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Abstract

In this paper, we study dynamics of geodesic flows over closed surfaces of
genus greater than or equal to 2 without focal points. Especially, we prove that
there is a large class of potentials having unique equilibrium states, including
scalar multiples of the geometric potential, provided the scalar is less than 1.
Moreover, we discuss ergodic properties of these unique equilibrium states,
including the Bernoulli property and the fact that weighted regular periodic
orbits are equidistributed relative to these unique equilibrium states.
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1. Introduction

This paper is devoted to the study of dynamics of the geodesic flows over closed surfaces with-
out focal points. We focus on the thermodynamic formalism of the geodesic flows, especially,
the uniqueness of the equilibrium states and their ergodic properties. For uniformly hyperbolic
flows, also known as Anosov flows, thanks to fundamental works of Ornstein, Weiss, Bowen
and Ruelle [OW73, Bow75, BR75], we know that every Holder potential has a unique equilib-
rium state which enjoys several ergodic features such as Bernoulli and equidistribution proper-
ties. It is also well-known that the geodesic flow on a negatively curved manifold is uniformly
hyperbolic. However, when the manifold contains subsets with zero or positive curvature, the
geodesic flow may no longer be uniformly hyperbolic. The non-uniform hyperbolicity greatly
increases the difficulty in understanding the thermodynamics of these flows. Nevertheless, the
geometric features of surfaces without focal points allow us to investigate the dynamics of the
geodesic flows. Several geometric properties are available in this setting such as the flat strip
theorem, C2-regularity of the horocycles, and more. These properties enable us to extend the
existence and the uniqueness result on the measure of maximal entropy by Knieper [Kni98]
and on equilibrium states by Burns et al [BCFT18] over closed rank 1 nonpositively curved
manifolds to closed surfaces without focal points of genus at least 2.

Combining the dynamical and geometric features of surfaces without focal points, in this
paper, we are able to prove the uniqueness of equilibrium states for a large class of potentials
and Bernoulli and equidistribution properties for such equilibrium states. These results also
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generalize Gelfert—-Ruggiero’s recent work [GR17] on the uniqueness of measure of the maxi-
mum entropy for the geodesic flows over surfaces without focal points. We remark that, using
a differently approach, Liu ef al [LWW 18] extended the uniqueness of measure of maximum
entropy result to manifolds without focal points of arbitrary dimension.

Putting our results in context below, we shall first introduce relevant terminologies briefly
(see sections 2 and 3 for more details). Throughout the paper, S denotes a closed (i.e. compact
without boundary) C* Riemannian surface of genus greater than or equal to 2 without focal
points. The geodesic flow F = (f);cr on the unit tangent bundle 7'S is the flow given by
f:(v) = A (t) where =, is the (unit speed) geodesic determined by the initial vector v € T'S.

In this paper, we study topological pressure and equilibrium states of continuous potentials
with respect to the geodesic flow F. For a continuous potential (i.e. function) ¢ : T'S — R,
the topological pressure P(p) of ¢ with respect to F can be described by the variational
principle:

P(p) = sup{h,(F) + / @dyu : puis a F-invariant Borel probability measure on T'S},

where h,,(F) is the measure-theoretic entropy of y with respect to 7. An invariant Borel prob-
ability measure y achieving the supremum is called an equilibrium state. We notice that when
¢ is identically equal to O then P(0) is equal to the topological entropy hp(F) of F, and an
equilibrium state for ¢ = 0 is called a measure of maximum entropy.

The non-uniform hyperbolicity of F comes from the existence of the singular
set Sing. For surfaces without focal points, we can describe the singular set as
Sing = {v € T'S: K(nf;v) > 0Vt € R} where 7 : T'S — S is the canonical projection and
K is the Gaussian curvature (see section 3 for alternative characterizations of the singular set).
The complement of Sing is called the regular set and denoted by Reg.

Our first result asserts the uniqueness of the equilibrium states for potentials with ‘nice’
regularity that carry smaller pressure on the singular set. The potentials with ‘nice’ regularity
include Holder potentials and the geometric potential p* defined as

u : 1
#'(0) == —lim —log det(df ).
Here, E"(v) is the unstable subspace in T,T'S (see section 3 for details).

Theorem A. Let S be a surface of genus greater than or equal to 2 without focal points and
F be the geodesic flow over S. Let ¢ : T'S — R be a Holder continuous potential or a scalar
multiple of the geometric potential qp* for some q € R. Suppose o verifies the pressure gap
property P(Sing, @) < P(p), then ¢ has a unique equilibrium state [i.

The proof of theorem A uses the same idea as the proof of [BCFT18, theorem A]. Both
[BCFT18] and this paper follow the general framework introduced by Bowen [Bow75],
which was subsequently extended to flows by Franco [Fra77] and recently extended further
by Climenhaga and Thompson [CT16]. We have more detailed discussion of this method in
section 2. Roughly speaking, the general framework follows the original work of Bowen stat-
ing that when the potential has ‘nice’ regularity (namely, the Bowen property) and the system
has ‘sufficient hyperbolicity’ (namely, the specification property and the expansivity) then this
potential has a unique equilibrium state. While we follow the general framework of [BCFT18],
our setting of surfaces without focal points does not enjoy properties available in the setting
of [BCFT18] coming from the geometry of nonpositively curved manifolds. The most nota-
ble such property is the convexity of ||J(¢)|| for any Jacobi field J. Due to the absence of such
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Figure 1. Pressure function.

convexity, we use an alternative way to quantify hyperbolicity on 7'S and to characterize the
singular set; see remark 3.10. We discuss more details of this method in sections 2 and 3.

The second result, following theorem A, states several ergodic properties of these unique
equilibrium states. We successfully extend several properties known to hold under uniformly
hyperbolic cases (see, for example, [PP90]), as well as under nonpositively curved surfaces
(see, for example, [Pol96, LLS16] and [BCFT18]). Namely, these unique equilibrium states
are Bernoulli and the weak™ limit of the weighted regular periodic orbits. Recall that other
weaker ergodic properties such as being Kolmogorov and strongly mixing follows once the
measure is Bernoulli.

Theorem B. Suppose ¢ satisfies the same assumptions in theorem A. Then, the unique
equilibrium state (i, is fully supported, Bernoulli, and the weak™ limit of the weighted regular
periodic orbits. Moreover, pu,(Reg) = 1.

In our last main result, we study the geometric potential " and its pressure function
q — P(q¢"). We give the full description of the pressure function, and show that the situation
is analogous to the nonpositively curved manifolds (see, for example, [BG14] and [BCFT18]).

Theorem C. Let S be a surface of genus greater than or equal to 2 without focal points and
F be the geodesic flow over S. Suppose o = q" is the scalar multiple the geometric potential
with g < 1. Then, @ satisfies the pressure gap property.

Such qp? has a unique equilibrium state from theorem A, and the unique equilibrium state
satisfies the properties listed in theorem B.

Moreover, the map q + P(qp") is C! on q € (—o0,1). If Sing # 0, then P(qp") = 0 for
q = 1, see figure 1.

This paper is organized as follows. In section 2, we go over the background in thermo-
dynamic formalism; in particular, we describe our primary tool, the Climenhaga—Thompson
criteria introduced in [CT16]. In section 3, we recall the definitions and geometric features of
surfaces and manifolds without focal points. Sections 4—6 are devoted to setting up the frame-
work for the Climenhaga—Thompson criteria, namely, the orbit decomposition, the specifica-
tion property, and the Bowen property. We will prove theorem A in section 7 and theorem B
in section 8. In section 9, we will show theorem C and provide some examples of potentials
satisfying theorem A.

2. Preliminaries of dynamics

In this section, we introduce necessary background in thermodynamics. An excellent refer-
ence for terminology introduced in this section is Walters’ book [Wal82].
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Throughout this section, (X, d) is a compact metric space, F = (f;)ser is a continuous flow
on X, and ¢ : X — R is a continuous potential.

2.1. Topological pressure
For convenience, we first define the following terms.
Definition 2.1. Foranys,0 > Oand x € X,
(1) The Bowen ball of radius § and order ¢ at x is defined as
B:(x,0) ={yeX: d(frx,fry) < dforall 0 < 7 < t}.

(2) We say aset Eis (¢, 0)- separated if for all x,y € E with x # y, there exists 7y € [0, #] such
that d(f;,x, f;,y) = 0.

Definition 2.2 (Finite length orbit segments). Any subset
C CX x[0,00)

can be identified with a collection of finite length orbit segments. More precisely, every
(x, 1) € C is identified with the orbit segment {fyx : 0 < 7 < t}.
We denote ®(x, 1) := fot ©(frx)dr the integral of ¢ along an orbit segment (x, 7).

LetC, :={x € X : (x,t) € C} be the set of length ¢ orbit segments in C. We define
AC,p,0,1) = sup{z e®@) . E C C s (1,0)-separated}.

x€E

Definition 2.3 (Topological pressure). The pressure of ¢ on C is defined as

1
P(C, ) = lim limsup — log A(C, ¢, 4, 1).

0—=0 oo t

When C =X x [0, 00), we denote P(X X [0,00), ) by P(p) and call it the ropological pres-
sure of ¢ with respect to F .
As noted in the introduction, the pressure P(¢) satisfies the variational principle

Ple) = sup {i(F)+ [ o)
HEM(F)

where M (F) is the set of F-invariant probability measures on X. Also, a F -invariant prob-

ability measure p realizing the supremum is called an equilibrium state for .

Remark 2.4.

(1) When the entropy map p + h,, is upper semi-continuous, any weak™ limit of a sequence
of invariant measures approximating the pressure is an equilibrium state. In particular,
there exists at least one equilibrium state for every continuous potential.

(2) In our setting, the geodesic flow over surfaces without focal points, the upper semi-
continuity of the entropy map is guaranteed by the entropy-expansivity established in
[LW16].
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2.2. Climenhaga—Thompson’s criteria for the uniqueness of equilibrium states

Climenhaga and Thompson have a series of successful results on establishing the uniqueness of
the equilibrium states of various non-uniformly hyperbolic systems; see [CT12, CT13, CFT18,
CT16, BCFT18]. This work follows the same method, so called, the Climenhaga—Thompson
criteria. In this subsection, we introduce the terms used in the Climenhaga—Thompson criteria.
One of the primary ideas in the Climenhaga—Thompson criteria is to relax the original
assumptions from the work of Bowen on the uniformly hyperbolic systems [Bow75] by asking
that the ‘hyperbolic’ behavior on the system and the ‘good regularity’ on the potential hold on
a (large) collection of finite orbit segments C rather than in the whole space. This flexibility is
essential for applying this method to non-uniformly hyperbolic systems. To be more precise, the
‘hyperbolic’ behavior refers to the specification property and the property that the pressure of
obstructions to expansivity Pé;(P(go) be strictly smaller than the pressure P(i) of the entire sys-
tem (see below). The ‘good regularity’ on ¢ refers to the potential having the Bowen property.

