract
In this paper, we study dynamics of geodesic flows over closed surfaces of 
genus greater than or equal to 2 without focal points. Especially, we prove that 
there is a large class of potentials having unique equilibrium states, including 
scalar multiples of the geometric potential, provided the scalar is less than 1. 
Moreover, we discuss ergodic properties of these unique equilibrium states, 
including the Bernoulli property and the fact that weighted regular periodic 
orbits are equidistributed relative to these unique equilibrium states.
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1.  Introduction

This paper is devoted to the study of dynamics of the geodesic flows over closed surfaces with-
out focal points. We focus on the thermodynamic formalism of the geodesic flows, especially, 
the uniqueness of the equilibrium states and their ergodic properties. For uniformly hyperbolic 
flows, also known as Anosov flows, thanks to fundamental works of Ornstein, Weiss, Bowen 
and Ruelle [OW73, Bow75, BR75], we know that every Hölder potential has a unique equilib-
rium state which enjoys several ergodic features such as Bernoulli and equidistribution proper-
ties. It is also well-known that the geodesic flow on a negatively curved manifold is uniformly 
hyperbolic. However, when the manifold contains subsets with zero or positive curvature, the 
geodesic flow may no longer be uniformly hyperbolic. The non-uniform hyperbolicity greatly 
increases the difficulty in understanding the thermodynamics of these flows. Nevertheless, the 
geometric features of surfaces without focal points allow us to investigate the dynamics of the 
geodesic flows. Several geometric properties are available in this setting such as the flat strip 
theorem, C2-regularity of the horocycles, and more. These properties enable us to extend the 
existence and the uniqueness result on the measure of maximal entropy by Knieper [Kni98] 
and on equilibrium states by Burns et al [BCFT18] over closed rank 1 nonpositively curved 
manifolds to closed surfaces without focal points of genus at least 2.

Combining the dynamical and geometric features of surfaces without focal points, in this 
paper, we are able to prove the uniqueness of equilibrium states for a large class of potentials 
and Bernoulli and equidistribution properties for such equilibrium states. These results also 
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generalize Gelfert–Ruggiero’s recent work [GR17] on the uniqueness of measure of the maxi-
mum entropy for the geodesic flows over surfaces without focal points. We remark that, using 
a differently approach, Liu et al [LWW18] extended the uniqueness of measure of maximum 
entropy result to manifolds without focal points of arbitrary dimension.

Putting our results in context below, we shall first introduce relevant terminologies briefly 
(see sections 2 and 3 for more details). Throughout the paper, S denotes a closed (i.e. compact 
without boundary) C∞ Riemannian surface of genus greater than or equal to 2 without focal 
points. The geodesic flow F = ( ft)t∈R on the unit tangent bundle T1S is the flow given by 
ft(v) = γ̇v(t) where γv is the (unit speed) geodesic determined by the initial vector v ∈ T1S.

In this paper, we study topological pressure and equilibrium states of continuous potentials 
with respect to the geodesic flow F . For a continuous potential (i.e. function) ϕ : T1S → R, 
the topological pressure P(ϕ) of ϕ with respect to F  can be described by the variational 
principle:

P(ϕ) = sup{hµ(F) +

∫
ϕdµ : µ is a F-invariant Borel probability measure on T1S},

where hµ(F) is the measure-theoretic entropy of µ with respect to F . An invariant Borel prob-
ability measure µ achieving the supremum is called an equilibrium state. We notice that when 
ϕ is identically equal to 0 then P(0) is equal to the topological entropy htop(F) of F , and an 
equilibrium state for ϕ ≡ 0 is called a measure of maximum entropy.

The non-uniform hyperbolicity of F  comes from the existence of the singular  
set Sing. For surfaces without focal points, we can describe the singular set as 
Sing = {v ∈ T1S : K(πftv) � 0 ∀t ∈ R} where π : T1S → S  is the canonical projection and 
K is the Gaussian curvature (see section 3 for alternative characterizations of the singular set). 
The complement of Sing is called the regular set and denoted by Reg.

Our first result asserts the uniqueness of the equilibrium states for potentials with ‘nice’ 
regularity that carry smaller pressure on the singular set. The potentials with ‘nice’ regularity 
include Hölder potentials and the geometric potential ϕu defined as

ϕu(v) := − lim
t→0

1
t
log det(dft|Eu(v)).

Here, Eu(v) is the unstable subspace in TvT1S (see section 3 for details).

Theorem A.  Let S be a surface of genus greater than or equal to 2 without focal points and 
F  be the geodesic flow over S. Let ϕ : T1S → R be a Hölder continuous potential or a scalar 
multiple of the geometric potential qϕu for some q ∈ R. Suppose ϕ verifies the pressure gap 
property P(Sing,ϕ) < P(ϕ), then ϕ has a unique equilibrium state µϕ.

The proof of theorem A uses the same idea as the proof of [BCFT18, theorem A]. Both 
[BCFT18] and this paper follow the general framework introduced by Bowen [Bow75], 
which was subsequently extended to flows by Franco [Fra77] and recently extended further 
by Climenhaga and Thompson [CT16]. We have more detailed discussion of this method in 
section 2. Roughly speaking, the general framework follows the original work of Bowen stat-
ing that when the potential has ‘nice’ regularity (namely, the Bowen property) and the system 
has ‘sufficient hyperbolicity’ (namely, the specification property and the expansivity) then this 
potential has a unique equilibrium state. While we follow the general framework of [BCFT18], 
our setting of surfaces without focal points does not enjoy properties available in the setting 
of [BCFT18] coming from the geometry of nonpositively curved manifolds. The most nota-
ble such property is the convexity of ‖J(t)‖ for any Jacobi field J. Due to the absence of such 
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convexity, we use an alternative way to quantify hyperbolicity on T1S and to characterize the 
singular set; see remark 3.10. We discuss more details of this method in sections 2 and 3.

The second result, following theorem A, states several ergodic properties of these unique 
equilibrium states. We successfully extend several properties known to hold under uniformly 
hyperbolic cases (see, for example, [PP90]), as well as under nonpositively curved surfaces 
(see, for example, [Pol96, LLS16] and [BCFT18]). Namely, these unique equilibrium states 
are Bernoulli and the weak* limit of the weighted regular periodic orbits. Recall that other 
weaker ergodic properties such as being Kolmogorov and strongly mixing follows once the 
measure is Bernoulli.

Theorem B.  Suppose ϕ satisfies the same assumptions in theorem A. Then, the unique 
equilibrium state µϕ is fully supported, Bernoulli, and the weak* limit of the weighted regular 
periodic orbits. Moreover, µϕ(Reg) = 1.

In our last main result, we study the geometric potential ϕu and its pressure function 
q �→ P(qϕu). We give the full description of the pressure function, and show that the situation 
is analogous to the nonpositively curved manifolds (see, for example, [BG14] and [BCFT18]).

Theorem C.  Let S be a surface of genus greater than or equal to 2 without focal points and 
F  be the geodesic flow over S. Suppose ϕ = qϕu is the scalar multiple the geometric potential 
with q  <  1. Then, ϕ satisfies the pressure gap property.

Such qϕq has a unique equilibrium state from theorem A, and the unique equilibrium state 
satisfies the properties listed in theorem B.

Moreover, the map q �→ P(qϕu) is C1 on q ∈ (−∞, 1). If Sing �= ∅, then P(qϕu) = 0 for 
q � 1, see figure 1.

This paper is organized as follows. In section 2, we go over the background in thermo-
dynamic formalism; in particular, we describe our primary tool, the Climenhaga–Thompson 
criteria introduced in [CT16]. In section 3, we recall the definitions and geometric features of 
surfaces and manifolds without focal points. Sections 4–6 are devoted to setting up the frame-
work for the Climenhaga–Thompson criteria, namely, the orbit decomposition, the specifica-
tion property, and the Bowen property. We will prove theorem A in section 7 and theorem B 
in section 8. In section 9, we will show theorem C and provide some examples of potentials 
satisfying theorem A.

2.  Preliminaries of dynamics

In this section, we introduce necessary background in thermodynamics. An excellent refer-
ence for terminology introduced in this section is Walters’ book [Wal82].

Figure 1.  Pressure function.
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Throughout this section, (X, d) is a compact metric space, F = ( ft)t∈R is a continuous flow 
on X, and ϕ : X → R is a continuous potential.

2.1. Topological pressure

For convenience, we first define the following terms.

Definition 2.1.  For any t, δ > 0 and x ∈ X ,

	(1)	�The Bowen ball of radius δ and order t at x is defined as

Bt(x, δ) = {y ∈ X : d( fτx, fτy) < δ for all 0 � τ � t}.

	(2)	�We say a set E is (t, δ)- separated if for all x, y ∈ E with x �= y , there exists t0 ∈ [0, t] such 
that d( ft0x, ft0y) � δ.

Definition 2.2 (Finite length orbit segments).  Any subset

C ⊂ X × [0,∞)

can be identified with a collection of finite length orbit segments. More precisely, every 
(x, t) ∈ C is identified with the orbit segment { fτx : 0 � τ � t}.

We denote Φ(x, t) :=
∫ t
0 ϕ( fτx)dτ  the integral of ϕ along an orbit segment (x, t).

Let Ct := {x ∈ X : (x, t) ∈ C} be the set of length t orbit segments in C. We define

Λ(C,ϕ, δ, t) = sup{
∑
x∈E

eΦ(x,t) : E ⊂ Ct is (t, δ)-separated}.

Definition 2.3 (Topological pressure).  The pressure of ϕ on C is defined as

P(C,ϕ) = lim
δ→0

lim sup
t→∞

1
t
log Λ(C,ϕ, δ, t).

When C =X × [0,∞), we denote P(X × [0,∞),ϕ) by P(ϕ) and call it the topological pres­
sure of ϕ with respect to F .

As noted in the introduction, the pressure P(ϕ) satisfies the variational principle

P(ϕ) = sup
µ∈M(F)

{hµ(F) +

∫
ϕdµ}

where M(F) is the set of F -invariant probability measures on X. Also, a F -invariant prob-
ability measure µ realizing the supremum is called an equilibrium state for ϕ.

Remark 2.4. 

	(1)	�When the entropy map µ �→ hµ is upper semi-continuous, any weak* limit of a sequence 
of invariant measures approximating the pressure is an equilibrium state. In particular, 
there exists at least one equilibrium state for every continuous potential.

	(2)	�In our setting, the geodesic flow over surfaces without focal points, the upper semi-
continuity of the entropy map is guaranteed by the entropy-expansivity established in 
[LW16].

D Chen et alNonlinearity 33 (2020) 1118
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2.2.  Climenhaga–Thompson’s criteria for the uniqueness of equilibrium states

Climenhaga and Thompson have a series of successful results on establishing the uniqueness of 
the equilibrium states of various non-uniformly hyperbolic systems; see [CT12, CT13, CFT18, 
CT16, BCFT18]. This work follows the same method, so called, the Climenhaga–Thompson 
criteria. In this subsection, we introduce the terms used in the Climenhaga–Thompson criteria.

One of the primary ideas in the Climenhaga–Thompson criteria is to relax the original 
assumptions from the work of Bowen on the uniformly hyperbolic systems [Bow75] by asking 
that the ‘hyperbolic’ behavior on the system and the ‘good regularity’ on the potential hold on 
a (large) collection of finite orbit segments C rather than in the whole space. This flexibility is 
essential for applying this method to non-uniformly hyperbolic systems. To be more precise, the 
‘hyperbolic’ behavior refers to the specification property and the property that the pressure of 
obstructions to expansivity P⊥

exp(ϕ) be strictly smaller than the pressure P(ϕ) of the entire sys-
tem (see below). The ‘good regularity’ on ϕ refers to the potential having the Bowen property.

Definition 2.5 (Specification).  We say C ⊂ X × [0,∞) has specification at scale 
ρ > 0 if there exists τ = τ(ρ) such that for every finite sub-collection of C, i.e. (x1, t1), 
(x2, t2), . . . , (xN , tN) ∈ C, there exists y ∈ X  and transition times τ1, . . . , τN−1 ∈ [0, τ ] such 
that for s0 = τ0 = 0 and sj =

∑ j
i=1 ti +

∑ j−1
i=1 τi , we have

fsj−1+τj−1(y) ∈ Btj(xj, ρ)

for j ∈ {1, 2, . . . ,N}. If C has specification at all scales, then we say C has specification. We 
say that the flow has specification if the entire orbit space C = X × [0,∞) has specification.

Definition 2.6 (Bowen property).  We say ϕ : X → R a continuous potential has the Bow­
en property on C ⊂ X × [0,∞) if there are ε,K > 0 such that for all (x, t) ∈ C, we have

sup
y∈Bt(x,ε)

|Φ(x, t)− Φ(y, t)| � K

where Φ(x, t) =
∫ t
0 ϕ( fτx)dτ  as in definition 2.2.

