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Abstract

The iterative rational Krylov algorithm (IRKA) is a popular approach for producing locally
optimal reduced-order Hj-approximations to linear time-invariant (LTI) dynamical sys-
tems. Overall, IRKA has seen significant practical success in computing high fidelity
(locally) optimal reduced models and has been successfully applied in a variety of large-
scale settings. Moreover, IRKA has provided a foundation for recent extensions to the
systematic model reduction of bilinear and nonlinear dynamical systems. Convergence of
the basic IRKA iteration is generally observed to be rapid—but not always; and despite
the simplicity of the iteration, its convergence behavior is remarkably complex and not
well understood aside from a few special cases. The overall effectiveness and computa-
tional robustness of the basic IRKA iteration is surprising since its algorithmic goals are
very similar to a pole assignment problem, which can be notoriously ill-conditioned. We
investigate this connection here and discuss a variety of nice properties of the IRKA itera-
tion that are revealed when the iteration is framed with respect to a primitive basis. We find
that the connection with pole assignment suggests refinements to the basic algorithm that
can improve convergence behavior, leading also to new choices for termination criteria that
assure backward stability.

Keywords Interpolation - Model reduction - H;-optimality - Pole placement - Backward
stability

Mathematics Subject Classification (2010) 15A12 - 41A05 - 49K15 - 93A15 - 93COS5 -
93B55
1 Introduction

The iterative rational Krylov algorithm (IRKA) was introduced in [29] as an approach for
producing locally optimal reduced-order ;-approximations to linear time-invariant (LTT)
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964 C. Beattie et al.

dynamical systems given, say, as
(1) = Ax()) +bu(r),  y(®) = c'x(1), Q)

where A € R"*" and b, ¢ € R". We will assume that the dynamical system is stable, i.e.,
all the eigenvalues of A have negative real parts. The cases of interest will be when n is very
large, and we seek a substantially lower order dynamical system, say,

X (1) = Arx, (1) + b, u(®), (1) = ¢/ % (1), 2

with A, € R"™*", and b,, ¢, € R". One seeks a realization (2) so that the reduced system
order r < n and the reduced system output y, &~ y uniformly well over all inputs u € £,
with [ |u()[>dt < 1.

Projection-based model reduction is a common framework to obtain reduced models:
Given the full model (1), construct two model reduction bases V, W € C"*" with WI'V
invertible. Then the reduced model quantities in (2) are given by

A, = WIVYTIWTAV, b, = WI'V)Y"'WTh, and ¢, = cV. 3)

The following question arises: How to choose V and W so that the reduced model is a high-
fidelity approximation to the original one? There are many different ways to construct V and
W, and we refer the reader to [3, 4, 14] for detailed descriptions of such methods for linear
dynamical systems. Here we focus on constructing optimal interpolatory reduced models.

To discuss interpolation and optimality, we first need to define the concept of transfer
function. Let Y (s), YV, (s), and U(s) denote the Laplace transforms of y(z), y,(¢), and u(¢),
respectively. Taking the Laplace transforms of (1) and (2) yields

V(s) = H(s)U(s) where H(s) =c' (sI—A)"'b, and
Yy (s) = H.(s)U(s) where H,(s) = ch(sIr —Ar)_lbr.

The rational functions H (s) and H,(s) are the transfer functions associated with the full
model (1) and the reduced model (2). While H (s) is a degree-n rational function, H,(s) is
of degree-r.

Interpolatory model reduction aims to construct an H,(s) that interpolates H(s) at
selected points in the complex plane. Indeed, we will focus on Hermite interpolation, as this
will be tied to optimality later. Suppose we are given r mutually distinct interpolation points
(also called shifts), ¢ = {01, 02, ..., 0.}, in the complex plane. We will assume that the
shifts have positive real parts and that are closed (as a set) under conjugation, i.e., there exists
an index permutation (i1, i, ..., ;) such that o = {07, 02, ...,0,} = {07, 0y, ..., i, }.

