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ABSTRACT

In this paper, we extend the construction of pressure metrics to Te-
ichmiiller spaces of surfaces with punctures. This construction recovers
Thurston’s Riemannian metric on Teichmiiller spaces. Moreover, we prove
the real analyticity and convexity of Manhattan curves of finite area type-
preserving Fuchsian representations, and thus we obtain several related
entropy rigidity results. Lastly, relating the two topics mentioned above,
we show that one can derive the pressure metric by varying Manhattan

curves.

1. Introduction

Let S = S, be an orientable surface of genus g and n punctures with neg-
ative Euler characteristic. In this paper, we discuss how one can characterize
Fuchsian representations and the geometry of 7(5), the Teichmiiller space of S,
by studying dynamics objects associated with them. For example, we prove
rigidity results via examining the shape of Manhattan curves, and we construct
a Riemannian metric on 7 (S) by derivatives of pressure.

When S has no punctures, results in this work are not new. Manhattan
curves and rigidity results are, for instance, discussed in [Bur93, Sha98], and
the pressure metric on 7 (.S) is discovered in [McMO08] and further investigated in
[PS16, BCS18]. Nevertheless, when S has punctures, especially when Fuchsian
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representations are not convex co-compact, far fewer results along this line
are proved. Indeed, in such cases, their dynamics are much more complicated
because of the presence of parabolic elements.

Using similar ideas to those in [LS08, Kaol8], we study geodesic flows over hy-
perbolic surfaces with cusps by countable state Markov shifts and corresponding
suspension flows. Notice that for countable state Markov shifts, in contrast to
compact cases, for unbounded potentials without sufficient control of their reg-
ularity and values around cusps, the pressure of their perturbation might not
only lose the analyticity but also information of some thermodynamics data.
For example, time changes for suspension flows over a non-compact Markov
shift may not take equilibrium states to equilibrium states for some potentials
(cf. [CI18]).

To overcome these issues, we carefully study the associated geometric poten-
tial (or the roof function of the suspension flow). By doing so, we know exactly
where the pressure function (of geometric potentials and their weighted sums)
is analytic. Thus, we can mimic the procedure used in compact cases. More
precisely, we derive a version of Bowen’s formula which relates the topological
entropy of the geodesic flow and the corresponding roof function. With Bowen’s
formula and the analyticity of pressure, we prove the convexity of Manhattan
curves, and using the second derivative of pressure we construct a Riemannian
metric on 7(5).

To put our results in context, we now introduce necessary notations
and definitions.  Recall that a representation p € Hom(mS,PSL(2,R))
is Fuchsian if it is discrete and faithful, and p has finite area if the hyperbolic
surface X, = p(mS)\H has finite area. We say two finite area Fuchsian
representations pi, po are type-preserving if there exists an isomorphism
t 2 p1(mS) — p2(mS) sending parabolic elements to parabolic elements and
hyperbolic elements to hyperbolic elements. Here PSL(2,R) refers to the space
of orientation preserving isometries of the hyperbolic plane H.

Let p; and p2 be two Fuchsian representations. Recall that dgf 0, the
weighted Manhattan metric on H x H with respect to pi, p2, is given by
fixing

0= (01,09), d3", (0,70) = ad(01, p1(7)o1) + bd(02, p1(7)oz) for v € m1(S)

where d is the hyperbolic distance on H. Notice that we are only interested in
non-negative weights, i.e., a,b > 0 and a + b # 0. We denote the associated
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Poincaré series by

Z’bp (5) = E e*S'dzib,pQ (O”YO)_
1,P2
yeT1(S)

Definition 1.1 (Manhattan curve): The Manhattan curve C(py, p2) of p1, p2
is given by

Cp1,p2) = {(a,b) € Rxp x R50\(0,0) : 6%° =1}

P1,P2

a,b . o e a,b . a,b . .
where 07:7, is the critical exponent of Q7" (s), i.e., Qphm(s) is divergent
a,b

. (l,b . .
ifs<é and is convergent if s > 47-7, .

P1,P2

By definition, one can regard C(p1, p2) as a generalization of the critical ex-
ponents for p; and ps. Obviously, taking a = 0 (respectively, b = 0), 5;};%2
reduces to d,,, the classical critical exponent for p; (respectively, d,,). By Otal
and Peigné [OP04], we know d,, is also the topological entropy of the geodesic
flow over X, .

As mentioned above, using a symbolic model given in [LS08], for every finite
area Fuchsian representation p, we can code the geodesic flow over X,. Elab-
orated discussion of the coding of geodesic flows is in Section 3. We briefly
introduce the idea and strategy below. We will associate the geodesic flow
on the smaller special section €y C T'X, with a suspension flow (XT,0,7,)
where (X7, 0) is a countable state Markov shift and 7, : ¥ — R* is the roof
function. Furthermore, by the construction, the roof function 7, is a continuous
function prescribing the length of closed geodesics. We sometimes call 7, the
geometric potential of p. Moreover, one important feature of this symbolic
model is that if p1, po are finite area type-preserving Fuchsian representations,
then they correspond to the same Markov shift (37, o) but to different roof
functions 7,,,7,,. In other words, we can use roof functions to characterize
finite area type-preserving Fuchsian representations.

Using this symbolic model, we can characterize C(p1,p2) as solutions of a
version of Bowen’s formula. Furthermore, we derive the first main result of the

paper:

THEOREM A: Let p1, po be two finite area type-preserving Fuchsian represen-
tations. Then C(p1, p2) is a real analytic curve, and C(p1, p2) Is strictly convex
unless py and py are conjugate in PSL(2,R); in such cases C(p1, p2) is a straight
line.
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Using the shape of the Manhattan curve, we can further prove rigidity results
related with following dynamics quantities.

Definition 1.2: Let p1, p2 be a pair of Fuchsian representations.

(1) The Bishop—Steiger entropy hps(p1,p2) of p1 and ps is defined as

m ;111(#{[7] € [m ()] = d(o, pr(v)o) + d(o, p2(v0)0) < T}).

= 1li
T—o0

hss(p1,p2) :

(2) The intersection number I(p1, p2) of p1 and ps is defined as

la[vn]
1(p1, = lim
(pl p2) nyoo llh/n]
where {[v,]}52; is a sequence of conjugacy classes for which the asso-
ciated closed geodesics 7, become equidistributed on X,, with respect
to area.

Using a dynamics interpretation of I(p1, p2) and the convexity and analyticity
of pressure, we recover the following results of Bishop and Steiger [BS93], and
Thurston [Thu98].

THEOREM B: Let p1, p2 be a pair of area type-preserving Fuchsian representa-
tions, We have:

(1) (Bishop-Steiger Rigidity) hgs(p1, p2) < 5, and the equality holds if and
only if p1 and ps are conjugate in PSL(2,R).

(2) (The Intersection Number Rigidity) I(p1, p2) > 1, and the equality holds
if and only if p1 and py are conjugate in PSL(2,R).

REMARK 1.3:

(1) One might prove C(p1,p2) is C* and Theorem B without employing
symbolic dynamics. Nevertheless, symbolic dynamics provides a con-
venient approach to control the analyticity of pressure, and hence to
prove the analyticity of C(p1, p2).

(2) Tt is not immediately clear why I(p1, p2) is well-defined. We will justify
it in Section 3.

