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ABSTRACT

In this paper, we extend the construction of pressure metrics to Te-

ichmüller spaces of surfaces with punctures. This construction recovers

Thurston’s Riemannian metric on Teichmüller spaces. Moreover, we prove

the real analyticity and convexity of Manhattan curves of finite area type-

preserving Fuchsian representations, and thus we obtain several related

entropy rigidity results. Lastly, relating the two topics mentioned above,

we show that one can derive the pressure metric by varying Manhattan

curves.

1. Introduction

Let S = Sg,n be an orientable surface of genus g and n punctures with neg-

ative Euler characteristic. In this paper, we discuss how one can characterize

Fuchsian representations and the geometry of T (S), the Teichmüller space of S,

by studying dynamics objects associated with them. For example, we prove

rigidity results via examining the shape of Manhattan curves, and we construct

a Riemannian metric on T (S) by derivatives of pressure.

When S has no punctures, results in this work are not new. Manhattan

curves and rigidity results are, for instance, discussed in [Bur93, Sha98], and

the pressure metric on T (S) is discovered in [McM08] and further investigated in

[PS16, BCS18]. Nevertheless, when S has punctures, especially when Fuchsian
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representations are not convex co-compact, far fewer results along this line

are proved. Indeed, in such cases, their dynamics are much more complicated

because of the presence of parabolic elements.

Using similar ideas to those in [LS08, Kao18], we study geodesic flows over hy-

perbolic surfaces with cusps by countable state Markov shifts and corresponding

suspension flows. Notice that for countable state Markov shifts, in contrast to

compact cases, for unbounded potentials without sufficient control of their reg-

ularity and values around cusps, the pressure of their perturbation might not

only lose the analyticity but also information of some thermodynamics data.

For example, time changes for suspension flows over a non-compact Markov

shift may not take equilibrium states to equilibrium states for some potentials

(cf. [CI18]).

To overcome these issues, we carefully study the associated geometric poten-

tial (or the roof function of the suspension flow). By doing so, we know exactly

where the pressure function (of geometric potentials and their weighted sums)

is analytic. Thus, we can mimic the procedure used in compact cases. More

precisely, we derive a version of Bowen’s formula which relates the topological

entropy of the geodesic flow and the corresponding roof function. With Bowen’s

formula and the analyticity of pressure, we prove the convexity of Manhattan

curves, and using the second derivative of pressure we construct a Riemannian

metric on T (S).

To put our results in context, we now introduce necessary notations

and definitions. Recall that a representation ρ ∈ Hom(π1S,PSL(2,R))

is Fuchsian if it is discrete and faithful, and ρ has finite area if the hyperbolic

surface Xρ = ρ(π1S)\H has finite area. We say two finite area Fuchsian

representations ρ1, ρ2 are type-preserving if there exists an isomorphism

ι : ρ1(π1S) → ρ2(π1S) sending parabolic elements to parabolic elements and

hyperbolic elements to hyperbolic elements. Here PSL(2,R) refers to the space

of orientation preserving isometries of the hyperbolic plane H.

Let ρ1 and ρ2 be two Fuchsian representations. Recall that da,bρ1,ρ2
, the

weighted Manhattan metric on H × H with respect to ρ1, ρ2, is given by

fixing

o = (o1, o2), da,bρ1,ρ2
(o, γo) := ad(o1, ρ1(γ)o1) + bd(o2, ρ1(γ)o2) for γ ∈ π1(S)

where d is the hyperbolic distance on H. Notice that we are only interested in

non-negative weights, i.e., a, b ≥ 0 and a + b �= 0. We denote the associated
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Poincaré series by

Qa,b
ρ1,ρ2

(s) :=
∑

γ∈π1(S)

e−s·da,b
ρ1,ρ2

(o,γo).

Definition 1.1 (Manhattan curve): The Manhattan curve C(ρ1, ρ2) of ρ1, ρ2
is given by

C(ρ1, ρ2) := {(a, b) ∈ R≥0 × R≥0\(0, 0) : δa,bρ1,ρ2
= 1}

where δa,bρ1,ρ2
is the critical exponent of Qa,b

ρ1,ρ2
(s), i.e., Qa,b

ρ1,ρ2
(s) is divergent

if s < δa,bρ1,ρ2
and is convergent if s > δa,bρ1,ρ2

.

By definition, one can regard C(ρ1, ρ2) as a generalization of the critical ex-

ponents for ρ1 and ρ2. Obviously, taking a = 0 (respectively, b = 0), δa,bρ1,ρ2

reduces to δρ1 , the classical critical exponent for ρ1 (respectively, δρ2). By Otal

and Peigné [OP04], we know δρ1 is also the topological entropy of the geodesic

flow over Xρ1 .

As mentioned above, using a symbolic model given in [LS08], for every finite

area Fuchsian representation ρ, we can code the geodesic flow over Xρ. Elab-

orated discussion of the coding of geodesic flows is in Section 3. We briefly

introduce the idea and strategy below. We will associate the geodesic flow

on the smaller special section Ω0 ⊂ T 1Xρ with a suspension flow (Σ+, σ, τρ)

where (Σ+, σ) is a countable state Markov shift and τρ : Σ+ → R+ is the roof

function. Furthermore, by the construction, the roof function τρ is a continuous

function prescribing the length of closed geodesics. We sometimes call τρ the

geometric potential of ρ. Moreover, one important feature of this symbolic

model is that if ρ1, ρ2 are finite area type-preserving Fuchsian representations,

then they correspond to the same Markov shift (Σ+, σ) but to different roof

functions τρ1 , τρ2 . In other words, we can use roof functions to characterize

finite area type-preserving Fuchsian representations.

Using this symbolic model, we can characterize C(ρ1, ρ2) as solutions of a

version of Bowen’s formula. Furthermore, we derive the first main result of the

paper:

Theorem A: Let ρ1, ρ2 be two finite area type-preserving Fuchsian represen-

tations. Then C(ρ1, ρ2) is a real analytic curve, and C(ρ1, ρ2) is strictly convex

unless ρ1 and ρ2 are conjugate in PSL(2,R); in such cases C(ρ1, ρ2) is a straight

line.
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Using the shape of the Manhattan curve, we can further prove rigidity results

related with following dynamics quantities.

Definition 1.2: Let ρ1, ρ2 be a pair of Fuchsian representations.

(1) The Bishop–Steiger entropy hBS(ρ1, ρ2) of ρ1 and ρ2 is defined as

hBS(ρ1, ρ2) := lim
T→∞

1

T
ln(#{[γ] ∈ [π1(S)] : d(o, ρ1(γ)o) + d(o, ρ2(γo)o) ≤ T }).

(2) The intersection number I(ρ1, ρ2) of ρ1 and ρ2 is defined as

I(ρ1, ρ2) := lim
n→∞

l2[γn]

l1[γn]

where {[γn]}∞n=1 is a sequence of conjugacy classes for which the asso-

ciated closed geodesics γn become equidistributed on Xρ1 with respect

to area.

Using a dynamics interpretation of I(ρ1, ρ2) and the convexity and analyticity

of pressure, we recover the following results of Bishop and Steiger [BS93], and

Thurston [Thu98].

Theorem B: Let ρ1, ρ2 be a pair of area type-preserving Fuchsian representa-

tions, We have:

(1) (Bishop–Steiger Rigidity) hBS(ρ1, ρ2) ≤ 1
2 , and the equality holds if and

only if ρ1 and ρ2 are conjugate in PSL(2,R).

(2) (The Intersection Number Rigidity) I(ρ1, ρ2) ≥ 1, and the equality holds

if and only if ρ1 and ρ2 are conjugate in PSL(2,R).

Remark 1.3:

(1) One might prove C(ρ1, ρ2) is C1 and Theorem B without employing

symbolic dynamics. Nevertheless, symbolic dynamics provides a con-

venient approach to control the analyticity of pressure, and hence to

prove the analyticity of C(ρ1, ρ2).
(2) It is not immediately clear why I(ρ1, ρ2) is well-defined. We will justify

it in Section 3.

(3) The intersection number rigidity is known, amount the experts, as a

work of Thurston. However, due to the limited knowledge of the author,

for the non-convex co-compact cases we cannot find a reference to it.
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We now change gear from pairs of Fuchsian representations to the space of

conjugacy classes of Fuchsian representations, that is, the Teichmüller space of

S = Sg,n. Recall that the Teichmüller space of S is defined as

T (S) := HomF
tp(π1(S),PSL(2,R))/ ∼

where HomF
tp(π1(S),PSL(2,R)) is the space of finite area type-preserving Fuch-

sian representations, and ρ1 ∼ ρ2 if they are conjugate in PSL(2,R).

Through the symbolic model, there is a thermodynamic mapping

Ψ : T (S) → P

where P is a special space of continuous functions over Σ+ containing geometric

potentials. Using the pressure and variance we can define a norm || · ||P over P.

Using the pullback of || · ||P, we can define a Riemannian metric || · || on T (S).

We call this Riemannian metric the pressure metric. Moreover, || · || can also

be derived by the Hessian of the intersection number:

Theorem C (The Pressure Metric): Suppose ρt ∈ T (S) is an analytic path for

t ∈ (−ε, ε). Then I(ρ0, ρt) is real analytic and

||ρ̇0||2 := ||dψ(ρ̇0)||2P =
d2I(ρ0, ρt)

dt2

∣∣∣
t=0

defines a Riemannian metric on T (Sg,n).