Definition 2.5 (Specification). We say C C X x [0,00) has specification at scale
p > 0 if there exists 7 = 7(p) such that for every finite sub-collection of C, i.e. (xi,¢),
(x2,12), ..., (xn,tn) € C, there exists y € X and transition times 71,...,7y—1 € [0, 7] such
that for s = 70 = 0 and 5; = 32/, 1; + 3217 71, we have

f?j_]+Tj—l (y) S Blj(xj’ P)

for j € {1,2,...,N}. If C has specification at all scales, then we say C has specification. We
say that the flow has specification if the entire orbit space C = X x [0, 00) has specification.

Definition 2.6 (Bowen property). We say ¢ : X — R a continuous potential has the Bow-
en property on C C X x [0, 00) if there are £, K > 0 such that for all (x,¢) € C, we have

sup |9 (x.1) — B(y.1)| < K
YEB;(x,€)

where ®(x,1) = [ ¢(frx)dr as in definition 2.2.

Definition 2.7 (Decomposition of orbit segments). A decomposition of X x [0, c0) con-
sists of three collections P, G, S C X x [0, c0) such that:

(1) There exist p,g,s: X x [0,00) — R such that for each (x,7) € X x [0,00), we have
t=p(x,t)+ g(x, 1) + s(x,1),
() (x,p(x.1)) € P, (fpenyx-8(x. 1)) € G, and (fy(xr)o0en X S(x. 1)) € S.

In section 4, we will give the precise construction of a decomposition (P, G, S) and prove
that such decomposition has required properties in subsequent sections. Due to some technical
reasons (see [CT16]), we need to work on with discrete-time versions of P and S, namely,

[P] :={(x,n) e X xN: (foex,n+s+1) € Pforsomes,t € [0,1]},

and similarly for [S].
The following three terms are the remaining pieces needed in stating the Climenhaga—
Thompson criteria.

Definition 2.8. For x € X, e > 0 and ¢ : X — R a potential
(1) The bi-infinite Bowen ball T'.(x) is defined as
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F.(x):={yeX: d(fix.fiy) <eforallr € R}.
(2) The set of non-expansive points at scale € is defined as
NE(e) :={x € X : To(x) £ fi_s(x) for any s > 0}

where fi,p(x) = {fix: t € [a,b]}.
(3) The pressure of obstructions to expansivity for ¢ is defined as

P;p(w) = iii%Pé;cp(so’ 5)

where

Pipli2) = supl () + [ s e MO(F) and u(NE(E)) = 1)
and M¢(F) is the set of F -invariant ergodic probability measures on X.

Remark 2.9. For uniformly hyperbolic systems, NE(¢) = () for ¢ sufficiently small; thus

P2 () = —o0. In other words, the condition P

sxp(#) < P(ip) always holds in Bowen’s set-
ting [Bow75].

Finally, the following theorem is the Climenhaga—Thompson criteria for the uniqueness of
equilibrium states. We will use this theorem to prove theorem A in section 7.

Theorem 2.10 ([CT16, theorem A]). Let (X, F) be a flow on a compact metric space, and
¢ : X — R be a continuous potential. Suppose that PL (p) < P(¢) and X x [0, 00) admits a

exp

decomposition (P, G, S) with the following properties:

(I) G has specification;
(I) @ has Bowen property on G;
(1) P([PU[S],¢) < P().

Then (X, F, ) has a unique equilibrium state (1.

Remark 2.11.  From the uniqueness of the equilibrium state p, it follows that 1, is ergodic.
See also [CT16, proposition 4.19].

2.3. Gurevich pressure

In this subsection, we introduce another well-studied notion of pressure, the Gurevich pres-
sure, that is, the growth rate of weighted periodic orbits. In the uniformly hyperbolic setting,
the Gurevich pressure is equal to the topological pressure. However, it is not always the case
for non-uniformly hyperbolic systems (see [GS14] for more details). To make the above dis-
cussion more precise, we shall define the following relevant terms.

As before, let M be a Riemannian manifold, 7 = (f;);cr be the geodesic flow on T'M, and
¢ : T'M — R be a continuous potential. A geodesic +y is closed if there exists L > 0 such that
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~ is periodic with period L, that is, y(t) = (¢ + L) for all r € R. A geodesic ~, is regular if
the generating vector v is regular.

We denote the set of closed regular geodesics with length in the interval (a, b] by Perg(a, b).
For «y € Perg(a, b], we define

®(v) :=/790=/07 o(fiv)dt

where v € T'M is tangent to + and |7/ is the length of ~. Given ¢, A > 0, we define
Megnlpt) = Y e®.

YEPerg (1— A1

Definition 2.12 (Gurevich pressure). Given A > 0,

(1) The upper regular Gurevich pressure F;eg’ A of o is defined as
_ . 1
P;eg,A ((p) = lim sup — IOg AEeg,A (§07 t)'
t—oo I

(2) The lower regular Gurevich pressure Pge, o of  is defined as

BReg,A (90) = llgéglf ; IOg AReg,A (QD’ t)'

When ﬁ;eg’ A(9) = Preg (), we call this value the regular Gurevich pressure and
denote it by Pg, A (¢).

Remark 2.13. Our upper regular Gurevich pressure F;eg, A 1s the regular Gurevich pres-
sure Pgyr used in [GS14]. Indeed, using the same argument as in [GS14], one can show that
F;eg, A is independent of A > 0. However, to derive the equidistribution property, we need to
take the lower regular Gurevich pressure into account (see proposition 2.17).

Definition 2.14. For a potential  : T'M — R, we say p is the weak™ limit of p-weighted
regular periodic orbits, if there exists A > 0 such that

o= lim Z‘yGPerR(th,t] etb(v)(S’Y
=00 AEeg,A(SD’ t)

where d., is the normalized Lebesgue measure along a periodic orbit .
In his proof of the variational principle in [Wal82, theorem 9.10], Walters pointed out a way
to construct equilibrium states through periodic orbits.

Proposition 2.15 ([Wal82, theorem 9.10).] Given A > 0, suppose there exists {t; } such
that

o1 .
lim a lOg AReg,A(@? tk) = P(CP)

k— 00
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and

P
lim Z'yeperR(tk—A,tk] € (7)5’)'
k—» 00 Al*{eg,A((p’ tk)

= U4,

then p is an equilibrium state.

Remark 2.16. The proof of the proposition above proceeds by relating the collection of
closed regular orbits to a (7, §)-separated set. This type of argument appears in section 8 as a
part of the proof for theorem B. See lemma 8.11 for details.

Since the set of F-invariant probability measures M (F) is compact with respect to the
weak* topology, proposition 2.15 has the following consequence:

Proposition 2.17.  Given A > 0, suppose Py, () = P(¢) and ¢ has a unique equilib-
rium pi,. Then piy, is the weak™ limit of p-weighted regular closed geodesics.

3. Preliminaries of surfaces without focal points

3.1. Geometry of Riemannian manifolds without focal points

In this section, we recall relevant earlier results of manifolds without focal points. These
results can be found in [Ebe73, Pes77b, Esc77, Bur83].

Throughout this section M denotes a closed C*° Riemannian manifold, and we denote the
geodesic flow on its unit tangent bundle 7'M by F = (f;),cr. Recall that for any Riemannian
manifold M, we can naturally equip its tangent bundle 7'M with the Sasaki metric. In what
follows, without stating specifically, the norm || - || on TT'M always refers to the Sasaki metric
(see discussions below remark 3.2 for the definition).

A Jacobi field J(t) along a geodesic +y is a vector field along -y satisfying the Jacobi equation:

J"(1) + R(J(1),5(2))y(r) = 0, (3.1)

where R is the Riemannian curvature tensor, and  denotes the covariant derivative along ~.
When M is a surface, the Jacobi equation (3.1) simplifies to

T (1) + K(v(1)3(r) = 0,
where K is the Gaussian curvature.
A Jacobi field J is orthogonal if both J and J' are orthogonal to + at some 7 € R (and
hence for all 7 € R).
A Jacobi field J is parallel at ty if J'(t9) = 0. If J'(r) = 0 for all € R, then we say J is
parallel.

Definition 3.1 (No focal points). A Riemannian manifold M has no focal points if for
any initial vanishing Jacobi field J(z), its length ||J(z)|| is strictly increasing. We say M has no
conjugate points if any non-zero Jacobi field has at most one zero.

Remark 3.2. There are other equivalent definitions for manifolds without focal points, and
many of their geometric features are introduced in [dC13]. The following results are classical
and relevant in our setting:

(1) Nonpositively curved & no focal points & no conjugate points.
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(2) One can find examples from each category above from [Gul75], as well as [Ger03], for
examples in the above assertion.

It is a classical result that one can identify the tangent space of T'M with the space of
orthogonal Jacobi fields J. Moreover, one can use this relation to define three F -invari-
ant bundles E“, E°, and E* in TT'M. To be more precise, for each v € T'M, there exists a
direct sum decomposition T,T'*M = H, ® V, into the horizontal and vertical subspaces, each
equipped with the norm induced from the Riemannian metric on M. The Sasaki metric on T'M
is defined by declaring H, and V,, to be orthogonal. Denoting the space of orthogonal Jacobi
fields along a geodesic «y by J (), the identification between T,T'M and J () is given by

T,T'M > € = (6.&) = Je € T (%)
where Jg is the unique Jacobi field characterized by J¢(0) = &, and J;(0) = &. Moreover,
we have
| I = Ve @IF + |70 (3.2)
We define J¥(7y) to be the space of stable (orthogonal) Jacobi fields as
T (y) ={J(@) € T(v) : ||[J(2)|| is bounded for ¢t > 0},
and J"(v) to be the space of unstable (orthogonal) Jacobi fields as
T (v)={J(t) € T(v) : ||J(1)]| is bounded for 7 < 0}.
Using these two linear spaces of 7 (+) and the identification, we can define two subbundles
E*(v) and E*(v) of T,T'M as the following:
E'(v) :={¢ € T,T'M : Je € J*(v)},
E'(v):={¢ e T,T'M : J: € T"(v)}.
Last, we define £¢(v) given by the flow direction.

Definition 3.3 (Rank). The rank of a vector v € T'M is the dimension of the space of
parallel Jacobi fields. We call M a rank I manifold if it has at least one rank 1 vector.

Definition 3.4 (Singular and regular set). The singular set Sing C T'M is the set of
vectors with rank greater than or equal to 2. The regular set Reg is the complement of Sing.

When M is a surface, the singular set admits a useful alternative characterization (3.3). This
fact as well as other facts regarding manifolds with no focal points are summarized in the fol-
lowing proposition.

Proposition 3.5. Let M be a closed Riemannian manifold without focal points. Then we
have:

(1) [Hur86, theorem 3.2] The geodesic flow F is topologically transitive if M is rank I°.

(2) [Pes77b, propositions 4.7 and 6.2] dim E"(v) = dim E*(v) = n — 1, and dim E“(v) = 1
where dimM = n.

(3) [Pes77b, theorems 4.11 and 6.4] The subbundles E"(v), E*(v), E®(v) and E“(v) are
F—invariant where E“(v) = E°(v) @ E*(v) and E®(v) = E°(v) ® E"(v).