(3) The intersection number rigidity is known, amount the experts, as a
work of Thurston. However, due to the limited knowledge of the author,
for the non-convex co-compact cases we cannot find a reference to it.
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We now change gear from pairs of Fuchsian representations to the space of
conjugacy classes of Fuchsian representations, that is, the Teichmiiller space of
S = S¢.n. Recall that the Teichmiiller space of S is defined as

T(S) := Hom{, (m1(S), PSL(2,R))/ ~
where Homy{, (71 (S), PSL(2,R)) is the space of finite area type-preserving Fuch-

sian representations, and p; ~ ps if they are conjugate in PSL(2, R).
Through the symbolic model, there is a thermodynamic mapping

U:T7(S)—P
where P is a special space of continuous functions over ¥ ™ containing geometric
potentials. Using the pressure and variance we can define a norm ||-||p over P.
Using the pullback of || - ||p, we can define a Riemannian metric || - || on 7(S).
We call this Riemannian metric the pressure metric. Moreover, || - || can also

be derived by the Hessian of the intersection number:

THEOREM C (The Pressure Metric): Suppose p; € T(S) is an analytic path for
t € (—e,e). Then I(po, p:) is real analytic and

d*1(po, pr)
.2 . 2 5
:: d =
ol s= (o) lp = 1P|
defines a Riemannian metric on T (Sg.,).
We briefly discuss the history of this Riemannian metric || - || on 7 (Sgn).

When n = 0, Thurston first discovered it by using the Hessian of the inter-
section number. Thus, this Riemannian metric is also known as Thurston’s
Riemannian metric. Moreover, as proved by Wolpert [Wol86], this Riemann-
ian metric is exactly the Weil-Petersson metric on 7 (Sg,0). McMullen [McMO§]
recovered this Riemannian metric using thermodynamic formalism and called
it the pressure metric. Carrying over the same spirit, Bridgeman, Canary,
Labourie and Sambarino [BCLS15] generalized this dynamics approach and
constructed a Riemannian metric on the space of Anosov representations into
higher rank Lie groups, i.e., a higher rank generalization of 7(S5,,). Using the
pressure metric constructed in [BCLS15], Xu [Xul9] showed that the pressure
metric on the Teichmiiller space of bordered surfaces is incomplete and is not
Lipschitz equivalent to the Weil-Petersson metric. We remark that Fuchsian
representations considered in Xu’s work [Xul9] are convex co-compact (i.e.,
have no parabolic elements) and with infinite volume. Our Theorem C extends
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the pressure metric and Thurston’s construction to spaces of conjugacy classes
of finite area type-preserving Fuchsian representations with parabolic elements,
ie., T(Sgn) for n > 0.

The last result of the paper is to link the two main topics in this work: Man-
hattan curves and the pressure metric. We prove that when we look at a path
in 7(9), the variation of corresponding Manhattan curves contains information
on the pressure metric. As similar result has been proved by Pollicott and Sharp
[PS16] when S is a closed surface. We generalize it to surfaces with punctures.

THEOREM D: Let (s,x:(s)) be the coordinates of points on the Manhattan
curve C(po, pt). Then we have
d?x+(s)
dtz li=o0

The paper is organized as follows. In Section 2, we introduce some back-

=s(s—1)-||po||* fors e (0,1).

ground knowledge of geometry and thermodynamic formalism of countable state
Markov shifts. In Section 3 we discuss the coding of geodesic flows and impor-
tant properties of the corresponding roof functions. We study the analyticity
of the pressure function in Section 4. Section 5 is devoted to investigating the
shape of the Manhattan curve and rigidity. In Section 6, we construct the pres-
sure metric. In the last section, we focus on the relation between Manhattan
curves and the pressure metric.

1.1. ACKNOWLEDGEMENTS. The author is grateful to Prof. Francois Ledrap-
pier for proposing the problem and much support, to Prof. Dick Canary for
many insightful suggestions and help, and to the anonymous reviewer for their
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Sinica, Taiwan. The author would like to thank Prof. Jih-Hsin Cheng and
Academia Sinica for their hospitality. The author is partially supported by
the National Science Foundation Postdoctoral Research Fellowship under grant
DMS 1703554.

2. Preliminaries

2.1. GEOMETRY. Throughout this paper, S = S, ,, is an orientable surface of
genus ¢ and n punctures and with negative Euler characteristic. In this work,
we are interested in finite area hyperbolic surfaces homemorphic to S, that
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is, S pairs with a Riemannian metric g of Gaussian curvature —1. Notice that
every such surface (5,g) can be obtained by a Fuchsian representation. More
precisely, (S,g) is isomorphic to the hyperbolic surface X, = p(m1(S))\H.

For short, let us denote p(71S) by I'. Recall that O H, the boundary of H,
is defined as RU{0}, and A(T') := {0 : v € '} denotes the limit set of I". An
element v €T is called hyperbolic if v has two fixed points on A(T'), namely, the
attracting fixed point 4 (i.e., lim, o 7"0="4) and the repelling fixed
point v_ (i.e., lim,, o y"0 = v_); 7 is called parabolic if it has one fixed
point. Because X, is negatively curved, we know that every closed geodesic A
on X, corresponds to a unique hyperbolic element v (up to conjugation), and
vice versa. Moreover, the length of A equals [[y], the translation distance
of v, that is,

I[v] := min{d(z,vz) : € H}.
A natural dynamical system associated to X, is the geodesic flow
g T'X, > T'X,

on the unit tangent bundle 7' X p, Which translates many geometric problems to
dynamics problems. We recall that the Busemann function B : 0, H x H x H
is defined as

Be(z,y) := lim d(x, 2) — d(y, 2)
z—E&

for x,y,z € H and £ € OH. Lift the geodesic flow ¢, : T'X, — T'X, to
its universal covering T'H; by abusing notation, we have the geodesic flow
gt : TYH — T1HL.

Recall that two Fuchsian representations pi, ps are type-preserving if there
exists an isomorphism ¢ : pi(m1S) — pa(m.S) such that ¢ sends hyperbolic
elements to hyperbolic elements and parabolic elements to parabolic elements.
The following theorem indicates that if p;, pe are type-preserving finite area
Fuchsian representations, then we can link X, and X, in a controlled manner.

THEOREM 2.1 (Fenchel-Nielsen Isomorphism Theorem; [Kap09, Theorem 5.5,
8.16, 8.29]): Suppose p1, p2 are two finite area type-preserving Fuchsian repre-
sentations of m1.S. Then there exists a bilipschitz homeomorphismb: X, —X,,.
Moreover, one can extend b to an equivarient bilipschitz map, abusing the no-
tation, b : s HUH — 0, H U H.
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REMARK 2.2: In [Kap09], the homeomorphism b : X, — X, is stated to be
quasiconformal. Nevertheless, using Mori’s Theorem (cf. p. 30 [Ahl06]) it is not
hard to see that quasiconformal homeomorphisms are indeed bilipschitz maps.

In the following, we state a special case of [Kim01, Theorem A].

THEOREM 2.3 (Marked Length Spectrum Rigidity): Let py,p2: 71 (S) = PSL(2, R)
be Zariski dense Fuchsian representations. There exists a finite collection
of v € m(S) such that if there exists k > 0 such that l[p1(y)] = k - l[p2(7)]
for all these v, then p1 and po are conjugate in PSL(2,R).

REMARK 2.4:

(1) A representation p : m1(S) — PSL(2,R) is called Zariski dense if it is
irreducible and p(m1(S)) has no global fixed point on JH. It is clear
that finite area Fuchsian representations are Zariski dense.

(2) Theorem A in [KimO1] is much more general than the special case that
we stated in Theorem 2.3, and this special case should be known before
[KimO1]. Nevertheless, for convenience, we quote [Kim01, Theorem A].

2.2. COUNTABLE STATE MARKOV SHIFTS. In this subsection we aim to intro-
duce terminologies of thermodynamic formalism for countable state (topologi-
cal) Markov shifts. The reader can find more details in Mauldin’s and Urbaniski’s
book [MUO03] and Sarig’s notes [Sar09].

Let A a countable set and A = (¢45) 4x.4 be a matrix of zeros and ones with
no columns or rows consisting entirely of zeros.

Definition 2.5 (Countable State Markov Shift): The (one-sided) countable
state Markov shift with alphabet (or states) A and transition matrix A
is defined by

St={e=(x)eA ity ., =1VneN}
equipped with the topology generated by the collection of cylinders
[ag,...,an) :={z €3 12, =0;,0<i<n} (n€Nag,...,a, €A)
and coupled to the (left) shift map o : (zg, z1, z2,...) — (z1,22,...).
A word of length n on an alphabet A is a finite sequence
(ag,a1,...,an 1) € A"}

for all n € N\{0}, and a word (ag, a1, ...,a,—1) is admissible with respect to
A= (tab).AX.A if taiaj =1
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From now on we will omit the subscript A from E;{ and simply use X1 for
one-sided Markov shifts because our discussion here only focuses on a fixed
transition matrix.