We briefly discuss the history of this Riemannian metric || · || on T (Sg,n).

When n = 0, Thurston first discovered it by using the Hessian of the inter-

section number. Thus, this Riemannian metric is also known as Thurston’s

Riemannian metric. Moreover, as proved by Wolpert [Wol86], this Riemann-

ian metric is exactly the Weil–Petersson metric on T (Sg,0). McMullen [McM08]

recovered this Riemannian metric using thermodynamic formalism and called

it the pressure metric. Carrying over the same spirit, Bridgeman, Canary,

Labourie and Sambarino [BCLS15] generalized this dynamics approach and

constructed a Riemannian metric on the space of Anosov representations into

higher rank Lie groups, i.e., a higher rank generalization of T (Sg,0). Using the

pressure metric constructed in [BCLS15], Xu [Xu19] showed that the pressure

metric on the Teichmüller space of bordered surfaces is incomplete and is not

Lipschitz equivalent to the Weil–Petersson metric. We remark that Fuchsian

representations considered in Xu’s work [Xu19] are convex co-compact (i.e.,

have no parabolic elements) and with infinite volume. Our Theorem C extends
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the pressure metric and Thurston’s construction to spaces of conjugacy classes

of finite area type-preserving Fuchsian representations with parabolic elements,

i.e., T (Sg,n) for n > 0.

The last result of the paper is to link the two main topics in this work: Man-

hattan curves and the pressure metric. We prove that when we look at a path

in T (S), the variation of corresponding Manhattan curves contains information

on the pressure metric. As similar result has been proved by Pollicott and Sharp

[PS16] when S is a closed surface. We generalize it to surfaces with punctures.

Theorem D: Let (s, χt(s)) be the coordinates of points on the Manhattan

curve C(ρ0, ρt). Then we have

d2χt(s)

dt2

∣∣∣
t=0

= s(s− 1) · ||ρ̇0||2 for s ∈ (0, 1).

The paper is organized as follows. In Section 2, we introduce some back-

ground knowledge of geometry and thermodynamic formalism of countable state

Markov shifts. In Section 3 we discuss the coding of geodesic flows and impor-

tant properties of the corresponding roof functions. We study the analyticity

of the pressure function in Section 4. Section 5 is devoted to investigating the

shape of the Manhattan curve and rigidity. In Section 6, we construct the pres-

sure metric. In the last section, we focus on the relation between Manhattan

curves and the pressure metric.

1.1. Acknowledgements. The author is grateful to Prof. François Ledrap-

pier for proposing the problem and much support, to Prof. Dick Canary for

many insightful suggestions and help, and to the anonymous reviewer for their
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were written while the author was visiting Prof. Jih-Hsin Cheng at Academia

Sinica, Taiwan. The author would like to thank Prof. Jih-Hsin Cheng and

Academia Sinica for their hospitality. The author is partially supported by

the National Science Foundation Postdoctoral Research Fellowship under grant

DMS 1703554.

2. Preliminaries

2.1. Geometry. Throughout this paper, S = Sg,n is an orientable surface of

genus g and n punctures and with negative Euler characteristic. In this work,

we are interested in finite area hyperbolic surfaces homemorphic to S, that
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is, S pairs with a Riemannian metric g of Gaussian curvature −1. Notice that

every such surface (S, g) can be obtained by a Fuchsian representation. More

precisely, (S, g) is isomorphic to the hyperbolic surface Xρ = ρ(π1(S))\H.

For short, let us denote ρ(π1S) by Γ. Recall that ∂∞H, the boundary of H,

is defined as R∪{0}, and Λ(Γ) := {γ · o : γ ∈ Γ} denotes the limit set of Γ. An

element γ∈Γ is called hyperbolic if γ has two fixed points on Λ(Γ), namely, the

attracting fixed point γ+ (i.e., limn→∞ γno=γ+) and the repelling fixed

point γ− (i.e., limn→−∞ γno = γ−); γ is called parabolic if it has one fixed

point. Because Xρ is negatively curved, we know that every closed geodesic λ

on Xρ corresponds to a unique hyperbolic element γ (up to conjugation), and

vice versa. Moreover, the length of λ equals l[γ], the translation distance

of γ, that is,

l[γ] := min{d(x, γx) : x ∈ H}.

A natural dynamical system associated to Xρ is the geodesic flow

gt : T
1Xρ → T 1Xρ

on the unit tangent bundle T 1Xρ, which translates many geometric problems to

dynamics problems. We recall that the Busemann function B : ∂∞H×H×H

is defined as

Bξ(x, y) := lim
z→ξ

d(x, z)− d(y, z)

for x, y, z ∈ H and ξ ∈ ∂∞H. Lift the geodesic flow gt : T 1Xρ → T 1Xρ to

its universal covering T 1H; by abusing notation, we have the geodesic flow

gt : T
1H → T 1H.

Recall that two Fuchsian representations ρ1, ρ2 are type-preserving if there

exists an isomorphism ι : ρ1(π1S) → ρ2(π1S) such that ι sends hyperbolic

elements to hyperbolic elements and parabolic elements to parabolic elements.

The following theorem indicates that if ρ1, ρ2 are type-preserving finite area

Fuchsian representations, then we can link Xρ1 and Xρ2 in a controlled manner.

Theorem 2.1 (Fenchel–Nielsen Isomorphism Theorem; [Kap09, Theorem 5.5,

8.16, 8.29]): Suppose ρ1, ρ2 are two finite area type-preserving Fuchsian repre-

sentations of π1S. Then there exists a bilipschitz homeomorphism b:Xρ1 →Xρ2 .

Moreover, one can extend b to an equivarient bilipschitz map, abusing the no-

tation, b : ∂∞H ∪H → ∂∞H ∪H.
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Remark 2.2: In [Kap09], the homeomorphism b : Xρ1 → Xρ2 is stated to be

quasiconformal. Nevertheless, using Mori’s Theorem (cf. p. 30 [Ahl06]) it is not

hard to see that quasiconformal homeomorphisms are indeed bilipschitz maps.

In the following, we state a special case of [Kim01, Theorem A].

Theorem 2.3 (Marked Length Spectrum Rigidity):Let ρ1,ρ2:π1(S)→PSL(2,R)

be Zariski dense Fuchsian representations. There exists a finite collection

of γ ∈ π1(S) such that if there exists k > 0 such that l[ρ1(γ)] = k · l[ρ2(γ)]
for all these γ, then ρ1 and ρ2 are conjugate in PSL(2,R).

Remark 2.4:

(1) A representation ρ : π1(S) → PSL(2,R) is called Zariski dense if it is

irreducible and ρ(π1(S)) has no global fixed point on ∂∞H. It is clear

that finite area Fuchsian representations are Zariski dense.

(2) Theorem A in [Kim01] is much more general than the special case that

we stated in Theorem 2.3, and this special case should be known before

[Kim01]. Nevertheless, for convenience, we quote [Kim01, Theorem A].

2.2. Countable state Markov shifts. In this subsection we aim to intro-

duce terminologies of thermodynamic formalism for countable state (topologi-

cal) Markov shifts. The reader can find more details in Mauldin’s and Urbański’s

book [MU03] and Sarig’s notes [Sar09].

Let A a countable set and A = (tab)A×A be a matrix of zeros and ones with

no columns or rows consisting entirely of zeros.

Definition 2.5 (Countable State Markov Shift): The (one-sided) countable

state Markov shift with alphabet (or states) A and transition matrix A

is defined by

Σ+
A
:= {x = (xi) ∈ AN : txnxn+1 = 1 ∀n ∈ N}

equipped with the topology generated by the collection of cylinders

[a0, . . . , an] := {x ∈ Σ+
A
: xi = ai, 0 ≤ i ≤ n} (n ∈ N, a0, . . . , an ∈ A)

and coupled to the (left) shift map σ : (x0, x1, x2, . . .) �→ (x1, x2, . . .).

A word of length n on an alphabet A is a finite sequence

(a0, a1, . . . , an−1) ∈ An−1

for all n ∈ N\{0}, and a word (a0, a1, . . . , an−1) is admissible with respect to

A = (tab)A×A if taiaj = 1.
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From now on we will omit the subscript A from Σ+
A

and simply use Σ+ for

one-sided Markov shifts because our discussion here only focuses on a fixed

transition matrix.

Recall that a Markov shift (Σ+, σ) is topologically transitive if for

all a, b ∈ A there exists an admissible word (a, . . . , b), and is topological

mixing if for all a, b ∈ A there exists a number Nab such that for all n ≥ Nab

there exists an admissible word (a, . . . , b) of length n.

Let g : Σ+ → R be a function. For n ≥ 1, the n-th variation of g is defined by

Vn(g) := sup{|g(x)− g(y)| : x, y ∈ Σ+, xi = yi for 0 ≤ i ≤ n− 1}.

When
∑∞

n=0 Vn(g) < ∞ we say that g has summable variations, and in par-

ticular, we call g a locally Hölder continuous function if there exist C > 0

and θ ∈ (0, 1) such that Vn(g) ≤ C · θn for n ≥ 1.