Given o, construct the model reduction bases V € C"*" and W € C"*" such that

Range(V) = span [(UII—A)_]b,...,(arI—A)_lb} and ()

Range(W) = span {(011 — ATy e, (o0 — AT)_lc} . (5)
Then, the reduced model (2) constructed as in (3) satisfies

H,(0;) = H(o;) and H/(0;)=H'(0;) fori=1,2,...,r. (6)
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In other words, H, (s) is a rational Hermite interpolant to H (s) at the specified interpolation
points. However, this construction requires knowing the interpolation points. How should
one choose them to guarantee a high-fidelity reduced model?

We will measure fidelity using the H; norm: The H> norm of a dynamical system with
transfer function H (s) is defined as

1 o0
1Hlhe =5 / | H (i) o,
—o0

For the full model (1) and the reduced model (2), the output error satisfies

Iy = yrllLe = 1H = Hyll3, llullz,,

where [ly — yrllzo. = sup;=|y(®) — y- ()| and |lullz, = /[ lu(®)|?dz. So, a reduced

model that minimizes the H» distance ||H — H, ||, is guaranteed to yield uniformly good
approximations over finite energy inputs. Therefore, it is desirable to find a reduced model
with transfer function H, (s) that minimizes the H; distance, i.e., to find H, (s) such that

IH — Hrlln, = min [|H —Grlln,
Gr stable
order G, <r

at least locally in a neighborhood of H,. This is a heavily studied topic; see, e.g., [13, 33,41,
44, 45] for Sylvester-equation formulation and [9, 16, 29, 34, 38, 42, 46] for interpolation
formulation. Indeed, these two formulations are equivalent as shown in [29] and we focus
on the interpolatory formulation.

How does the H, optimality relate to Hermite interpolation? Let w1y, ..., u, be the
eigenvalues of A,, assumed simple. If H, (s) is an H,-optimal approximation to H (s), then
it is a Hermite interpolant to H (s) at the points o; = —u;, i.e.,

Hy(—pi) = H(=pi) and  H(—pi) = H'(-p;), fori=12,....r. (7

These conditions are known as Meier—Luenberger conditions for optimality [38]. How-
ever, one cannot simply use o; = —u; in constructing V and W in (4)—(5) since ;s are not
known a priori. This requires an iteratively corrected algorithm. The iterative rational Krylov
algorithm IRKA [29] as outlined in Algorithm 1 precisely achieves this task. It reflects the
intermediate interpolation points until the required optimality criterion, i.e., 0; = —pu; is
met. Upon convergence, the reduced model is a locally optimal H;-approximation to (2).
IRKA has been successful in producing locally optimal reduced models at a modest cost and
many variants have been proposed; see, e.g., [7-9, 15, 27, 28, 32, 39, 40, 43]. Moreover, it
has been successfully extended to model reduction of bilinear [11, 26] and quadratic-bilinear
systems [12], two important classes of structured nonlinear systems.
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966 C. Beattie et al.

Algorithm 1 (A,, b,, ¢,) = IRKA(A, b, ¢, r).

1: Initialize shifts ¢ = (01, 02,...,0,) C C4 = {z € C : Re(z) > 0} that are closed (as
a set) under under conjugation;
2: repeat
3: Compute a basis of span((o1I — A7, ..., (6, I=A)"b) > V;
4: Compute a basis of span((o1I — ADY e, .. (0, I—AT) o) > W;
50 A, = (WIV)~IWT Ay,
6: Compute the eigenvalues (reduced poles) A(A,) = (A1 (A), ..., A (A));
7: Compute the (matching) distance ¢ between the sets A(A,) and —o;
8: o, <— —A(A),i=1,...,r;
9: until ¢ sufficiently small
10: b, = (WIV)"!WTb; ¢, = VT¢;
11: The reduced order model is (A, b,, ¢,).