Recall that a Markov shift (X%,0) is topologically transitive if for
all a,b € A there exists an admissible word (a,...,b), and is topological
mixing if for all a,b € A there exists a number N, such that for all n > Ny,
there exists an admissible word (a,...,b) of length n.

Let g : ¥ — R be a function. For n > 1, the n-th variation of g is defined by

Viu(g) :=sup{lg(z) —g(y)| : z,y € ", 2; = y; for 0<i <n—1}.

When )V, (g9) < oo we say that g has summable variations, and in par-
ticular, we call g a locally Holder continuous function if there exist C' > 0
and 0 € (0,1) such that V,,(g) < C - 0" for n > 1.

We remark that when the alphabet A is finite the Markov shift is called a
subshift of finite type, and in that case X1 is a compact set. When A is
infinite, X7 is no longer compact. Nevertheless, countable state Markov shifts
with the following property can be studied similarly as in the compact cases.

Definition 2.6 (BIP): We say (E;{,U) has the big image and preimages
(BIP) property if there exists a finite collection of states s1,$2,...,5, € A
such that for every state s € A there are some 4,5 € {1,2,...,n} such that
(si,8), (s,s;) are admissible.

Definition 2.7 (Topological Pressure for Countable State Markov Shifts): Let
(3T, o) be a topologically mixing Markov shifts and g : ¥+ — R has summable

variations. The topological pressure (or the Gurevich pressure) of g is
defined by

1
P,(g) := lim log Z eSng(z)]l[a](z),

n—o0o N
rcFix™
where Fix" := {z € ¥ : 6"(z) = z}, a € A is any state, and
Sng(@) = g(x) + -+ + g(0" ! (2))
is the n-th ergodic sum of g.

Notice that the topological pressure is independent of the state a € A
(cf. [Sar09]).
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THEOREM 2.8 (Variational Principle; [Sar99] Theorem 3): Let (X,0) be a
topologically mixing Markov shift and g : ¥ — R has summable variations. If
sup g < oo then

gdm :m e M, and —/

gdm < oo}
>+

P,(g) = sup {h0<m> +

+

where hy,(m) is the measure theoretic entropy of m and M, is the set of o-
invariant Borel probability measures on 1.

We want to remark that although Mauldin and Urbanski and also Sarig de-
fined countable state Markov shifts and the topological pressure differently,
when the Markov shift is topologically mixing and has the BIP property, their
definitions are the same (cf. [MUO1, Section 7]). Since in this paper we only
focus on topologically mixing Markov shifts with the BIP property, we will use
results from both Mauldin and Urbanski, and Sarig.

Recall that a measure m € M, is called an equilibrium state for g if

P(g) = ho(m) + [ gdm.

A measure v € M, is called a Gibbs measure for ¢ if there exist con-

stants G > 1 and P such that for all cylinders [ag,...,a,—1] and for every
x € [ag,...,an—1] we have
1 .. _
V[a()aa/la y An 1] S G.

G ~ exp[Sng(z) — nP)]
REMARK 2.9: We would like to point out that there are subtle differences be-
tween Gibbs states and equilibrium states. Every equilibrium state is a Gibbs
state but not vice versa. More precisely, if g is locally Holder with finite pressure
and sup g < oo, then g has a unique Gibbs measure v,, and g has at most one
equilibrium state. Furthermore, with the additional condition — f gdyy < oo,

we know the unique Gibbs state v, is the equilibrium state for g (cf. [Sar09,
Theorem 4.5, 4.6, 4.9] and [MUO03, Theorem 2.2.4, 2.2.9]).

Two functions f, g : ©T — R are cohomologous, denoted by f ~ g, if there
exists a function h : ¥ — R such that f = g+h—hoo where h is called a tran-
sition function. The following theorem shows that the thermodynamic data
are invariant in each cohomologous class of locally Holder continuous functions.
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THEOREM 2.10 ([MU03, Theorem 2.2.7]): Suppose (X%, o) is topologically mix-
ing, and f,g : ¥* — R are locally Holder continuous function with Gibbs
measures vy and vy, respectively. Then the following are equivalent:
(1) vy =vy,.
(2) (Livsic Theorem) There exists a constant R > 0 such that ¥V n > 1 and
x € Fix" we have S, f(x) — Spg(z) = nR.
(3) f—g is cohomologous to a constant R via a bounded Hélder continuous

transition function.

Moreover, when the above assertions are true, then R = P,(f) — P5(g).

We remark that we can define a two-sided countable state Markov shift X4 as
Ypi={r=() €A’ ty 0., =1Yn €L}

and define similarly all the thermodynamic data. Notice that if a potential
on a two-sided shift space (X, o) only depends on its future coordinate, then
to understand the associated thermodynamic data, it is sufficient to study its
behavior on the one-sided shift (X%, 0). For a two-sided sequence (, a, b, c, ), b
means b is at the zero-th coordinate, i.e., a = x_1,b = xg,c = 1.

Let (X%, 0) be a topologically mixing countable state Markov shift with the
BIP property. In the following, we list a few theorems about the analyticity of
pressure and phase transition phenomena.

THEOREM 2.11 (Analyticity of Pressure; [MUO03, Theorem 2.6.12 and 2.6.13],
[Sar03, Corollary 4]): Suppose t — f; is a real analytic family of locally Hélder
continuous functions for t € A, where A is an interval of R and P, (f:) < oo for
t € A. Then the pressure function t — P,(f;), for t € A, is also real analytic.
Moreover, the derivative of the pressure is

d .
P, ‘ = )
Py = [ oo

where vy, is the unique Gibbs state for fj.

THEOREM 2.12 (Phase Transition; [Sar99, Sar01], [MUO03]): Let g : ¥ — R
be a locally Hélder continuous function with g > 0. Then there exists Soo > 0
such that

0 ift < 500,

Py(—tg) = L
real analytic ift > So.

Moreover, —tg has a unique Gibbs state v_;q for t > su.
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Let f: X" — R be a locally Holder continuous function and let m € M,
be an invariant measure. Recall that the variance Var(f, m) of f with respect
to m is defined by

(1 :
Var(f,m) := lim <n/2+(5nf fdm)2> )

n—oo E+

Using Theorem 2.11 and [Sar09, Theorem 5.10, 5.12] (or [MUO03, Theorem
2.6.14, Lemma 4.8.8]), we have the following corollary.

COROLLARY 2.13 (Derivatives of Pressure): Suppose f+tg is a family of locally
Hélder continuous functions with finite pressure for t € (—e,¢). If g is bounded,

then
2

P,(f +tg) :Pg(f)+t-/ gdvy + t2 -Var(g,yf)+0(t2)

>+

where vy is the Gibbs measure for f. Moreover,
Var(g,vs) =0

if and only if g is cohomologous to zero.

2.3. SUSPENSION FLOWS OVER COUNTABLE STATE MARKOV SHIFTS. Let (X7, o)
be a topologically mixing countable state Markov shift with the BIP property
and 7 : ¥ — RT be bounded away from zero and locally Holder continuous.
The suspension space (relatively to 7) is the set

Sh={(z,t) e 2T xR:0<t < 7(2)}/ ~,

where (z,7(z)) ~ (0x,0) for every z € ¥ 1. The suspension flow ¢; with roof
function 7 is the (vertical) translation flow on 31 given by

¢i(z,8) = (v, +t) forze Xt and 0 < s+t < 7(x).

Similarly, we can define suspension flows over a two-sided shift.