Definition 2.7 (Decomposition of orbit segments).  A decomposition of X × [0,∞) con-
sists of three collections P , G , S ⊂ X × [0,∞) such that:

	(1)	�There exist p, g, s : X × [0,∞) → R such that for each (x, t) ∈ X × [0,∞), we have 
t = p(x, t) + g(x, t) + s(x, t),

	(2)	�(x, p(x, t)) ∈ P , ( fp(x,t)x, g(x, t)) ∈ G, and ( fp(x,t)+g(x,t)x, s(x, t)) ∈ S .

In section 4, we will give the precise construction of a decomposition (P ,G,S) and prove 
that such decomposition has required properties in subsequent sections. Due to some technical 
reasons (see [CT16]), we need to work on with discrete-time versions of P  and S , namely,

[P] := {(x, n) ∈ X × N : ( f−sx, n+ s+ t) ∈ P for some s, t ∈ [0, 1]},

and similarly for [S].
The following three terms are the remaining pieces needed in stating the Climenhaga–

Thompson criteria.

Definition 2.8.  For x ∈ X , ε > 0 and ϕ : X → R a potential

	(1)	�The bi-infinite Bowen ball Γε(x) is defined as

D Chen et alNonlinearity 33 (2020) 1118
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Γε(x) := {y ∈ X : d( ftx, fty) � ε for all t ∈ R}.

	(2)	�The set of non-expansive points at scale ε is defined as

NE(ε) := {x ∈ X : Γε(x) � f[−s,s](x) for any s > 0}

		 where f[a,b](x) = { ftx : t ∈ [a, b]}.
	(3)	�The pressure of obstructions to expansivity for ϕ is defined as

P⊥
exp(ϕ) := lim

ε→0
P⊥
exp(ϕ, ε)

		 where

P⊥
exp(ϕ, ε) := sup{hµ( f1) +

∫
ϕdµ : µ ∈ Me(F) and µ(NE(ε)) = 1}

		 and Me(F) is the set of F -invariant ergodic probability measures on X.

Remark 2.9.  For uniformly hyperbolic systems, NE(ε) = ∅ for ε sufficiently small; thus 
P⊥
exp(ϕ) = −∞. In other words, the condition P⊥

exp(ϕ) < P(ϕ) always holds in Bowen’s set-
ting [Bow75].

Finally, the following theorem is the Climenhaga–Thompson criteria for the uniqueness of 
equilibrium states. We will use this theorem to prove theorem A in section 7.

Theorem 2.10 ([CT16, theorem A]).  Let (X,F) be a flow on a compact metric space, and 
ϕ : X → R be a continuous potential. Suppose that P⊥

exp(ϕ) < P(ϕ) and X × [0,∞) admits a 
decomposition (P ,G,S) with the following properties:

	 (I)	�G  has specification; 
	(II)	�ϕ has Bowen property on G ; 
	(III)	�P([P] ∪ [S],ϕ) < P(ϕ).

Then (X,F ,ϕ) has a unique equilibrium state µϕ.

Remark 2.11.  From the uniqueness of the equilibrium state µϕ, it follows that µϕ is ergodic. 
See also [CT16, proposition 4.19].

2.3.  Gurevich pressure

In this subsection, we introduce another well-studied notion of pressure, the Gurevich pres
sure, that is, the growth rate of weighted periodic orbits. In the uniformly hyperbolic setting, 
the Gurevich pressure is equal to the topological pressure. However, it is not always the case 
for non-uniformly hyperbolic systems (see [GS14] for more details). To make the above dis-
cussion more precise, we shall define the following relevant terms.

As before, let M be a Riemannian manifold, F = ( ft)t∈R be the geodesic flow on T1M, and 
ϕ : T1M → R be a continuous potential. A geodesic γ  is closed if there exists L  >  0 such that 
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γ  is periodic with period L, that is, γ(t) = γ(t + L) for all t ∈ R. A geodesic γv is regular if 
the generating vector v is regular.

We denote the set of closed regular geodesics with length in the interval (a, b] by PerR(a, b]. 
For γ ∈ PerR(a, b], we define

Φ(γ) :=
∫

γ

ϕ =

∫ |γ|

0
ϕ( ftv)dt

where v ∈ T1M  is tangent to γ  and |γ| is the length of γ . Given t,∆ > 0, we define

Λ∗
Reg,∆(ϕ, t) :=

∑
γ∈PerR(t−∆,t]

eΦ(γ).

Definition 2.12 (Gurevich pressure).  Given ∆ > 0,

	(1)	�The upper regular Gurevich pressure P
∗
Reg,∆ of ϕ is defined as

P
∗
Reg,∆(ϕ) := lim sup

t→∞

1
t
log Λ∗

Reg,∆(ϕ, t).

	(2)	�The lower regular Gurevich pressure P∗
Reg,∆ of ϕ is defined as

P∗
Reg,∆(ϕ) := lim inf

t→∞

1
t
log Λ∗

Reg,∆(ϕ, t).

		 When P
∗
Reg,∆(ϕ) = P∗

Reg,∆(ϕ), we call this value the regular Gurevich pressure and 
denote it by P∗

Reg,∆(ϕ).

Remark 2.13.  Our upper regular Gurevich pressure P
∗
Reg,∆ is the regular Gurevich pres

sure PGur,R used in [GS14]. Indeed, using the same argument as in [GS14], one can show that 

P
∗
Reg,∆ is independent of ∆ > 0. However, to derive the equidistribution property, we need to 

take the lower regular Gurevich pressure into account (see proposition 2.17).

Definition 2.14.  For a potential ϕ : T1M → R, we say µ is the weak* limit of ϕ-weighted 
regular periodic orbits, if there exists ∆ > 0 such that

µ = lim
t→∞

∑
γ∈PerR(t−∆,t] e

Φ(γ)δγ

Λ∗
Reg,∆(ϕ, t)

where δγ is the normalized Lebesgue measure along a periodic orbit γ .
In his proof of the variational principle in [Wal82, theorem 9.10], Walters pointed out a way 

to construct equilibrium states through periodic orbits.

Proposition 2.15 ([Wal82, theorem 9.10).]  Given ∆ > 0, suppose there exists {tk} such 
that

lim
k→∞

1
tk
log Λ∗

Reg,∆(ϕ, tk) = P(ϕ)

D Chen et alNonlinearity 33 (2020) 1118
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and

lim
k→∞

∑
γ∈PerR(tk−∆,tk] e

Φ(γ)δγ

Λ∗
Reg,∆(ϕ, tk)

= µ,

then µ is an equilibrium state.

Remark 2.16.  The proof of the proposition above proceeds by relating the collection of 
closed regular orbits to a (t, δ)-separated set. This type of argument appears in section 8 as a 
part of the proof for theorem B. See lemma 8.11 for details.

Since the set of F -invariant probability measures M(F) is compact with respect to the 
weak* topology, proposition 2.15 has the following consequence:

Proposition 2.17.  Given ∆ > 0, suppose P∗
Reg,∆(ϕ) = P(ϕ) and ϕ has a unique equilib­

rium µϕ. Then µϕ is the weak* limit of ϕ-weighted regular closed geodesics.

3.  Preliminaries of surfaces without focal points

3.1.  Geometry of Riemannian manifolds without focal points

In this section, we recall relevant earlier results of manifolds without focal points. These 
results can be found in [Ebe73, Pes77b, Esc77, Bur83].

Throughout this section M denotes a closed C∞ Riemannian manifold, and we denote the 
geodesic flow on its unit tangent bundle T1M by F = ( ft)t∈R. Recall that for any Riemannian 
manifold M, we can naturally equip its tangent bundle T1M with the Sasaki metric. In what 
follows, without stating specifically, the norm || · || on TT1M always refers to the Sasaki metric 
(see discussions below remark 3.2 for the definition).

A Jacobi field J(t) along a geodesic γ  is a vector field along γ  satisfying the Jacobi equation:

J′′(t) + R(J(t), γ̇(t))γ̇(t) = 0,� (3.1)

where R is the Riemannian curvature tensor, and ′ denotes the covariant derivative along γ . 
When M is a surface, the Jacobi equation (3.1) simplifies to

J′′(t) + K(γ(t))γ̇(t) = 0,

where K is the Gaussian curvature.
A Jacobi field J is orthogonal if both J and J′  are orthogonal to γ̇  at some t0 ∈ R (and 

hence for all t ∈ R).
A Jacobi field J is parallel at t0 if J′(t0) = 0. If J′(t) = 0 for all t ∈ R, then we say J is 

parallel.

Definition 3.1 (No focal points).  A Riemannian manifold M has no focal points if for 
any initial vanishing Jacobi field J(t), its length ‖J(t)‖ is strictly increasing. We say M has no 
conjugate points if any non-zero Jacobi field has at most one zero.

Remark 3.2.  There are other equivalent definitions for manifolds without focal points, and 
many of their geometric features are introduced in [dC13]. The following results are classical 
and relevant in our setting:

	(1)	�Nonpositively curved � no focal points � no conjugate points.

D Chen et alNonlinearity 33 (2020) 1118
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	(2)	�One can find examples from each category above from [Gul75], as well as [Ger03], for 
examples in the above assertion.

It is a classical result that one can identify the tangent space of T1M with the space of 
orthogonal Jacobi fields J . Moreover, one can use this relation to define three F -invari-
ant bundles Eu,Ec, and Es in TT1M. To be more precise, for each v ∈ T1M , there exists a 
direct sum decomposition TvT1M = Hv ⊕ Vv into the horizontal and vertical subspaces, each 
equipped with the norm induced from the Riemannian metric on M. The Sasaki metric on T1M 
is defined by declaring Hv and Vv to be orthogonal. Denoting the space of orthogonal Jacobi 
fields along a geodesic γ  by J (γ), the identification between TvT1M  and J (γv) is given by

TvT1M � ξ = (ξh, ξv) �→ Jξ ∈ J (γv)

where Jξ is the unique Jacobi field characterized by Jξ(0) = ξh and J′ξ(0) = ξv. Moreover, 
we have

‖dft(ξ)‖2 = ‖Jξ(t)‖2 +
∥∥J′ξ(t)

∥∥2 .� (3.2)

We define J s(γ) to be the space of stable (orthogonal) Jacobi fields as

J s(γ) = {J(t) ∈ J (v) : ‖J(t)‖ is bounded for t � 0},

and J u(γ) to be the space of unstable (orthogonal) Jacobi fields as

J u(γ) = {J(t) ∈ J (v) : ‖J(t)‖ is bounded for t � 0}.

Using these two linear spaces of J (γ) and the identification, we can define two subbundles 
Es(v) and Eu(v) of TvT1M  as the following:

Es(v) :={ξ ∈ TvT1M : Jξ ∈ J s(v)},
Eu(v) :={ξ ∈ TvT1M : Jξ ∈ J u(v)}.

Last, we define Ec(v) given by the flow direction.

Definition 3.3 (Rank).  The rank of a vector v ∈ T1M  is the dimension of the space of 
parallel Jacobi fields. We call M a rank 1 manifold if it has at least one rank 1 vector.

Definition 3.4 (Singular and regular set).  The singular set Sing ⊂ T1M  is the set of 
vectors with rank greater than or equal to 2. The regular set Reg is the complement of Sing.

When M is a surface, the singular set admits a useful alternative characterization (3.3). This 
fact as well as other facts regarding manifolds with no focal points are summarized in the fol-
lowing proposition.

Proposition 3.5.  Let M be a closed Riemannian manifold without focal points. Then we 
have:

	(1)	�[Hur86, theorem 3.2] The geodesic flow F  is topologically transitive if M is rank 13.
	(2)	�[Pes77b, propositions 4.7 and 6.2] dimEu(v) = dimEs(v) = n− 1, and dimEc(v) = 1 

where dimM = n.
	(3)	�[Pes77b, theorems 4.11 and 6.4] The subbundles Eu(v), Es(v), Ecu(v) and Ecs(v) are  

F—invariant where Ecs(v) = Ec(v)⊕ Es(v) and Ecu(v) = Ec(v)⊕ Eu(v).
	(4)	�[Pes77b, theorems 6.1 and 6.4] The subbundles Eu(v), Es(v), Ecu(v) and Ecs(v) are 

3 Ergodicity was claimed in [Hur86] but the argument has an error. Nevertheless the proof for theorem 3.2 is inde-
pendent of ergodicity, and it remains valid.
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integrable to F—invariant foliations Wu(v), Ws(v), Wcu(v) and Wcs(v), respectively. 
Moreover, Wu(v) (resp. Ws(v)) consists of vectors perpendicular to Hu(v) (resp. Hs(v)) 
and toward to the same side as v (see below for the definition of the horospheres Hs/u(v)).

	(5)	�[Esc77, lemma, p 246] Eu(v) ∩ Es(v) �= ∅ if and only if v ∈ Sing.
	(6)	�[O’S76, theorem 1, Esc77, theorem 2] The flat strip theorem: suppose M is simply con­

nected and geodesics γ1, γ2 are bi-asymptotic in the sense that d(γ1(t), γ2(t)) is uniformly 
bounded for all t ∈ R. Then γ1 and γ2 bound a strip of flat totally geodesically immersed 
surface.