Our goal in this paper is not to compare model reduction techniques, nor is it to illustrate
the effectiveness of IRKA and its variants. For example, reduced models produced by IRKA,
as specified in Algorithm 1, are not a priori guaranteed to be asymptotically stable although
there is overwhelming numerical evidence that one should expect this [4, 5]. In practice,
one might consider only mirroring the stable eigenvalues in Step 8 of Algorithm 1. We will
ignore these issues here and refer instead to sources cited above for supporting analyses.
Our main goal here is to revisit IRKA in its original form and reveal new connections to the
pole placement problem (Section 3) by a thorough analysis of the quantities involved in a
special basis (Section 2). This will lead to a backward stability formulation relating then to
new stopping criteria (Section 4).

In order to keep the discussion concise, we focus here on single-input/single-output
dynamical systems, i.e., u(t), y(¢), y-(t) € R. For detailed discussion of H,-optimal model
reduction in the complementary multi-input/multi-output case, see [4, 5, 14].

2 Structure in the Primitive Bases

In Steps 3 and 4 of IRKA as laid out in Algorithm 1 above, the matrices V and W are each
chosen as bases for a pair of rational Krylov subspaces. The reduced model is independent of
the particular bases chosen and one usually constructs them to be orthonormal. We consider
a different choice in this section, and show that if V and W are chosen instead as primitive
bases, i.e., if

V=[(@I-A)""b ... (;I-A)"'b] and W=[(@I-A)Tc... (aI-A)Tc], ®

then the state-space realization of the reduced model exhibits an important structure which
forms the foundation of our analysis that follows in Sections 3 and 4. Therefore, in the rest
of the paper, we use primitive bases for V. and W as given in (8). We emphasize that this does
not change the reduced model H, (s); it is simply a change of basis that reveals nontrivial
structure that can be exploited both in the theoretical analysis of the algorithm and for its
efficient software implementation.

It is easy to check that ([29]), for V and W as primitive bases (8), the matrices WT AV
and W7V are symmetric; but not necessarily Hermitian. Moreover, one may directly verify

@ Springer



Revisiting IRKA: Connections with Pole Placement and Backward Stability 967

that ([5]), W7V is the Loewner matrix whose (i, Jthentry, fori, j =1,...,r,is given by
H(o;) — H(oj)
WTV)i; = [0y, 0j1H == ————L=, ©)
o; — Gj

with the convention that [0}, 0; |H = H'(0;).

Lemma 1 Let w,(z) = (z — 01)(z — 02) ... (z — 0y) be the nodal polynomial associated

with the shifts o = {01, 02, ..., 0, }. For any monic polynomial p, € P,, define the vector
pr(oi)
:((leuJIr)Ta C]i: ’; ! 5 :1,...,}’,
w,.(0;)

and the matrix A, = X, —qu with X, = diag(oq, ..., 0.). Thendet(zI—A,) = p,(2) and

AV — VA, = —p,(A)[w,(A)]'be’, (10)
WIA - AW = —ec” p, (M)l M) (1)

Proof Pick any index 1 < k < r and consider f;(z) = p,(z) —z- ]_[i;ék (z — 0y). Evidently,

fx € Pr—1 and so the Lagrange interpolant on o1, 02, ..., 0, is exact:
wr(2)
f@=p@ -z [[c—0)= Z fulo) = S
i#k
Divide by w,(z) and rearrange to obtain
1
Z ( Si(oi) ) _ _Pr(Z). 12)
ok—2z 1T w,(0i) ) 0i —z w,(2)

Let " be a Jordan curve that separates C into two open, simply-connected sets, Ci, C, with
Ci containing all the eigenvalues of A and C, containing both the point at co and the shifts
{o1, ..., 0} For any function f(z) that is analytic in a compact set containing C;, f(A)
can be defined as f(A) = ﬁ fr f@@EI— A)~ldz. Applying this to (12) gives