In the following, we list several equivalent definitions of the topological pres-
sure for suspension flows. These definitions are from Savchenko [Sav98]; Bar-
reira and Tommi [BI06]; Kempton [Kemll]; and Jaerisch, Kessebohmer and
Lamei [JKL14].
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Given a continuous function F' : ¥ — R, we define the function Ap : X7 — R
by

(@)
Ap(x):= /0 F(x,t)dt.

DEFINITION/THEOREM 2.14 (Topological Pressure for Suspension Flows): Sup-
pose F : 1 — R is a function such that Ar : ¥t — R is locally Holder con-
tinuous. The following descriptions of Py(F), the topological pressure of F
over the suspension flow (X1, ¢), are equivalent:

P =i ptog( e ([ Flate0)at) i)

b5 (2,0)=(x,0)

0<s<T

_sup{h¢(u)+/E+qu:u€M¢ and /+Td/L<OO},

-

where a is any state in A and M, is the set of ¢-invariant Borel probability
measures on X}, Moreover, if i € My such that Pg(F) = he(p) + [o+ F dp,
then we call i an equilibrium state for F'.

We finish this subsection by recalling an important observation of relations
between invariant measures on X% and on .

THEOREM 2.15 ([AK42]): Let M, (1) := {m € M, : [, Tdm < oo}. Then
there exists a bijection

R: MU(T) — M¢
L ™ x Leb
m x Leb(X71)
where Leb is the Lebesgue measure for the flow direction.

In other words, for any continuous function F': ¥ — R, we have

FdR(m) = Js+ B dm.
st Js+ Tdm
THEOREM 2.16 (Equilibrium States for Flows; [[JT15] Theorem 3.4, 3.5 ):
Let F Ej.‘ — R be a continuous function such that Ap is locally Holder.
Suppose Ap has an equilibrium state ma,. such that [ 7dma, < oo. Then F
has a unique equilibrium state i = R(m_p, (r)r1Ap)-
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3. Geodesic flows for finite area hyperbolic surfaces

3.1. A SYMBOLIC MODEL FOR GEODESICS FLOWS. In this section, we survey a
symbolic model for the geodesic flow. More precisely, we will construct a geo-
desic flow invariant subset )y of the unit tangent bundle, and study it through
a symbolic model. This construction is given by Ledrappier and Sarig in [LS08].
We will mostly follow their notations and use the Poincaré disk model D in this
section.

Let S = Sy, be a surface with genus g and n punctures, X = X, be
the finite area hyperbolic surface given by the Fuchsian representation
p: m(S) — PSL(2,R), and ¢; : T*'X — T'X be the geodesic flow for X.
In this paper, we are only interested in non-compact surfaces, because the com-
pact case has been studied before. In other words, in our discussion n is at
least 1.

THEOREM 3.1 ([Tuk72, Tuk73]): Suppose X is a non-compact finite area hy-
perbolic surface with negative Euler characteristic. Then there exists a closed
ideal hyperbolic polygon Dy C D such that the following hold:

(1) The origin is in Dy.

(2) Dy has 2k vertices, and all vertices are on 0D, where

k=204+n—1=—x(X)+1>2.
(3) These vertices partition OxD to 2k intervals I;, i € S where
S=1{1,1"2,2,... k).

Moreover, each I; can be paired with the other interval I;; such that
there exists a pair of Moébius transformations g;,gi = g; U with ¢,
maps I; onto 0D\ Iy and g;; maps Iy onto JooD\ ;.

(4) X is isomorphic to the space obtained by identifying all pairs of (I;, I;)
through g; for alli € S.

(5) Takei (ori’) from each side pair (I;, I;;) and consider the corresponding
Moébius transformation g;. Then

I'=p(m (X)) = (g1, 9k)

where p is the Fuchsian representation such that X = T'\D.
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From now on, for the finite area hyperbolic surface X, we use the generator
given in the above theorem, and denote I' = (gi,...,gx). Roughly speaking,
there are two steps to construct the Ledrappier—Sarig coding. One first uses
the generators {gi,...,gr} to derive a Markov shift (Xy,071) (i.e., cutting se-
quences), then modify (X1,01) to get another Markov shift (X 4,04) on which
the first returning map has better regularity. We will discuss their construction
in detail below.

The shape of the fundamental Dy plays a crucial role in the Ledrappier and
Sarig’s coding. We start by looking at vertices of Dy. Notice that for every
vertex v of Dy, there exists a (shortest) cycle, say [ elements, of edge-pairing
isometries g,, for 1 <+4¢ < such that v is the unique fixed point of gs,gs, , 9s,9s,
provided gs, gs,9s, (Do) and (g5,'9:,' 95" ) (Do) touch 0o at v for all 1 <4 <.
We call

w=(s1,...,8) and w =(s},...,s))
the cycles of v. We denote the set of all vertex cycles by €, and N(€) is the
least common multiplier of length of cycles of all vertices (see Figure 3.1).

D91 92D

Figure 3.1. Finite area surfaces with cusps.

3.1.1. The classical coding. Recall that a vector v € T'X escapes to infinity
if g¢(v) leaves, eventually, all compact sets K C T'M as t — co or —oo. Let
Qo C T'X be the set of non-escaping vectors. It is clear that € is a flow
invariant set and contains most of the interesting dynamics.
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A unit vector v € T'D based at D N Dy is called inward pointing
if gi(v) € int(Dy) for sufficiently small ¢. We denote by (0Dg)in the set of
all inward pointing vectors. It is not hard to see that (0Dg)i, projects to a
Poincaré section of g; : Q¢ — €p; by abusing notation, we also denote this
section by (0Dg)iy.

In the following, we recall two equivalent methods of coding of geodesic flows
on y: cutting sequences and boundary expansion. To derive the coding, we
first label edges of Dy in the following manner. For each edge e of Dy, it
determines a boundary interval I, for some s(e) € S such that I, has the
same vertices as e and is on the side of e which does not contain Dy. We call
s = s(e) € S the external label of e, and s’ = §/(e) the internal label of e.
See Figure 3.2 for an illustration.

Figure 3.2. Classical coding.

Now we are ready to state two canonical codings or Markov partitions asso-
ciated to (0Dg)in. For every v € (0Dg)i, it is determined by:

(1) Cutting sequence (7)) € S%: xy, are the internal labels of the edges
of Dg cut by g (v) where k = 1 is the first cut in positive time and k = 0
is the first cut in non-negative time.

(2) Boundary expansion (y;) € S%: the lift (/gZU/) C T'D is a
geodesic on T'D with an attracting limit point (or ending point)

in (Ny>1 I, 4. and a repelling limit point (or beginning point)
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in ﬂkgo I, . . where

Ist,sz,...,sk =0s19s2 """ Ysp_1 (Is;)

and
- -1 1 1
131,52,...,sk =0s; 9s, - 'gsk,l(lsk)'

It is not hard to see that (xp)rez = (yr)rez because all vertices of Dy are
on OscD. Thus we can and will interchange between these two perspectives.
In summary, the classical coding means that for every v € (9Dg)i, the geo-
desic g¢(v) corresponds to an element in

Sy o= {(zx) € S¥ mpp1 # (x1)'}

and o7 is the left shift on .

3.1.2. The modified coding. As pointed out in [LS08], (¥1,01) is not “good”
enough for our purpose. For example, the classical coding is not necessarily
one to one, and the first return map is not regular enough to push the machin-
ery. Thus we need to modify (31,01) by looking at a smaller section of the
flow g+ : Qg — Q.

Fix a number n* large, set N* = 4n* N (€), and the set of length N* repeating
vertex cycles defined as

¢ = {(w,w,...,w):w e C}.

~ ~ -
N*/|w| copies

We write N# := ;N * — 1. Now consider the following set:

A={y e (yn# . yn) ¢} C Iy

~ ~~ ~
N*

The smaller section S4 C (0Dg)in is given by
Sa:={v € (0Dy)in : the cutting sequence of g;(v)is in A}

(see Figure 3.3).