	(7)	�[Ebe73, corollary 3.3, 3.6] Suppose dimM = 2, then

Sing = {v ∈ T1M : K(πftv) = 0 for all t ∈ R},� (3.3)

		 where π : T1M → M  is the canonical projection.
	(8)	�[Hop48] Suppose dimM = 2, then M is rank 1 if and only if its genus is at least 2.

	(9)	�[Esc77, section  5] For any J ∈ J s(γ)(resp. J u(γ)), ||J(t)|| is monotonely decreasing 
(resp. increasing) for all t ∈ R.

We shall introduce more metrics on T1M and the flow invariant foliations induced in Proposition 
3.5 so that we can perform finer analysis. We write dS for the distance function on T1M induced by 
the Sasaki metric on TT1M. We will make use of another handy metric dK on T1M:

dK(v,w) := max{d(γv(t), γw(t)) : t ∈ [0, 1]}.

Such metric dK also appeared in [Kni98]. It is not hard to see that dS and dK are uniformly 
equivalent. Thus, we will primarily work with the metric dK throughout the paper. In par
ticular, any Bowen ball Bt(v, ε) appearing from here onward is with respect to the metric dK, 
i.e.

Bt(v, ε) := {w ∈ T1M : dK( fτw, fτv) < ε for all 0 � τ � t}.

Furthermore, an intrinsic metric ds on Ws(v) for all v ∈ T1M  is given by

ds(u,w) := inf{l(πγ) : γ : [0, 1] → Ws(v), γ(0) = u, γ(1) = w}

where l is the length of the curve in M, and the infimum is taken over all C1 curves γ  connect-
ing u,w ∈ Ws(v). Using ds we can define the local stable leaf through v of size ρ  as:

Ws
ρ(v) := {w ∈ Ws(v) : ds(v,w) � ρ}.

Moreover, we can locally define a similar intrinsic metric dcs on Wcs(v) as:

dcs(u,w) = |t|+ ds( ftu,w)

where t is the unique time such that ftu ∈ Ws(w). This metric dcs extends to the whole central 
stable leaf Wcs(v). We also define du,Wu

ρ(v), dcu(v) analogously. Notice that when ρ  is small 
these intrinsic metrics are uniformly equivalent to dS and dK.

Remark 3.6.  A handy feature of these metrics is that for any v ∈ T1M , σ ∈ {s, cs} and for 
any u,w ∈ Wσ the map t �→ dσ( ftu, ftw) is a non-increasing function. Indeed, let γ  be a curve 
in Ws(v) connecting u and w. Then ftγ lies in Ws( ftv). { fs(γ)}0�s�t is a one-parameter fam-
ily of geodesics and the associated Jacobi fields are all stable. Since stable Jacobi fields are 
non-increasing on manifolds without focal points (proposition 3.5 (9)), the length of γ  is not 
less than the length of ft(γ).

Similarly, for σ ∈ {u, cu}, t �→ dσ( ftu, ftw) is non-decreasing. These features are used in 
establishing the specification property in section 5.
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Following proposition 3.5, one can define the stable horosphere Hs(v) ⊂ M  and the unsta­
ble horosphere Hu(v) ⊂ M  as the projection of the respective foliations to M:

Hs(v) = π(Ws(v)) and Hu(v) = π(Wu(v)).

We now summarize some useful properties of them.

Proposition 3.7 ([Esc77, theorem 1i, ii]).  Let M be a Riemannian closed manifold with­
out focal points. Then we have

	(1)	�Hu(v), Hs(v) are C2-embedded hypersurfaces when lifted to the universal cover M̃.
	(2)	�For σ ∈ {s, u}, thesymmetric linear operator Uσ(v) : TπvHσ(v) → TπvHσ(v) given by 

v �→ ∇vN , i.e. the shape operator on Hσ(v), is well-defined, where N is the unit normal 
vector field on Hσ(v) toward the same side as v.

	(3)	�Uu is positively semidefinite and U s is negatively semidefinite.

We are ready to rephrase above two propositions specific to the surface setting. From now 
on, we denote by S a closed Riemannian surface of genus at least 2 without focal points. Then 
from propositions 3.5 and 3.7 we have:

	 •	�S is rank 1.
	 •	�For v ∈ T1S, Hu(v) (resp., Hs(v)) is one dimensional and called the unstable (resp., 

stable) horocycle.
	 •	�The (one dimensional) linear operator Uu(v) : TπvHu(v) → TπvHu(v) is given by 

the geodesic curvature ku(v) of the horocycle of Hu(v) at πv. More precisely, for all 
w ∈ TπvHu(v)

Uu(v)(w) = ku(v)w.

	 •	�Similarly, U s(v) is given by ks(v) the geodesic curvature ks(v) of the horocycle of Hs(v) 
at πv, i.e. U s(v)(w) = −ks(v)w for all w ∈ TπvHs(v). Moreover, ks(−v) = ku(v) which 
follows from the fact that Hs(v) = Hu(−v).

3.2.  Hyperbolicity indices λ and λT

In this subsection, using ks and ku we introduce several useful functions to quantify the hyper-
bolicity for any v ∈ T1S. These hyperbolicity indices will be used in section 4 to derive the 
decomposition for orbit segments.

Definition 3.8.  For v ∈ T1S and for any T  >  0, we define:

	(1)	�λ(v) := min(ku(v), ks(v)).
	(2)	�λT(v) :=

∫ T
−T λ( fτv)dτ .

Remark 3.9. 

	(1)	�Since the horocycles are C2 (by proposition 3.7), we have ks and ku are continuous, and so 
are λ and λT .

	(2)	�The λ defined in this paper is exactly the same as the λ introduced in [BCFT18].

Remark 3.10.  The main difference between the ‘nonpositively curved’ setting in [BCFT18] 
and our ‘no focal points’ setting is the following: in nonpositively curved manifolds, the norm 
of Jacobi fields is convex, while it is not necessarily true in manifolds with no focal points. 
As one can observe in [BCFT18], the convexity on the norm of Jacobi fields can be used to 
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deduce good estimates on λ (for instance, lemma 3.3 in [BCFT18]), and one can use λ to 
characterize the singular set.

However, λ does not enjoy such properties in our setting. In order to equip λ with nice 
properties as in [BCFT18], we introduce a new function λT  by integrating λ for a longer time 
T. While λ(v) in no focal points setting does not capture the hyperbolicity at v, the integrated 
function λT  for large enough T is successful in distinguishing Sing from Reg, and this is the 
main motivation for introducing the new function λT .

The following proposition and lemma establish relations between horocycles and related 
Jacobi fields. The version we state below is from [BCFT18, lemma 2.9].

Proposition 3.11.  Let γv(t) be a unit speed geodesic such that γ̇v(0) = v, and Ju be the 
Hu(v)-Jacobi field along γv, that is, the Jacobi field derived by varying through geodesics 
perpendicular to Hu(v) and satisfying ‖Ju(0)‖ = 1. Then Ju ∈ J u and

(Ju)′(t) = ku( ftv)Ju(t) for all t ∈ R.� (3.4)

Similarly, for Js the Hs(v)-Jacobi field along γv, we have Js ∈ J s and (Js)′(t) = −ks( ftv)Js(t) 
for all t ∈ R.

Proof.  Let α(s, t) for (s, t) ∈ (−ε, ε)× R  be the variation of geodesics along Hu(v), i.e. 

α(0, t) = γv(t) and α(s, 0) ∈ Hu(v), such that ∂∂sα(s, t)
∣∣
s=0 = Ju(t). Then, for t  =  0

(Ju)′(0) =
∇
∂t

∂

∂s
α(s, t)

∣∣∣∣
s=0,t=0

=
∇
∂s

∂

∂t
α(s, t)

∣∣∣∣
s=0,t=0

=∇Ju(0)N = Uu(v)(Ju(0)) = ku(v)Ju(0),

where the second equality is by the symmetry of the Levi-Civita connection and the last equal-
ity follows from proposition 3.7.

To see this is true for all t, we notice that the flow invariant unstable manifold Wu(v) con-
sists of vectors which are perpendicular to Hu(v) and point toward to the same side as v (see 
proposition 3.5). That is, when we vary geodesics perpendicularly along Hu(v), these geodes-
ics vary perpendicularly along Hu( ftv) as well. Thus, Ju(t) is the Jacobi field derived by vary-
ing geodesics perpendicular to Hu( ftv), and we have (Ju)′(t) = ku( ftv)Ju(t) by repeating the 
computation above. For Js, the same argument applies.� □ 

Let Λ be the maximum value of the function ku:

Λ := max
v∈T1S

ku(v) = max
v∈T1S

ks(v).� (3.5)

From the proposition above, for σ ∈ {s, u} we have ‖(Jσ)′(t)‖ � Λ ‖Jσ(t)‖ for all t. Then by 
equation (3.2), for any ξ ∈ Eu(v) or Es(v) we have

||Jξ(t)||2 � ||dftξ||2 � (1+ Λ2)||Jξ(t)||2.

The following lemma is an immediate consequence of proposition 3.11 obtained by inte-
grating (3.4), and it is the analogue of [BCFT18, lemma 2.11]

Lemma 3.12.  Let v ∈ T1S and Ju (resp. Js) be an unstable (resp. stable) Jacobi field along 
γv. Then

||Ju(t)|| � e
∫ t
0 k

u( fτ v)dτ ||Ju(0)|| and ||Js(t)|| � e−
∫ t
0 k

s( fτ v)dτ ||Js(0)||.� (3.6)

A handy lemma for computation:
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Lemma 3.13.  Let ψ : R → R be a continuous non-negative function and

ψT(t) :=
∫ T

−T
ψ(t + τ)dτ .

Then, for every a � b,
∫ b

a
ψT(t)dt � 2T

∫ b+T

a−T
ψ(t)dt.

Moreover, we have

1
2T

∫ t

0
λT( fτv)dτ − 2TΛ �

∫ t

0
λ( fτv)dτ

where Λ := max
v∈T1S

ku(v) = max
v∈T1S

ks(v) as in (3.5).

Proof.  For b− a � 2T ,
∫ b

a
ψT(t)dt =

∫ b

a

∫ T

−T
ψ(t + τ)dτdt

=

∫ b−T

a−T
(τ + T − a)ψ(τ)dτ +

∫ a+T

b−T
(b− a)ψ(τ)dτ +

∫ b+T

a+T
(b+ T − τ)ψ(τ)dτ

� (b− a)
∫ b−T

a−T
ψ(τ)dτ + (b− a)

∫ a+T

b−T
ψ(τ)dτ + (b− a)

∫ b+T

a+T
ψ(τ)dτ

= (b− a)
∫ b+T

a−T
ψ(τ)dτ � 2T

∫ b+T

a−T
ψ(τ)dτ .

For b− a � 2T ,
∫ b

a
ψT(t)dt =

∫ b

a

∫ T

−T
ψ(t + τ)dτdt

=

∫ a+T

a−T
(τ + T − a)ψ(τ)dτ +

∫ b−T

a+T
2Tψ(τ)dτ +

∫ b+T

b−T
(s+ T − τ)ψ(τ)dτ

� 2T
∫ a+T

a−T
ψ(τ)dτ + 2T

∫ b−T

a+T
ψ(τ)dτ + 2T

∫ b+T

b−T
ψ(τ)dτ = 2T

∫ b+T

a−T
ψ(τ)dτ .

Since Λ � max
v∈T1S

λ(v), the last assertion follows from
∫ t

0
λ( fτv)dτ =

∫ T+t

−T
λ( fτv)dτ −

∫ 0

−T
λ( fτv)dτ −

∫ T+t

t
λ( fτv)dτ

�
∫ T+t

−T
λ( fτv)dτ − 2TΛ

�
1
2T

∫ t

0
λT( fτv)dτ − 2TΛ.

This completes the proof.� □ 
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4.  A decompositions of finite orbit segments

4.1.  Sing, λ,λT , and decompositions

In this subsection, we discuss a decomposition given by λT . This decomposition will allow 
us to apply the Climenhaga–Thompson criteria (i.e. theorem 2.10) to prove the uniqueness of 
equilibrium states. Throughout the section, we retain the same notations as previous sections.

Definition 4.1 (Good orbits and bad orbits).  For any T , η > 0, we define the two collec-
tions of finite orbit segments GT(η),BT(η) ⊂ T1S× [0,∞) using λT :

GT(η) :={(v, t) :
∫ τ

0
λT( fθv)dθ � τη and

∫ τ

0
λT( f−θftv)dθ � τη ∀τ ∈ [0, t]},

BT(η) :={(v, t) :
∫ t

0
λT( fθv)dθ < tη}.

Using GT(η) and BT(η), we define the orbit decomposition

(P ,G,S) = (BT(η),GT(η),BT(η)).

More precisely, we define three maps p, g, s : T1S× [0,∞) → R as follows. For any 
given finite orbit segment (v, t), we let p = p(v, t) ∈ [0, t] be the largest time such that 
(v, p) ∈ BT(η). We then let s = s(v, t) ∈ [0, t − p] be the largest time such that ( ft−sv, s) ∈ BT(η), 
and let g = g(v, t) = t − s− p be the remaining time in the middle. From the choice of p  and 
s, it is not hard to see that ( fpv, g) ∈ GT(η). Indeed, if ( fpv, g) did not belong to GT(η), then one 
of (or both) p  and s can be increased, and this would contradict the choice of p  or s as the larg-
est time such that (v, p) ∈ BT(η) and ( ft−sv, s) ∈ BT(η). Please see figure 2 for an example.