(4) [Pes77b, theorems 6.1 and 6.4] The subbundles E"(v), E*(v), E“(v) and E“(v) are

3 Ergodicity was claimed in [Hur86] but the argument has an error. Nevertheless the proof for theorem 3.2 is inde-
pendent of ergodicity, and it remains valid.
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integrable to F—invariant foliations W*(v), W*(v), W (v) and W (v), respectively.
Moreover, W"(0) (resp. W*(v)) consists of vectors perpendicular to H*(v) (resp. H*(v))
and toward to the same side as v (see below for the definition of the horospheres H*/ (v)).

(5) [Esc77, lemma, p 246] E"(v) N E*(v) # 0 if and only if v € Sing.

(6) [O’S76, theorem 1, Esc77, theorem 2] The flat strip theorem: suppose M is simply con-
nected and geodesics 1,7, are bi-asymptotic in the sense that d(7y(t), v2(t)) is uniformly
bounded for all t € R. Then ~, and ~, bound a strip of flat totally geodesically immersed
surface.

(7) [Ebe73, corollary 3.3, 3.6] Suppose dim M = 2, then

Sing = {v € T'M: K(nf;v) = O forall t € R}, (3.3)

where m : T'"M — M is the canonical projection.
(8) [Hop48] Suppose dAim M = 2, then M is rank 1 if and only if its genus is at least 2.

(9) [Esc77, section 5] For any J € J*(v)(resp. J“(7)),
(resp. increasing) for all t € R.

J(1)|| is monotonely decreasing

We shall introduce more metrics on 7'M and the flow invariant foliations induced in Proposition
3.5 so that we can perform finer analysis. We write ds for the distance function on 7'M induced by
the Sasaki metric on 77'M. We will make use of another handy metric dx on 7' M:

dg (v, w) := max{d(,(¢), v (1)) : t€[0,1]}.

Such metric dk also appeared in [Kni98]. It is not hard to see that ds and dg are uniformly
equivalent. Thus, we will primarily work with the metric dyx throughout the paper. In par-
ticular, any Bowen ball B,(v, ) appearing from here onward is with respect to the metric d,
ie.

Bi(v,e) :={w € T'M : dx(f,w.f;v) <eforall0 <71 <t}
Furthermore, an intrinsic metric d* on W*(v) for all v € T'M is given by
d*(u,w) := inf{l(7wy) : v:[0,1] = W*(v), v(0) = u, v(1) = w}

where [ is the length of the curve in M, and the infimum is taken over all C' curves ~ connect-
ing u,w € W*(v). Using d° we can define the local stable leaf through v of size p as:

Wi (v) == {w € W'(v) : d'(v,w) < p}.
Moreover, we can locally define a similar intrinsic metric d on W () as:
d®(u,w) = |t| + & (fu,w)

where ¢ is the unique time such that f,u € W*(w). This metric d** extends to the whole central
stable leaf W (v). We also define @, W}, (v), d(v) analogously. Notice that when p is small
these intrinsic metrics are uniformly equivalent to ds and d.

Remark 3.6. A handy feature of these metrics is that for any v € T'M, o € {s, cs} and for
any u,w € W7 the map t — d° (fiu, fw) is a non-increasing function. Indeed, let -y be a curve
in W*(v) connecting u and w. Then fiy lies in W*(fiv). {f;(7) }o<s<: is @ one-parameter fam-
ily of geodesics and the associated Jacobi fields are all stable. Since stable Jacobi fields are
non-increasing on manifolds without focal points (proposition 3.5 (9)), the length of - is not
less than the length of f;(7).

Similarly, for o € {u, cu}, r — d°(fu,fyw) is non-decreasing. These features are used in
establishing the specification property in section 5.
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Following proposition 3.5, one can define the stable horosphere H*(v) C M and the unsta-
ble horosphere H"(v) C M as the projection of the respective foliations to M:

H'(v) = w(W’(v)) and H"(v) = 7(W"(0)).
We now summarize some useful properties of them.

Proposition 3.7 ([Esc77, theorem 1i, ii]). Let M be a Riemannian closed manifold with-
out focal points. Then we have

(1) H*(v), H*(v) are C*-embedded hypersurfaces when lifted to the universal cover M.

(2) For o € {s,u}, thesymmetric linear operator U° (0) : Tr,H® (v) — TroH (v) given by
v — VN, i.e. the shape operator on H° (v), is well-defined, where N is the unit normal
vector field on H® (v) toward the same side as v.

(3) U" is positively semidefinite and U° is negatively semidefinite.

We are ready to rephrase above two propositions specific to the surface setting. From now
on, we denote by S a closed Riemannian surface of genus at least 2 without focal points. Then
from propositions 3.5 and 3.7 we have:

e Sisrank 1.

e For v € T'S, H"(v) (resp., H*(v)) is one dimensional and called the unstable (resp.,
stable) horocycle.

e The (one dimensional) linear operator U"(v) : TrpH"(v) — TrpH"(v) is given by
the geodesic curvature k*(v) of the horocycle of H"(v) at mv. More precisely, for all
w € TroH"(0)

u*(v)
e Similarly, ¢*(v) is given by k*(v) the geodesic curvature k*(v) of the horocycle of H*(v)
at o, i.e. U (v)(w) = —k*(v)w for all w € T, H*(v). Moreover, k*(—v) = k*(v) which
follows from the fact that H*(v) = H*(—v).

(W) = K" (0)w.

3.2. Hyperbolicity indices A and A\t

In this subsection, using k* and k* we introduce several useful functions to quantify the hyper-
bolicity for any v € T'S. These hyperbolicity indices will be used in section 4 to derive the
decomposition for orbit segments.

Definition 3.8. For v € T'S and for any T > 0, we define:
P ) = min(k”( ),k (0)).

(2) Ar(v f A fro)dr.

Remark 3.9.

(1) Since the horocycles are C? (by proposition 3.7), we have k* and k* are continuous, and so
are A and Ar.
(2) The A defined in this paper is exactly the same as the X introduced in [BCFT18].

Remark 3.10. The main difference between the ‘nonpositively curved’ setting in [BCFT18]
and our ‘no focal points’ setting is the following: in nonpositively curved manifolds, the norm
of Jacobi fields is convex, while it is not necessarily true in manifolds with no focal points.
As one can observe in [BCFT18], the convexity on the norm of Jacobi fields can be used to
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deduce good estimates on A (for instance, lemma 3.3 in [BCFT18]), and one can use A to
characterize the singular set.

However, A does not enjoy such properties in our setting. In order to equip A with nice
properties as in [BCFT18], we introduce a new function Ay by integrating A for a longer time
T. While A(v) in no focal points setting does not capture the hyperbolicity at v, the integrated
function A7 for large enough 7 is successful in distinguishing Sing from Reg, and this is the
main motivation for introducing the new function Ar.

The following proposition and lemma establish relations between horocycles and related
Jacobi fields. The version we state below is from [BCFT18, lemma 2.9].

Proposition 3.11. Let v,(t) be a unit speed geodesic such that +,(0) = v, and J* be the
H"(v)-Jacobi field along ~,, that is, the Jacobi field derived by varying through geodesics
perpendicular to H"(v) and satisfying ||[J*(0)|| = 1. Then J* € J" and

(I (1) = K" (fv)J"(¢) forall t € R. (3.4)

Similarly, for J the H* (v)-Jacobi field along ~y,, we have J° € J* and (J*)'(t) = —k*(f;v)J*(¢)
Jorallt € R.

Proof. Let a(s,7) for (s,7) € (—e,€) x R be the variation of geodesics along H"(v), i.e.
a(0,1) = 7 (t) and a(s,0) € H*(v), such that Za(s, 1) ‘s:() = J*(t). Then, forr =0

(") (0) = %%a(s, f) = %ga(s, )

$=0,4=0 ! $=0,1=0
=V N =U"(v)(J*(0)) = k*(v)J*(0),

where the second equality is by the symmetry of the Levi-Civita connection and the last equal-
ity follows from proposition 3.7.

To see this is true for all ¢, we notice that the flow invariant unstable manifold W*(v) con-
sists of vectors which are perpendicular to H*(v) and point toward to the same side as v (see
proposition 3.5). That is, when we vary geodesics perpendicularly along H"(v), these geodes-
ics vary perpendicularly along H"( f,v) as well. Thus, J*(¢) is the Jacobi field derived by vary-
ing geodesics perpendicular to H*(f;v), and we have (J*)'(r) = k“(f;v)J"(¢) by repeating the
computation above. For J°, the same argument applies. [

Let A be the maximum value of the function k*:

A= k'(v) = K (v).
ek (0) = ek () (35)

From the proposition above, for o € {s,u} we have ||(J7)’(¢)|| < A||J°(¢)| for all 7. Then by
equation (3.2), for any £ € E“(v) or E*(v) we have

Me@II® < Nldfig]? < (14 A%)[e(0)] .

The following lemma is an immediate consequence of proposition 3.11 obtained by inte-
grating (3.4), and it is the analogue of [BCFT18, lemma 2.11]

Lemma 3.12. Letv € T'S and J* (resp. J°) be an unstable (resp. stable) Jacobi field along
Yo. Then

17(0)]] = elo ¥ U247 17 (0) and [l (1)]] < e SXU=T 1P 0))]. (3.6)
A handy lemma for computation:
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Lemma 3.13. Let v : R — R be a continuous non-negative function and

(1) =/_TTw<r+T)dT

Then, for every a < b,

/ Ur(r) / bjT Y (r)dr.

Moreover, we have

1

2T )\T(fT )dr —2TA g/o A(fro)dr

where \ ‘= max k' (v) = max k*(v) as in (3.5).
veT'S veT'S

Proof. Forb —a < 2T,

K Vr(t)dt = /ab /_TT Ot + 7)drdr

b—T a+T b+T
- / (r 4+ T — a)p(r)dr + / (b — a)b(r)dr + / (b+T - 7)b(r)dr

-7 b—T +T
b—T a+T b+T
< (b-a) Y(r)dr + (b —a) Y(r)d7 + (b —a) Y(r)dr
a—T b—T a+T
b+T DT
=((b-a) Y(r)dr < 2T Y(T)dr
a—T a—T

Forb —a >

/d)T(tdt // Y(t+ 7)drde

a+T b—T b+T

= / (T+T—a)yp(r)dr + / 2Ty (r)dr + / (s4+T—7)Y(r)dr

a-T at+T b—T
b—T b+T b+T

T
<or / wdr+2r [ w2t [ wrdr =21 [ w(r)dr
T a+T b—T a—T

Since A > max A(v)s the last assertion follows from
veT!S

t T+t 0 T+t
/0 Mfoo)dr = [ Mo - [ A(fro)dr - /, Mfo0)dr

T+t
> / A fro)dr — 2TA

-T
1

> 5 )\T( frv)dr — 2TA.

This completes the proof. O
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v fpv . ft—sv ftv

Figure 2. Orbit decomposition.

4. A decompositions of finite orbit segments

4.1. Sing, A\, A1, and decompositions

In this subsection, we discuss a decomposition given by Az. This decomposition will allow
us to apply the Climenhaga—Thompson criteria (i.e. theorem 2.10) to prove the uniqueness of
equilibrium states. Throughout the section, we retain the same notations as previous sections.