It is not hard to see that S4 is a Poincaré section of g; : Qo — €. More-
over, by the combinatorial property of € pointed out in [LS08, Section 2.1], we
know that for a geodesic g:(v) with the cutting sequence (2,)nez which stops
returning to A at some point, (2,,) will eventually repeat an element w € €*,

ie, (Tn)nez = (o) Ty oy w WL W, L),
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I

Figure 3.3. The smaller section.

In other words, if v does not escape to infinity, then the cutting sequence
of g¢(v) always returns to A. More precisely, Vz € A, there exists N = N(z) € R
such that oV (x) € A. We define the induced shift map on A by

oa(z) = U{VA(Z)

where
Na(z) = min{N € N: o} (z) € A}.

Now, we are ready to describe a Markov partition of this modified Markov
shift o4 : A — A:

(1) Type I, denoted by X 4(I): cylinders of length N* + 1, namely

[Z‘,N#,...,i‘o,...,ng*_l,ng*],
such that
[:E_N#,...,i'o,...,l'gf*fl] CA
- ~ d
length=N*
and
[x_N#+1,...,5'01,...,z12v*] = 01([35_1\,#,...,:to,...,xz;r*fl]) C A.

The shape of [e] € £ 4(I) is defined as s(e) = (e).
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(2) Type II, denoted by X 4(II): cylinders of length bigger than N* + 1,
namely

Byr(a,w,c) =[x _y#,wi,..., Wx#,..., WN~, (w)l_l,wl,wg,...,wk,b]

where a ;== x_n#,c €S, w e € [ >0,0<k < N*are not both zero,

and
(wk+1,...,wN*,wl,...,wk_l,c), l=0,k7é0
b:=q (wy,...,wN_1,C), [#£0,k=0
(Wkg1y -y WN*, Wy ey W—1,€), L EkF#DO

provided By (a,w,c) C A, [b] C A. The shape of [e] € L 4(IT) and of
the form By j(a,w,c) is defined as

s(e) := (k,a,w,c) € {0,...,N* =1} x S x €* x S.

PROPOSITION 3.2 ([LS08, Lemma 2.1]): 04 : A — A is topologically mixing,
and the Markov partition given by X 4(I) and ¥ 4(IT) has the BIP property.

Let (Xa,04) be the countable state Markov shift derived by the Markov
partition ¥ 4(I) and ¥4 (IT). We write the alphabet set of ¥ by

Sy = {e e |J S":oflelezamu EA(H)}.
n>N*+1
Let ma : ¥4—A C X; denote the natural coding map. For z € X4, we use
o to denote the letter in the zero-th coordinate. Notice that we can always
write 2o = (S_n#,---,Sn_n#_1) In terms of S letters, and in this representa-
tion n — N* is the o;-return time of [xg].

REMARK 3.3:

(1) X4(I) is composed of return time 1 (i.e., N4 = 1) cylinders, and

[z n#,. %o n#] € Ba(ll)
~ ~~ -
n+1 terms
has return time n — N*.
(2) There are only finitely many different shapes s(a) for all a € S4.

(3) The length |a| for a € S4 is unbounded.



20 L.-Y. KAO Isr. J. Math.

Recall that every = (z1) € Y4 determines a point m4(x) = (s;) € X4,
and 74 (x) corresponds to a unit tangent vector v(xz) € Sa C (0Dg)in. We de-
note by £(z) the attracting limit point of v(x) and n(x) the repelling fixed
point of v(z). Since {(z) = Nyoq I ,and n(z) = Up<ols, 5, where
wa(z) = (8i)iez, we know that (x) only depends on zt = (xy)r>0 and n(z)
only depends on z~ = (zx) k<o -

Definition 3.4: The geometric potential 7: ¥ 4 — R is defined as

T(:Z?) = B&(z) (Oa (gfﬁo)o)

where o is the origin, g = (S_y#,...,Sp_n#_1) € Sa, and

Gzg = Gs1 O " O Gs, -+

PROPOSITION 3.5 (Geometric Potential (I), [LS08, Lemma 2.2]): Let (X4,04)
be the Markov shift constructed above. Then:

(1) Suppose v generates a closed geodesics, namely g;,yv = v. Then there
exists a unique (up to permutations) x = (x1Z2 -+ Xy) € Fix™(X4)
such that l(v) = S,,7(x), and vice versa.

(2) 7 is locally Holder continuous.

(3) 7 only depends on the future coordinates, that is, if x® = yg° then
(@) = (y).

(4) 3C, K > 0 such that 7(x)+7(o(z))+---+7(c"(x)) > C for alln > K.

Since the geometric potential 7 only depends on the future coordinates, we can
focus on (X7, 0.4), the one-sided countable Markov shift induced from (X4, 0.4),
by forgetting the past coordinate.

PROPOSITION 3.6 (Geometric Potential (IT), [LS08, Lemma 3.1]): On the one-
sided countable Markov shift (X7, 04), we have the following:
(1) 7 has a unique equilibrium state m_, and fEX Tdm_, < oco.
(2) The Liouville measure my, on T*X is given by my = R(m_,) o7 "
where R : M, — M. given in Theorem 2.15.
(3) P(—7)=0.
(4) 7 is bounded on ¥ 4(1), and there exists C; > 0 such that

2Injzg] — C1 < 7(x) < 21n|zo| + Cy

for all x € ¥ A(I1).
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Proof. Everything is in [LS08, Lemma 3.1], and only the first assertion of (4)
needs more exploration. Let [zg] € £ 4(I) and = € [x¢]. We can write

xo = (S_Nn#,-- SN gy SN )y Guo(®) = gs,, and T(x) = Be)(0,gs,0)

where s; € S for i = —N#, ..., 1\;* . Recall that in the disc model,

11—y
Be(o,y) =1n .
e(o.9) 1€ — y?
2
Since &{(x) € I, . ¢,. it is not hard to see Be(y)(0,9s,0) = 1n(‘£1(;‘)515;0|0‘)
52,0y o

is (uniformly) bounded for all z € [xo]. Notice that this bound depends on
[zo] € £ 4(I). We can find a universal bound 7(x) on X 4(I) because

|EA(I)| < 0.

REMARK 3.7:

(1) By standard techniques in symbolic dynamics, we know that 7 is co-
homologous to 7" which is locally Holder and 7/(x) > ¢ > 0 for some
constant ¢’ (cf. [Kaol8, Lemma 3.8]). From now on, we will use 7’ to
replace 7 whenever 7 needs to be bounded away from zero. Abusing
the notation, we will continue to denote 7/ by 7.

(2) In [LSO08], the constant C; in Proposition 3.6 (4) depends on the shape
of xp. Because there are only finitely many shapes, we can replace it
by a universal constant.

3.2. TYPE-PRESERVING FINITE AREA FUCHSIAN REPRESENTATIONS. In this
subsection, we consider p1, p2, two type-preserving finite area Fuchsian repre-
sentations. The Fenchel-Neilsen Isomorphism Theorem (cf. Theorem 2.1) shows
that there exists a bilipschitz map taking the limit set A(pi(715)) and funda-
mental domain of X,, to A(pa(m1S)) and the fundamental domain of X,,, and
hence Ag(p1), to Ag(p2). Hence, the suspension flows corresponding to the geo-
desic flows on Qg(p1) and Qo(p2) correspond to the same Markov shift (X7, 04)
but different roof functions 7,,, 7,,, respectively. The following result shows
that we have good control of these roof functions.

COROLLARY 3.8: There exists C' > 0 such that |7,, (x) — Tp,(x)| < C for all

+ : Too (%)
¥ In particular, | "

’ (I)| < " for some constant C’.
1

Proof. Tt follows immediately from Proposition 3.6 (4) and Remark 3.7.
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In the second part of this subsection, we discuss the intersection number
I(p1, p2) of p1 and po proposed by Thurston. Recall that I(p1, p2) of p1 and po
is defined as

where {[v,]}22, is a sequence of conjugacy classes for which the associated
closed geodesics 7, become equidistributed on p;(m1.S)\H with respect to the
Liouville measure. However, it is unclear why I(p1, p2) is well-defined, especially
when S has punctures. We will discuss this issue in Proposition 3.10 where we
give I(p1, p2) a dynamical characterization.