INCA EPVREDY (- fk,(gi)) (01— A) " = —p, (W)l A"

=\ o)

Postmultiplication by b provides the kth column of (10), while premultiplication by ¢’ (and
since (oxI — A)~! commutes with A) provides the kth row of (11).
To compute the characteristic polynomial of A,, we use the alternative factorizations!,

ZI-X, q _ I —q zZI—A, 0 I 0
el —1) \o0oT 1 o —1 —eT 1

A-%, q\ _ I 0\ (zZI-%, 0 I(GI-X%)"q
el —1) \efd-xH11 o —a@/\o 1 ’

IFor the reader’s convenience, here we actually reproduce the proof of the Sherman—Morrison determinant
formula.
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968 C. Beattie et al.

where a(z) = 1 + e7 (zI — X,)~'q. Then we have that

det(zI — A,) = det(zI — X,) - a(2) = 0, (2) - (1 +el(z1— Er)_I(I)

0@+ Y prlon) (“’7@> = @), (13)
i=l1

;. (0;)(z — 0})

where the last equality follows by observing that the penultimate expression describes a
monic polynomial of degree r that interpolates p, at o1, 02, ..., 0r. O

Lemma 1, and more specifically (10) and (11), reveal the rational Krylov structure arising
from the choice of V and W in (8). At first, connection of the involved quantities such as
the vector q to IRKA quantities might not be clear. In the following result, we make these
connections precise.

Lemma 2 Let the reduced model H,(s) = ch (sI = A,)"b, be obtained by projection as
in (3) using the primitive bases W and V in (8). Let

pr(2) = detWTV — WTAV) / det(WT V).
Then (10) and (11) hold with A, = (WTV)"'WTAV. In particular, b, =
(WIV)"'WTb = qand A, = (WIV)"I'WTAV = %, — eq”. Moreover; if ¢ is an
eigenvalue of A, then

xe= (% —wh'q (14)

is an associated (right) eigenvector of A, for £ = 1,2, ..., r. Similarly, the vector
X' W'V = el (2, — )" (15)
is an associated left eigenvector of A,, for £ = 1,2,...,r, with v, = (;35 Z:’Eﬁg, and d;g is

the residue of H,(s) at s = |y, i.e., qA)g = lims_ ;,, (s — o) Hy (5).

Proof Choose a monic polynomial p, € P, so that W p,(A)[w,(A)]~'b = 0. Then (10)
and (11) hold with an associated A, = X, — qe” as given in Lemma 1. But then applying
W7 to (10) yields A, = (W7 V)~'WT AV. This in turn implies p, (z) = p,(z).

Suppose that 10 is an eigenvalue of A,. Directly substitute x, = (X, — i gI)_lq and use
(13) with z = ¢ to obtain

Axe = (2 —ae") (B — D a= (B - el - e’ + o) (5, - D' g
=q(1-¢" & - D™ a) + e (5 — D a4 = pexe

Thus, x, is a right eigenvector for A, associated with uy. Note that x, also solves the
generalized eigenvalue problems:

(2) WIAVx, = uyW'Vx, and  (b)x] WTAV = i, x] WT'V. (16)

(16a) is immediate from the definition of A,. (16b) is obtained by transposition of (16a) and
using the facts that W7 AV and W'V are symmetric. Notice that (16b) shows that x! W7V
is a left eigenvector for A, associated with . On the other hand, direct substitution also
shows that

" & - wed ™A =[e" @ - ueD ] (2 - ge”) = e [ (= — 7]
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Revisiting IRKA: Connections with Pole Placement and Backward Stability 969

soel (%, — MI)’1 is also a left eigenvector of A, associated with p,. We must have then
X' W'V = el (T, — )7}

for some scalar vy which we now determine. Using (9) and (14), the jth component of each
side of the equation can be expressed as