Proposition 4.2.  We have:

	(1)	�Sing is closed and flow invariant.
	(2)	�GT(η) ⊂ T1S× R is closed.
	(3)	�Reg is dense in T1S.

Proof.  These assertions are rather straightforward from their definitions (notice that λT  is 
continuous). Nevertheless, we elaborate a little more on the last one since it is less obvious 

Figure 2.  Orbit decomposition.
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than others. Notice that the geodesic flow is topologically transitive (see proposition 3.5), 
so there exists a dense orbit γ ⊂ T1S. Since Reg is an open set, there exists t ∈ R such that 
γ(t) ∈ Reg, and which implies that γ ⊂ Reg because Sing is flow invariant.� □ 

4.2.  Uniform estimates on GT (η)

Let T , η > 0 be given, and suppose T  >  1. From the compactness of T1S, the functions λ and 
λT  are uniformly continuous, so there exists δ = δ(T , η) such that

dK(v,w) < δ =⇒ |Θ(v)−Θ(w)| < η

4T
,� (4.1)

where Θ is one of λ or λT .
Also, define

λ̃(v) = max
{
0,λ(v)− η

4T

}
.

Then, for w ∈ Bt(v, δ), we have
∫ t

0
λ( fτw)dτ �

∫ t

0
λ̃( fτv)dτ �

∫ t

0
λ( fτv)dτ − ηt

4T
.� (4.2)

It follows from (4.2) and lemma 3.13 that
∫ t

0
λ̃( fτv)dτ �

∫ t

0
λ( fτv)dτ − ηt

4T
,

�
1
2T

∫ t

0
λT( fτv)dτ − 2TΛ− ηt

4T
,

� (4.3)

where Λ = max
v∈T1S

ku(v) as in (3.5).

Lastly, using the notations above, we have the following control of the expansion and con-
traction along stable and unstable leaves.

Lemma 4.3 ([BCFT18, lemma 3.10]).  For any T , η > 0, pick δ = δ(T , η) as in (4.1). Then 
for any v ∈ T1S and w,w′ ∈ Ws

δ(v), we have the following for every t � 0:

ds( ftw, ftw′) � ds(w,w′)e−
∫ t
0 λ̃( fτ v)dτ .

Similarly, if w,w′ ∈ Wu
δ(v), then for any t � 0,

du( f−tw, f−tw′) � du(w,w′)e−
∫ t
0 λ̃( f−τ v)dτ .

Remark 4.4.  Lemma 4.3 can be proved in the exact same way as [BCFT18, lemma 3.10]. 
Although the setting of [BCFT18] is nonpositively curved manifolds and λ̃ in [BCFT18] is 
slightly different from our λ̃, the proof of [BCFT18, lemma 3.10] still applies to lemma 4.3 
without any modification. Indeed, the proof of [BCFT18, lemma 3.10] is based on [BCFT18, 
lemma 2.11], and we have the corresponding lemma 3.12 available in our setting as well. The 
difference in the definitions of λ̃ also does not cause any problem because the only inequality 
used in proving [BCFT18, lemma 3.10] is λ � λ̃, and this inequality remains true from the 
definition of λ̃.

The following lemma refines lemma 4.3. In other words, it provides us with a nice control 
on the expansion and contraction for orbit segments in GT .
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Lemma 4.5.  For any T  >  1 and η > 0, pick δ = δ(T , η) as in (4.1), and suppose 
(v, t) ∈ GT(η). Then every v′ ∈ Bt(v, δ) satisfies (v′, t) ∈ GT(

η
2 ).

Moreover, there exists C = C(T , η) > 0 such that for any (v, t) ∈ GT(η), any w,w′ ∈ Ws
δ(v) 

and any 0 � τ � t ,

ds( fτw, fτw′) � Cds(w,w′)e−
η
4T τ .

Similarly, for w,w′ ∈ f−tWu
δ( ftv) and 0 � τ � t , we have

du( fτw, fτw′) � Cdu( ftw, ftw′)e−
η
4T (t−τ).

Proof.  The first statement follows from the choice of δ = δ(T , η) in (4.1): for any 
v′ ∈ Bt(v, δ) where (v, t) ∈ GT(η) and any 0 � τ � t , we have

∫ τ

0
λT( fθv′)dθ �

∫ τ

0
λT( fθv)dθ − τ · η

4T
> τη − τη

4T
>

τη

2
.

The last inequality used the assumption that T  >  1. Similarly, 
∫ τ

0 λT( f−θ+tv′)dθ > τη/2. 
Hence, (v′, t) ∈ GT(η/2).

By lemma 4.3 and inequality (4.3), since (v, t) ∈ GT(η), we have

ds( fτw, fτw′) � ds(w,w′)e−
∫ τ
0 λ̃( fxv)dx,

� ds(w,w′) exp



−1
2T

∫ τ

0
λT( fxv)dx

︸ ︷︷ ︸
�τη

+ 2TΛ +
ητ

4T


 ,

� ds(w,w′) exp

(
−ητ

2T
+ 2TΛ +

ητ

4T

)
= C · ds(w,w′)e−

ητ
4T ,

where C = e2TΛ. Similarly, we have the other inequality.� □ 

Definition 4.6.  We define the uniformly regular set as

RegT(η) := {v ∈ T1S : λT(v) � η}.

Lemma 4.7.  Given η, T > 0, there exists θ > 0 so that for any v ∈ RegT(η), we have for 
any −T � t � T

�(Eu( ftv),Es( ftv)) � θ.

Proof.  Assume the contrary. Then there exists {(vi, ti)}i∈N ⊂ RegT(η)× [−T , T] such that

�(Es( ftivi),E
u( ftivi)) → 0.

Since RegT(η)× [−T , T] is compact, there exist subsequences tij → t0, and vij → v0 such that 
�(Es( ft0v0),Eu( ft0v0)) = 0. Then, ft0v0 ∈ Sing from proposition 3.5 (5). On the other hand, 
RegT(η) is closed so v0 ∈ RegT(η). However, this is a contradiction because Sing is flow in-
variant.� □ 
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4.3.  Relations between ks, ku,λ,λT , and Sing

The aim of this subsection is to show how one can use these hyperbolicity indices λ and λT  to 
characterize the singular set Sing.

Lemma 4.8.  The following are equivalent for v ∈ T1S.

	(1)	�v ∈ Sing.
	(2)	�ku( ftv) = 0 for all t ∈ R.
	(3)	�ks( ftv) = 0 for all t ∈ R.

Proof.  It is clear that (1) =⇒ (2) and (3). We will prove (2) =⇒ (1) which then (3) =⇒ (1) 
similarly follows.

To see (2) =⇒ (1), it is enough to show that Ju the unstable Jacobi field along γv is parallel. 
By proposition 3.11, we have for all t ∈ R

(Ju)′(t) = ku( ftv)Ju(t) = 0.

Thus Ju is a parallel Jacobi field.� □ 

Lemma 4.9.  λT(v) = 0 for all T if and only if v ∈ Sing.

Proof.  The if direction is clear. In the following we prove the only if direction.

First we notice that since λ is non-negative, continuous, we have that λT(v) = 0 for all 
T ∈ R implies λ( ftv) = 0 for all t ∈ R.

Claim: There are only three possible cases such that λ( ftv) = 0 for all t ∈ R:

	 (i)	�ks( ftv) = 0 for all t ∈ R.
	(ii)	�ku( ftv) = 0 for all t ∈ R.
	(iii)	�There exists t0 ∈ R such that ks( ft0v) = ku( ft0v) = 0.

It is clear from lemma 4.8 that both (i) and (ii) give v ∈ Sing. To see (iii) also im-
plies v ∈ Sing, we recall that, for σ ∈ {s, u}, kσ( ft0v) = 0 implies that there exists 
0 �= wσ ∈ Tπ( ft0v)H

σ( ft0v) such that kσ(wσ) = 0 . Since both wu,ws  are orthogonal to ft0v 
and S is a surface, we know wu = ws (by taking the same length, and reversing the sign if 
necessary). It is not hard to see that the Hu( ft0v)-Jacobi field Ju matches the Hs( ft0v)-Jacobi 
field Js, that implies, Eu( ft0v) ∩ Es( ft0v) �= 0. Thus we have ft0v ∈ Sing, and because Sing is 
flow invariant we have v ∈ Sing.

To see the claim, let U := {t ∈ R : ku( ftv) = 0} and W := {t ∈ R : ks( ftv) = 0}. Since 
both ku, ks are continuous, U and W are closed sets in R . Notice that if U ∩W = ∅ then 
U = R\W ; thus U, W are clopen sets. Since R  is connected, if U ∩W = ∅, then U = R or 
W = R.� □ 

Remark 4.10. 

	(1)	�We remark that we are using the fact that S is a surface in the proof of lemma 4.9. Indeed, 
in the process of showing that v ∈ Sing from λT(v) = 0 for all T, we obtained a parallel 
Jacobi field along v by showing that the stable Jacobi field Js is equal the unstable Jacobi 
field Ju, and this step required that S is a surface.
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	(2)	�There are a few other places in this paper where we make use of the fact that S is a 
surface. For instance, when we establish the Bowen property for the scalar multiples 
of the geometric potential in section 6, our analysis heavily rely on the fact that S is a 
2-dimensional manifold. Moreover, the Bernoulli property on µϕ from theorem B as well 
as the differentiability of the map q �→ P(qϕu) on the interval (−∞, 1) from theorem C 
rely on the fact that S is a surface.

Lemma 4.11.  Let µ be a F -invariant probability measure on T1S. Suppose λ(v) = 0 for 
µ-a.e. v ∈ T1S, then supp(µ) ⊂ Sing.

Proof.  Suppose supp(µ) � Sing. Since µ is Borel, there exists v ∈ Reg ∩ supp(µ) such 
that for any r  >  0 we have µ(B(v, r)) > 0. We also notice that since v ∈ Reg there exists t0 
such that λ( ft0v) > 0 (otherwise v ∈ Sing by lemma 4.9). By the continuity of λ, there ex-

ists a neighborhood B( ft0v, r0) of ft0v such that λ|B( ft0v,r0) > 0. Then there exists r  >  0 such 
B(v, r) ⊂ f−t0(B( ft0v, r0)) and we have

µ(B( ft0v, r0)) = µ( f−t0(B( ft0v, r0))) � µ(B(v, r)) > 0.

Hence, λ cannot vanish µ-almost everywhere.� □ 

5. The specification property

Let X be a compact metric space with metric d and F = ( ft)t∈R be a flow on X. For any 

t ∈ R+, we set dt(v,w) = sups∈[0,t] d( fsv, fsw) for any v,w ∈ X .

In what follows, X will be T1S and d the metric dK. With respect to the intrinsic metric dcs 
and du on Wcs and Wu, these metrics relate to each other by (from the fact that the stable mani-
fold is non-increasing in forward time; see remark 3.6)

dK(v,w) � dcs(v,w) and dK(v,w) � eΛdu(v,w)

where Λ = maxv∈T1S ku(v) = maxv∈T1S ks(v) as defined in (3.5). This then implies

dt(v,w) � dcs(v,w),

dt(v,w) � du( ft+1v, ft+1w) � eΛdu( ftv, ftw).
� (5.1)

Definition 5.1.  The foliations Wcs and Wu have local product structure at scale δ > 0 with 
constant κ � 1 at v if for any w1,w2 ∈ B(v, δ), the intersection [w1,w2] := Wu

κδ(w1) ∩Wcs
κδ(w2) 

is a unique point and satisfies

du(w1, [w1,w2]) � κdK(w1,w2),
dcs(w2, [w1,w2]) � κdK(w1,w2).

For any T , η > 0, we define CT(η) := {(v, t) : v, ftv ∈ RegT(η)}. The uniform lower bound 
of λT  on the endpoints of the orbits in CT(η) guarantees the uniform local product structure 
on CT(η):

Lemma 5.2.  For any T , η > 0, there exist δ > 0 and κ � 1 such that CT(η) has local prod­
uct structure at scale δ with constant κ.
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Proof.  The lemma follows from the uniform angle gap from lemma 4.7 together with the 
continuity of the distribution Es and Eu.� □ 

The following proposition is due to the transitivity of the geodesic flow.