To link the suspension flows on Ej.‘pl and 27—;2’ we consider the following
reparametrization function v : Eipl — R.

Definition 3.9 (Symbolic reparametrization function): Let 7,,(z) be the roof
function of p; for ¢ = 1,2. We define the reparametrization function
P Ejpl — R as

oty = (Y

Tp1 (‘r) Tp1 (‘r)
where f :[0,1] — R is a smooth function such that f(0) = f(1) =0, f(¢) >0
for 0<¢<1and [, f(t)dt=1.

We first notice that ¢ is well-defined since 9 (x, 7(z)) = ¢(o(z),0) for all
2 € ¥T. By Corollary 3.8, we know that v is bounded and locally Holder con-
tinuous. Recall that any periodic orbit A of the suspension flow ¢; : Eipl — Ej.‘pl
corresponds to a unique hyperbolic element vy € 71 S. It is not hard to verify
that foll[’“} ¥(¢¢) dt = l3[yx], which is the reason why we call ¢ a reparametriza-
tion function.

We now can state and prove the main result of this subsection: characterizing
I(p1, p2) by the symbolic model.

PROPOSITION 3.10: Suppose p1, p2 are two type-preserving finite area Fuchsian
representations. Then the intersection I(py, p2) is well-defined. Moreover, if T, k
are the geometric potentials for py, po, respectively, then

_f rkdm_;

I(p1?p2) _J"Tdm_

where m_, is the equilibrium state of T.
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Proof. Since the Bowen—Margulis measure my,, or the Liouville measure, of

¢ TYS — TS is supported on the recurrent part, we have m; = mp|q,.
Thus, it is sufficient to focus on the geodesic flow g; : Ty — T'y. Notice
that, by the construction, we know that g; : T'Qy — T'Qy conjugates to the
suspension flow ¢; : ¥, — X, by the map @ : T'Qy — X,. Moreover, it
is not hard to verify that given a bounded and continuous function F' on >,
F := F o w is bounded and continuous on 7.

Let {y,} be any sequence of equidistributed geodesics with respect to mp,
and let \,, = w o7, be the corresponding closed orbits of ~, on ¥,. Let us
denote ¢, (resp. dy,) the 1-dimensional Lebesgue measure supported on v,
(resp. A,). Moreover, by definition, we know that I(),) the length of X, is
exactly {1 [vy].

Let ¢ be the symbolic reparametrization given in Definition 3.9. Notice that ¢
can be defined over the two-sided suspension flow ¥, in the same manner. For
convenience, we abuse the notation and continue calling it ¢. As discussed
above, we know v is bounded and continuous on X, and thus ¥ := ¢ o w is
bounded and continuous on 7). We get

l ’777,] - (S)w . fO n ¢t df B Ollhn %
]_/wd(mn) I(A\n) /wd 11

_ f2+ Kdm_r
N fz+7'dm,¢

where the convergence is because {7,} is equidistributed with respect to mp,

5'YTL
’ ll['Yn]
map w taking the measure of maximal entropy of g; to the measure of maximal

— 1/JdmL:/ PYdR(m_r)
bony

T1Qo

weak™

(i.e. my,), the second last equality comes from the conjugation

entropy of ¢;, and the last equality follows Theorem 2.15.

4. Phase transitions for geodesic flows

Throughout this section, let p; and pa be two type-preserving finite volume
Fuchsian representations, and we write X; = I'1\D and Xy = I';\D where
Iy = p1(m1(S)) for i = 1,2. Following the above section, let (XF,0) = (X}, 04)
be the Markov shift associated with X; and X5, and we denote their geometric
potentials by 7 and k, respectively.

To derive the analyticity of pressure, we need to locate the place where phase
transition happens. As in [Kaol8], we have the following observation.
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THEOREM 4.1 (Phase Transition): Suppose a,b > 0, a + b # 0, and T,k are
given above. Then we have
analytic, t >

1
Py(—t(at + bK)) = 2(‘11“’)’
00, t < 2(atb)"

Moreover, there exists a unique tq, € (2( o0) such that

1
a+b)?
P,(—tqp(aT +bk)) = 0.

Proof. By Theorem 2.11, we know it is sufficient to show that

finite, ¢> , 1 ..,
Po(—tlar +br)) =4 o)

G0, t< 2(a+b)
Recall [MU03, Theorem 2.19]; we know that for any locally Hélder continuous
function f, P,(f) < oo if and only if
Z(f) == Z esuplf(@):zelzol} ~ o
ToESA
By Proposition 3.6, there exist constants C, Ca > 0 such that

Zl(—t(aT—l—b:‘i)) _ Z esup{—t(a‘r-i—bn):ze[zo]} + Z esup{—t(ar-{-bﬁ):me[wo]}
IQEEA(I) IQGEA(H)

oo
<Cy + Z Z e—2t(a‘r+brc)) log |zo|+C

r=N*41 IUEEA(H)
|zo|=r

=Cy + 02 Z Z e*Qt(a'rJrlm))log\xo\.

r=N*+1 20X 4 (II)
|zo|=r

Similarly, there exist constants C3, Cy > 0 such that

Zi(—t(at + bk)) > C5 + Cy Z Z e~ 2t(aT+br))log |zo|

r=N*+1 zoeSa(II)
lzol=r
Thus, it is clear that Z;(—t(at + bk)) < oo if and only if ¢ > 2(a1+b).
Lastly, fix a,b with a,b > 0,a +b # 0. Then the computation in [MU03,
Theorem 2.19] showed that, in our case, Z1(—t(at 4+ bk)) — oo as t — 2(a1+b)

implies
1

P,(— .
- (—t(aT 4+ bK)) — 0 aSt_>2(a+b)
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In particular, taking ¢ close to 2(a1+b) , we have P,(—t(at +bk)) > 0. Moreover,
it is obvious that P,(—t(ar + bk)) < 0 when ¢ is big enough. Hence, by the
analyticity and the monotonicity of the pressure, we know there exists a unique
tap such that P,(—tqp(at + bk)) = 0.

COROLLARY 4.2: The set
{(a,b) :a,b>0,a+b+#0, and P,(—at — bk) =0}
is a real analytic curve.

Proof. The proof of [Kaol8, Theorem 3.14] applies here. In short, by Theorem
4.1, it makes sense to discuss solutions to P,(—ar — bk) = 0. To see the
solution set as a real analytic curve one only needs to apply the Implicit Function
Theorem, because we know that

abPa(_aT - b"i)|(ao,bo) = _/"ﬁdy—aor—bom < —c

where ¢ > 0 is a lower bound for x and v_,,-—p,x is the Gibbs measure
for —agT — bgk.

5. Manhattan curves, critical exponents, and rigidity

In this section, we will prove Theorem A and Theorem B. The ideas mostly
follow [Kaol8]. In [Kaol8], the author used results of Paulin, Pollicott and
Schapira [PPS15] to analyze the geometric Gurevich pressure over the geodesics
flow. The general framework in [PPS15] includes finite area hyperbolic surfaces.
Nevertheless, for completeness, we will give outlines of the proofs, and the reader
can find all the details in [Kaol8].

Following the notations in Section 4, let p1, p2 be two type-preserving finite
area Fuchsian representations, X; = X, and X; = X,, the corresponding
hyperbolic surfaces, and 7, x the corresponding geometric potentials over the
Markov shift (£*,0) = (£%,04). Recall that the Poincaré series Q4" (s) of
the weighted Manhattan metric dgf 0, 18 defined by

b b
Z;,pg (S) = Z eXp(is ! dz;,pQ (0570))7
yEmL(S)

5;;’? 1, 1s the critical exponent of gf 0, and the Manhattan curve C(p1, p2) of p1

and py is the set {(a,b) € R>o x R>0\(0,0) : 62, = 1}. For brevity, we will

drop the subscript p1, p2 in the rest of this section.
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The goal of this subsection is to prove the following theorem:

THEOREM 5.1 ([Kaol8, Section 4]): Suppose a,b > 0 and a + b # 0. Then

Py(—6%" (a4 br)) = 0.