Definition 4.1 (Good orbits and bad orbits). For any T,n > 0, we define the two collec-
tions of finite orbit segments Gr(n), Br(n) C T'S x [0,00) using Az:

Gr(n) =={(0,1): /0 Ar(fy0)d0 > 71 and /0 Me(f_af0)dd > 7 € [0,1]},

Bilo) {05 [ Ar(fi0)d6 < m).

Using Gr(n) and Br(n), we define the orbit decomposition
(P.G,8) = (Br(n), Gr(n), Br(n))-

More precisely, we define three maps p,g,s: T'S % [0,00) = R as follows. For any
given finite orbit segment (v,¢), we let p = p(v,t) € [0,7] be the largest time such that
(v,p) € Br(n).Wethenlets = s(v, 1) € [0,t — p]bethelargesttimesuchthat (f,_,v, s) € Br(n),
and let g = g(v,t) =t — s — p be the remaining time in the middle. From the choice of p and
s, itis not hard to see that (f,v, g) € Gr(n). Indeed, if (f,v, g) did not belong to Gr(n), then one
of (or both) p and s can be increased, and this would contradict the choice of p or s as the larg-
est time such that (v, p) € Br(n) and (fi—sv,s) € Br(n). Please see figure 2 for an example.

Proposition 4.2. We have:

(1) Sing is closed and flow invariant.
(2) Gr(n) C T'S x R is closed.
(3) Reg is dense in T'S.

Proof. These assertions are rather straightforward from their definitions (notice that Ay is
continuous). Nevertheless, we elaborate a little more on the last one since it is less obvious
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than others. Notice that the geodesic flow is topologically transitive (see proposition 3.5),
so there exists a dense orbit v C T'S. Since Reg is an open set, there exists # € R such that
~(#) € Reg, and which implies that v C Reg because Sing is flow invariant. O

4.2. Uniform estimates on Gr(n)

Let T,n > 0 be given, and suppose 7 > 1. From the compactness of TS, the functions A and
Ar are uniformly continuous, so there exists § = §(T,n) such that

Ui

dx(v,w) < 6 = |0(v) — O(w)| < T 4.1)
where O is one of \ or 7.
Also, define
(o) — _n
2(0) = max {o, A(0) 4T} .
Then, for w € B,(v,d), we have
t t - t T]t
[ auwar= [ > [ Mo - 2 (42)
0 0 0 4ar
It follows from (4.2) and lemma 3.13 that
t~ t nt
/ A fro)dr > / A fro)dr — —,
) . nt “4.3)
2 A T - 2TA g
o7 J, Aol AT

where A = max k“(v) as in (3.5).
veT!'S
Lastly, using the notations above, we have the following control of the expansion and con-

traction along stable and unstable leaves.

Lemma 4.3 ([BCFT18, lemma 3.10]). ForanyT,n > 0, pick 6 = §(T,n) as in (4.1). Then
foranyv € T'S and w,w' € W5(v), we have the following for every t > 0:

dS(ftW,ﬁW/) < ds(W, W/)e— Jo X(ffv)d-r'

Similarly, if w,w' € W§(v), then for any t > 0,

d(fow fow') < d“(w,w')e™ Jo A(f=r0)dr,

Remark 4.4. Lemma 4.3 can be proved in the exact same way as [BCFT18, lemma 3.10].
Although the setting of [BCFT18] is nonpositively curved manifolds and A in [BCFT18] is
slightly different from our A, the proof of [BCFT18, lemma 3.10] still applies to lemma 4.3
without any modification. Indeed, the proof of [BCFT18, lemma 3.10] is based on [BCFT18,
lemma 2.11], and we have the corresponding lemma 3.12 available in our setting as well. The
difference in the definitions of A also does not cause any problem because the only inequality
used in proving [BCFT18, lemma 3.10] is A > 5\, and this inequality remains true from the
definition of .

The following lemma refines lemma 4.3. In other words, it provides us with a nice control
on the expansion and contraction for orbit segments in Gy.
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Lemma 4.5. For any T>1 and n >0, pick § =46(T,n) as in (4.1), and suppose
(v.t) € Gr(n). Then every v' € B,(v,0) satisfies (v',t) € Gr(%).

Moreover, there exists C = C(T,n) > 0 such that for any (v,t) € Gr(n), anyw,w’ € W;(v)
andany 0 < 7 < t,

& (frw, frw') < Cd*(w,w')e 3.
Similarly, for w,w' € f_ W§(fiv) and 0 < 7 < t, we have
d"(frw,frw') < Cd"(fiw, fiw')e = (=T),

Proof. The first statement follows from the choice of § = &(7,n) in (4.1): for any
v’ € By(v,d) where (v,1) € Gr(n) and any 0 < 7 < 7, we have

’ na > | . _m_ T
/OAT(fgv)dG//O Ar(fov)dd — 7 4T>T77 4T> 5

The last inequality used the assumption that 7> 1. Similarly, [ Az(f-g4.0')d8 > 71/2.
Hence, (v/,t) € Gr(n/2).
By lemma 4.3 and inequality (4.3), since (v,¢) € Gr(n), we have

ds(f-rW,fq—Wl) < ds(w, W/)67 I X(fxv)dx’

—1 T
<d'(ww)osp | o | Ar(fo)det 274 + Z—; ,
27N
< d(w,w') exp <_27;T +2TA + Z;) =C-d'(w, w’)e_%,
where C = ¢?". Similarly, we have the other inequality. O

Definition 4.6. We define the uniformly regular set as

Reg,(n) :={v € T'S: M\r(v) = n}.
Lemma 4.7. Given n,T > 0, there exists 6 > 0 so that for any v € Regy(n), we have for
any —T <t<T

L(E"(fro), E*(frv) = 0.

Proof. Assume the contrary. Then there exists {(v;, %) }ien C Regp(n) x [=T, T] such that
L(E(fivi), E“(fivi)) = 0.

Since Regy(n) x [T, T]is compact, there exist subsequences #;, — to, and v;, — vp such that

L(E*(fiyv0), E*(fiyvo)) = 0. Then, f;,vy € Sing from proposition 3.5 (5). On the other hand,

Reg;(n) is closed so vy € Regy(n). However, this is a contradiction because Sing is flow in-
variant. L
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4.3. Relations between kS, kY, A\, A1, and Sing

The aim of this subsection is to show how one can use these hyperbolicity indices A and A7 to
characterize the singular set Sing.

Lemma 4.8. The following are equivalent for v € T'S.

(1) v € Sing.
(2) k*(fv) =0 forallt € R.
(3) k(f0) = 0 forall t € R.

Proof. Itisclearthat (1) = (2) and (3). We will prove (2) = (1) which then (3) = (1)
similarly follows.

To see (2) = (1), it is enough to show that J* the unstable Jacobi field along -, is parallel.
By proposition 3.11, we have for all r € R

() (1) = K" (fio)J“(1) = 0.
Thus J* is a parallel Jacobi field. |

Lemma 4.9. \r(v) =0 forall T if and only if v € Sing.

Proof. The if direction is clear. In the following we prove the only if direction.

First we notice that since A is non-negative, continuous, we have that Ar(v) = 0 for all
T € R implies A(fiv) =0 forall t € R.

Claim: There are only three possible cases such that A(fiv) = 0 for all t € R:

() k°(frv) =0forall r € R.
(ii) k*(fv) = 0 for all € R.
(iii) There exists 7o € R such that &°( f,,v) = k*(f;,v) = 0.

It is clear from lemma 4.8 that both (i) and (ii) give v € Sing. To see (iii) also im-
plies v € Sing, we recall that, for o € {s,u}, k°(f;,v) =0 implies that there exists
0 # w” € Tr(y, 0)H? (fi,0) such that k7(w?) = 0 . Since both w", w* are orthogonal to f;,v
and S is a surface, we know w* = w* (by taking the same length, and reversing the sign if
necessary). It is not hard to see that the H"( f;,v)-Jacobi field J* matches the H*( f;,v)-Jacobi
field J°, that implies, E*(f;,v) N E*(f;,v) # 0. Thus we have f;,v € Sing, and because Sing is
flow invariant we have v € Sing.

To see the claim, let U := {tr e R: k*(fiv) =0} and W := {r € R: k*(fiv) = 0}. Since
both k“,k* are continuous, U and W are closed sets in R. Notice that if U N W = ) then
U = R\W; thus U, W are clopen sets. Since R is connected, if UNW = @, then U =R or
W =R. U

Remark 4.10.

(1) We remark that we are using the fact that S is a surface in the proof of lemma 4.9. Indeed,
in the process of showing that v € Sing from Ar(v) = 0 for all 7, we obtained a parallel
Jacobi field along v by showing that the stable Jacobi field J° is equal the unstable Jacobi
field J*, and this step required that S is a surface.
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(2) There are a few other places in this paper where we make use of the fact that S is a
surface. For instance, when we establish the Bowen property for the scalar multiples
of the geometric potential in section 6, our analysis heavily rely on the fact that S is a
2-dimensional manifold. Moreover, the Bernoulli property on f, from theorem B as well
as the differentiability of the map ¢ — P(gy") on the interval (—oo, 1) from theorem C
rely on the fact that S is a surface.

Lemma 4.11. Let pu be a F-invariant probability measure on T'S. Suppose \(v) = 0 for
p-a.e. v € T'S, then supp(p) C Sing.

Proof. Suppose supp(u) € Sing. Since p is Borel, there exists v € Reg N supp(p) such
that for any » > 0 we have w(B(v,r)) > 0. We also notice that since v € Reg there exists fy
such that A(f;,v) > 0 (otherwise v € Sing by lemma 4.9). By the continuity of A, there ex-

ists a neighborhood B(f;,v, ro) of f,,v such that Al , ;.\ > 0. Then there exists r > 0 such
1Y
B(v,r) C f—1,(B(f,0,10)) and we have

u(B(fi,0,10)) = p(f=1 (B(fiyv: 70))) = u(B(v, 7)) > 0.

Hence, A cannot vanish p-almost everywhere. |

5. The specification property

Let X be a compact metric space with metric d and F = (f;);cr be a flow on X. For any
t € R, we set di(v,w) = SUD, oy d(fyv.fyw) for any o,w € X.

In what follows, X will be T'S and d the metric dg. With respect to the intrinsic metric d*
and d" on W and W, these metrics relate to each other by (from the fact that the stable mani-
fold is non-increasing in forward time; see remark 3.6)

di (v, w) < d*(v,w) and dg (v, w) < e™d"(v,w)
where A = max,cp15k" (v
di(v,w)
di(v,w)

) = max,cpi1gk*(v) as defined in (3.5). This then implies
d® (v, w),
d

5.1
“(frp10,frpw) < erd"(fofw). ©.1)

<
<

Definition 5.1. The foliations W* and W* have local product structure at scale § > 0 with
constant £ > latvif forany wi, w, € B(v,d), the intersection [wy, wy] := W s(w1) N W (w2)
is a unique point and satisfies

kdg (w1, w),

de(Mq,mq).

d“(wi, [wi, wa))

<
d®(wo, [wi,wa]) <

For any T,n > 0, we define Cr(n) := {(v,1): v,fiv € Regy(n)}. The uniform lower bound
of Ar on the endpoints of the orbits in Cr(n) guarantees the uniform local product structure
on Cr(n):

Lemma 5.2. Forany T,n > 0, there exist d > 0 and k > 1such that Cr(n) has local prod-
uct structure at scale 6 with constant k.
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Proof. The lemma follows from the uniform angle gap from lemma 4.7 together with the
continuity of the distribution E* and E". O

The following proposition is due to the transitivity of the geodesic flow.