We remark that when the alphabet A is finite the Markov shift is called a

subshift of finite type, and in that case Σ+ is a compact set. When A is

infinite, Σ+ is no longer compact. Nevertheless, countable state Markov shifts

with the following property can be studied similarly as in the compact cases.

Definition 2.6 (BIP): We say (Σ+
A
, σ) has the big image and preimages

(BIP) property if there exists a finite collection of states s1, s2, . . . , sn ∈ A
such that for every state s ∈ A there are some i, j ∈ {1, 2, . . . , n} such that

(si, s), (s, sj) are admissible.

Definition 2.7 (Topological Pressure for Countable State Markov Shifts): Let

(Σ+, σ) be a topologically mixing Markov shifts and g : Σ+ → R has summable

variations. The topological pressure (or the Gurevich pressure) of g is

defined by

Pσ(g) := lim
n→∞

1

n
log

∑
x∈Fixn

eSng(x)1[a](x),

where Fixn := {x ∈ Σ+ : σn(x) = x}, a ∈ A is any state, and

Sng(x) = g(x) + · · ·+ g(σn−1(x))

is the n-th ergodic sum of g.

Notice that the topological pressure is independent of the state a ∈ A
(cf. [Sar09]).
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Theorem 2.8 (Variational Principle; [Sar99] Theorem 3): Let (Σ+, σ) be a

topologically mixing Markov shift and g : Σ+ → R has summable variations. If

sup g < ∞ then

Pσ(g) = sup

{
hσ(m) +

∫
Σ+

g dm : m ∈ Mσ and −
∫
Σ+

g dm < ∞
}

where hσ(m) is the measure theoretic entropy of m and Mσ is the set of σ-

invariant Borel probability measures on Σ+.

We want to remark that although Mauldin and Urbański and also Sarig de-

fined countable state Markov shifts and the topological pressure differently,

when the Markov shift is topologically mixing and has the BIP property, their

definitions are the same (cf. [MU01, Section 7]). Since in this paper we only

focus on topologically mixing Markov shifts with the BIP property, we will use

results from both Mauldin and Urbański, and Sarig.

Recall that a measure m ∈ Mσ is called an equilibrium state for g if

P (g) = hσ(m) +

∫
g dm.

A measure ν ∈ Mσ is called a Gibbs measure for g if there exist con-

stants G > 1 and P such that for all cylinders [a0, . . . , an−1] and for every

x ∈ [a0, . . . , an−1] we have

1

G
≤ ν[a0, a1, . . . , an−1]

exp[Sng(x)− nP ]
≤ G.

Remark 2.9: We would like to point out that there are subtle differences be-

tween Gibbs states and equilibrium states. Every equilibrium state is a Gibbs

state but not vice versa. More precisely, if g is locally Hölder with finite pressure

and sup g < ∞, then g has a unique Gibbs measure νg, and g has at most one

equilibrium state. Furthermore, with the additional condition −
∫
g dνg < ∞,

we know the unique Gibbs state νg is the equilibrium state for g (cf. [Sar09,

Theorem 4.5, 4.6, 4.9] and [MU03, Theorem 2.2.4, 2.2.9]).

Two functions f, g : Σ+ → R are cohomologous, denoted by f ∼ g, if there

exists a function h : Σ+ → R such that f = g+h−h◦σ where h is called a tran-

sition function. The following theorem shows that the thermodynamic data

are invariant in each cohomologous class of locally Hölder continuous functions.
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Theorem 2.10 ([MU03, Theorem 2.2.7]): Suppose (Σ+, σ) is topologically mix-

ing, and f, g : Σ+ → R are locally Hölder continuous function with Gibbs

measures νf and νg, respectively. Then the following are equivalent:

(1) νf = νg.

(2) (Livšic Theorem) There exists a constant R > 0 such that ∀ n ≥ 1 and

x ∈ Fixn we have Snf(x)− Sng(x) = nR.

(3) f−g is cohomologous to a constant R via a bounded Hölder continuous

transition function.

Moreover, when the above assertions are true, then R = Pσ(f)− Pσ(g).

We remark that we can define a two-sided countable state Markov shift ΣA as

ΣA := {x = (xi) ∈ AZ : txnxn+1 = 1 ∀n ∈ Z}

and define similarly all the thermodynamic data. Notice that if a potential

on a two-sided shift space (Σ, σ) only depends on its future coordinate, then

to understand the associated thermodynamic data, it is sufficient to study its

behavior on the one-sided shift (Σ+, σ). For a two-sided sequence (, a, ḃ, c, ), ḃ

means b is at the zero-th coordinate, i.e., a = x−1, b = x0, c = x1.

Let (Σ+, σ) be a topologically mixing countable state Markov shift with the

BIP property. In the following, we list a few theorems about the analyticity of

pressure and phase transition phenomena.

Theorem 2.11 (Analyticity of Pressure; [MU03, Theorem 2.6.12 and 2.6.13],

[Sar03, Corollary 4]): Suppose t �→ ft is a real analytic family of locally Hölder

continuous functions for t ∈ Δ, where Δ is an interval of R and Pσ(ft) < ∞ for

t ∈ Δ. Then the pressure function t �→ Pσ(ft), for t ∈ Δ, is also real analytic.

Moreover, the derivative of the pressure is

d

dt
Pσ(ft)

∣∣∣
t=0

=

∫
Σ+

ḟ0 dνf0 ,

where νf0 is the unique Gibbs state for f0.

Theorem 2.12 (Phase Transition; [Sar99, Sar01], [MU03]): Let g : Σ+ → R

be a locally Hölder continuous function with g > 0. Then there exists s∞ > 0

such that

Pσ(−tg) =

⎧⎨
⎩∞ if t < s∞,

real analytic if t > s∞.

Moreover, −tg has a unique Gibbs state ν−tg for t > s∞.



12 L.-Y. KAO Isr. J. Math.

Let f : Σ+ → R be a locally Hölder continuous function and let m ∈ Mσ

be an invariant measure. Recall that the variance Var(f,m) of f with respect

to m is defined by

Var(f,m) := lim
n→∞

(
1

n

∫
Σ+

(Snf −
∫
Σ+

f dm)2
) 1

2

.

Using Theorem 2.11 and [Sar09, Theorem 5.10, 5.12] (or [MU03, Theorem

2.6.14, Lemma 4.8.8]), we have the following corollary.

Corollary 2.13 (Derivatives of Pressure): Suppose f+tg is a family of locally

Hölder continuous functions with finite pressure for t ∈ (−ε, ε). If g is bounded,

then

Pσ(f + tg) = Pσ(f) + t ·
∫
Σ+

g dνf +
t2

2
· Var(g, νf ) + o(t2)

where νf is the Gibbs measure for f . Moreover,

Var(g, νf ) = 0

if and only if g is cohomologous to zero.

2.3. Suspension flows over countable state Markov shifts.Let (Σ+, σ)

be a topologically mixing countable state Markov shift with the BIP property

and τ : Σ+ → R+ be bounded away from zero and locally Hölder continuous.

The suspension space (relatively to τ) is the set

Σ+
τ := {(x, t) ∈ Σ+ × R : 0 ≤ t ≤ τ(x)}/ ∼,

where (x, τ(x)) ∼ (σx, 0) for every x ∈ Σ+. The suspension flow φt with roof

function τ is the (vertical) translation flow on Σ+
τ given by

φt(x, s) = (x, s+ t) for x ∈ Σ+ and 0 ≤ s+ t ≤ τ(x).

Similarly, we can define suspension flows over a two-sided shift.

In the following, we list several equivalent definitions of the topological pres-

sure for suspension flows. These definitions are from Savchenko [Sav98]; Bar-

reira and Iommi [BI06]; Kempton [Kem11]; and Jaerisch, Kesseböhmer and

Lamei [JKL14].
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Given a continuous function F : Σ+
τ → R, we define the function ΔF : Σ+→ R

by

ΔF (x) :=

∫ τ(x)

0

F (x, t) dt.

Definition/Theorem 2.14 (Topological Pressure for Suspension Flows): Sup-

pose F : Σ+
τ → R is a function such that ΔF : Σ+ → R is locally Hölder con-

tinuous. The following descriptions of Pφ(F ), the topological pressure of F

over the suspension flow (Σ+
τ , φ), are equivalent:

Pφ(F ) = lim
T→∞

1

T
log

( ∑
φs(x,0)=(x,0)

0≤s≤T

exp

(∫ s

0

F (φt(x, 0)) dt

)
1[a](x)

)

= sup

{
hφ(μ) +

∫
Σ+

τ

F dμ : μ ∈ Mφ and −
∫
Σ+

τ

τ dμ < ∞
}
,

where a is any state in A and Mφ is the set of φ-invariant Borel probability

measures on Σ+
τ . Moreover, if μ ∈ Mφ such that Pφ(F ) = hφ(μ) +

∫
Σ+

τ
F dμ,

then we call μ an equilibrium state for F .

We finish this subsection by recalling an important observation of relations

between invariant measures on Σ+ and on Σ+
τ .

Theorem 2.15 ([AK42]): Let Mσ(τ) := {m ∈ Mσ :
∫
Σ+ τ dm < ∞}. Then

there exists a bijection

R : Mσ(τ) → Mφ

m �→ m× Leb

m× Leb(Σ+
τ )

where Leb is the Lebesgue measure for the flow direction.