Proposition 5.3.  Let T , η > 0 be given. Then there exists δ > 0 such that for any 
ρ ∈ (0, δ], there exists a = a(ρ) such that the following holds: for any v,w ∈ T1M with 
dK(v, RegT(η)) < δ  and dK(w, RegT(η)) < δ, there exists τ ∈ [0, a] and [v,w]τ ∈ T1S such 
that

[v,w]τ ∈ Wu
ρ(v) and fτ [v,w]τ ∈ Wcs

ρ (w).� (5.2)

Proof.  Let ε and κ be the constants from the local product structure on RegT(η). By taking 
δ ∈ (0, ε/2) sufficiently small, we can ensure that the δ-neighborhood of RegT(η) has local 
product structure at scale ε/2 with constant 2κ. Now using the transitivity of the flow F , for 
any ρ ∈ (0, δ), we can find a = a(ρ) such that the following holds: for any v,w, there exists 
x = x(v,w) ∈ B(v, ρ/4κ2) and τ ∈ (0, a) with f τx ∈ B(w, ρ/4κ2).

If v,w happen to be δ-close to RegT(η), then the uniform local product structure on  
δ-neighborhood of RegT(η) gives [v,w]τ  as follows: take z = [v, x] and set [v,w]τ := f−τ [ fτ z,w]. 
Then, [v,w]τ := f−τ [ fτ z,w] satisfies (5.2).� □ 

Remark 5.4.  It is worth noting that the choices of τ  and [v,w]τ  are not unique; we simply 
choose any one of [v,w]τ’s that satisfy (5.2).

Proposition 5.5.  For any η, T > 0, CT(η) has specification as in definition 2.5. Hence, so 
does GT(η).

Proof.  Let T , η > 0 be given. We begin by fixing any regular periodic orbit (v′0, t
′
0) as our 

reference orbit. From Lemma 4.9, there exists T ′, η′ > 0 such that the entire orbit segment 
(v′0, t

′
0) is contained in RegT′(η′). By comparing T ′ and the given T, we re-define T as the 

larger of the two. Similarly, we re-define η as the smaller of η′ and the given η. It then follows 
that (v′0, t

′
0) ∈ GT(η). We set v0 := f−Tv′0 and t0 := 2T + t′0. Then (v0, t0) is just an extended 

orbit segment obtained from (v′0, t
′
0), and its endpoints v0, ft0v0 belong to RegT(η).

Using the uniform continuity of λ, we can choose δ1 > 0 such that |λ(v)− λ(w)| < ηt′0
4Tt0

 

whenever dK(v,w) < δ1. For such choice of δ1, for any w ∈ Bt0(v0, δ1) we have

2T
∫ t0

0
λ( fsw)ds � 2T

∫ t0

0
λ( fsv0)ds− (2T)t0 ·

ηt′0
4Tt0

,

�
∫ t′0

0
λT( fsv′0)ds−

ηt′0
2
,

� ηt′0 −
ηt′0
2

=
ηt′0
2
.

The second and third inequalities are due to lemma 3.13 and the assumption 

that (v′0, t
′
0) ∈ GT(η), respectively. In particular, setting α := exp(

ηt′0
4T ) > 1, for any 

w,w′ ∈ Bt0(v0, δ1) with w′ ∈ f−t0W
u
δ1
( ft0w), we have

αdu(w,w′) � du( ft0w, ft0w
′).� (5.3)
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Let δ2 > 0 be from proposition 5.3, and set δ := min{δ1, δ2}. Given an arbitrary small 

scale 0 < ρ < δ , we will show that by setting ρ′ := ρ/
(
6eΛ

∑∞
i=1 α

−i
)
, CT(η) has specifica-

tion at scale ρ  with corresponding τ(ρ) := t0 + 2a where a := a(ρ′) is from proposition 5.3.
Let (v1, t1), . . . , (vn, tn) ∈ CT(η) be given. We will inductively define orbit segments (wj, sj) 

such that for each 1 � j � n, we have

fsjwj ∈ Wcs
ρ′( ftjvj).� (5.4)

We begin by setting (w1, s1) := (v1, t1). Supposing that (wj, sj) satisfies (5.4), we want to 
define (wj+1, sj+1) in a way that the orbit of wj +1 closely shadows that of wj  for time sj , then 
jumps (via proposition 5.3 with transition time � a) to v0 and shadows v0 for time t0, then 
jumps to (again via proposition 5.3) and shadows vj+1 for time tj +1.

Since proposition 5.3 only allows one jump at a time, we define an auxiliary orbit segment

(uj, lj) :=
(
f−sj [ fsjwj, v0]τj , sj + τj + t0

)

by applying proposition 5.3 to fsjwj and v0. Note that proposition 5.3 can be successfully ap-
plied because fsjwj ∈ Wcs

ρ′( ftjvj) from (5.4) and ftjvj ∈ RegT(η) from (vj, tj) ∈ CT(η). Moreo-
ver, fljuj ∈ Wcs

ρ′(v0) because fsj+τj uj ∈ Wcs
ρ′(v0) and dcs does not increase in forward time; see 

remark 3.6.
We then apply proposition 5.3 again to fljuj  and vj+1 to obtain

(wj+1, sj+1) :=
(
f−lj [ fljuj, vj+1]τ ′

j
, lj + τ ′j + tj+1

)
.

From the same reasoning as in the construction of (uj, lj), the new orbit segment (wj+1, sj+1) 
is well-defined and fsj+1wj+1 ∈ Wcs

ρ′( ftj+1vj+1).
Now we show that (wj, sj) constructed as above shadows each (vi, ti) up to i  =  j  with scale 

ρ′; that is, dti( fsi−tiwj, vi) < ρ. Notice that for any i � m � j, we have

du( fsiwm, fsium) � ρ′α−(m−i).

This is because du( fsmwm, fsmum) � ρ′ from the construction of um and each time fsmum and 
fsmwm pass through the reference orbit (v0, t0) in backward time, their du distance decrease by 
a factor of at least α from (5.3). Similarly, we have

du( fsium, fsiwm+1) � ρ′α−(1+m−i).

Hence, for any i � j, we can uniformly bound the du distance du( fsiwj, fsiwi) by ρ
3eΛ :

du( fsiwj, fsiwi) �
j−1∑
m=i

du( fsiwm, fsiwm+1),

�
j−1∑
m=i

du( fsiwm, fsium) + du( fsium, fsiwm+1),

� ρ′
j−1∑
m=i

α−(m−i) + ρ′
j−1∑
m=i

α−(1+m−i),

�
ρ

3eΛ
,
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where the last inequality is due to the definition of ρ′. From the relations among various met-
rics (5.1), we obtain that

dti( fsi−tiwj, vi) � dti( fsi−tiwj, fsi−tiwi) + dti( fsi−tiwi, vi),

�
ρ

3eΛ
· eΛ + ρ′ � ρ,

where we have used that ds( fsi−tiwi, vi) � ρ′ from the construction of wi. Since ρ  was arbi-
trary, this finishes the proof.� □ 

One useful corollary of the specification property is the closing lemma which creates lots 
of periodic orbits, and later allows CT(η) to be approximated by regular periodic orbits. The 
proof of the closing lemma below follows the same idea as [BCFT18, lemma 4.7].

Lemma 5.6 (The closing lemma).  For any given T , η, ε > 0, there exists s = s(ε) > 0 
such that for any (v, t) ∈ CT(η) there exists w ∈ Bt(v, ε) and τ ∈ [0, s(ε)] with ft+τw = w.

Proof.  The proof is based on Brouwer’s fixed point theorem. We begin by fixing a reg-
ular periodic orbit (v′0, t

′
0) ∈ GT  and set (v0, t0) := ( f−Tv′0, 2T + t′0) as in proposition 

5.5, after possibly re-defining T and η. Reasoning as in proposition 5.5, there exists δ > 0 
such that the distance between any w,w′ ∈ Ws

δ(v0) contract (and likewise expand for any 

w,w′ ∈ f−t0W
u
δ( ft0v0)) under ft0  by factor α := exp(

ηt′0
4T ).

Let ε = ε0/4. We may suppose ε is small enough that CT(η) has local product structure 
at scale ε and constant κ. Let n ∈ N such that αn > 2κ. Also, we may assume nt0 � 1+ ε 
without loss of generality (otherwise, simply increase n).

Now, for any (v, t) ∈ CT(η), we use proposition 5.5 to find w0 ∈ B(v, ε/4κ) whose orbits 
shadows (v, t) once, then (v0, t0) n-times, and then (v, t) once again at scale ε/4κ with each 
transition time bounded above by τ̃ . Since w0 has to eventually shadow (v, t) again, there 
exists τ0 ∈ [nt0, n(t0 + τ̃) + τ̃ ] such that ft+τ0w0 ∈ B(v, ε/4κ). From the triangle inequality 
pivoted at v, we have dK(w0, ft+τ0w0) < 2 · ε/4κ = ε/2κ. Also, using the forward contraction 
of the stable manifold near the reference orbit (v0, t0), for any u ∈ Ws

ε(w0), we have

dK( ft+τ0u,w0) � dK( ft+τ0u, ft+τ0w0) + dK( ft+τ0w0,w0),

� α−ndK(u,w0) + ε/2κ � ε/κ.

Since v has local product structure at scale ε with constant κ and ω0 is ε/4κ-close to v, the 
point Ws

ε(w0) ∩Wcu
ε ( ft+τ0u) is well-defined and belongs to Ws

ε(w0). In particular, the continu-
ous map from Ws

ε(w0) to itself given by

u �→ Ws
ε(w0) ∩Wcu

ε ( ft+τ0u)

is well-defined. Hence, by Brouwer fixed point theorem, we can find a fixed point w1 ∈ Ws
ε(w0) 

under this map. Since the map is not given by f s for some s, the fixed point w1 is not quite F  
invariant yet. Instead, its characterizing property is that w1 ∈ Wcu

ε ( ft+τ0w1).
By adjusting τ0 by a unique small constant less than ε, we have w1 ∈ Wu

ε( ft+τw1) where 
τ  is adjusted constant from τ0. Since the unstable manifold shrinks in backward time near 
(v0, t0) by factor α, this time we obtain a continuous map defined by the flow f−t−τ :

f−t−τ : Wu
2ε( ft+τw1) → Wu

2ε( ft+τw1).

Hence, the Brouwer fixed point theorem applies again and we obtain w ∈ Wu
2ε( ft+τw1) with 

ft+τw = w. We are left to show that dt(v,w) � ε0. This follows because
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dt(v,w) � dt(v,w0) + dt(w0,w1) + dt(w1,w),
� ε/4κ+ ds(w0,w1) + du(w1,w),
� ε/4κ+ ε+ 2ε � ε0.

Here, we have used (5.1) and the fact that dt(w1,w) � du( ft+1w1, ft+1w) � du( ft+τw1, ft+τw) 
because τ � nt0 − ε � 1. Lastly, setting s(ε0) := n(t0 + τ̃) + τ̃ + ε, we are done.� □ 

Using the same argument as [BCFT18, corollary 4.8], we have the following corollary of 
the closing lemma.

Corollary 5.7.  For any given T , η > 0, there exist ε = ε(T , η) > 0 such that for any ε0 < ε 
there exists s = s(ε0) > 0 satisfying the following: for any (v, t) ∈ CT(η) there exists

	(1)	�a regular vector w with w ∈ Bt(v, ε0), and
	(2)	�τ ∈ [0, s] with ft+τw = w.

Proof.  From the uniform continuity of λ, there exists ε = ε(η) > 0 such that for all 
w ∈ B(v, ε), we have λ(w) > 0.

Since v ∈ CT(η), there exists v′ = fσv for some σ ∈ [−T , T] such that λ(v′) > η. Also, 
we must have (v′, t + σ) ∈ C2T(η) from the definition of CT(η). By lemma 5.6, for any 
2T , η, ε0 > 0, there exists s = s(ε0) > 0 such that w ∈ Bt+σ(v′, ε0) and τ ∈ [0, s(ε0)] such 
that ft+σ+τ (w) = w.

Also, it follows that w is a regular vector because λ(w) > 0 from dK(v′,w) < ε0 < ε.� □ 

6. The Bowen property

In this section, we prove the Bowen property for Hölder potentials and the geometric potential 
ϕu. Lemmas in this section have their corresponding versions in [BCFT18] and the proofs fol-
low the same ideas. Nevertheless, in contrast to [BCFT18], we have an extra time parameter 
T for accumulating hyperbolicity, thus we have to modify proofs in [BCFT18] accordingly. In 
particular, we take a slightly different approach from [BCFT18] to derive the Bowen property 
for geometric potentials, because several crucial estimates in [BCFT18] do not extend to the 
no focal point setting.

6.1. The Bowen property for Hölder potentials

Definition 6.1.  A function ϕ : T1S → R is called Hölder along stable leaves if there exist 
C, θ, δ > 0 such that for v ∈ T1S and w ∈ Ws

δ(v), one has |ϕ(v)− ϕ(w)| � Cds(v,w)θ. Simi-
larly, ϕ is called Hölder along unstable leaves if there exist C, θ, δ > 0 such that for v ∈ T1S 
and w ∈ Wu

δ(v), one has |ϕ(v)− ϕ(w)| � Cdu(v,w)θ.

Since dK is equivalent to du and ds along unstable and stable leaves when δ is small, we know 
ϕ is Hölder implies that ϕ is Hölder along stable and unstable leaves.