Proposition 5.3. Let T,n > 0 be given. Then there exists § >0 such that for any
p € (0,6), there exists a = a(p) such that the following holds: for any v,w € T'M with
dx(v,Regr(n)) < § and dx(w,Regy(n)) < 8, there exists T € [0,a] and [v,w], € T'S such
that

[o,w], € Wy(v) and f;[v, w], € W;S(w). (5.2)

Proof. Let e and  be the constants from the local product structure on Reg(n). By taking
d € (0,e/2) sufficiently small, we can ensure that the §-neighborhood of Reg,(n) has local
product structure at scale £/2 with constant 2. Now using the transitivity of the flow F, for
any p € (0,6), we can find a = a(p) such that the following holds: for any v, w, there exists
x = x(v,w) € B(v, p/4x*) and T € (0,a) with f7x € B(w, p/4K?).

If v,w happen to be d-close to Regy(n), then the uniform local product structure on
d-neighborhood of Reg () gives[v, w], as follows: take z = [v, x] and set[v, w], := f_,[frz, w].
Then, [v, w], := f_,[f-z, w] satisfies (5.2). O

Remark 5.4. 1t is worth noting that the choices of 7 and [v, w], are not unique; we simply
choose any one of [v, w],’s that satisfy (5.2).

Proposition 5.5. Forany n,T > 0, Cr(n) has specification as in definition 2.5. Hence, so
does Gr(n).

Proof. Let 7,7 > 0 be given. We begin by fixing any regular periodic orbit (v}, ) as our
reference orbit. From Lemma 4.9, there exists 77,7’ > 0 such that the entire orbit segment
(vg, 1) is contained in Regy. (7). By comparing T’ and the given 7, we re-define 7 as the
larger of the two. Similarly, we re-define 7 as the smaller of " and the given 7. It then follows
that (v, #,) € Gr(n). We set vy := f_rv;, and fo := 2T + #. Then (vo, f) is just an extended
orbit segment obtained from (v}, #,), and its endpoints v, f;,vp belong to Reg,(n).

Using the uniform continuity of A, we can choose §; > 0 such that [A\(v) — A(w)| < ITI;I)U
whenever dg (v, w) < ;. For such choice of §;, for any w € By, (vg, d1) we have
I Iy ,’,]t/
ZT/ A fw)ds > 2T/ M fyv0)ds — (2T)to - —2-,
0 0 4Tty
1 nt!
>/ Ar(fivg)ds — 22,
O 2
Ny _ "ty
>y — -0 = 20,
Mo ) D)
The second and third inequalities are due to lemma 3.13 and the assumption

that (v(,15) € Gr(n), respectively. In particular, setting o := exp(%’) > 1, for any
w,w' € By, (v, 01) with w’ € f W (fi,w), we have

ad"(w,w') < d"(fiyw.fiuW). (5.3)
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Let &, > 0 be from proposition 5.3, and set ¢ := min{dy, d,}. Given an arbitrary small
scale 0 < p < &, we will show that by setting p’ := p/(6e 372, a™7), Cr(n) has specifica-

tion at scale p with corresponding 7(p) := o + 2a where a := a(p') is from proposition 5.3.

Let (v1,11), ..., (Unta) € Cr(n) be given. We will inductively define orbit segments (wj, s;)
such that for each 1 < j < n, we have
fstj S W;f (ﬁ/’l)]) 5.4

We begin by setting (wy, s1) := (v1,1). Supposing that (wj, s;) satisfies (5.4), we want to
define (wjt1,5j+1) in a way that the orbit of wj;; closely shadows that of w; for time s;, then
jumps (via proposition 5.3 with transition time < a) to vy and shadows vy for time 7, then
jumps to (again via proposition 5.3) and shadows v; for time #;,.

Since proposition 5.3 only allows one jump at a time, we define an auxiliary orbit segment

() = (s [fswis 0l 85 + 75+ )
by applying proposition 5.3 to f;;w; and vg. Note that proposition 5.3 can be successfully ap-
plied because fw; € Wii(f,v;) from (5.4) and f,0; € Regr(n) from (v;,#;) € Cr(n). Moreo-
ver, fiu; € Wi (vo) because fi4ru; € Wi (o) and d does not increase in forward time; see

remark 3.6.
We then apply proposition 5.3 again to f;,u; and vj4; to obtain

(Wit1,8j+1) := (f—l,- [fl,-“j’ Uj+1]rj’v li+ 7}'/ + tj+1)'
From the same reasoning as in the construction of (u;,[;), the new orbit segment (wj1, Sj11)
is well-defined and f;,,, wj+1 € WS (£, ,0j41)-

Now we show that (wj, s;) constructed as above shadows each (v;, ;) up to i = j with scale
p'; thatis, dy, (fs,—,wj, vi) < p. Notice that for any i < m < j, we have

d" (fs W fittm) < p'a” "0,

This is because d"(f;, Wi, fs, m) < p' from the construction of u,, and each time f;, u,, and
f5,,wm pass through the reference orbit (v, #y) in backward time, their d* distance decrease by
a factor of at least o from (5.3). Similarly, we have

du(f%”m,fviwm_'_l) < p/a*(1+m7i).

Hence, for any i < j, we can uniformly bound the ¢" distance d"(f; wj, fswi) by 3%/\ :

—_

j_

d"(fuwpnfswi) <Y d"(fiWmsfiWms1),

S
i

—_

< du(fsiwm’f:?ium) + du(ﬁium’ﬁ?iwm+1)’

~

3

-1 j—1
o= (=) _’_plza—(l-&-m—i)’

i m=i

~.

N
b\
i\g

N
@
>‘”° :
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where the last inequality is due to the definition of p’. From the relations among various met-
rics (5.1), we obtain that

dli (fsi*fiwj’ U,‘) < dli (fsi*tiwj’fs,‘*tiwi) + dti (fsi*tiwi’ vi)’
S % et <,
where we have used that d°(f;,_,w;, v;) < p’ from the construction of w;. Since p was arbi-
trary, this finishes the proof. O

One useful corollary of the specification property is the closing lemma which creates lots
of periodic orbits, and later allows Cr(n) to be approximated by regular periodic orbits. The
proof of the closing lemma below follows the same idea as [BCFT18, lemma 4.7].

Lemma 5.6 (The closing lemma). For any given T,n,e > 0, there exists s = s() > 0
such that for any (v,t) € Cr(n) there exists w € B;(v,€) and T € [0, s()] with fir-w = w.

Proof. The proof is based on Brouwer’s fixed point theorem. We begin by fixing a reg-
ular periodic orbit (vg,1y) € Gr and set (vo,ty) := (f-rv),2T + 1)) as in proposition
5.5, after possibly re-defining 7 and 7. Reasoning as in proposition 5.5, there exists § > 0
such that the distance between any w,w’ € Wj(vg) contract (and likewise expand for any
w,w' € f_, Wi¥( f,v0)) under f; by factor o := exp(Z—tT‘/’).

Let € = €9/4. We may suppose € is small enough that Cr(n) has local product structure
at scale € and constant . Let n € N such that " > 2k. Also, we may assume nty > 1+ ¢
without loss of generality (otherwise, simply increase n).

Now, for any (v, 1) € Cr(n), we use proposition 5.5 to find wy € B(v,/4k) whose orbits
shadows (v, t) once, then (vy, fy) n-times, and then (v, ¢) once again at scale £/4x with each
transition time bounded above by 7. Since wy has to eventually shadow (v, ) again, there
exists 7y € [ntg, n(to + 7) + 7| such that fi,wo € B(v,e/4k). From the triangle inequality
pivoted at v, we have dg (wo, fi+-rn,Wo) < 2 - €/4k = £/2k. Also, using the forward contraction
of the stable manifold near the reference orbit (vo, o), for any u € W2 (wy), we have

dK(ft+Tou’ WO) < dK(flJrTou’ﬁ+T0W0) + dK(flJrToWO’ WO)’
< o "dg(u,wp) +¢/2k < €/k.

Since v has local product structure at scale € with constant £ and wy is €/4-close to v, the
point Wi (wo) N WE( fiyru) is well-defined and belongs to W2 (wy). In particular, the continu-
ous map from W2 (wy) to itself given by

s WE(w0) N WE(figryt)

is well-defined. Hence, by Brouwer fixed point theorem, we can find a fixed point wy € W2 (wj)
under this map. Since the map is not given by f; for some s, the fixed point wy is not quite F
invariant yet. Instead, its characterizing property is that w; € W(firw1).

By adjusting 79 by a unique small constant less than e, we have w; € W¥(f;1.w;) where
7 is adjusted constant from 7. Since the unstable manifold shrinks in backward time near
(v, ) by factor c, this time we obtain a continuous map defined by the flow f_,_;:

St—7: qua(ﬁ+TWl) - ng(,ft+7—wl)~

Hence, the Brouwer fixed point theorem applies again and we obtain w € W5_( fi1-w:) with
Jierw = w. We are left to show that d,(v, w) < &¢. This follows because
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di(v,w) < di(v,wo) + di(wo, wi) + di(wi, w),

<
< e/dr + d°(wo, wr) + d* (w1, w),
<e/dr+e+2e < .

Here, we have used (5.1) and the fact that d,(wy, w) < d*(fir1w1,fix1w) < d*(frrrwi,figrw)
because T > nty — € > 1. Lastly, setting s(eo) := n(to + 7) + 7 + £, we are done. O

Using the same argument as [BCFT18, corollary 4.8], we have the following corollary of
the closing lemma.

Corollary 5.7. For any given T,n > 0, there exist ¢ = €(T,n) > 0 such that for any gy < €
there exists s = s(eg) > 0 satisfying the following: for any (v,t) € Cr(n) there exists

(1) a regular vector w with w € B,(v, &¢), and
(2) T € [0, s] with fiyrw =w.

Proof. From the uniform continuity of A, there exists € = e(n) > 0 such that for all
w € B(v,¢), we have A(w) > 0.

Since v € Cr(n), there exists v' = f,v for some o € [T, T] such that A(v') > 7. Also,
we must have (v,7+ o) € Cor(n) from the definition of Cr(n). By lemma 5.6, for any
2T, n,e0 > 0, there exists s = s(gg) > 0 such that w € B, (v',&9) and 7 € [0, s(gp)] such
that ft+a+‘r (W) =w.