In other words, for any continuous function F : Σ+
τ → R, we have∫

Σ+
τ

F dR(m) =

∫
Σ+ ΔF dm∫
Σ+ τ dm

.

Theorem 2.16 (Equilibrium States for Flows; [IJT15] Theorem 3.4, 3.5 ):

Let F : Σ+
τ → R be a continuous function such that ΔF is locally Hölder.

Suppose ΔF has an equilibrium state mΔF such that
∫
τ dmΔF < ∞. Then F

has a unique equilibrium state μ = R(m−Pφ(F )τ+ΔF
).
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3. Geodesic flows for finite area hyperbolic surfaces

3.1. A symbolic model for geodesics flows. In this section, we survey a

symbolic model for the geodesic flow. More precisely, we will construct a geo-

desic flow invariant subset Ω0 of the unit tangent bundle, and study it through

a symbolic model. This construction is given by Ledrappier and Sarig in [LS08].

We will mostly follow their notations and use the Poincaré disk model D in this

section.

Let S = Sg,n be a surface with genus g and n punctures, X = Xρ be

the finite area hyperbolic surface given by the Fuchsian representation

ρ : π1(S) → PSL(2,R), and gt : T 1X → T 1X be the geodesic flow for X .

In this paper, we are only interested in non-compact surfaces, because the com-

pact case has been studied before. In other words, in our discussion n is at

least 1.

Theorem 3.1 ([Tuk72, Tuk73]): Suppose X is a non-compact finite area hy-

perbolic surface with negative Euler characteristic. Then there exists a closed

ideal hyperbolic polygon D0 ⊂ D such that the following hold:

(1) The origin is in D0.

(2) D0 has 2k vertices, and all vertices are on ∂∞D, where

k = 2g + n− 1 = −χ(X) + 1 ≥ 2.

(3) These vertices partition ∂∞D to 2k intervals Ii, i ∈ S where

S := {1, 1′, 2, 2′, . . . , k, k′}.

Moreover, each Ii can be paired with the other interval Ii′ such that

there exists a pair of Möbius transformations gi, gi′ = g−1
i with gi

maps Ii onto ∂∞D\Ii′ and gi′ maps Is′ onto ∂∞D\Ii.
(4) X is isomorphic to the space obtained by identifying all pairs of (Ii, Ii′)

through gi for all i ∈ S.
(5) Take i (or i′) from each side pair (Ii, Ii′ ) and consider the corresponding

Möbius transformation gi. Then

Γ = ρ(π1(X)) = 〈g1, . . . , gk〉

where ρ is the Fuchsian representation such that X = Γ\D.
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From now on, for the finite area hyperbolic surface X , we use the generator

given in the above theorem, and denote Γ = 〈g1, . . . , gk〉. Roughly speaking,

there are two steps to construct the Ledrappier–Sarig coding. One first uses

the generators {g1, . . . , gk} to derive a Markov shift (Σ1, σ1) (i.e., cutting se-

quences), then modify (Σ1, σ1) to get another Markov shift (ΣA, σA) on which

the first returning map has better regularity. We will discuss their construction

in detail below.

The shape of the fundamental D0 plays a crucial role in the Ledrappier and

Sarig’s coding. We start by looking at vertices of D0. Notice that for every

vertex v of D0, there exists a (shortest) cycle, say l elements, of edge-pairing

isometries gsi for 1 ≤ i ≤ l such that v is the unique fixed point of gslgsl−1
gs2gs1

provided gsigs2gs1(D0) and (g−1
s1 g−1

s2 g−1
si )(D0) touch ∂∞D at v for all 1 ≤ i ≤ l.

We call

w = (s1, . . . , sl) and w′ = (s′l, . . . , s
′
1)

the cycles of v. We denote the set of all vertex cycles by C, and N(C) is the

least common multiplier of length of cycles of all vertices (see Figure 3.1).

Figure 3.1. Finite area surfaces with cusps.

3.1.1. The classical coding. Recall that a vector v ∈ T 1X escapes to infinity

if gt(v) leaves, eventually, all compact sets K ⊂ T 1M as t → ∞ or −∞. Let

Ω0 ⊂ T 1X be the set of non-escaping vectors. It is clear that Ω0 is a flow

invariant set and contains most of the interesting dynamics.
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A unit vector v ∈ T 1D based at D ∩ ∂D0 is called inward pointing

if gt(v) ∈ int(D0) for sufficiently small t. We denote by (∂D0)in the set of

all inward pointing vectors. It is not hard to see that (∂D0)in projects to a

Poincaré section of gt : Ω0 → Ω0; by abusing notation, we also denote this

section by (∂D0)in.

In the following, we recall two equivalent methods of coding of geodesic flows

on Ω0: cutting sequences and boundary expansion. To derive the coding, we

first label edges of D0 in the following manner. For each edge e of D0, it

determines a boundary interval Is(e) for some s(e) ∈ S such that Is(e) has the

same vertices as e and is on the side of e which does not contain D0. We call

s = s(e) ∈ S the external label of e, and s′ = s′(e) the internal label of e.

See Figure 3.2 for an illustration.

Figure 3.2. Classical coding.

Now we are ready to state two canonical codings or Markov partitions asso-

ciated to (∂D0)in. For every v ∈ (∂D0)in it is determined by:

(1) Cutting sequence (xk) ∈ SZ: xk are the internal labels of the edges

of D0 cut by gt(v) where k = 1 is the first cut in positive time and k = 0

is the first cut in non-negative time.

(2) Boundary expansion (yk) ∈ SZ: the lift (̃gtv) ⊂ T 1D is a

geodesic on T 1D with an attracting limit point (or ending point)

in
⋂

k≥1 I
+
y1,...,yk

, and a repelling limit point (or beginning point)
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in
⋂

k≤0 I
−
y0,...,yk

, where

I+s1,s2,...,sk =gs1gs2 · · · gsk−1
(Is′k )

and

I−s1,s2,...,sk =g−1
s1 g−1

s2 · · · g−1
sk−1

(Isk ).

It is not hard to see that (xk)k∈Z = (yk)k∈Z because all vertices of D0 are

on ∂∞D. Thus we can and will interchange between these two perspectives.

In summary, the classical coding means that for every v ∈ (∂D0)in, the geo-

desic gt(v) corresponds to an element in

Σ1 := {(xk) ∈ SZ : xk+1 �= (xk)
′}

and σ1 is the left shift on Σ1.

3.1.2. The modified coding. As pointed out in [LS08], (Σ1, σ1) is not “good”

enough for our purpose. For example, the classical coding is not necessarily

one to one, and the first return map is not regular enough to push the machin-

ery. Thus we need to modify (Σ1, σ1) by looking at a smaller section of the

flow gt : Ω0 → Ω0.

Fix a number n∗ large, set N∗ = 4n∗N(C), and the set of length N∗ repeating
vertex cycles defined as

C∗ := {(w,w, . . . , w)︸ ︷︷ ︸
N∗/|w| copies

: w ∈ C}.

We write N# := 1
2N

∗ − 1. Now consider the following set:

A := {y ∈ Σ1 : (y−N#,...,yN∗
2
)︸ ︷︷ ︸

N∗

/∈ C∗} ⊂ Σ1.

The smaller section SA ⊂ (∂D0)in is given by

SA := {v ∈ (∂D0)in : the cutting sequence of gt(v)is in A}

(see Figure 3.3).

It is not hard to see that SA is a Poincaré section of gt : Ω0 → Ω0. More-

over, by the combinatorial property of C pointed out in [LS08, Section 2.1], we

know that for a geodesic gt(v) with the cutting sequence (xn)n∈Z which stops

returning to A at some point, (xn) will eventually repeat an element w ∈ C∗,
i.e., (xn)n∈Z = (. . . , xn, . . . , w, w,w, . . .).
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Figure 3.3. The smaller section.

In other words, if v does not escape to infinity, then the cutting sequence

of gt(v) always returns to A. More precisely, ∀x ∈ A, there exists N = N(x) ∈ R

such that σN
1 (x) ∈ A. We define the induced shift map on A by

σA(x) := σ
NA(x)
1

where

NA(x) = min{N ∈ N : σN
1 (x) ∈ A}.

Now, we are ready to describe a Markov partition of this modified Markov

shift σA : A → A:

(1) Type I, denoted by ΣA(I): cylinders of length N∗ + 1, namely

[x−N# , . . . , ẋ0, . . . , xN
2

∗−1, xN
2

∗ ],

such that

[x−N# , . . . , ẋ0, . . . , xN
2

∗−1]︸ ︷︷ ︸
length=N∗

⊂ A

and

[x−N#+1, . . . , ẋ1, . . . , xN
2

∗ ] = σ1([x−N# , . . . , ẋ0, . . . , xN
2

∗−1]) ⊂ A.