Definition 6.2.  A function ϕ is said to have the Bowen property along stable leaves with 
respect to C ⊂ T1S× [0,∞) if there exist δ,K > 0 such that
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sup {|Φ(v, t)− Φ(w, t)| : (v, t) ∈ C, w ∈ Ws
δ(v)} � K.

Similarly, a function ϕ is said to have the Bowen property along unstable leaves with respect 
to C ⊂ T1S× [0,∞) if there exist δ,K > 0 such that

sup {|Φ(v, t)− Φ(w, t)| : (v, t) ∈ C, w ∈ f−tWu
δ( ftv)} � K.

Lemma 6.3.  For any T  >  1 and η > 0, if ϕ is Hölder along stable leaves (resp. unsta­
ble leaves), then ϕ has the Bowen property along stable leaves (resp. unstable leaves) with  
respect to GT(η).

Proof.  It is a direct consequence of lemma 4.5. We prove the stable leaves case, and for 
unstable leaves one uses the same argument.

Let (v, t) ∈ GT(η), δ1 > 0 be as in lemma 4.5 and δ2 > 0 be given by the Hölder continuity 
along stable leaves. Then for δ = min{δ1, δ2} and w ∈ Ws

δ(v), we have

|Φ(v, t)− Φ(w, t)| �
∫ t

0
|ϕ( fτv)− ϕ( fτw)| dτ �

∫ t

0
C1 · ds( fτv, fτw)θdτ

�
∫ t

0
C1 ·

(
Cds(v,w) · e−

η
4T τ

)θ

dτ � C1 · Cθ · ds(v,w)θ
∫ t

0
e

−ηθ
4T τdτ

� C1 · Cθδθ
4T
ηθ

.

This completes the proof.� □ 

It was proved in [BCFT18, lemma 7.4] that the Bowen property along invariant leaves 
implies the Bowen property on the entire phase space. With minor modification on the proof 
of [BCFT18, lemma 7.4], we have the following similar result for geodesic flows over mani-
folds without focal points. More precisely, the lemma below follows after replacing G(η) and 
[BCFT18, corollary 3.11] used in the proof of [BCFT18, lemma 7.4] by GT(η) and lemma 4.5, 
respectively.

Lemma 6.4.  For any T  >  1 and η > 0, suppose ϕ has the Bowen property along stable 
leaves and unstable leaves with respect to GT(

η
2 ). Then ϕ : T1S → R has the Bowen property 

on GT(η).

Summing up two lemmas above, we have the desired result for Hölder potentials:

Theorem 6.5.  If ϕ is Hölder continuous, then it has the Bowen property with respect to 
GT(η) for any T  >  1 and η > 0.

6.2. The Bowen property for the geometric potential

Definition 6.6.  The geometric potential ϕu : T1S → R is defined as: for v ∈ T1S

ϕu(v) := − lim
t→0

1
t
log det( dft|Eu(v)) = − d

dt

∣∣∣∣
t=0

log det( dft|Eu(v)).
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In general, we do not know if ϕu is Hölder continuous. There are some partial results under the 
nonpositively curved assumption; however, not much is known in the no focal points setting. 
Nevertheless, in this subsection we prove ϕu has the Bowen property on GT(η).

We denote by Juv  the unstable Jacobi field along γv with Juv(0) = 1. Let Uu
v := (Juv)

′/Juv . 
Since Juv  satisfies the Jacobi equation (3.1), Uu

v is a solution to the Riccati equation

U′ + U2 + K( ftv) = 0.

Notice that we also have Uu
v(t) = ku( ftv) by proposition 3.11. Notice the following lemma 

relates ϕu(t) and −Uu
v(t).

Lemma 6.7 ([BCFT18, lemma 7.6]).  There exists a constant C such that for all v ∈ T1S 
and t  >  0 we have

∣∣∣∣
∫ t

0
ϕu( fτv)dτ −

∫ t

0
−Uu

v(τ)dτ
∣∣∣∣ � C.

Proof.  The proof follows exactly as that in [BCFT18]. ψu in [BCFT18] is exactly −Uu
v 

when n  =  2.� □ 

Hence, in order to prove the Bowen property of ϕu on GT(η), we only have to prove 
lemma 6.8 below which follows from lemma 6.9. Lemma 6.8 is similar to proposition 7.7 
in [BCFT18]. However, their proof relies heavily on the convexity of Jacobi fields, hence we 
cannot translate it directly. Nevertheless, in the surface case, comparison of Ricatti solutions 
is nothing but comparison of real functions, thus we manage to apply different techniques to 
overcome the absence of convexity.

Lemma 6.8.  For any T  >  1 and η > 0, there are δ,Q, ξ > 0 such that given any 
(v, t) ∈ GT(η),w1 ∈ Ws

δ(v) and w2 ∈ f−tWu
δ( ftv), for every 0 � τ � t  we have

|Uu
v(τ)− Uu

w1
(τ)| � Qe−ξτ ,

|Uu
v(τ)− Uu

w2
(τ)| � Q(e−ξτ + e−ξ(t−τ)).

Lemma 6.9.  For any T  >  1 and η > 0, there are δ,Q such that given any 
(v, t) ∈ GT(η),w ∈ Bt(v, δ), for every 0 � τ � t  we have

|Uu
v(τ)− Uu

w(τ)| � Q exp
(
−ητ

T

)
+

∫ τ

0
exp

(
−
∫ τ

s
2λ̃( fav)da

)
|K( fsv)− K( fsw)|ds.

We will show how lemma 6.8 follows from lemma 6.9 first, and then prove lemma 6.9.

Proof of lemma 6.8.  Let δ > 0 be given from lemma 6.9. We will use Q to denote a uni-
form constant that is updated as necessary when the context is clear.

Since w1 ∈ Ws
δ(v), the smoothness of K together with lemma 4.3 implies

|K( fsv)− K( fsw1)| � QdK( fsv, fsw1) � Qds( fsv, fsw1) � Qδ exp
(
−
∫ s

0
λ̃( fav)da

)

for any s ∈ [0, t]. Thus by lemma 6.9, there exists Q  >  0 such that
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|Uu
v(τ)− Uu

w1
(τ)| � Q exp

(
−ητ

T

)
+ Q

∫ τ

0
exp

(
−
∫ τ

s
2λ̃( fav)da

)
exp

(
−
∫ s

0
λ̃( fav)da

)
ds,

� Q exp
(
−ητ

T

)
+ Q

∫ τ

0
exp

(
−
∫ τ

0
λ̃( fav)da

)
ds,

� Q exp
(
−ητ

T

)
+ Qτ exp

(
−ητ

4T

)
,

� Qe−ξτ ,

once we fix ξ < η/4T . Hence |Uu
v(τ)− Uu

w1
(τ)| � Qe−ξτ .

For w2 ∈ f−tWu
δ( ftv), we similarly have the following estimate:

|K( fsv)− K( fsw2)| � QdK( fsv, fsw2) � Qdu( fs−tftv, fs−tftw2) � Qδ exp
(
−
∫ t

s
λ̃( fav)da

)

for any s ∈ [0, t]. We use lemma 6.9 again and get:

|Uu
v(τ)− Uu

w2
(τ)| � Q exp

(
−ητ

T

)
+ Q

∫ τ

0
exp

(
−
∫ τ

s
2λ̃( fav)da

)
exp

(
−
∫ t

s
λ̃( fav)da

)
ds,

� Q exp
(
−ητ

T

)
+ Q

∫ τ

0
exp

(
−
∫ t

s
λ̃( fav)da

)
ds,

� Q exp
(
−ητ

T

)
+ Q

∫ τ

0
exp

(
−η(t − s)

4T

)
ds,

� Q exp
(
−ητ

T

)
+ Q exp

(
−η(t − τ)

4T

)
.

This completes the proof.� □ 

Proof of lemma 6.9.  We set δ > 0 from (4.1). Without loss of generality, we may assume 
Uu

w(0) � Uu
v(0) and let U1 be the solution of the Riccati equation along γv with U1(0) = Uu

w(0). 
We have

|Uu
v(τ)− Uu

w(τ)| � |Uu
v(τ)− U1(τ)|+ |U1(τ)− Uu

w(τ)|.

Since Uu
w(0) � Uu

v(0) and both U1 and Uu
v satisfy the same first order ODE, their graphs do not 

intersect. Thus we have U1(τ) � Uu
v(τ) = ku( fτv) for all τ . Hence

(U1 − Uu
v)

′ = −(U1 − Uu
v)(U1 + Uu

v) � −2ku( fτv)(U1 − Uu
v) � −2λ( fτv)(U1 − Uu

v).

Thus (U1(τ)− Uu
v(τ)) exp

( ∫ τ

0 2λ( fsv)ds
)
 is non-increasing. From lemma 3.13 and the as-

sumption that (v, t) ∈ GT(η), we have

0 � U1(τ)− Uu
v(τ) � (Uu

w(0)− Uu
v(0)) exp

(
−
∫ τ

0
2λ( fsv)ds

)

� Q exp

(
− 1
T

∫ τ

0
λT( fsv)ds

)
� Q exp

(
−ητ

T

)
.

Now we estimate |U1(τ)− Uu
w(τ)|. We may assume U1(τ) > Uu

w(τ) (the other case is simi-
lar). Let s0 ∈ [0, t] such that U1(s0) = Uu

w(s0) and U1(s) > Uu
w(s) for any s ∈ (s0, t). By taking 

D Chen et alNonlinearity 33 (2020) 1118



1144

difference of the corresponding Riccati equations, for any s ∈ (s0, t), we have

(U1 − Uu
w)

′(s) = −(U1(s)− Uu
w(s))(U1(s) + Uu

w(s)) + K( fsv)− K( fsw)

� −2ku( fsw)(U1 − Uu
w)(s) + |K( fsv)− K( fsw)|.

Thus

d
ds

(
(U1(s)− Uu

v(s)) exp
(∫ s

s0
2ku( faw)da

))

= exp

(∫ s

s0
2ku( faw)da

)
((U1 − Uu

w)
′(s) + 2ku( fsw)(U1 − Uu

w)(s)),

� exp

(∫ s

s0
2ku( faw)da

)
|K( fsv)− K( fsw)|.

Integrating from s0 to τ , we have

U1(τ)− Uu
v(τ) � exp

(
−
∫ τ

s0
2ku( faw)da

)∫ τ

s0
exp

(∫ s

s0
2ku( faw)da

)
|K( fsv)− K( fsw)|ds,

=

∫ τ

s0
exp

(
−
∫ τ

s
2ku( faw)da

)
|K( fsv)− K( fsw)|ds,

�
∫ τ

s0
exp

(
−
∫ τ

s
2λ( faw)da

)
|K( fsv)− K( fsw)|ds,

�
∫ τ

s0
exp

(
−
∫ τ

s
2λ̃( fav)da

)
|K( fsv)− K( fsw)|ds,

�
∫ τ

0
exp

(
−
∫ τ

s
2λ̃( fav)da

)
|K( fsv)− K( fsw)|ds,

where the last inequality follows because s0 � 0 and the integrand is non-negative.� □ 

Putting together lemmas 6.4 and 6.8, we have the following result:

Theorem 6.10.  The geometric potential ϕu has the Bowen property with respect to GT(η) 
for any T  >  1 and η > 0.

7.  Pressure gap and the proof of theorem A

The aim of this section  is to prove theorem A. In order to do that, we spend most part of 
this section on related estimates on pressures, such as P(·), P(Sing, ·), P⊥

exp(·), and relations 
between them.

We know when the collection C = X × [0,∞) we can use the variational principle to 
understand the topological pressure P(·). However, when the collection C is not the set of all 
finite orbits, the variational principle does not hold any more. Nevertheless, one can still use 
empirical measures along orbit segments in C to ‘understand’ P(C, ·). To be more precise, we 
start from recalling related terms and estimates given in [BCFT18].

Let X be a compact metric space, F  be a continuous flow, and ϕ : X → R be a continu-
ous potential. Given a collection of finite orbit segments C ⊂ X × [0,∞), for (x, t) ∈ C the  
empirical measure δ(x,t) is defined as, for any ψ ∈ C(X),
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∫
ψdδ(x,t) =

1
t

∫ t

0
ψ( fτx)dτ .

We further write Mt(C) for the convex linear combinations of empirical measures of 
length t, that is,

Mt(C) := {
k∑

i=1

aiδ(xi,t) : ai � 0,
∑

ai = 1, (xi, t) ∈ C}.

Finally, let M(C) denote the set of F -invariant Borel probability measures which are limits 
of measures in Mt , i.e.

M(C) := { lim
k→∞

µtk : tk → ∞, µtk ∈ Mtk(C)}.

Notice that when C contains arbitrary long orbit segments, M(C) is a non-empty set.
We recall a useful general result from [BCFT18]:

Proposition 7.1 ([BCFT18, proposition 5.1]).  Suppose ϕ is a continuous function, then

P(C,ϕ) � sup
µ∈M(C)

Pµ(ϕ)

where Pµ(ϕ) := hµ +
∫
ϕdµ.

Let us apply above results to our specific setting: S a closed surface of genus greater than 
or equal to 2 without focal points, F  the geodesic flow for S, and ϕ : T1S → R a continuous 
potential.