Also, it follows that w is a regular vector because A(w) > 0 from dg (v, w) < &g <e. [

6. The Bowen property

In this section, we prove the Bowen property for Holder potentials and the geometric potential
. Lemmas in this section have their corresponding versions in [BCFT18] and the proofs fol-
low the same ideas. Nevertheless, in contrast to [BCFT18], we have an extra time parameter
T for accumulating hyperbolicity, thus we have to modify proofs in [BCFT18] accordingly. In
particular, we take a slightly different approach from [BCFT18] to derive the Bowen property
for geometric potentials, because several crucial estimates in [BCFT18] do not extend to the
no focal point setting.

6.1. The Bowen property for Hélder potentials

Definition 6.1. A function ¢ : T'S — R is called Holder along stable leaves if there exist
C,0,6 > 0 such that forv € T'S and w € W5(v), one has |p(v) — p(w)| < Cd*(v, w)?. Simi-
larly, ¢ is called Holder along unstable leaves if there exist C, 6, > 0 such that for v € T'S
and w € W¥(v), one has |¢(v) — @(w)| < Cd*(v, w)?.

Since dk is equivalent to d" and d* along unstable and stable leaves when J is small, we know
 is Holder implies that ¢ is Holder along stable and unstable leaves.

Definition 6.2. A function ¢ is said to have the Bowen property along stable leaves with
respect to C C T'S x [0, co) if there exist §, K > 0 such that
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sup{|®(v,1) — ®(w,1)| : (v.1) €C, we W5(v)} < K.

Similarly, a function ¢ is said to have the Bowen property along unstable leaves with respect
toC C T'S x [0, 00) if there exist , K > 0 such that

sup{|®(v,1) — ®(w,1)| : (v,1) €C, we f_Ws(fiv)} <K.

Lemma 6.3. Forany T> 1 and n > 0, if ¢ is Holder along stable leaves (resp. unsta-
ble leaves), then p has the Bowen property along stable leaves (resp. unstable leaves) with
respect to Gr(n).

Proof. It is a direct consequence of lemma 4.5. We prove the stable leaves case, and for
unstable leaves one uses the same argument.

Let (v,1) € Gr(n), 61 > 0 be as in lemma 4.5 and §, > 0 be given by the Holder continuity
along stable leaves. Then for § = min{d;,d,} and w € Wj(v), we have

|@(0,7) — ®(w,1)] </0 lp(fro) — @(frw)|dr </0 Ci - d*(fro.frw)’dr

t 0 t
</ C - (Cd“(v,w)-e’%T) dr < -C‘Q-ds(v,w)e/ e Tdr
0 0
AT
<G -0 =
no

This completes the proof. [l

It was proved in [BCFT18, lemma 7.4] that the Bowen property along invariant leaves
implies the Bowen property on the entire phase space. With minor modification on the proof
of [BCFT18, lemma 7.4], we have the following similar result for geodesic flows over mani-
folds without focal points. More precisely, the lemma below follows after replacing G(n) and
[BCFT18, corollary 3.11] used in the proof of [BCFT18, lemma 7.4] by Gr(n) and lemma 4.5,
respectively.

Lemma 6.4. For any T > 1 and n > 0, suppose @ has the Bowen property along stable
leaves and unstable leaves with respect to G (3 ). Then ¢ : T'S — R has the Bowen property
on Gr(n).

Summing up two lemmas above, we have the desired result for Holder potentials:

Theorem 6.5. [If ¢ is Holder continuous, then it has the Bowen property with respect to
Gr(n) forany T > 1 and n > 0.

6.2. The Bowen property for the geometric potential

Definition 6.6. The geometric potential ¢* : T'S — R is defined as: forv € T'S

1 d
¢ (v) = —lim ;log det( dfilpu)) = — a@ log det( dfi[pu(y))-
0

1=
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In general, we do not know if (" is Holder continuous. There are some partial results under the
nonpositively curved assumption; however, not much is known in the no focal points setting.
Nevertheless, in this subsection we prove ¢* has the Bowen property on Gr(n).

We denote by J¥ the unstable Jacobi field along v, with J%(0) = 1. Let U¥ := (J%)' /J“.
Since J} satisfies the Jacobi equation (3.1), U is a solution to the Riccati equation

U + U? +K(fo) = 0.

Notice that we also have U!(t) = k"(f;v) by proposition 3.11. Notice the following lemma
relates ¢"(¢) and —U%(z).

Lemma 6.7 ((BCFT18, lemma 7.6]). There exists a constant C such that for all v € T'S
and t > 0 we have

[ e tonr - [ -urirrar

< C.

Proof. The proof follows exactly as that in [BCFT18]. ¢" in [BCFT18] is exactly —U*
when n = 2. |

Hence, in order to prove the Bowen property of ¢" on Gr(n), we only have to prove
lemma 6.8 below which follows from lemma 6.9. Lemma 6.8 is similar to proposition 7.7
in [BCFT18]. However, their proof relies heavily on the convexity of Jacobi fields, hence we
cannot translate it directly. Nevertheless, in the surface case, comparison of Ricatti solutions
is nothing but comparison of real functions, thus we manage to apply different techniques to
overcome the absence of convexity.

Lemma 6.8. For any T>1 and n >0, there are §,Q0,& >0 such that given any
(v,1) € Gr(n), w1 € Wi(v) and wy € f_W§(fiv), for every 0 < T < t we have

|Up(r) = Uy, (7)] < Qe™*T,
|Us(7) = Uy, (7)] < Qe +e7*77),

Lemma 6.9. For any T>1 and 1 >0, there are 0,Q such that given any
(v,t) € Gr(n),w € B,(v,9), for every 0 < 7 < t we have

\U(7) — U (1)| < Qexp (—%) n /0 exp (— / 25\(fav)da> IK(f,0) — K(fw)|ds.

5

We will show how lemma 6.8 follows from lemma 6.9 first, and then prove lemma 6.9.

Proof of lemma 6.8. Let J > 0 be given from lemma 6.9. We will use Q to denote a uni-
form constant that is updated as necessary when the context is clear.
Since w; € W3 (v), the smoothness of K together with lemma 4.3 implies

[K(fsv) = K(fow1)| < Qd(fiv.fowr) < Qd*(fiv.fyw1) < Qb exp (— /0 ;\(fav)da)

for any s € [0, 7]. Thus by lemma 6.9, there exists Q > 0 such that
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030~ 02,0 < Qe (~ ) +.0 [ e (= [ 23hoaa) o (- [ Msioaa) as
< Qex % +Q/ exp< /X(fav)da>ds
Qexp( T)rerew(-57).
< Qe

once we fix £ < n/4T. Hence |Ut(7) — UL ()| < Qe™*".
For wy € f_,W§(fiv), we similarly have the following estimate:

IK(fiv) = K(fowa)| < Qdk(fiv.fiwa) < Qd"(fi—fiv.f—ifiwa2) < Qb exp (—/ 5\(fav)da>

for any s € [0, 7]. We use lemma 6.9 again and get:

UY(7) — U™ (7)] < Qexp (—%) +0 OTeXp (— /STZS\(fav)da> exp (— /Stj\(fav)da> ds

nr T t )
< -+ — | A(fev)da ) ds,
Oexp (-1 Q/O exp( / (fio)da ) ds
< Qexp (—%T) TO [ exp (—7704; s)> ds,
nr n(t—7)
<Qexp(—7)+Qexp (— AT >
This completes the proof. O

Proof of lemma 6.9. We set § > 0 from (4.1). Without loss of generality, we may assume
U%(0) > U“(0)and let U; be the solution of the Riccati equation along -y, with U; (0) = U}, (0).
We have

U (7) = Ui(m)| < [U3(7) = Ui (7)[ + [U (7) = U(7)|-

Since UE(0) > U%(0) and both U; and U satisfy the same first order ODE, their graphs do not
intersect. Thus we have U; (1) > U(r) = k*(f,v) for all 7. Hence

(U1 = U) = =(Ur = Ug)(Ur + Uy) < =2k"(fr0)(Ur — Up) < =2A(fr0)(Ur — Uy).

Thus (Uy(7) — U%(7)) exp ( [y 2A(f;v)ds) is non-increasing. From lemma 3.13 and the as-
sumption that (v,¢) € Gr(n), we have

0< UL(r) — V() < (U%(0) — U*(0)) exp (— / ' 2A(fsv)ds>

1 T
<o (4 [ vt < 0o (1),
0

Now we estimate |U; (1) — U%(7)|. We may assume Uy (1) > UL(7) (the other case is simi-
lar). Let so € [0, 7] such that U; (sg) = U (so) and U;(s) > Ul (s) for any s € (so, ¢). By taking
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difference of the corresponding Riccati equations, for any s € (so,¢), we have

(U1 = U (s) = =(Ui(s) = Uy(s))(Ur(s) + Uy(s)) + K(fi0) — K(fiw)
=2k (fw)(Ur = Uy)(s) + [K(fi0) = K(fiw)]-

Thus

%((Ul (s) — Ul(s)) exp ( / S Zk"(ﬁw)d“) >

~ exp ( / ok faw)da) (U1 = UL) () + 2K(fw) (U1 — UL)(s)),
<o A 28(fw)da ) [K(0) ~ K(f)

Integrating from s to 7, we have

Ur(r) - Us(r) < exp (— / )T 2k”(faW)da) / exp ( / Zk”(faW)da> IK(f0) — K(fw)]ds,
~[ew (= [ 20 thaa) (s0) - K ()i,
/s (

< / exp (f 2)\(]‘;1W)da) |K(fsv) — K(fsw)]|ds,
50
< / exp ( v)da | |[K(fv) — K(f;w)]|ds,
50
</ exp( 2A(fov da) |K(fs fsw)|ds,
0
where the last inequality follows because sy > 0 and the integrand is non-negative. [

Putting together lemmas 6.4 and 6.8, we have the following result:

Theorem 6.10. The geometric potential " has the Bowen property with respect to Gr(n)
foranyT > 1andn > 0.

7. Pressure gap and the proof of theorem A

The aim of this section is to prove theorem A. In order to do that, we spend most part of
this section on related estimates on pressures, such as P(-), P(Sing, ), Px,,(-), and relations
between them.

We know when the collection C = X x [0,00) we can use the variational principle to
understand the topological pressure P(-). However, when the collection C is not the set of all
finite orbits, the variational principle does not hold any more. Nevertheless, one can still use
empirical measures along orbit segments in C to ‘understand’ P(C, -). To be more precise, we
start from recalling related terms and estimates given in [BCFT18].

Let X be a compact metric space, F be a continuous flow, and ¢ : X — R be a continu-
ous potential. Given a collection of finite orbit segments C C X x [0, 00), for (x,7) € C the
empirical measure 0, is defined as, for any 1) € C(X),
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/1/Jd5(x,r) = 1/0tw(f7x)dr.

We further write M,(C) for the convex linear combinations of empirical measures of
length ¢, that is,

k
M;(C) = {Z a,»5(xi,t) ca; >0, Zd,‘ =1, ()C,', l) S C}
i=1

Finally, let M(C) denote the set of F -invariant Borel probability measures which are limits
of measures in M, i.e.

M(C) = {klggo Py © te = 00, py, € M, (C)}.