The shape of [e] ∈ ΣA(I) is defined as s(e) = (e).
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(2) Type II, denoted by ΣA(II): cylinders of length bigger than N∗ + 1,

namely

Bl,k(a, w, c) := [x−N# , w1, . . . , ẇN# , . . . , wN∗ , (w)l−1, w1, w2, . . . , wk, b]

where a := x−N# , c ∈ S, w ∈ C∗, l ≥ 0, 0 ≤ k < N∗ are not both zero,

and

b :=

⎧⎪⎪⎨
⎪⎪⎩
(wk+1, . . . , wN∗ , w1, . . . , wk−1, c), l = 0, k �= 0

(w1, . . . , wN∗−1, c), l �= 0, k = 0

(wk+1, . . . , wN∗ , w1, . . . , wk−1, c), l, k �= 0

provided Bl,k(a, w, c) ⊂ A, [b] ⊂ A. The shape of [e] ∈ ΣA(II) and of

the form Bl,k(a, w, c) is defined as

s(e) := (k, a, w, c) ∈ {0, . . . , N∗ − 1} × S × C∗ × S.

Proposition 3.2 ([LS08, Lemma 2.1]): σA : A → A is topologically mixing,

and the Markov partition given by ΣA(I) and ΣA(II) has the BIP property.

Let (ΣA, σA) be the countable state Markov shift derived by the Markov

partition ΣA(I) and ΣA(II). We write the alphabet set of Σ+
A by

SA :=

{
e ∈

⋃
n≥N∗+1

Sn : σ#
1 [e] ∈ ΣA(I) ∪ ΣA(II)

}
.

Let πA : ΣA→A ⊂ Σ1 denote the natural coding map. For x ∈ ΣA, we use

x0 to denote the letter in the zero-th coordinate. Notice that we can always

write x0 = (s−N# , . . . , sn−N#−1) in terms of S letters, and in this representa-

tion n−N∗ is the σ1-return time of [x0].

Remark 3.3:

(1) ΣA(I) is composed of return time 1 (i.e., NA = 1) cylinders, and

[x−N#,...,xn−N# ]︸ ︷︷ ︸
n+1 terms

∈ ΣA(II)

has return time n−N∗.
(2) There are only finitely many different shapes s(a) for all a ∈ SA.

(3) The length |a| for a ∈ SA is unbounded.
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Recall that every x = (xk) ∈ ΣA determines a point πA(x) = (si) ∈ Σ1,

and πA(x) corresponds to a unit tangent vector v(x) ∈ SA ⊂ (∂D0)in. We de-

note by ξ(x) the attracting limit point of v(x) and η(x) the repelling fixed

point of v(x). Since ξ(x) =
⋂

k≥1 I
+
s1,...,sk

and η(x) =
⋃

k≤0 I
−
s0,...,sk

where

πA(x) = (si)i∈Z, we know that ξ(x) only depends on x+ = (xk)k≥0 and η(x)

only depends on x− = (xk)k≤0 .

Definition 3.4: The geometric potential τ : ΣA → R is defined as

τ(x) := Bξ(x)(o, (gx0)o)

where o is the origin, x0 = (s−N# , . . . , sn−N#−1) ∈ SA, and

gx0 = gs1 ◦ · · · ◦ gsn−N∗ .

Proposition 3.5 (Geometric Potential (I), [LS08, Lemma 2.2]): Let (ΣA, σA)

be the Markov shift constructed above. Then:

(1) Suppose v generates a closed geodesics, namely gl(v)v = v. Then there

exists a unique (up to permutations) x = (x1x2 · · ·xm) ∈ Fixm(ΣA)

such that l(v) = Smτ(x), and vice versa.

(2) τ is locally Hölder continuous.

(3) τ only depends on the future coordinates, that is, if x∞
0 = y∞0 then

τ(x) = τ(y).

(4) ∃C,K > 0 such that τ(x)+ τ(σ(x))+ · · ·+ τ(σn(x)) ≥ C for all n ≥ K.

Since the geometric potential τ only depends on the future coordinates, we can

focus on (Σ+
A, σA), the one-sided countable Markov shift induced from (ΣA, σA),

by forgetting the past coordinate.

Proposition 3.6 (Geometric Potential (II), [LS08, Lemma 3.1]): On the one-

sided countable Markov shift (Σ+
A, σA), we have the following:

(1) τ has a unique equilibrium state m−τ and
∫
Σ+

A
τ dm−τ < ∞.

(2) The Liouville measure mL on T 1X is given by mL = R(m−τ ) ◦ π̃−1
A

where R : Mσ → Mτ given in Theorem 2.15.

(3) P (−τ) = 0.

(4) τ is bounded on ΣA(I), and there exists C1 > 0 such that

2 ln |x0| − C1 ≤ τ(x) ≤ 2 ln |x0|+ C1

for all x ∈ ΣA(II).
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Proof. Everything is in [LS08, Lemma 3.1], and only the first assertion of (4)

needs more exploration. Let [x0] ∈ ΣA(I) and x ∈ [x0]. We can write

x0 = (s−N# , . . . , sN∗
2 −1, sN∗

2
), gx0(x) = gs1 , and τ(x) = Bξ(x)(o, gs1o)

where si ∈ S for i = −N#, . . . , N
∗
2 . Recall that in the disc model,

Bξ(o, y) = ln
1− |y|2
|ξ − y|2 .

Since ξ(x) ∈ I+s1,s2,...,sN∗
2

, it is not hard to see Bξ(x)(o, gs1o) = ln(
1−|gs1o|2
|ξ(x)−gs1o|)

is (uniformly) bounded for all x ∈ [x0]. Notice that this bound depends on

[x0] ∈ ΣA(I). We can find a universal bound τ(x) on ΣA(I) because

|ΣA(I)| < ∞.

Remark 3.7:

(1) By standard techniques in symbolic dynamics, we know that τ is co-

homologous to τ ′ which is locally Hölder and τ ′(x) > c > 0 for some

constant c′ (cf. [Kao18, Lemma 3.8]). From now on, we will use τ ′ to
replace τ whenever τ needs to be bounded away from zero. Abusing

the notation, we will continue to denote τ ′ by τ .

(2) In [LS08], the constant C1 in Proposition 3.6 (4) depends on the shape

of x0. Because there are only finitely many shapes, we can replace it

by a universal constant.

3.2. Type-preserving finite area Fuchsian representations. In this

subsection, we consider ρ1, ρ2, two type-preserving finite area Fuchsian repre-

sentations. The Fenchel–Neilsen Isomorphism Theorem (cf. Theorem 2.1) shows

that there exists a bilipschitz map taking the limit set Λ(ρ1(π1S)) and funda-

mental domain of Xρ1 to Λ(ρ2(π1S)) and the fundamental domain of Xρ2 , and

hence Λ0(ρ1), to Λ0(ρ2). Hence, the suspension flows corresponding to the geo-

desic flows on Ω0(ρ1) and Ω0(ρ2) correspond to the same Markov shift (Σ+
A, σA)

but different roof functions τρ1 , τρ2 , respectively. The following result shows

that we have good control of these roof functions.

Corollary 3.8: There exists C > 0 such that |τρ1(x) − τρ2(x)| < C for all

Σ+
A. In particular, | τρ2 (x)τρ1(x)

| < C′ for some constant C ′.

Proof. It follows immediately from Proposition 3.6 (4) and Remark 3.7.
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In the second part of this subsection, we discuss the intersection number

I(ρ1, ρ2) of ρ1 and ρ2 proposed by Thurston. Recall that I(ρ1, ρ2) of ρ1 and ρ2

is defined as

I(ρ1, ρ2) := lim
n→∞

l2[γn]

l1[γn]

where {[γn]}∞n=1 is a sequence of conjugacy classes for which the associated

closed geodesics γn become equidistributed on ρ1(π1S)\H with respect to the

Liouville measure. However, it is unclear why I(ρ1, ρ2) is well-defined, especially

when S has punctures. We will discuss this issue in Proposition 3.10 where we

give I(ρ1, ρ2) a dynamical characterization.

To link the suspension flows on Σ+
τρ1

and Σ+
τρ2

, we consider the following

reparametrization function ψ : Σ+
τρ1

→ R.

Definition 3.9 (Symbolic reparametrization function): Let τρi(x) be the roof

function of ρi for i = 1, 2. We define the reparametrization function

ψ : Σ+
τρ1

→ R as

ψ(x, t) :=
τρ2(x)

τρ1(x)
f
( t

τρ1(x)

)
where f : [0, 1] → R is a smooth function such that f(0) = f(1) = 0, f(t) > 0

for 0 < t < 1 and
∫ 1

0 f(t) dt = 1.

We first notice that ψ is well-defined since ψ(x, τ(x)) = ψ(σ(x), 0) for all

x ∈ Σ+. By Corollary 3.8, we know that ψ is bounded and locally Hölder con-

tinuous. Recall that any periodic orbit λ of the suspension flow φt : Σ
+
τρ1

→ Σ+
τρ1

corresponds to a unique hyperbolic element γλ ∈ π1S. It is not hard to verify

that
∫ l1[γλ]

0 ψ(φt) dt = l2[γλ], which is the reason why we call ψ a reparametriza-

tion function.

We now can state and prove the main result of this subsection: characterizing

I(ρ1, ρ2) by the symbolic model.