(W) = ~ pr(@) loi, 01H, v an
i ) (0;) 0; — g o — ¢

Define the function f(z) = p,(z)[z, oj]H,. It is easily checked that f(z) is a polynomial
of degree r — 1 and so Lagrange interpolation on {01, 03, ..., 0,} is exact:
r

f@) = Z (pr(od)loi, 0j1H;)

i=1

wy(2)
(z — o) (07)

Now evaluate this expression at z = juy:

r

Z (pr(op)loi, oj1Hy)wy (jae)
(e — 0j)w;.(0;)

H,(2) — Hy (o)) pl(1ue)de
Z—0j Mg —0j ’

= f(pe) = lim p,(2)
2> 1

i=1

where we observe that lim;_, ., p, (2) H:(z) = ng ]_[i# (e — i) = qsgp; (w¢). Comparing

Pr(1e)
wr(ie)* D

this expression to (17) we find vy = 43@

Lemma 2 illustrates that if the primitive bases V and W in (8) are employed in IRKA,
then the reduced matrix A, at every iteration step is a rank-1 perturbation of the diagonal
matrix of shifts. This matrix A, = X, —qe’ is known as the generalized companion matrix.
This special structure allows explicit computation of the left and right eigenvectors of A, as
well. The next corollary gives further details about the spectral decomposition of A,.

Corollary 1 Consider the setup in Lemma 2. Define the r x r Cauchy matrix C = C(a, p)
as

1
G = fori,j=1,2,...,r, (18)
Toi— U

and the r x r diagonal matrix Dq = diag(q1, q2,...,qr). Then A, = X — qu has the
spectral decomposition

A, =XMX"" where M = diag(uu1, 2, ..., ) and X=DgqC. (19

Moreover, ArT = Dt; 1Aqu and its spectral decomposition is

Al =% —eq’ =D 'A,Dg=CMC". (20)

Proof The spectral decomposition of A, in (19) directly follows from (14) by observing that

o1—He 02—He Or— e
X = [x1 X2 ... X, ] can be written as X = DqC, proving (19). The spectral decomposition
of ArT in (20) can be proved similarly using (15), i.e., the fact that (X, —ueDTeisan eigen-
vector of AT Finally, Dy'A,Dq = D' (2, — ge”)Dq = X, — D' qe’ Dy since both D,
and X, are diagonal. Moreover, it follows from the definition of Dq = diag(q1, g2, .- ., gr)
that D lq=eand eTDq = (, thus completing the proof. O

T
xe = (%, — w7 lq = [ a ©2_ ... A ] . Therefore, the eigenvector matrix
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970 C. Beattie et al.

3 A Pole Placement Connection

The main goal of this paper is to reveal the structure of the iterations in Algorithm 1, and
in particular to study the limiting behaviour of the sequence of the shifts 0 ®), k = 1,2, .. ..
In this section, we explore an intriguing idea to recast the computation of the shifts in
Algorithm 1 in a pole placement framework, and then to examine its potential for improving
the convergence.

As Lemma 2 illustrates, if the primitive bases (8) are employed in IRKA, then at every
step of IRKA, we have A, = X, — qu. Then, in the kth step, we start with the shifts
o](k) ar(k) and use them to build the matrix

A6 (60 — diag (Ufk)’ L Ur(k)> — q*+DeT 1)

where the vector q**1 (the reduced input in step k) ensures that the Hermite interpolation
conditions are fulfilled, see (6). If ol.(k) is real, then q(kH)

; is real as well; if for some i #
b _ s ® (k+1)
J

Jj oi( , then ¢

i = q;kH) . As a consequence, Aﬁkﬂ) is similar to a real matrix and

its eigenvalues will remain closed under complex conjugation. Further, if some ql.(k+1) =0
; (k)
then the corresponding o,
. . . KD (o) (k+1)
shifts are in the open right half-plane and that A,"" (")) is stable, then g, #0
for all i. Then, the new set of shifts is defined as
o,(k+1) — _[L(k+l), where [l,(k+l) — Cig(A,(.kJrl)(a'(k))), (22)

where eig(-)is a numerical algorithm that computes the eigenvalues and returns them in
some order.? In the limit as k — oo the shifts should satisfy (6) and (7).