Notice that when C contains arbitrary long orbit segments, M (C) is a non-empty set.
We recall a useful general result from [BCFT18]:

Proposition 7.1 ([BCFT18, proposition 5.1]). Suppose ¢ is a continuous function, then

P(C,p) < sup Pu(y)
HEM(C)

where P, (@) == h, + [ @dpu.

Let us apply above results to our specific setting: S a closed surface of genus greater than
or equal to 2 without focal points, F the geodesic flow for S, and ¢ : T'S — R a continuous
potential.

The following lemma establishes that the pressure of the obstruction to expansivity is
strictly less than the entire pressure. It is a direct consequence of the flat strip theorem.

Proposition 7.2 ([BCFT18, proposition 5.4]). For a continuous potential o,
PL, () < P(Sing, ¢).

Proof. Itis a straightforward consequence of the flat strip theorem. Since the flat strip theo-
rem holds for manifolds without focal points (see proposition 3.5), the proof goes verbatim as
in [BCFT18, proposition 5.4]. O

The following proposition shows that, using the pressure gap condition, one can control the
size of bad orbit segments in the sense of pressure.

Proposition 7.3. Ler Br(n) be the collection of bad orbit segments defined as in definition
4.1. Then there exist Typ > 1 and ng > 0 such that

P([Br, (m0)], ) < P(¢p).

Proof. Let D be the metric compatible with the weak™ topology on the space of F -invariant
probability measures M (F). Abusing the notation, we will also use D to denote the Hausdorff
distance induced by D. Fix 6 < P(y) — P(Sing, ) and choose € > 0 such that

€ M(F) with D(p, M(Sing)) < e = P, (¢) — P(Sing) < 4.

The existence of such € is guaranteed by the upper semi-continuity of the entropy map
M(F) > p— hy,(f) which follows from the geodesic flow F : T'S — T'S being entropy-
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expansive (see Liu—Wang [LW16]). From lemmas 4.9 and 4.11, we have
M(Sing) = [ M, (m),

n>0,7>0

where M, (n) = {u € M(F): [ Ardu < n}. Hence, we can find Tp, 79 > 0 such that
D(M(Sing), My, (10)) < e.

Since M, (n) is nested, we can increase Ty if necessary to be bigger than 1.

In particular, for any p € My, (no), we have
Py (p) < P(Sing, ) 4 6.

Since it follows from the definition that M([Br(n))] C My, (n), we can verify that the
pressure gap P([Br,(n0)], ) < P(i) holds for such choice of 7y and Ty:

P([Br,(m0)], ) < sup  Pu(p) < sup  Pu(p) <6+ P(Sing, ) < P(p).
HEM([Br, (m0)]) HEMixy (m0)

This proves the proposition. O

Remark 7.4. We remark that the conclusion of proposition 7.3 remains to hold if we take
(To,m) for any ny € (0, no).

Now, we are ready to prove our first main theorem.

Theorem (Theorem A). Let S be a surface of genus greater than or equal to 2 without
focal points and F be the geodesic flow over S. Let ¢ : T'S — R be a Holder continu-
ous potential or ¢ = q - " for some q € R. Suppose ¢ verifies the pressure gap property
P(Sing, p) < P(yp), then ¢ has a unique equilibrium state (.

Proof. This follows from theorem 2.10 (Climenhaga—Thompson’s criteria for the unique-
ness of equilibrium states).

We first notice that by proposition 7.2, ¢ satisfies the first assumption in theorem 2.10.
For any T > 1 and i > 0, we can take the decomposition (P, G, S) = (Br(n), Gr(n), Br(n))
given in definition 4.1, then by proposition 5.3, theorems 6.5 and 6.10, the conditions (I) and
(II) of theorem 2.10 are verified.

Lastly, by proposition 7.3, we know there exists (T, 1) = (To, 1) with Ty > 1 such that the
setof bad orbit segments has strictly less pressure than that of @, thatis, P([Br,(n0)], ¢) < P(p),
which verifies the condition (IIT) of theorem 2.10. O

We conclude this section by remarking on the possibility of further extending theorem A
in various directions.

Remark 7.5. A natural question would be whether theorem A can be further extended to
more general settings such as manifolds without conjugate points or manifolds without focal
points of arbitrary dimension.

For manifolds without conjugate points, the geometric information is much coarser than man-
ifolds without focal points. This causes many difficulties in applying Climenhaga—Thompson
criteria [CT16] to prove similar results for manifolds without conjugate points; such difficul-
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ties include the unavailability of the flat strip theorem, C2-regularity of horoshperes as well as
the positive semi-definiteness of second fundamental form. Recently, however, Climenhaga
et al [CKW19] established the uniqueness of the measure of maximal entropy (namely, the
special case when ¢ = 0) for geodesic flows over surfaces without conjugates points; their
approach is genuinely new and differs from that of [CT16] and [BCFT18].

In order to establish analogous results of theorem A for manifolds without focal points of
arbitrary dimension, we would need to re-establish via other approaches the corresponding
lemmas and estimates that depended on the fact that S is a surface; see remark 4.10.

8. Properties of the equilibrium states and the proof of theorem B

In this section, we prove theorem B.

Theorem (Theorem B). Let ¢ : T'S — R be a Holder continuous function or ¢ = q - "
satisfying P(Sing, ¢) < P(yp). Then the equilibrium state ju, is fully supported, j1,(Reg) =1,
Bernoulli, and is the weak” limit of the weighted regular periodic orbits.

Proof. The proof is separated into following propositions, namely, propositions 8.1, 8.13,
8.10 and 8.6. Ll

8.1 u,(Reg) = 1and p, is Bernoulli
Proposition 8.1. p,(Reg) = 1.

Proof. Since p, is the unique equilibrium state for ¢, we have that ., is ergodic (see [CT16]
proposition 4.19). Because Sing is F -invariant we have either u,,(Sing) = Lor p,(Sing) = 0.
Suppose £, (Sing) = 1, then

P(Sing. ) > I, () + [ Plsudio = Po)
which contradicts the pressure gap condition. Thus ., (Reg) = 1. O

Definition 8.2 (Bernoulli). Let X be a compact metric space and F = (f;),cr be a continu-
ous flow on X . We call a F-invariant measure y Bernoulli if the system (X, fi, pt) is measur-
ably isomorphic to a Bernoulli shift, where f; is the time-1 map of the flow F = (f})er.

To prove fi, is Bernoulli, we use a result in Ledrappier—Lima—Sarig [LLS16]. In order to
apply their result, we recall that for v € T'S, x(v), the Lyapunov exponent at v associated to
the unstable bundle E“(v) is given by

. 1
x(©) = lim_~1log | dflz(,

whenever both limits exist and are equal. Such v € T'S whose Lyapunov exponent () exists
are called Lyapunov regular vectors. Notice that since the Liouville measure is invariant under
the geodesic flow F, the Lyapunov exponent is zero along the flow direction, and is —x(v)
on the stable bundle E*(v). Moreover, it is well-known (by Oseledec multiplicative ergodic
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theorem) that the set of Lyapunov regular vectors has full measure for any F -invariant prob-
ability measure.

Remark 8.3. For v € Sing, notice f; does not expand along the unstable bundle E“(v); in-
deed, the unstable Jacobi field Ji has constant length for v € Sing. Thus we have X|Sing =0.

Using following lemmas, we can show that the unique equilibrium state for 1., is a hyperbolic
measure (i.e. x(v) # 0 for pg-a.e. v € T'S, which is equivalent to x () := [ x(v)du, # 0
from the ergodicity of y,,) which allows us to use Ledrappier—Lima—Sarig [LLS16] to con-
clude p,, is Bernoulli.

Lemma 8.4. Ler i be a F-invariant probability measure. Suppose x(v) =0 for p-a.e.
v € T'S, then supp(p) C Sing.

Proof. We first recall that for & € T,T'S we have ||J¢(1)|> < ||dfi€]|*. Let u € M(F) and,
without loss of generality, we may assume v is a Lyapunov regular vector for § € E*(v). Then,
by lemma 3.12

1
X(2) = lim —log |4l-co |

WV

N DU
lim —log [l72(1)|

WV

1 g g
lim —log (i ¥ 72(0)])

t—oo t

1 t
= lim - [ K“(f0)dr > 0.
0

t—oo

Integrating with respect to p, the Birkhoff ergodic theorem gives [ x(v)du > [ k*(v)du > 0.
Therefore, if x(v) = 0 for y-a.e. v € T'S, then k*(v) = 0 for y-a.e. v € T'S; hence, A\(v) =0
for p-a.e. v € T'S. By lemma 4.11, we are done. I

Remark 8.5.

(1) The computation in the above lemma also points out that if 4 is a F -invariant probability
measure and v is a Lyapunov regular vector with respect to u, then x(v) > 0. In other
words, we know that x(v) is indeed the non-negative Lyapunov exponent at v.

(2) If, in addition, y is ergodic and p(Reg) > 0, we have p is hyperbolic. Indeed, other-
wise, there exists A C T'S such that x4(A) > 0 and x|, = 0. Then by the ergodicity of s
we have that 1(A) = 1. Hence, by lemma 8.4, we get suppu C Sing which contradicts
wu(Reg) > 0.

Proposition 8.6. The unique equilibrium state ., is Bernoulli.

Proof. [CT16, proposition 4.19] Shows that the unique equilibrium state (i, is ergodic, thus
by proposition 8.1 and remark 8.5 (2) we get that p,, is hyperbolic. Therefore, applying results
in [LLS16], we have that p,, is Bernoulli. [l
Remark 8.7. Originally Ledrappier—Lima-Sarig [LLS16] required that &, (F) > 0; never-

theless, it has been clarified in Lima—Sarig [LS19, theorem 1.3] that one only needs to check
L is hyperbolic.
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8.2. s fully supported

In this subsection, unless stated otherwise, we fix the decomposition (P, G, &) to be
(Br,(m0), Gr, (m0), Br, (o)) where Ty and 7 are given in proposition 7.3. We notice that this
decomposition (Br,(n0), Gr, (o), Br, (o)) satisfies the Climenhaga-Thompson criteria for
the uniqueness of equilibrium states (i.e. theorem 2.10).

For any decomposition (P, G, S) and M > 0, the collection G is defined as

GM = {(x,1) : s(x,1),p(x,1) < M}.
The following lemma shows that if the decomposition (P, G, S) satisfies theorem 2.10,
then GM captures much thermodynamic information whenever M is large enough.

Lemma 8.8 ([BCFT18, lemma 6.1]). There exists M, C,6 > 0 such that for all t > 0,
AGM,0,6,1) > CeT#), (8.1)

Hence, for large enough M, we have P(GM, @) = P(yp). Moreover, the equilibrium state ji,
has the lower Gibbs property on G™. More precisely, for any p > 0, there exist Q,7,M > 0
such that for every (v,t) € GM with t > T,

11 (Bi(0, p)) = Qe P+ ]s elfo)ds,

In particular, if v such that (v,t) € G for some t > T, then ji,(B(v, p)) > 0 for all p > 0.