Proposition 3.10: Suppose ρ1, ρ2 are two type-preserving finite area Fuchsian

representations. Then the intersection I(ρ1, ρ2) is well-defined. Moreover, if τ , κ

are the geometric potentials for ρ1, ρ2, respectively, then

I(ρ1, ρ2) =

∫
κ dm−τ∫
τ dm−τ

where m−τ is the equilibrium state of τ .
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Proof. Since the Bowen–Margulis measure mL, or the Liouville measure, of

gt : T 1S → T 1S is supported on the recurrent part, we have mL = mL|Ω0 .

Thus, it is sufficient to focus on the geodesic flow gt : T
1Ω0 → T 1Ω0. Notice

that, by the construction, we know that gt : T
1Ω0 → T 1Ω0 conjugates to the

suspension flow φt : Στ → Στ by the map � : T 1Ω0 → Στ . Moreover, it

is not hard to verify that given a bounded and continuous function F on Στ ,

F := F ◦� is bounded and continuous on T 1Ω0.

Let {γn} be any sequence of equidistributed geodesics with respect to mL

and let λn = � ◦ γn be the corresponding closed orbits of γn on Στ . Let us

denote δγn (resp. δλn) the 1-dimensional Lebesgue measure supported on γn

(resp. λn). Moreover, by definition, we know that l(λn) the length of λn, is

exactly l1[γn].

Let ψ be the symbolic reparametrization given in Definition 3.9. Notice that ψ

can be defined over the two-sided suspension flow Στ in the same manner. For

convenience, we abuse the notation and continue calling it ψ. As discussed

above, we know ψ is bounded and continuous on Στ , and thus ψ := ψ ◦ � is

bounded and continuous on T 1Ω0. We get

l2[γn]

l1[γn]
=

∫
ψ d

( δλn

l(λn)

)
:=

∫ l[λn]

0
ψ(φt) dt

l(λn)
=

∫ l1[γn]

0
ψ(gt) dt

l1[γn]
=

∫
ψ d

( δγn

l1[γn]

)

→
∫
T 1Ω0

ψ dmL =

∫
Σ+

τ

ψ dR(m−τ ) =

∫
Σ+ κ dm−τ∫
Σ+ τ dm−τ

where the convergence is because {γn} is equidistributed with respect to mL

(i.e.,
δγn

l1[γn]

weak∗
→ mL), the second last equality comes from the conjugation

map � taking the measure of maximal entropy of gt to the measure of maximal

entropy of φt, and the last equality follows Theorem 2.15.

4. Phase transitions for geodesic flows

Throughout this section, let ρ1 and ρ2 be two type-preserving finite volume

Fuchsian representations, and we write X1 = Γ1\D and X2 = Γ2\D where

Γ1 = ρ1(π1(S)) for i = 1, 2. Following the above section, let (Σ+, σ) = (Σ+
A, σA)

be the Markov shift associated with X1 and X2, and we denote their geometric

potentials by τ and κ, respectively.

To derive the analyticity of pressure, we need to locate the place where phase

transition happens. As in [Kao18], we have the following observation.
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Theorem 4.1 (Phase Transition): Suppose a, b ≥ 0, a + b �= 0, and τ, κ are

given above. Then we have

Pσ(−t(aτ + bκ)) =

⎧⎨
⎩analytic, t > 1

2(a+b) ,

∞, t < 1
2(a+b) .

Moreover, there exists a unique tab ∈ ( 1
2(a+b) ,∞) such that

Pσ(−ta,b(aτ + bκ)) = 0.

Proof. By Theorem 2.11, we know it is sufficient to show that

Pσ(−t(aτ + bκ)) =

⎧⎨
⎩finite, t > 1

2(a+b) ,

∞, t < 1
2(a+b) .

Recall [MU03, Theorem 2.19]; we know that for any locally Hölder continuous

function f , Pσ(f) < ∞ if and only if

Z1(f) :=
∑

x0∈SA

esup{f(x):x∈[x0]} < ∞.

By Proposition 3.6, there exist constants C1, C2 > 0 such that

Z1(−t(aτ + bκ)) =
∑

x0∈ΣA(I)

esup{−t(aτ+bκ):x∈[x0]} +
∑

x0∈ΣA(II)

esup{−t(aτ+bκ):x∈[x0]}

≤C1 +
∑

r=N∗+1

∞∑
x0∈ΣA(II)

|x0|=r

e−2t(aτ+bκ)) log |x0|+C

=C1 + C2

∑
r=N∗+1

∞∑
x0∈ΣA(II)

|x0|=r

e−2t(aτ+bκ)) log |x0|.

Similarly, there exist constants C3, C4 > 0 such that

Z1(−t(aτ + bκ)) ≥ C3 + C4

∑
r=N∗+1

∞∑
x0∈ΣA(II)

|x0|=r

e−2t(aτ+bκ)) log |x0|.

Thus, it is clear that Z1(−t(aτ + bκ)) < ∞ if and only if t > 1
2(a+b) .

Lastly, fix a, b with a, b ≥ 0, a + b �= 0. Then the computation in [MU03,

Theorem 2.19] showed that, in our case, Z1(−t(aτ + bκ)) → ∞ as t → 1
2(a+b)

implies

Pσ(−t(aτ + bκ)) → ∞ as t → 1

2(a+ b)
.
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In particular, taking t close to 1
2(a+b) , we have Pσ(−t(aτ + bκ)) > 0. Moreover,

it is obvious that Pσ(−t(aτ + bκ)) < 0 when t is big enough. Hence, by the

analyticity and the monotonicity of the pressure, we know there exists a unique

ta,b such that Pσ(−ta,b(aτ + bκ)) = 0.

Corollary 4.2: The set

{(a, b) : a, b ≥ 0, a+ b �= 0, and Pσ(−aτ − bκ) = 0}

is a real analytic curve.

Proof. The proof of [Kao18, Theorem 3.14] applies here. In short, by Theorem

4.1, it makes sense to discuss solutions to Pσ(−aτ − bκ) = 0. To see the

solution set as a real analytic curve one only needs to apply the Implicit Function

Theorem, because we know that

∂bPσ(−aτ − bκ)|(a0,b0) = −
∫

κ dν−a0τ−b0κ < −c

where c > 0 is a lower bound for κ and ν−a0τ−b0κ is the Gibbs measure

for −a0τ − b0κ.

5. Manhattan curves, critical exponents, and rigidity

In this section, we will prove Theorem A and Theorem B. The ideas mostly

follow [Kao18]. In [Kao18], the author used results of Paulin, Pollicott and

Schapira [PPS15] to analyze the geometric Gurevich pressure over the geodesics

flow. The general framework in [PPS15] includes finite area hyperbolic surfaces.

Nevertheless, for completeness, we will give outlines of the proofs, and the reader

can find all the details in [Kao18].

Following the notations in Section 4, let ρ1, ρ2 be two type-preserving finite

area Fuchsian representations, X1 = Xρ1 and X2 = Xρ2 the corresponding

hyperbolic surfaces, and τ , κ the corresponding geometric potentials over the

Markov shift (Σ+, σ) = (Σ+
A, σA). Recall that the Poincaré series Qa,b

ρ1,ρ2
(s) of

the weighted Manhattan metric da,bρ1,ρ2
is defined by

Qa,b
ρ1,ρ2

(s) :=
∑

γ∈π1(S)

exp(−s · da,bρ1,ρ2
(o, γo)),

δa,bρ1,ρ2
is the critical exponent of Qa,b

ρ1,ρ2
, and the Manhattan curve C(ρ1, ρ2) of ρ1

and ρ2 is the set {(a, b) ∈ R≥0 × R≥0\(0, 0) : δa,bρ1,ρ2
= 1}. For brevity, we will

drop the subscript ρ1, ρ2 in the rest of this section.
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The goal of this subsection is to prove the following theorem:

Theorem 5.1 ([Kao18, Section 4]): Suppose a, b ≥ 0 and a+ b �= 0. Then

Pσ(−δa,bρ1,ρ2
(aτ + bκ)) = 0.

In particular, (a, b) ∈ C(ρ1, ρ2) if and only if the pair (a, b) satisfies

Pσ(−aτ − bκ) = 0.

Proof. As we mentioned before, the results in [Kao18, Section 4] are applicable

here. We give here a brief outline of the proof. We consider the following growth

rates and their relations:

• The geometric Gurevich pressure P a,b
Geo given by growth rates of closed

orbits on T 1X1:

P a,b
Geo := lim sup

s→∞
1

s
logZW (s)

where

ZW (s) :=
∑

λ∩W �=φ

λ∈Per1(s)

e−al1[λ]−bl2[λ];

here W ⊂ T 1X1 is a relatively compact open set and

Per1(s) := {λ : λ is a closed orbit on T 1X1 and l1[λ] ≤ s}.

• The critical exponent δ
a,b

proposed in [PPS15]: δ
a,b

is the critical ex-

ponent of

Qa,b
PPS,x,y(s) :=

∑
γ∈π1(S)

e−da,b(x,γy)−sd(x,ρ1(γ)y)

the Paulin–Pollicott–Schapira (PPS) Poincaré series.

• Let ψ(x, t) := κ(x)
τ(x) : Σ+

τ → R for t ∈ [0, τ(x)]. Then [Kao18, Lemma

4.7] showed that Pφ(−a− bψ) = 0 ⇐⇒ Pσ(−aτ − bκ) = 0.