s

is an eigenvalue of A£k+1)(a(k)); thus, if we assume that the

3.1 Measuring Numerical Convergence

Numerical convergence in an implementation of Algorithm 1 is declared if ¢ **D ~ ¢®,
where the distance between two consecutive sets of shifts is measured using the optimal
matching?

k) _ & Ek)|, where S, denotes the symmetric group.

d(e*tD ¢®y — minmax|o !
( ) 71€S,i:1:r| (@)
In an implementation, it is convenient to use the easier to compute Hausdorff distance
h(e*t ¢ ®) = max {maxmin ‘a(k“)/’ - al(k)' , maxmin ‘al@ - a;kH) ’}
joi i
for which h(e**D o ®) < d(e*tD) ¢®) 5o the stopping criterion (Line 9 in Algo-
rithm 1) must be first satisfied in the Hausdorff metric.

Numerical evidence shows that many scenarios are possible during the iterations in Algo-
rithm 1—from swift to slow convergence. Characterizing the limit behavior in general is an
open problem; in the case of symmetric systems local convergence is established in [25].
Moreover, we have also encountered misconvergence in form of the existence of at least two
accumulation points that seem to indicate existence of periodic points of the mapping (22).
This is illustrated in the following example.

2Since the matrix is a rank one perturbation of the diagonal matrix, all eigenvalues can be computed in O (r-2)
operations by specially tailored algorithms.
3The shifts (eigenvalues) are naturally considered as equivalence classes in C” /S, .
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Revisiting IRKA: Connections with Pole Placement and Backward Stability 971

Example 1 We take the matrix A € R'?9%120 from the CD player benchmark example [18,
19] from the NICONET benchmark collection [17] and set b = ¢ = e. With a particular set
of r = 29 initial shifts, we obtained separate behaviours for the odd and the even iterates,
as shown in Fig. 1.

Hence, it is of both theoretical and practical interest to explore possibilities for improv-
ing the convergence. Supplying good initial shifts is certainly beneficial, and in [20, 21]
we show that the less expensive Vector Fitting algorithm can be used for preprocess-
ing/preconditioning to generate good shifts that are then forwarded to IRKA to advance them
to a local optimum.

An alternative course of action is to deploy an additional control in the iterations which
will keep steering the shifts toward the desired positions. In fact, an example of such an inter-
vention has been already used in the numerical implementation of Algorithm 1. Namely,
it can happen that in some steps the matrix (21) is not stable and some of its eigenvalues
(22) are in the right half-plane. To correct this situation, the unstable ones (real or complex-
conjugate pair(s)) are flipped across the imaginary axis, so that the new shifts o *1) stay in
the right-half plane.

This is an explicit (brute force) post-festum reassignment of the shifts to correct for
stability. In [20], we showed that such a step (in the framework of Vector Fitting) can be
recast as pole placement. Now that we have resorted (implicitly) to the pole placement
mechanism, we can think of using it as a proactive strategy for improving convergence. In

Visualization of shifts during IRKA iterarions

5 T
«®
4r . . |
oo
L ]
3r ¢ 1
2— L ° ° 7
ATEIS S e
L]
1k |
°
% o °
O_ $ : ™ Cre ° ®@®C08s I GENS MO 0049
?)sx ® °
-1
.
2 T
D+ 0 . B
-3+ hd 7
[ J
oo
N L | -
-4 -,
1 | 1 1

-5 | | ]
-2000 0 2000 4000 6000, 8000, 10000 12000 14000
Iterations colored modulo 6 using b-g-r-c-m-y

Fig. 1 (Example 1) The history of the shifts obtained using Algorithm 1. The iterations are colored using
six colors periodically as follows: e e e © @ e » @ « @  Note how the odd and the even iterates build two
separated pairs of “smoke rings” (abscissa range [6000, 10000]); more smaller rings can be identified in the
abscissa range [3000, 5000]. The shifts do not converge to a fixed point, but the difference between the two
sub-sequences (the even and the odd indices) converges to a nonzero value
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972 C. Beattie et al.

the rest of this section, we explore this idea and discover interesting connections with some
variations of IRKA.