The following lemma establishes that the pressure of the obstruction to expansivity is 
strictly less than the entire pressure. It is a direct consequence of the flat strip theorem.

Proposition 7.2 ([BCFT18, proposition 5.4]).  For a continuous potential ϕ, 
P⊥
exp(ϕ) � P(Sing,ϕ).

Proof.  It is a straightforward consequence of the flat strip theorem. Since the flat strip theo-
rem holds for manifolds without focal points (see proposition 3.5), the proof goes verbatim as 
in [BCFT18, proposition 5.4].� □ 

The following proposition shows that, using the pressure gap condition, one can control the 
size of bad orbit segments in the sense of pressure.

Proposition 7.3.  Let BT(η) be the collection of bad orbit segments defined as in definition 
4.1. Then there exist T0  >  1 and η0 > 0 such that

P([BT0(η0)],ϕ) < P(ϕ).

Proof.  Let D be the metric compatible with the weak* topology on the space of F -invariant 
probability measures M(F). Abusing the notation, we will also use D to denote the Hausdorff 
distance induced by D. Fix δ < P(ϕ)− P(Sing,ϕ) and choose ε > 0 such that

µ ∈ M(F) with D(µ,M(Sing)) < ε =⇒ Pµ(ϕ)− P(Sing) < δ.

The existence of such ε is guaranteed by the upper semi-continuity of the entropy map 
M(F) � µ �→ hµ( f ) which follows from the geodesic flow F : T1S → T1S being entropy-
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expansive (see Liu–Wang [LW16]). From lemmas 4.9 and 4.11, we have

M(Sing) =
⋂

η>0,T>0

MλT (η),

where MλT (η) = {µ ∈ M(F) :
∫
λTdµ � η}. Hence, we can find T0, η0 > 0 such that

D(M(Sing),MλT0
(η0)) < ε.

Since MλT (η) is nested, we can increase T0 if necessary to be bigger than 1.

In particular, for any µ ∈ MλT0
(η0), we have

Pµ(ϕ) < P(Sing,ϕ) + δ.

Since it follows from the definition that M([BT(η))] ⊂ MλT (η), we can verify that the 
pressure gap P([BT0(η0)],ϕ) < P(ϕ) holds for such choice of η0 and T0:

P([BT0(η0)],ϕ) � sup
µ∈M([BT0 (η0)])

Pµ(ϕ) � sup
µ∈MλT0

(η0)

Pµ(ϕ) � δ + P(Sing,ϕ) < P(ϕ).

This proves the proposition.� □ 

Remark 7.4.  We remark that the conclusion of proposition 7.3 remains to hold if we take 
(T0, η1) for any η1 ∈ (0, η0).

Now, we are ready to prove our first main theorem.

Theorem (Theorem A).  Let S be a surface of genus greater than or equal to 2 without 
focal points and F  be the geodesic flow over S. Let ϕ : T1S → R be a Hölder continu­
ous potential or ϕ = q · ϕu for some q ∈ R. Suppose ϕ verifies the pressure gap property 
P(Sing,ϕ) < P(ϕ), then ϕ has a unique equilibrium state µϕ.

Proof.  This follows from theorem 2.10 (Climenhaga–Thompson’s criteria for the unique-
ness of equilibrium states).

We first notice that by proposition 7.2, ϕ satisfies the first assumption in theorem 2.10. 
For any T  >  1 and η > 0, we can take the decomposition (P ,G,S) = (BT(η),GT(η),BT(η)) 
given in definition 4.1, then by proposition 5.5, theorems 6.5 and 6.10, the conditions (I) and 
(II) of theorem 2.10 are verified.

Lastly, by proposition 7.3, we know there exists (T , η) = (T0, η0) with T0  >  1 such that the 
set of bad orbit segments has strictly less pressure than that of ϕ, that is, P([BT0(η0)],ϕ) < P(ϕ), 
which verifies the condition (III) of theorem 2.10.� □ 

We conclude this section by remarking on the possibility of further extending theorem A 
in various directions.

Remark 7.5.  A natural question would be whether theorem A can be further extended to 
more general settings such as manifolds without conjugate points or manifolds without focal 
points of arbitrary dimension.

For manifolds without conjugate points, the geometric information is much coarser than man-
ifolds without focal points. This causes many difficulties in applying Climenhaga–Thompson 
criteria [CT16] to prove similar results for manifolds without conjugate points; such difficul-
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ties include the unavailability of the flat strip theorem, C2-regularity of horoshperes as well as 
the positive semi-definiteness of second fundamental form. Recently, however, Climenhaga 
et al [CKW19] established the uniqueness of the measure of maximal entropy (namely, the 
special case when ϕ ≡ 0) for geodesic flows over surfaces without conjugates points; their 
approach is genuinely new and differs from that of [CT16] and [BCFT18].

In order to establish analogous results of theorem A for manifolds without focal points of 
arbitrary dimension, we would need to re-establish via other approaches the corresponding 
lemmas and estimates that depended on the fact that S is a surface; see remark 4.10.

8.  Properties of the equilibrium states and the proof of theorem B

In this section, we prove theorem B.

Theorem (Theorem B).  Let ϕ : T1S → R be a Hölder continuous function or ϕ = q · ϕu 
satisfying P(Sing,ϕ) < P(ϕ). Then the equilibrium state µϕ is fully supported, µϕ(Reg) = 1, 
Bernoulli, and is the weak* limit of the weighted regular periodic orbits.

Proof.  The proof is separated into following propositions, namely, propositions 8.1, 8.13, 
8.10 and 8.6.� □ 

8.1.  µϕ(Reg) = 1 and µϕ is Bernoulli

Proposition 8.1.  µϕ(Reg) = 1.

Proof.  Since µϕ is the unique equilibrium state for ϕ, we have that µϕ is ergodic (see [CT16] 
proposition 4.19). Because Sing is F -invariant we have either µϕ(Sing) = 1 or µϕ(Sing) = 0. 
Suppose µϕ(Sing) = 1, then

P(Sing,ϕ) � hµϕ(F) +

∫
ϕ|Sing dµϕ = P(ϕ),

which contradicts the pressure gap condition. Thus µϕ(Reg) = 1.� □ 

Definition 8.2 (Bernoulli).  Let X be a compact metric space and F = ( ft)t∈R be a continu-
ous flow on X . We call a F -invariant measure µ Bernoulli if the system (X, f1,µ) is measur-
ably isomorphic to a Bernoulli shift, where f 1 is the time-1 map of the flow F = ( ft)t∈R.

To prove µϕ is Bernoulli, we use a result in Ledrappier–Lima–Sarig [LLS16]. In order to 
apply their result, we recall that for v ∈ T1S, χ(v), the Lyapunov exponent at v associated to 
the unstable bundle Eu(v) is given by

χ(v) = lim
t→±∞

1
t
log

∥∥∥dft|Eu(v)

∥∥∥
whenever both limits exist and are equal. Such v ∈ T1S whose Lyapunov exponent χ(v) exists 
are called Lyapunov regular vectors. Notice that since the Liouville measure is invariant under 
the geodesic flow F , the Lyapunov exponent is zero along the flow direction, and is −χ(v) 
on the stable bundle Es(v). Moreover, it is well-known (by Oseledec multiplicative ergodic 
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theorem) that the set of Lyapunov regular vectors has full measure for any F -invariant prob-
ability measure.

Remark 8.3.  For v ∈ Sing, notice f t does not expand along the unstable bundle Eu(v); in-
deed, the unstable Jacobi field Juv  has constant length for v ∈ Sing. Thus we have χ|Sing = 0.

Using following lemmas, we can show that the unique equilibrium state for µϕ is a hyperbolic 
measure (i.e. χ(v) �= 0 for µϕ-a.e. v ∈ T1S, which is equivalent to χ(µϕ) :=

∫
χ(v)dµϕ �= 0 

from the ergodicity of µϕ) which allows us to use Ledrappier–Lima–Sarig [LLS16] to con-
clude µϕ is Bernoulli.

Lemma 8.4.  Let µ be a F -invariant probability measure. Suppose χ(v) = 0 for µ-a.e. 
v ∈ T1S, then supp(µ) ⊂ Sing.

Proof.  We first recall that for ξ ∈ TvT1S we have ||Jξ(t)||2 � ||dftξ||2. Let µ ∈ M(F) and, 
without loss of generality, we may assume v is a Lyapunov regular vector for ξ ∈ Eu(v). Then, 
by lemma 3.12

χ(v) = lim
t→∞

1
t
log ||dft|Eu(v)||

� lim
t→∞

1
t
log ||Juξ(t)||

� lim
t→∞

1
t
log

(
e
∫ t
0 k

u( fτ v)dτ ||Juξ(0)||
)

= lim
t→∞

1
t

∫ t

0
ku( fτv)dτ � 0.

Integrating with respect to µ, the Birkhoff ergodic theorem gives 
∫
χ(v)dµ �

∫
ku(v)dµ � 0. 

Therefore, if χ(v) = 0 for µ-a.e. v ∈ T1S, then ku(v) = 0 for µ-a.e. v ∈ T1S; hence, λ(v) = 0 
for µ-a.e. v ∈ T1S. By lemma 4.11, we are done.� □ 

Remark 8.5. 

	(1)	�The computation in the above lemma also points out that if µ is a F -invariant probability 
measure and v is a Lyapunov regular vector with respect to µ, then χ(v) � 0. In other 
words, we know that χ(v) is indeed the non-negative Lyapunov exponent at v.

	(2)	�If, in addition, µ is ergodic and µ(Reg) > 0, we have µ is hyperbolic. Indeed, other-
wise, there exists A ⊂ T1S such that µ(A) > 0 and χ|A = 0. Then by the ergodicity of µ 
we have that µ(A) = 1. Hence, by lemma 8.4, we get suppµ ⊂ Sing which contradicts 
µ(Reg) > 0.

Proposition 8.6.  The unique equilibrium state µϕ is Bernoulli.

Proof.  [CT16, proposition 4.19] Shows that the unique equilibrium state µϕ is ergodic, thus 
by proposition 8.1 and remark 8.5 (2) we get that µϕ is hyperbolic. Therefore, applying results 
in [LLS16], we have that µϕ is Bernoulli.� □ 

Remark 8.7.  Originally Ledrappier–Lima–Sarig [LLS16] required that hµ(F) > 0; never-
theless, it has been clarified in Lima–Sarig [LS19, theorem 1.3] that one only needs to check 
µ is hyperbolic.

D Chen et alNonlinearity 33 (2020) 1118



1149

8.2.  µϕ is fully supported

In this subsection, unless stated otherwise, we fix the decomposition (P , G , S) to be 
(BT0(η0),GT0(η0),BT0(η0)) where T0 and η0 are given in proposition 7.3. We notice that this 
decomposition (BT0(η0),GT0(η0),BT0(η0)) satisfies the Climenhaga–Thompson criteria for 
the uniqueness of equilibrium states (i.e. theorem 2.10).

For any decomposition (P , G , S) and M  >  0, the collection GM is defined as

GM := {(x, t) : s(x, t), p(x, t) � M}.

The following lemma shows that if the decomposition (P , G , S) satisfies theorem 2.10, 
then GM captures much thermodynamic information whenever M is large enough.

Lemma 8.8 ([BCFT18, lemma 6.1]).  There exists M,C, δ > 0 such that for all t  >  0,

Λ(GM ,ϕ, δ, t) > CetP(ϕ).� (8.1)

Hence, for large enough M, we have P(GM ,ϕ) = P(ϕ). Moreover, the equilibrium state µφ 
has the lower Gibbs property on GM. More precisely, for any ρ > 0, there exist Q, τ ,M > 0 
such that for every (v, t) ∈ GM with t � τ ,

µϕ(Bt(v, ρ)) � Qe−tP(ϕ)+
∫ t
0 ϕ( fsv)ds.

In particular, if v such that (v, t) ∈ G  for some t � τ , then µϕ(B(v, ρ)) > 0 for all ρ > 0.

Lemma 8.9 ([BCFT18, lemma 6.2]).  Given ρ, η, T > 0, there exists η1 > 0 so that for any 
v ∈ RegT(η), t  >  0, there are s � t  and w ∈ B(v, ρ) such that (w, s) ∈ GT(η1). In particular, 
we can choose η1 � η0 where η0 is given in proposition 7.3

Proof.  The proof follows, mutatis mutandis, the proof of [BCFT18, lemma 6.2]. One only 
needs to replace the [BCFT18, corollary 3.11] in their proof by lemma 4.5, and the last asser-
tion follows because for 0 < η′ � η′′, we have RegT(η

′′) ⊂ RegT(η
′).� □ 

Proposition 8.10.  The unique equilibrium state µϕ is fully supported.

Proof.  Since Reg dense in T1M, it is enough to show that for any v ∈ Reg and r  >  0 we have 
µϕ(B(v, r)) > 0.