• [Kao18, Lemma 4.3, 4.4] showed that P a,b
Geo = δ

a,b
= Pφ(−a− bψ).

• [Kao18, Lemma 4.5] pointed out that δ
a,b

= 0 ⇐⇒ δa,b = 1.
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In summary, we have

δa,b = 1 ⇐⇒ δ
a,b

= 0

⇐⇒ P a,b
Geo = 0

⇐⇒ Pφ(−a− bψ) = 0

⇐⇒ Pσ(−aτ − bκ) = 0.

Thus, Pσ(−ta,b(aτ + bκ)) = 0 ⇐⇒ δta,ba,ta,bb = 1, i.e.,

Q
ta,ba,ta,bb
PPS,o,o (s) =

∑
γ∈π1(S)

e−tabd
a,b(o,γo)

has critical exponent 1. Hence,

Q
ta,ba,ta,bb
PPS,o,o (s) =

∑
γ∈π1(S)

e−sda,b(o,γo)

has critical exponent ta,b, and thus δa,b = ta,b.

Remark 5.2: We wish to point out that the reparametrization ψ : Σ+
τ → Σ+

τ

given in [Kao18] is not well-defined. One needs to replace the definition of ψ

in [Kao18] by Definition 3.9. Since the reparametrization function defined in

[Kao18] and in the current paper have the same regularity and periodic orbit

information (such as lengths and weights), all arguments in [Kao18] stay valid

and unchanged using the ψ defined in Definition 3.9.

By Corollary 4.2 and the above theorem, we have:

Corollary 5.3: The Manhattan curve C(ρ1, ρ2) is a real analytic curve given,

for a, b ≥ 0 and a+ b �= 0, by

C(ρ1, ρ2) = {(a, b) : Pσ(−aτ − bκ) = 0}.

The following theorem is Bowen’s formula which characterizes the topological

entropy of the geodesic flow in terms of the pressure and the geometric potential.

Corollary 5.4: Suppose ρ1 is a finite volume Fuchsian representation ρ1.

Then

Pσ(−1 · τ) = 0

where 1 is the critical exponent of ρ1(π1(S)).
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Proof. It follows from Proposition 3.6 and the fact that when ρ1 is a

finite area Fuchsian representation then the critical exponent of ρ1(π1(S)) is 1

(cf. [OP04]).

Notice that by Bowen’s formula and the Implicit Function Theorem, we can

prove that the pressure varies analytically when τ varies analytically with

Pσ(−τ) = 0.

Now we are ready to prove Theorem A.

Theorem 5.5 (Theorem A): C(ρ1, ρ2) is a convex real analytic curve. More-

over, C(ρ1, ρ2) is strictly convex unless ρ1 and ρ2 are conjugate in PSL(2,R).

In such cases C(ρ1, ρ2) is a straight line.

Proof. The analyticity of C is proved in Corollary 5.3. To show the remaining

parts, we first notice that by Hölder’s inequality the Manhattan curve C is

always convex, and because C is real analytic we know C is either a straight

line or strictly convex. It is clear that if ρ1 and ρ2 are conjugate then C is a

straight line. We claim that if C is a straight line then ρ1 and ρ2 are conjugate

in PSL(2,R).

To see this, suppose C is a straight line. Then the slope of this line is −1

because (1, 0),(0, 1) ∈ C. In other words, we have

(5.1) −1 = −
∫
τ dm−τ∫
κ dm−τ

= −
∫
τ dm−κ∫
κ dm−κ

where m−τ , m−κ are the equilibrium states for −τ and −κ, respectively.

It is sufficient to show that τ and κ are cohomologous, because τ ∼ κ implies

that X1 and X2 have the same marked length spectrum, and which implies

that ρ1 and ρ2 are conjugate in PSL(2,R) (cf. Theorem 2.3).

To see that τ and κ are cohomologous, it is enough to show that m−τ = m−κ.

Indeed, by Theorem 2.10, we know m−τ = m−κ implies τ − κ ∼ c0 where c0 is

a constant, and c0 = 0 follows from

∫
κ dm−τ =

∫
τ dm−τ .
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Notice that m−τ , m−κ are the equilibrium states of −τ , −κ, respectively; we

have

hσ(m−τ )−
∫

τ dm−τ = Pσ(−τ) = 0 = Pσ(−κ) = hσ(m−κ)−
∫

κ dm−κ.

Moreover, by equation (5.1), we know
∫
κ dm−τ =

∫
τ dm−τ . Thus, we get

hσ(m−τ ) +

∫
(−κ) dm−τ = 0 = Pσ(−κ).

In other words, m−τ is an equilibrium state for −κ, and by the uniqueness of

equilibrium states we get m−κ = m−τ .

Using the strictly convexity of the Manhattan curve, we have the following

rigidity results.

Theorem 5.6 (Bishop–Steiger Rigidity; Theorem B): Suppose ρ1, ρ2 are two

type-preserving finite volume Fuchsian representations. Then

hBS(ρ1, ρ2) ≤
1

2
.

Moreover, equality holds if and only if ρ1 and ρ2 are conjugate in PSL(2,R).

Proof. We first notice that it is a standard and well-known procedure (cf.

[Kao18, Theorem 4.8]) to show

δ1,1 = hBS = lim
T→∞

1

T
ln(#{[γ] ∈ [π1(S)] : d(o, ρ1(γ)o+ d(o, ρ2(γ)o ≤ T }).

Moreover, since ( 12 ,
1
2 ) is the middle point of (0, 1), (1, 0) ∈ C(ρ1, ρ2), by Theo-

rem 5.5, we know (12 ,
1
2 ) is above δ

1,1 · (1, 1) ∈ C(ρ1, ρ2) and δ1,1 = 1
2 if and only

if C is a straight line.

Theorem 5.7 (Thurston’s Rigidity; Theorem B): Suppose ρ1, ρ2 are two type-

preserving finite volume Fuchsian representations. Then

I(ρ1, ρ2) ≥ 1

and equals 1 if and only if ρ1 and ρ2 are conjugate in PSL(2,R).

Proof. By Proposition 3.10, we know that

I(ρ1, ρ2) =

∫
κ dm−τ∫
τ dm−τ

.
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Recall that m−κ is the equilibrium state of −κ and m−τ ∈ Mσ; we have

0 = Pσ(−κ) = hσ(m−κ)−
∫

κ dm−κ ≥ hσ(m−τ )−
∫

κ dm−τ .

Notice that m−τ is the equilibrium state of −τ , i.e.,

0 = Pσ(−τ) = hσ(m−τ )−
∫

τ dm−τ ;

we have ∫
τ dm−τ = hσ(m−τ ) ≤

∫
κ dm−τ .

The rigidity part was proved in Theorem 5.5. More precisely, we proved in

Theorem 5.5 that if 1 =
∫
κ dm−τ∫
τ dm−τ

then ρ1 ∼ ρ2 in PSL(2,R).

6. The pressure metric

6.1. The pressure metric and Thurston’s Riemannian metric. The

aim of this subsection is to construct a Riemannian metric for the Teichmüller

space of surfaces with punctures. Using the symbolic model of geodesics flows

discussed in Section 3, we can relate the Teichmüller space with the space of

geometric potentials.

Recall that S = Sg,n is an orientable surface of genus g and n punctures

and with negative Euler characteristic. The Teichmüller space T (S) is the

space of conjugacy classes of finite area type-preserving Fuchsian representa-

tions. By Section 3, we know that for every ρ ∈ T (S), the geodesics flow on

a smaller section Ω0 ⊂ T 1Xρ conjugates the suspension flow over a Markov

shift (Σ+, σ) = (Σ+
A, σA) with a unique (up to cohomology) locally Hölder con-

tinuous roof function τ . We point out again that the Markov shift (Σ+, σ) is con-

structed through the shape of the fundamental domain. Since type-preserving

Fuchsian representations have the same shape as the fundamental domain, we

know that the suspension flow models for all ρ ∈ T (S) have the same base

space (Σ+, σ) yet with different roof functions.

Let P be the set of pressure zero locally Hölder continuous functions on Σ+,

that is,

P := {τ ∈ C(Σ+) : τ is locally Hölder, Pσ(−τ) = 0}.

In the following, we will discuss the relations between T (S) and P. Notice that

since T (S) is composed by representations in PSL(2,R), it inherits a natural
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analytic structure from PSL(2,R) (see [Ham03] for more details). The follow-

ing proposition indicates that there exists an analytic thermodynamic mapping

Φ : HomF
tp(π1(S),PSL(2,R)) → P.

Proposition 6.1 (Thermodynamic Mapping): Let 0 < ε � 1

and {ρt}t∈(−ε,ε) ⊂ T (S) be an analytic one-parameter family in T (S). Then

Φ({ρt}) = {τt} ⊂ P is an analytic one-parameter family in P.

Proof. We first notice that if {ρt} ⊂ T (S) is analytic, then the boundary map

(derived in Theorem 2.1) bt : ∂∞H = Λ(ρ0(π1S)) → Λ(ρt(π1S)) = ∂∞H is real

analytic (see [McM08, Section 2] or [BCS18, Proposition 4.1]). For complete-

ness, we summarize the proof of this fact. The idea of [McM08, Section 2], as

well as [BCS18, Proposition 4.1], is a complex analytic approach, namely, using

holomorphic motions and the λ-lemma.