P1,P2

In particular, (a,b) € C(p1, p2) if and only if the pair (a,b) satisfies

Py(—ar —br) = 0.

Proof. As we mentioned before, the results in [Kaol8, Section 4] are applicable
here. We give here a brief outline of the proof. We consider the following growth
rates and their relations:

e The geometric Gurevich pressure P(a;’el; given by growth rates of closed
orbits on 7' X;:

1
Péebo := limsup . log Zw (s)

§—00

where

ZW(S) — Z e—allp\]—blg[)\];

ANW #¢
AePerq (s)

here W C T' X, is a relatively compact open set and
Per;(s) := {\: X is a closed orbit on 7' X; and [;[\] < s}.

\b . b e
e The critical exponent 6°" proposed in [PPS15]): 6"" is the critical ex-
ponent of

EPPSIZ(( ) E e “0( vy)—sd(z,p1(7)y)
yemi(S)

the Paulin—Pollicott—Schapira (PPS) Poincaré series.
o Let ¢p(x,t) := fgi; :XF = Rfor ¢t € [0,7(z)]. Then [Kaol8, Lemma
4.7] showed that Py(—a — b)) =0 <= P,(—a T —bk) =0.
[Kao18, Lemma 4.3, 4.4] showed that P& = §"" = Py(—a — by).

[Kaol8, Lemma 4.5] pointed out that 50 =0 = 5o =1.
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In summary, we have

gt =1 = ' =
a,b
— Pg.,=0
<= Py(—a—by) =0
< P,(—ar —bk) =0.
Thus, Py (—tap(ar +bk)) =0 <= flavatard =1 je.,
QPanSa ita, bb( ) _ Z e*tabda'b(o,’)/o)
yEmL(S)
has critical exponent 1. Hence,
QPPbSa ita, bb( ) _ Z e—sda’b(O,’Yo)
yETL(S)

has critical exponent ¢, and thus §ob = tab-

27

REMARK 5.2: We wish to point out that the reparametrization 1 : ¥ — 3T
given in [Kaol§] is not well-defined. One needs to replace the definition of

in [Kaol8] by Definition 3.9. Since the reparametrization function defined in

[Kaol8] and in the current paper have the same regularity and periodic orbit

information (such as lengths and weights), all arguments in [Kaol8] stay valid

and unchanged using the 1 defined in Definition 3.9.

By Corollary 4.2 and the above theorem, we have:

COROLLARY 5.3: The Manhattan curve C(p1, p2) Is a real analytic curve given,

for a,b >0 and a4+ b # 0, by

Clp1, p2) = {(a,b) : Py(—a7 — br) = 0}

The following theorem is Bowen’s formula which characterizes the topological

entropy of the geodesic flow in terms of the pressure and the geometric potential.

COROLLARY 5.4: Suppose py Iis a finite volume Fuchsian representation p;.

Then
P,(—-1-7)=0

where 1 is the critical exponent of p1(m1(S)).
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Proof. 1t follows from Proposition 3.6 and the fact that when p; is a
finite area Fuchsian representation then the critical exponent of p;(m1(5)) is 1
(cf. [OP04)).

Notice that by Bowen’s formula and the Implicit Function Theorem, we can
prove that the pressure varies analytically when 7 varies analytically with

P,(—71)=0.

Now we are ready to prove Theorem A.

THEOREM 5.5 (Theorem A): C(p1,p2) is a convex real analytic curve. More-
over, C(p1, p2) Is strictly convex unless p; and ps are conjugate in PSL(2,R).
In such cases C(p1, p2) is a straight line.

Proof. The analyticity of C is proved in Corollary 5.3. To show the remaining
parts, we first notice that by Holder’s inequality the Manhattan curve C is
always convex, and because C is real analytic we know C is either a straight
line or strictly convex. It is clear that if p; and po are conjugate then C is a
straight line. We claim that if C is a straight line then p; and ps are conjugate
in PSL(2,R).

To see this, suppose C is a straight line. Then the slope of this line is —1
because (1,0),(0,1) € C. In other words, we have

(5.1) 1= 7f7dm,f _ 7f7'dm,,ﬁ
[ rdm_; [ rdm_,
where m_,, m_, are the equilibrium states for —7 and —&, respectively.

It is sufficient to show that 7 and k are cohomologous, because T ~ x implies
that X; and X5 have the same marked length spectrum, and which implies
that p; and py are conjugate in PSL(2,R) (cf. Theorem 2.3).

To see that 7 and x are cohomologous, it is enough to show that m_, =m_,.
Indeed, by Theorem 2.10, we know m_, = m_, implies 7 — kK ~ ¢¢ where ¢ is
a constant, and ¢y = 0 follows from

/ndm,.r :/Tdm,.r.
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Notice that m_,, m_, are the equilibrium states of —7, —k, respectively; we
have

holm-r) = [ 7dm_; = Pa(=r) =0 = Po(-n) = halm_) ~ [ dm_.

Moreover, by equation (5.1), we know [rkdm_, = [7dm_,. Thus, we get

he(m—r) + /(—Ii) dm_, =0= P,(—k).

In other words, m_, is an equilibrium state for —x, and by the uniqueness of

equilibrium states we get m_, = m_.

Using the strictly convexity of the Manhattan curve, we have the following
rigidity results.

THEOREM 5.6 (Bishop—Steiger Rigidity; Theorem B): Suppose p1, p2 are two
type-preserving finite volume Fuchsian representations. Then
1
hps(p1, p2) < 5"
Moreover, equality holds if and only if p; and ps are conjugate in PSL(2,R).

Proof. We first notice that it is a standard and well-known procedure (cf.
[Kao18, Theorem 4.8]) to show

51 = hs = Tim - In(#{] € [11(S)] : (0, p1(1)o + (o, pa(7)0 < T}).

Moreover, since (3, 5) is the middle point of (0,1),(1,0) € C(p1, p2), by Theo-
rem 5.5, we know (3, 3) is above 611+ (1,1) € C(p1, p2) and 6! = } if and only
if C is a straight line.

THEOREM 5.7 (Thurston’s Rigidity; Theorem B): Suppose p1, p2 are two type-
preserving finite volume Fuchsian representations. Then

I(p13p2) Z 1
and equals 1 if and only if py and ps are conjugate in PSL(2,R).

Proof. By Proposition 3.10, we know that

B f rkdm_;

I(plap2) = dem_ .
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Recall that m_, is the equilibrium state of —x and m_, € M, ; we have

0= Pu-) = ho(m_) = [ wdmoy > hom_r) = [ wdm_y,

Notice that m_, is the equilibrium state of —7, i.e.,

0= Pul=7) = halm—r) = [ rdm_:

/Tdm,f =hy(m_;) < /ndm,f.

The rigidity part was proved in Theorem 5.5. More precisely, we proved in

Theorem 5.5 that if 1 = fﬁgg:* then p; ~ py in PSL(2,R).

we have

6. The pressure metric

6.1. THE PRESSURE METRIC AND THURSTON’S RIEMANNIAN METRIC. The
aim of this subsection is to construct a Riemannian metric for the Teichmiiller
space of surfaces with punctures. Using the symbolic model of geodesics flows
discussed in Section 3, we can relate the Teichmiiller space with the space of
geometric potentials.

Recall that S = S, is an orientable surface of genus g and n punctures
and with negative Euler characteristic. The Teichmiiller space 7(S) is the
space of conjugacy classes of finite area type-preserving Fuchsian representa-
tions. By Section 3, we know that for every p € T(S5), the geodesics flow on
a smaller section Qo C T'X, conjugates the suspension flow over a Markov
shift (XF,0) = (X7, 04) with a unique (up to cohomology) locally Hélder con-
tinuous roof function 7. We point out again that the Markov shift (X1, o) is con-
structed through the shape of the fundamental domain. Since type-preserving
Fuchsian representations have the same shape as the fundamental domain, we
know that the suspension flow models for all p € T(S) have the same base
space (X7, 0) yet with different roof functions.