Since v ∈ Reg, there exists t0 ∈ R such that λ( ft0v) > 0. For convenience, let us denote 
v′ = ft0v. By the continuity of λ, there exists ρ > 0 such that λ|B(v′,2ρ) > η for some η > 0, and 
we have v′ ∈ RegT(2ρη). We make sure to pick ρ  small enough so that f−t0B(v′, 2ρ) ⊂ B(v, r). 
By lemma 8.9, there exists η1 > 0 such that there is w ∈ B(v′, ρ) satisfying (w, t) ∈ GT(η1) for 
arbitrary large t (depending on ρ, η).

Furthermore, the decomposition (P ,G,S) = (BT0(η1),GT0(η1),BT0(η1)) verifies theorem 
2.10, assuming that we take η1 smaller than η0. Thus by lemma 8.8 we know µϕ satisfies the 
lower Gibbs property, i.e.

µϕ(B(w, ρ)) > 0.

Now, because µϕ is flow invariant, it follows that

µϕ(B(v, r)) � µϕ(B(v′, 2ρ)) � µϕ(B(w, ρ)) > 0.

� □ 

D Chen et alNonlinearity 33 (2020) 1118



1150

8.3.  Periodic regular orbits are equidistributed relative to µϕ

Let us continue the discussion on ergodic properties of the equilibrium state. Recall that S is a 
closed surface without focal point with genus � 2, and ϕ : T1S → R is a potential satisfying 
theorem A, and µϕ the equilibrium state. In what follows, the good orbit segment collection G  
always refers to GT0(η0) where T0, η0 are given in proposition 7.3.

Lemma 8.11.  Suppose ϕ : T1S → R is a potential satisfying theorem A. For any ∆ > 0, 
there exists C  >  0 such that

Λ∗
Reg,∆(ϕ, t) � CetP(ϕ)

for all t > ∆ .

Proof. Claim: for all ∆ > 0 and δ < inj(S), PerR(t −∆, t] is a (t, δ)-separated set.
To prove this claim, assume the contrary; suppose γ1, γ2 are two closed geodesics in 

PerR(t −∆, t] such that d(γ1(s), γ2(s)) � δ for all s ∈ [0, t], and thus γ2 is covered by 
Bδ(γ1(ti)) for finitely many i. Because δ < inj(S), each Bδ(γ1(ti)) is diffeomorphic to the 
δ-ball on Tγ1(ti)S centerd at γ1(ti). One can easily construct a homopy between γ1 and γ2 by 
choosing and connecting points from Bδ(γ1(ti)). Since γ1, γ2 are in the same free homotopy 
class, their lifts γ̃1, γ̃2 are bi-asymptotic. Thus by the flat strip theorem (proposition 3.5) γ̃1 and 
γ̃2 bound a flat strip, and hence they are singular. This contradicts to γ1, γ2 ∈ PerR(t −∆, t], 
and we have completed the proof of the claim.

Notice that for every γ ∈ PerR(t −∆, t], let vγ  be a vector tangent to γ , we have

|Φ(γ)− Φ(vγ , t)| � ∆||ϕ||, and thus Λ∗
Reg,∆(ϕ, t) � e∆||ϕ||Λ(ϕ, δ, t).

Lastly, by [CT16, lemma 4.11], there exists C  >  0 such that for t > ∆ we have

Λ∗
Reg,∆(ϕ, t) � e∆||ϕ||Λ(ϕ, δ, t) < CetP(ϕ).

� □ 
Lemma 8.12.  Suppose ϕ : T1S → R is a potential satisfying theorem A. There exists 
∆,C > 0 such that

C
t
etP(ϕ) � Λ∗

Reg,∆(ϕ, t)

for all large t .

Proof.  By lemma 8.8, we know when M is big, there exists C1, δ1 > 0 such that for all t  >  0

C1etP(ϕ) � Λ(GM , δ1, t).

Hence, it suffices to find δ, C2,∆, s > 0 with δ < δ1 such that for any t > max{s,∆, 2M}, 
we have

Λ(GM , δ, t) � C2(t + s)Λ∗
Reg,∆(ϕ, t + s).

Indeed, the lemmas follows from these inequalities because

Λ∗
Reg,∆(ϕ, t + s) �

C1C−1
2

t + s
etP(ϕ) =

C1C−1
2 e−sP(ϕ)

t + s
e(t+s)P(ϕ).
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We start from labeling sizes of Bowen balls relative to different propositions. In what fol-
lows, we fix T0, η0 > 0 and M large so that theorem A and lemma 8.8 hold. Let ε1 = ε1(T0, η0) 
be given in corollary 5.7. Since ϕ verifies the Bowen property on GM, let ε2 = ε2(T0, η0) 
denote the radius of Bowen balls for the Bowen property. Lastly, because S is compact and f t 
is uniformly continuous, for any ε > 0, there exists δ1 = δ1(ε) such that when dK(u,w) < δ1 
we have dK( fσu, fσw) < ε for any σ ∈ [−M,M], without loss of generality, we may choose 
ε < min{ε1, ε2}.

The first step is to associate each (v, t) ∈ GM with a regular closed orbit whose length is in 
the interval [t − t1, t + t2] for some t1 and t2 as follows. Recall that for each (v, t) ∈ GM there 
exists 0 < s0, p0 < M  such that ( fp0v, t − s0 − p0) = (v′, t′) ∈ G .

We claim that given ε > 0 as above and δ2 = min{ε, δ1(ε)}, there exists s = s(δ2) such 
that for any (v′, t′) ∈ GM  defined as above, there exists a regular vector w ∈ Bt′(v′, δ2) with 
ft′+τ (w) = w for some τ ∈ [0, s].

Indeed, the claim is a direct consequence of corollary 5.7, because (v′, t′) ∈ G ⊂CT0(η0). 
Moreover, we also have f−pw ∈ Bt(v, ε) because w ∈ B(v′, δ2) ⊂ B(v′, δ1) and the choice of 
δ1. Thus, we have the claim.

Moreover, since ε < ε2 we have

|Φ(v, t)− Φ(w, t′ + τ)| =

∣∣∣∣∣
∫ t

0
ϕ( fσv)dσ −

∫ t′+τ

0
ϕ( fσw)dσ

∣∣∣∣∣

�

∣∣∣∣∣
∫ p0

0
ϕ( fσv)dσ +

∫ t′

0
ϕ( fσv′)dσ +

∫ s0

0
ϕ( fσ+t′v)dσ −

∫ t′+τ

0
ϕ( fσw)dσ

∣∣∣∣∣

� (2M + τ)||ϕ||+

∣∣∣∣∣
∫ t′

0
(ϕ( fσv′)− ϕ( fσw))dσ

∣∣∣∣∣ ,

� (2M + τ)||ϕ||+ K

where K is the constant given by the Bowen property.
In sum, given ε > 0 as above, we can define a map Ψ : GM � (v, t) �→ (w, t′ + τ) 

where w is tangent to a regular closed orbit γw ∈ PerR(t′, t′ + τ ] ⊂ PerR(t − 2M, t + s] and 
|Φ(v, t)− Φ(γw)| � (2M + s)||ϕ||+ K .

We notice that Ψ|Et
 is an injection for every (t, δ)-separated set Et ⊂ GM provided δ > 3ε 

(because for every (v, t) ∈ Et , its image Ψ(v, t) = (w, t′ + τ) satisfies w ∈ Bt(v, ε)). Moreo-
ver, because Ψ(Et) is (t, ε)-separated, each γ ∈ PerR(t − 2M, t + s] has at most t+s

ε  elements 
of Ψ(Et) tangent to it.

Hence, for δ > 3ε and for all (t, δ)-separated set Et ⊂ GM we have
∑

(v,t)∈Et

eΦ(v,t) �
t + s
ε

· e(2M+s)||ϕ||+K ·
∑

γ∈PerR[t−2M,t+s]

eΦ(γ).

The lemma now follows with by setting C2 = e(2M+s)||ϕ||+K/ε and ∆ = 2M + s.� □ 

From the above two lemmas, we can conclude:

Proposition 8.13.  The unique equilibrium state µϕ obtained in theorem A is the weak* 
limit of the weighted regular periodic orbits. More precisely, there exists ∆ > 0 such that

µϕ = lim
T→∞

∑
γ∈PerR(T−∆,T] e

Φ(γ)δγ

Λ∗
Reg,∆(ϕ, T)

.

Proof.  It follows immediately from lemmas 8.11, 8.12 and proposition 2.17.� □ 
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9. The proof of theorem C and examples

In this section, we present the proof of theorem C and also provide examples satisfying the 
pressure gap property. The following lemmas show that the scalar multiple qϕu of the geomet-
ric potential possesses the pressure gap property provided q  <  1.

Lemma 9.1.  If S is a closed surface of genus greater than or equal to 2 without focal points, 
then P(qϕu) > 0 = P(Sing, qϕu) for each q ∈ (−∞, 1); in particular, htop(Sing) = 0.

Proof.  It is a classical result proved by Burns [Bur83, theorem, p 6] that µL(Reg) > 0 
where µL is the Liouville measure. Thus by lemma 8.4 and remark 8.5 we get

0 < χ(µL) :=
∫

T1S
χ(v)dµL.

This follows because if χ(µL) = 0, then χ(v) = 0 for µL-a.e. v ∈ T1S, and hence, by lemma 
8.4, we would have supp(µL) ⊂ Sing contradicting µL(Reg) > 0

Therefore, we know

0 < χ(µL) =

∫

T1S
χ(v)dµL = −

∫

T1S
ϕudµL,

where the last equality follows from the Birkhoff ergodic theorem.
Moreover, by Pesin’s entropy formula [Pes77a], we have

hµL(F) =

∫

T1S
χ(v)dµL.

Thus for q ∈ (−∞, 1)

P(qϕu) � hµL(F) +

∫
qϕudµL = (q− 1)

∫
ϕudµL > 0.

We claim that P(Sing, qϕu) = 0. Indeed, for any µ ∈ M(Sing), Pµ(qϕu) := hµ(F)+  

Pµ(qϕu) := hµ(F) + q
∫
T1S ϕ

udµ = hµ(F) + q
∫
Sing ϕ

udµ = hµ(F).
By Ruelle’s inequality [Rue78] we have hµ(F) �

∫
T1S χ(v)dµL = 0 (because χ|Sing = 0, 

see remark 8.3). Therefore, P(Sing, qϕu) = supµ∈M(Sing) Pµ(qϕu) = 0.� □ 

Now, we are ready to prove theorem C.

Proof of theorem C.  From the above lemma, it remains to show that the map q �→ P(qϕu) 
is C1 for q  <  1 and P(qϕu) = 0 for q � 1 when Sing �= ∅.

We first notice that when Sing �= ∅, we have P(qϕu) � 0. It is because for any invariant 
measure µ such that with supp(µ) ⊂ Sing, we have

hµ(F) +

∫

T1S
ϕudµ = hµ(F) +

∫

Sing
ϕudµ � 0.

Moreover, the non-negative Lyapunov exponent χ is the Birkhoff average of −ϕu; thus 
together with Ruelle’s inequality we have for any invariant measure ν ∈ M(F):

hν(F) �
∫

T1S
χ(v)dν
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and for q � 1

hν(F) +

∫
ϕudν = hν(F)−

∫

T1S
χ(v)dν

︸ ︷︷ ︸
�0

� hν(F)− q
∫

T1S
χ(v)dν

= hν(F) + q
∫

T1S
ϕudν

Therefore, we have for q � 1

P(qϕu) = sup{hν(F) + q
∫

T1S
ϕudν : ν ∈ M(F)} � 0;

hence we have P(qϕu) = 0 for q � 1.

Lastly, Liu–Wang [LW16] proved that the geodesic flow is entropy expansive for manifolds 
without conjugate points. So by Walters [Wal92], we know that q �→ P(qϕu) is C1 on the do-
main where qϕu has a unique equilibrium state. In particular, q �→ P(qϕu) is C1 for q  <  1.□ 

The proposition below gives us an easy criteria for the pressure gap property.

Proposition 9.2 ([BCFT18, lemma 9.1]).  Let S be a closed surface of genus greater than 
or equal to 2 without focal points and ϕ : T1S → R continuous. If

sup
v∈Sing

ϕ(v)− inf
v∈T1S

ϕ(v) < htop(F),

then P(Sing,ϕ) < P(ϕ). In particular, constant functions have the pressure gap property.

Proof.  The proof follows from the variational principle. More precisely,

sup
v∈Sing

ϕ(v)− inf
v∈T1S

ϕ(v) < htop(F)− htop(Sing)︸ ︷︷ ︸
=0

⇐⇒ sup
v∈Sing

ϕ(v) + htop(Sing) < htop(F) + inf
v∈T1S

ϕ(v)

and

P(Sing,ϕ) � htop(Sing) + sup
v∈Sing

ϕ(v) < htop(F) + inf
v∈T1S

ϕ(v) � P(ϕ).

� □ 

By the above proposition, the following class of potentials also possesses the pressure gap 
property.

Corollary 9.3.  Let S be a closed surface of genus greater than or equal to 2 without focal 
points and ϕ : T1S → R continuous. If ϕ|Sing = 0 and ϕ � 0, then P(Sing,ϕ) < P(ϕ).
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