Let us denote QF (S) the space conjugacy classes of quasi-Fuchsian (i.e.,

the limit set is a Jordan curve) representations of π1(S) → PSL(2,C).

Recall that QF (S) is an open neighborhood of T (S) in the PSL(2,C)-character

variety of π1(S). Let ρt vary in QF (S). Then there exist embeddings

bt : ∂∞H → Λ(ρt(π1S)) ⊂ Ĉ. Notice that ρ0 ∈ T (S) is fixed. It is clear that

if ξ ∈ Λ(ρ0(π1S)) is fixed by a nontrivial element ρ0(γ), then bt(ξ) varies holo-

morphically. Thus by Slodkowski’s generalized λ-lemma (cf. [Slo91]), we know

that bt varies complex analytically when ρt varies in QF (S); hence, bt(= bt)

varies real analytically when ρt varies in T (S).

To see {τt} is real analytic, by definition

τt(x) = Bξt(x)(o, ρt(gx0)o)

where x = x0 · · · and ξt = bt ◦ ξ0 : Σ+ → Λ(ρt(π1S)). Recall that in the disk

model, we know that

Bξ(x, y) = ln
(1− |y|2
|ξ − y|2

|ξ − x|2
1− |x|2

)
.

Thus we have, without loss of generality, taking o to be the origin,

τt(x) = Bbt◦ξ0(o, ρt(gx0)o) = ln
1− |ρt(gx0)o|2

|bt ◦ ξ0(x)− ρt(gx0)o|2
.

Since both ρt and bt vary real analytically, from the above expression we know

that τt also varies real analytically.
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By Corollary 3.8 we know that τρ1 is locally Hölder continuous and

|Φ(ρ1)− Φ(ρ0)| = |τρ1 − τρ0 |

is bounded for all ρ0, ρ1 ∈ T (S). Thus, consider an analytic path ρt ⊂ T (S),

and we write out the analytic path τt = Ψ(ρt) in terms of a Taylor expansion,

τt = τ0 + t · τ̇0 + · · · . We know that the perturbation τ̇0 is a bounded locally

Hölder continuous function. Therefore, it is sufficient to consider Tτ0P, the

corresponding tangent space of Tρ0T (S), as

Tτ0P :=

{
f ∈ C(Σ+) :

∫
Σ+

f dm−τ0 = 0, f is locally Hölder and bounded

}
⊂KerD−τ0Pσ.

Moreover, we are interested in the pressure norm || · ||P on P given by

||f ||P :=
Var(f,m−τ0)∫

τ0 dm−τ0

.

Notice that this norm degenerates precisely when f ∼ 0. In the theorem

below, we prove that one can define the pressure metric || · || on T (Sg,n)

through || · ||P :

Theorem 6.2 (Theorem C): Suppose 0 < ε � 1 and ρt ∈ T (Sg,n) is an

analytic path for t ∈ (−ε, ε). Then I(ρ0, ρt) is real analytic and

||ρ̇0||2 := ||dΨ(ρ̇0)||2P =
d2I(ρ0, ρt)

dt2

∣∣∣
t=0

defines a Riemannian metric on T (Sg,n).

Proof. Following Proposition 3.10 and Proposition 6.1, we know that I(ρ0, ρt)

is real analytic. Thus, it is sufficient to show that d2I(ρ0,ρt)
dt2 |t=0 = ||dΨ(ρ̇0)||2P

and ||dΨ(ρ̇0)||2P > 0 when ρ̇0 �= 0.

By Proposition 3.10 and Proposition 6.1, we know that

d2I(ρ0, ρt)

dt2

∣∣∣
t=0

=
d2

dt2

(∫
τt dm−τ0∫
τ0 dm−τ0

)∣∣∣
t=0

=

∫
τ̈0 dm−τ0∫
τ0 dm−τ0
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where τt = Ψ(ρt). Moreover, by Corollary 2.13, we know that

0 =
d2Pσ(−τt)

dt2

∣∣∣
t=0

=(D−τ0Pσ)(−τ̈0) + (D2
−τ0Pσ)(−τ̇0)

=−
∫

τ̈0 dm−τ0 +Var(−τ̇0,m−τ0)

and Var(−τ̇0,m−τ0) = 0 if and only if τ̇0 ∼ 0.

To see the non-degeneracy, suppose τ̇0 ∼ 0 and let h be any hyperbolic

element. Then l(ρt[h]) = Smτt(x) for some x ∈ Fixm, and thus

d

dt

∣∣∣
t=0

l(ρt[h]) = Smτ̇0(x) = 0.

Moreover, since T (S) can be parametrized by finitely many (simple) closed

geodesics (cf., for example, [Ham03]), d
dt |t=0l(ρt[h]) = 0 for all h is hyperbolic

implies ρ̇0 = 0. Hence, we have ||ρ̇0||2 := ||dΨ(ρ̇0)||2P = d2I(ρ0,ρt)
dt2 |t=0 and

||ρ̇0||2 = 0 if and only if ρ̇0 = 0 in Tρ0T (Sg,n).

6.2. The pressure metric and Manhattan curves. In this subsection, we

will prove Theorem D, which points out that one can recover Thurston’s Rie-

mannian metric through varying the Manhattan curves. Let {ρt} ∈ T (Sg,n)

be an analytic path, and C(ρ0, ρt) be the Manhattan curve of ρ0, ρt. By The-

orem A, we know C(ρ0, ρt) is a real analytic curve. Thus we can parametrize

C(ρ0, ρt) by writing C(ρ0, ρt) = {(s, χt(s)) : s ∈ [0, 1]} where χt(s) is a real

analytic function. See Figure 6.1.

1

1

χ0

χt

Figure 6.1. Manhattan curves.
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Theorem 6.3 (Theorem D): Following the above notations, we have for all

s ∈ (0, 1)

d2χt(s)

dt2

∣∣∣
t=0

= s(s− 1) · ||ρ̇0||2.

Proof. For a fixed t, C(ρ0, ρt) can be identified as

{(a, b) : a, b ≥ 0, a+ b �= 0, and Pσ(−aτ0 − bτt) = 0}
={(s, χt(s)) : Pσ(−sτ0 − χt(s)τt) = 0, s ∈ [0, 1]}.

For convenience, let us denote

ϕt(s) := −sτ0 − χt(s)τt.

Since when t = 0, χ0 is a straight line satisfying s+χ0(s) = 1, we have ϕ0 = −τ0.

Thus, we know that ϕ̇0 = −χ̇0τ0 − χ0τ̇0 and ϕ̈0 = −χ̈tτ0 − 2χ̇0τ̇0 − χ0τ̈0. By

Corollary 2.13, we get

0 =
d

dt
Pσ(ϕt)

∣∣∣
t=0

=

∫
ϕ̇0 dmϕ0

=

∫
−χ̇0τ0 − χ0τ̇0 dm−τ0

= −χ̇0(s)

∫
τ0 dm−τ0 − χ0(s)

∫
τ̇0 dm−τ0 .

Since
∫
τ̇0 dm−τ0 = 0 (because Pσ(−τt) = 0) and

∫
−τ0 dm−τ0 < 0, we have

χ̇0(s) = 0, ∀s ∈ [0, 1]. Furthermore, by taking the second derivative of pressure

(as in the proof of Theorem 6.2) we get

0 =
d2

dt2
Pσ(ϕt)

∣∣∣
t=0

=Var(ϕ̇0,mϕ0) +

∫
ϕ̈0 dmϕ0

=Var(−χ̇0︸︷︷︸
�

0

τ0 − χ0τ̇0,m−τ0)−
∫
(χ̈0τ0 + 2 χ̇0︸︷︷︸

�

0

τ̇0 + χ0τ̈0) dm−τ0

=(χ0(s))
2 ·Var(τ̇0,m−τ0)− χ̈0

∫
τ0 dm−τ0 − χ0

∫
τ̈0 dm−τ0 .

Notice that Pσ(−τt) = 0; similarly we have

0 =
d2Pσ(−τt)

dt2

∣∣∣
t=0

= −
∫

τ̈0 dm−τ0 +Var(−τ̇0,m−τ0).
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Therefore, we have

χ̈0(s) = (χ0(s)
2 − χ0(s))

Var(τ̇0,m−τ0)∫
τ0 dm−τ0

= ((1 − s)2 − (1− s)))
Var(τ̇0,m−τ0)∫

τ0 dm−τ0

= (s2 − s)||ρ̇0||2.
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sics, Birkhäuser, Boston, MA, 2009.

[Kem11] T. Kempton, Thermodynamic formalism for suspension flows over countable

Markov shifts, Nonlinearity 24 (2011), 2763–2775.

[Kim01] I. Kim, Marked length rigidity of rank one symmetric spaces and their product,

Topology 40 (2001), 1295–1323.

[LS08] F. Ledrappier and O. Sarig, Fluctuations of ergodic sums for horocycle flows on

Zd-covers of finite volume surfaces, Discrete and Continuous Dynamical Systems

22 (2008), 247–325.



36 L.-Y. KAO Isr. J. Math.

[McM08] C. McMullen, Thermodynamics, dimension and the Weil–Petersson metric, Inven-

tiones Mathematicae 173 (2008), 365–425.
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