3.2 Reduced Input-to-State Vector as a Pole Placement Feedback Vector

Motivated by the above discussion, we reinterpret (a posteriori) the vector q(k‘H) in (21)
as the feedback vector that reallocates the eigenvalues* of diag(o®) into w**D; in other
words we view (21) as a pole-placement problem. Then we can use the uniqueness argument
and write q(k“) explicitly as (see [36, 37])

roo k) _ et ®) _ kD)
e 1 e R (G(k) _ M(k+1)) ﬁ % TH i1 .
i = k ®y —\% i ® _ _® > Tl
Hr;;ll (Ui( ) _ o ) I;l. o, —0;
J ol

(23)
On the other hand, for the fulfillment of the necessary conditions for optimality, besides the
Hermite interpolation built in (23), the additional fixed point condition should hold:

eig (A @) ~ o ®. (24)

The latter is what we hope to reach with the equality in the limit as k — oo, and in practice
up to a reasonable tolerance, see Section 4.1. If we consider the condition (24) as an eigen-
value assignment problem, and think of the vector ¢! in (21) simply as the feedback
vector, then (24) can be satisfied in one step, provided we drop the interpolation condition
and use an appropriate feedback f&+1) vector instead of q**1. The feedback f*+1 can be
constructed explicitly (see [36, 37]) as

rg® 4 <k>
(k+1) _ (k) .
fi ]_[ . (k), i=1,...,r. (25)

9j
J#t

Of course, the above formula is a special case of (23), where we reflect the poles. However,
if at a particular step some of the eigenvalues are unstable, we should not reflect the cor-
responding shifts. This means that in an implementation, we may apply only partial pole
placement. Hence, altogether, it would make sense to interweave interpolation and eigen-
value assignment by combining f*+1 and q*+1) using an appropriately chosen parameter
ax € [0, 1], and thus obtain a modified iteration step, as outlined in Algorithm 2. To incor-
porate this new shift-updating scheme into IRKA, Algorithm 2 should replace Step 8 in
Algorithm 1.

Algorithm 2 IRKA + pole placement for shift updates; kth step.

1: Compute the reduced input vector &+ 1.

2:  Compute the feedback vector f*+1) using (25). (Keep track of stability.)
3: q*tD = o q* D 4 (1 — ap)f**+D | with an appropriate o € [0, 1].

4: A(kJFl)(o.(k)) _ dlag(a( ))r (/<+1) T

5:  The new shifts are ¢ 1D = —elg(A£k+1) (a®)).

4We tacitly assume that throughout the iterations all shifts are simple.
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Revisiting IRKA: Connections with Pole Placement and Backward Stability 973

Proposition 1 For the real LTI system (1), and 0® closed under complex conjugation,
the matrix A£k+1) (0 ®)Y is similar to a real matrix and, thus, ¢ ¥tV remains closed under
complex conjugation.

Proof From (25), we conclude that fi(kH) is real if ai(k) is real. Further, if for some i # j

oi(k) = o;k), then fi(kH) =f ;kH) . We have already concluded that q**1 has an analogous

structure. Since oy is real, A£k+l)(a(k)) is similar to a real matrix. O

It remains an open problem how to chose the coefficients o4 adaptively and turn Algo-
rithm 2 into a robust black-box scheme. We now show an interesting connection that might
provide some guidelines.