Lemma 8.9 ([BCFT18, lemma 6.2]). Given p,n, T > 0, there exists n; > 0 so that for any
v € Regr(n), t >0, there are s > t and w € B(v, p) such that (w,s) € Gr(m). In particular,
we can choose 1y < 1y where 1y is given in proposition 7.3

Proof. The proof follows, mutatis mutandis, the proof of [BCFT18, lemma 6.2]. One only
needs to replace the [BCFT18, corollary 3.11] in their proof by lemma 4.5, and the last asser-
tion follows because for 0 < 7’ < 1, we have Reg, (1) C Reg,(1'). O

Proposition 8.10. The unique equilibrium state fi,, is fully supported.

Proof. Since Reg dense in 7'M, it is enough to show that for any v € Reg and > 0 we have
115(B(0.7)) > 0.

Since v € Reg, there exists # € R such that A(f;,v) > 0. For convenience, let us denote
v' = f,,v. By the continuity of A, there exists p > 0 such that )| B 2p) > 11 forsomen > 0, and
we have v' € Reg;(2pn). We make sure to pick p small enough so that f—,, B(v,2p) C B(v,r).
By lemma 8.9, there exists r7; > 0 such that there is w € B(?', p) satisfying (w, 1) € Gr(n;) for
arbitrary large ¢ (depending on p, n).

Furthermore, the decomposition (P, G, S) = (Br,(m), Gr,(m), Br,(m)) verifies theorem
2.10, assuming that we take r; smaller than ny. Thus by lemma 8.8 we know ., satisfies the
lower Gibbs property, i.e.

11 (B(w. p)) > 0.
Now, because i, is flow invariant, it follows that

to(B(0,7)) = pup(B(v',2p)) = pup(B(w, p)) > 0.
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8.3. Periodic regular orbits are equidistributed relative to ji,

Let us continue the discussion on ergodic properties of the equilibrium state. Recall that Sis a
closed surface without focal point with genus > 2, and ¢ : T'S — R is a potential satisfying
theorem A, and 11, the equilibrium state. In what follows, the good orbit segment collection G
always refers to Gr, (10) where Ty, 1y are given in proposition 7.3.

Lemma 8.11. Suppose ¢ : T'S — R is a potential satisfying theorem A. For any A > 0,
there exists C > 0 such that

AEeg,A(QO’ t) < Cetp(¢)
forallt > A .

Proof. Claim: for all A > 0 and ¢ < inj(S), Perg(t — A, 1] is a (¢, §)-separated set.

To prove this claim, assume the contrary; suppose 7,7y, are two closed geodesics in
Perg(t — A, 1] such that d(v(s),72(s)) < d for all s € [0,7], and thus 7, is covered by
Bs(y1(#;)) for finitely many i. Because 0 < inj(S), each Bs(vi(t;)) is diffeomorphic to the
d-ball on T, (,)S centerd at 7, (#;). One can easily construct a homopy between ; and , by
choosing and connecting points from Bs(7(#;)). Since -1, 7, are in the same free homotopy
class, their lifts 7y, 7, are bi-asymptotic. Thus by the flat strip theorem (proposition 3.5) 7; and
7> bound a flat strip, and hence they are singular. This contradicts to 7,7y, € Perg(t — A, 1],
and we have completed the proof of the claim.

Notice that for every v € Perg(r — A, 1], let v, be a vector tangent to -y, we have

() = @(0;.1)] < Allgll, and thus Age, A (p,7) < e21#A(p, 6,1).

Lastly, by [CT16, lemma 4.11], there exists C > 0 such that for r > A we have
ren(0.1) < 29N (p,8,1) < Ce™(#),
O

Lemma 8.12. Suppose ¢ : T'S — R is a potential satisfying theorem A. There exists
A, C > 0 such that

O < A a (001

forall large t .
Proof. By lemma 8.8, we know when M is big, there exists Cy,d; > 0 such that forall # > 0
C1e”®) < A(GM, 61,1).

Hence, it suffices to find §, C,, A, s > 0 with § < &; such that for any # > max{s, A,2M},
we have

A(GM.5.1) < Calt + 5)Ajeg a (01 +9).

Indeed, the lemmas follows from these inequalities because

* C]Cil CIC*le—sP(ga) s
AReg a (st +5) > t72etP(<p) — =2 & Lt+s)P(e)

+ s t+s
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We start from labeling sizes of Bowen balls relative to different propositions. In what fol-
lows, we fix T, g > 0 and M large so that theorem A and lemma 8.8 hold. Let &, = &1 (T, 7o)
be given in corollary 5.7. Since ¢ verifies the Bowen property on G™, let £ = &5(To, 10)
denote the radius of Bowen balls for the Bowen property. Lastly, because S is compact and f;
is uniformly continuous, for any £ > 0, there exists §; = d;(¢) such that when dg (u, w) < §;
we have dg(fyu,f,w) < e for any o € [—M, M], without loss of generality, we may choose
e < min{ey, &}

The first step is to associate each (v,1) € GM with a regular closed orbit whose length is in
the interval [t — #1, + t,] for some #; and 7, as follows. Recall that for each (v,¢) € GM there
exists 0 < so, po < M such that (f,,v.t — so — po) = (v',¢') € G.

We claim that given € > 0 as above and §, = min{e, §;(¢)}, there exists s = s(d,) such
that for any (v/,#') € GM defined as above, there exists a regular vector w € By (v/, §,) with
frrgr(w) = w for some 7 € [0, s].

Indeed, the claim is a direct consequence of corollary 5.7, because (v',1') € G CCr, (o).
Moreover, we also have f_,w € B,(v,¢) because w € B(v', ;) C B(v', ¢;) and the choice of
01. Thus, we have the claim.

Moreover, since € < £, we have

t t'+7
|©(v.t) = (.t +7) = ‘ /0 o(fov)do — /0 ¢(fow)do

’

Po 1 S0 7
/O o(fr0)do + /0 o(fo0')do + /0 o frse0)do — /0 o(fow)do

<

< (2M + 1)l + )

/ (eUt) — p(fow)do

<M +71)||el| + K

where K is the constant given by the Bowen property.

In sum, given ¢ >0 as above, we can define a map ¥ :GY > (v,1) — (w,t' +7)
where w is tangent to a regular closed orbit ,, € Perg(¢',#' + 7] C Perg(r — 2M, ¢ + 5] and
D(0,1) — Dl,)| < (2M + )]l + K.

We notice that ¥|; is an injection for every (#, §)-separated set E, C GM provided § > 3e
(because for every (v,1) € E,, its image ¥(v,t) = (w,t + 7) satisfies w € B,(v,¢)). Moreo-
ver, because W(E,) is (1, ¢)-separated, each y € Perg(t — 2M, 1 + s has at most “£* elements
of W(E,) tangent to it.

Hence, for § > 3¢ and for all (7, §)-separated set E, C GM we have

$ et ¢ TS emM+s)lloll+X | S o,
€
(v,1)EE; ~yEPerg[t—2M t+s]
The lemma now follows with by setting C; = ePM+9)II#lI+K /e and A = 2M + 5. O

From the above two lemmas, we can conclude:

Proposition 8.13. The unique equilibrium state |1, obtained in theorem A is the weak”
limit of the weighted regular periodic orbits. More precisely, there exists A > 0 such that

~ lim Z'yGPerR(TfA,T] etbm‘sw
e T—o0 AEeg,A(SD? T)

Proof. It follows immediately from lemmas 8.11, 8.12 and proposition 2.17. [
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9. The proof of theorem C and examples

In this section, we present the proof of theorem C and also provide examples satisfying the
pressure gap property. The following lemmas show that the scalar multiple go" of the geomet-
ric potential possesses the pressure gap property provided g < 1.

Lemma 9.1. [fSis a closed surface of genus greater than or equal to 2 without focal points,
then P(qp") > 0 = P(Sing, g¢") for each q € (—o0, 1); in particular, hyp(Sing) = 0.

Proof. It is a classical result proved by Burns [Bur83, theorem, p 6] that y(Reg) > 0
where . is the Liouville measure. Thus by lemma 8.4 and remark 8.5 we get

o<nmw:A¥Mwwb

This follows because if x () = 0, then x(v) = 0 for y-a.e. v € T'S, and hence, by lemma

8.4, we would have supp(py) C Sing contradicting iz (Reg) > 0
Therefore, we know

0 < x(u) = |

x(©)dpr = — / ©"dpg,
T'S T'S

where the last equality follows from the Birkhoff ergodic theorem.
Moreover, by Pesin’s entropy formula [Pes77a], we have

hy, (F) = /T]S x(v)dpr.

Thus for g € (—o0, 1)
P(ge") = hy, (F) + /qtp"duL =(q— 1)/<p“duL > 0.

We claim that P(Sing,q¢") = 0. Indeed, for any p € M(Sing), P, (qp") := h,(F) +
Pu(qe") := hu(F) + q [pg o dp = hu(F) + quing pUdp = Ny (F).

By Ruelle’s inequality [Rue78] we have &, (F) < [ x(v)dp, = 0 (because Xlsing = 0
see remark 8.3). Therefore, P(Sing, ") = Sup,,c p(sing) Pu(q¥") = 0. O

Now, we are ready to prove theorem C.

Proof of theorem C. From the above lemma, it remains to show that the map g — P(gp")
is C! for ¢ < 1 and P(gqy") = 0 for ¢ > 1 when Sing # 0.

We first notice that when Sing # @), we have P(g¢*) > 0. It is because for any invariant
measure g such that with supp(p) C Sing, we have

hu(}')—k/

©'dp = h,(F) +/ o"du = 0.
TiS

Sing

Moreover, the non-negative Lyapunov exponent Y is the Birkhoff average of —"; thus
together with Ruelle’s inequality we have for any invariant measure v € M (F):
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and forg > 1

Therefore, we have for g > 1

P(qe") = sup{h, (F) +f1/ P"dv: v e M(F)} <0;
T'S

hence we have P(gyp") =0 forg > 1.

Lastly, Liu—-Wang [LW16] proved that the geodesic flow is entropy expansive for manifolds
without conjugate points. So by Walters [Wal92], we know that ¢ — P(g@") is C' on the do-
main where gy" has a unique equilibrium state. In particular, g — P(gp")is C' for ¢ < 1.[]

The proposition below gives us an easy criteria for the pressure gap property.

Proposition 9.2 ([BCFT18, lemma 9.1]). Let S be a closed surface of genus greater than
or equal to 2 without focal points and ¢ : T'S — R continuous. If

sup ¢(v) — inf p(v) < hep(F),
vESing veT'S

then P(Sing, p) < P(y). In particular, constant functions have the pressure gap property.

Proof. The proof follows from the variational principle. More precisely,

sup (v) — inf p(v) < hiep(F) — hiop(Sing)
v€ESing veT'S ———
=0
<= sup ©(v) + hep(Sing) < hep(F) + inf ¢(v)
vESing veT'S

and

P(Sing, ¢) < hip(Sing) + sup ¢(v) < hop(F) + inf ¢(v) < P(p).
vESing veT'S

O

By the above proposition, the following class of potentials also possesses the pressure gap
property.
Corollary 9.3. Let S be a closed surface of genus greater than or equal to 2 without focal
points and @ : T'S — R continuous. If @lging = 0and p > 0, then P(Sing, ¢) < P(p).
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