Let P be the set of pressure zero locally Holder continuous functions on X+,
that is,

P = {r € C(X") : 7 is locally Holder, P,(—7) = 0}.

In the following, we will discuss the relations between 7 (S) and P. Notice that
since T(S) is composed by representations in PSL(2,R), it inherits a natural
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analytic structure from PSL(2,R) (see [Ham03] for more details). The follow-
ing proposition indicates that there exists an analytic thermodynamic mapping
O Homfp(m(S), PSL(2,R)) — P.

PROPOSITION 6.1 (Thermodynamic Mapping): Let 0 < ¢ < 1
and {pi}ie(—c,ey € T(S) be an analytic one-parameter family in T(S). Then
O({p:}) = {m} C P is an analytic one-parameter family in P.

Proof. We first notice that if {p,} C 7(S) is analytic, then the boundary map
(derived in Theorem 2.1) b; : JocH = A(po(m1S5)) = A(pt(m15)) = O H is real
analytic (see [McMO08, Section 2] or [BCS18, Proposition 4.1]). For complete-
ness, we summarize the proof of this fact. The idea of [McMO08, Section 2], as
well as [BCS18, Proposition 4.1], is a complex analytic approach, namely, using
holomorphic motions and the A\-lemma.

Let us denote QF'(S) the space conjugacy classes of quasi-Fuchsian (i.e.,
the limit set is a Jordan curve) representations of m(S) — PSL(2,C).
Recall that QF(S) is an open neighborhood of 7 (.S) in the PSL(2, C)-character
variety of m1(S). Let p; vary in QF(S). Then there exist embeddings
by : OsoH — A(pe(m S)) € C. Notice that po € T(S) is fixed. It is clear that
it £ € A(po(m19)) is fixed by a nontrivial element po(7), then b;(€) varies holo-
morphically. Thus by Slodkowski’s generalized A-lemma (cf. [Slo91]), we know
that b varies complex analytically when p; varies in QF(S); hence, by(= by)
varies real analytically when p; varies in 7(.5).

To see {7:} is real analytic, by definition

Tt (:C) = Bﬁt(z) (07 Pt (gfﬁo)o)

where © = zo -+ and & = by o0&y : X — A(pt(m15)). Recall that in the disk
model, we know that

L—y[* € - $|2)

€ —yl*1—|zf?

Thus we have, without loss of generality, taking o to be the origin,

Be(w,y) =1n (

1 — |pt(gao)ol?
by 0 &0 () — pi(gao)ol?

Since both p; and b; vary real analytically, from the above expression we know

7t() = Boyoto (0, pt(9ay)0) = In

that 7, also varies real analytically.
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By Corollary 3.8 we know that 7,, is locally Holder continuous and

[@(p1) = @(po)| = I7Tpr = Tpol

is bounded for all pg, p1 € T(S). Thus, consider an analytic path p, C T(S),
and we write out the analytic path 7, = ¥(p;) in terms of a Taylor expansion,
=170+t 70+ ---. We know that the perturbation 7y is a bounded locally
Holder continuous function. Therefore, it is sufficient to consider T, P, the
corresponding tangent space of T, 7 (), as

T, P ::{f ceCcXx™): / fdm_,, =0, f is locally Holder and bounded}
>+

CKerD_, FP;.
Moreover, we are interested in the pressure norm || - ||p on P given by
__ Var(f,m_n,)
IFlle = :
Jrodm_n,

Notice that this norm degenerates precisely when f ~ 0. In the theorem
below, we prove that one can define the pressure metric || - || on 7(S,.,,)
through || - || p:

THEOREM 6.2 (Theorem C): Suppose 0 < ¢ < 1 and py € T(Sy,) is an
analytic path for t € (—e,e). Then I(py, p¢) is real analytic and

d21(p05 Pt)

oll? = ||d¥ (po)|[3 =
looll? =l (o)} = © 27|

defines a Riemannian metric on T (Sy.,,).

Proof. Following Proposition 3.10 and Proposition 6.1, we know that I(pg, pt)
. . o . d%I(po, .
is real analytic. Thus, it is sufficient to show that (d’;[; P = [|d¥ (po)]|3
and ||d¥(po)||p > 0 when pg # 0.

By Proposition 3.10 and Proposition 6.1, we know that

@ <f7’tdm.m>

=0 dt2\ [rodm_n,

d21(/)0 . Pt)
dt?

_ fTO dm,.m
t=0  [Todm_q,
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where 7, = W(p;). Moreover, by Corollary 2.13, we know that
7d2Pa-(*Tt)
A2 t=0

=(D—7y Py)(=70) + (D2 Pr)(~70)

0

= — /TO dm,‘,—o + Var(ffo, m,m)

and Var(—79, m_,) = 0 if and only if 75 ~ 0.
To see the non-degeneracy, suppose 79 ~ 0 and let h be any hyperbolic
element. Then [(p:[h]) = Spm7e(x) for some = € Fix™, and thus

c(iit‘t:ol(pt[h]) = Smio(z) = 0.

Moreover, since T (S) can be parametrized by finitely many (simple) closed
geodesics (cf., for example, [Ham03]), & [i—ol(p¢[h]) = 0 for all h is hyperbolic
implies pp = 0. Hence, we have ||po||? := [[d¥(po)||3 = dzl(di%’pt)hzo and

||po][* = 0 if and only if po = 0 in T, T (Sg.n).

6.2. THE PRESSURE METRIC AND MANHATTAN CURVES. In this subsection, we
will prove Theorem D, which points out that one can recover Thurston’s Rie-
mannian metric through varying the Manhattan curves. Let {p;} € T(S,n)
be an analytic path, and C(po, p:) be the Manhattan curve of pg, p;. By The-
orem A, we know C(pg, pt) is a real analytic curve. Thus we can parametrize
C(po, pt) by writing C(po, pr) = {(s,xe(s)) : s € [0,1]} where x:(s) is a real
analytic function. See Figure 6.1.

Figure 6.1. Manhattan curves.
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THEOREM 6.3 (Theorem D): Following the above notations, we have for all
s€(0,1)
d?x+(s)
dt?  le=o0
Proof. For a fixed ¢, C(pg, pt) can be identified as
{(a,b) : a,b>0,a+b+#0, and P,(—ary — brz) = 0}
={(s,x¢(8)) : Py(—s710 — xt(s)7¢) = 0,5 € [0,1]}.

For convenience, let us denote

= s(s — 1) - [|ol|*.

©1(s) 1= =510 — Xt (5)Te.

Since when t = 0, xo is a straight line satisfying s+xo(s) = 1, we have g = —1p.
Thus, we know that gbo = 7)'(07'0 - X07"0 and (,50 = 7)&7'0 — 2).(07.'0 — X(ﬂ.;o. By

— [ pnd
t=0 /800 Mo

/ —X0To — XoTo dm_r,

Corollary 2.13, we get

d

= PO‘
0 dt (%)

7)'(0(8)/7’0 dm_, f)(o(s)/i'o dm_,.

Since [7pdm_;, = 0 (because P,(—7;) = 0) and [ —79dm_-, < 0, we have
Xo(s) =0, Vs € [0,1]. Furthermore, by taking the second derivative of pressure
(as in the proof of Theorem 6.2) we get

d2

0 :dt2 PG'(SDt)

t=0

=Var(po, My, ) —l—/gbo dmy,

=Var(—xXo7o — X070, M—ry) — /(X.OTO +2 Xo 70 + XoT0) dm_,
N~ N~~~

0 0
=(xo(s))? - Var(o, m—r,) — X'O/To dm—_z, — Xo /7';0 dm_z,.

Notice that P,(—7¢) = 0; similarly we have

o d2PU(—Tt)

0= dt2 L:O = — /TO dm_TO =+ Va,r(_q'-o’m_ﬂ))-
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Therefore, we have
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