3.3 Connection to the Krajewski-Viaro Scheme

Improving the convergence of fixed point iterations is an important topic. In general, the
fixed point problem f(x) = x can be equivalently solved as the problem

fo(x) =x, where fo(x) =af(x)+ (1 —a)x, a #0,

where the parameter « is used, e.g., to modify eigenvalues of the corresponding Jacobian.
This is a well-known technique (Mann iteration), with many variations. In the context of
‘H> model reduction, this scheme has been successfully applied by Ferrante, Krajewski,
Lepschy and Viarro [24], and Krajewski and Viaro [35]. Concretely, Krajewski and Viaro
[35, Algorithm 4] propose a modified step for the IRKA procedure, outlined in Algorithm 3:

Algorithm 3 Krajewski—Viaro scheme for shift updates; kth step.

1: Let E.)Sk) be the modified (monic) polynomial, whose reflected zeros are the shifts o ©,

ie. pP(=ay=0,i=1,...,r.

2:  Compute AﬁkH) = (WZVk)_IWZAVk and the coefficients of its characteristic
polynomial pﬁkﬂ). Write this mapping as pﬁkH) = Cb(fafk)).
3: Define the new polynomial
65£k+1) =ot[p£k+1) + _(X)Kv?ik) E(I)a([fa,(.k)), (26)
where the linear combination of the polynomials is formed using their coefficients.
o (k+1)

4: The new shifts are then the reflected roots of o,

Krajewski and Viaro [35] do not elaborate on the details of computing the coefficients of
the characteristic polynomials of the reduced matrix (W,{Vk)_IW,fAVk. From a numerical
point of view, this is not feasible, not even for moderate dimensions. Computing coefficients
of the characteristic polynomial by, e.g., the classical Faddeev—Leverrier trace formulas is
both too expensive (O(r*)) and too ill-conditioned. A modern approach would reduce the
matrix to a Schur or Hessenberg form and then exploit the triangular or, respectively, Hes-
senberg structure. However, after completing all those (tedious) tasks, the zeros of 5)5’“‘1)
in Line 4 are best computed by transforming the problem into an eigenvalue computation
for an appropriate companion matrix. Ultimately, this approach is only conceptually inter-
esting as a technique for improving convergence, and in this form it is applicable only for
small values of r.
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We now show that when represented in a proper basis, this computation involving char-
acteristic polynomials becomes rather elegant and simple, and further provides interesting
insights. In particular, in this proper basis, Algorithm 3 is equivalent to Algorithm 2.

Theorem 1 In the Lagrange basis of a)ﬁk) + P,_1, the Krajewski-Viaro iteration is
equivalent to the “IRKA + pole placement” iteration of Algorithm 2.

Proof Note that by Lemma 1 we can write A(kH) diag(oi(k)) —q%**+DeT, where ql.(kH) =

pka)(oi)/(a)ka))/(oi), i=1,...,r,and p(k+1)(z) is the characteristic polynomial of
A£k+1). Further, using Lemma 1, we can write g, (k1) () as
(k+1) (®) Xr: (k+1) (&) o (2)
+ +
pr (Z) = wr (Z) + pr (G ) k k k
. " @@y 0Py — 0P

o @ (2) a k
®@+Zj””’ m,@Wn=H@—éd

i=1

If we consider the monic polynomials of degree » as the linear manifold a)ﬁk) + P,—_1, and

fix in P,_; the Lagrange basis with the nodes al.(k), i=1,...,r,then
a k) o (2)
= (k) _ (k) > r\s
o i (w£ ))/(Ui( ))(Z _ O‘»( ))
(k) A (k) (k)
— (k) I—[] 1077 + 0™ w7 (2) k) (k+1) a)r (Z)
=@+ Z ®__® = @F Z fi r—o®
imt (0] —0) 2 =0 i=1 <=
J#
where we used that @, *) (o; (k)) = ]_[;:] (O‘i(k) + a(k)) (a)(k)) (ai(k)) = ]_[C.:l (al.(k) — G;k))
J#i
and that the feedback vector (25) can be written as
r (k) (k) (k) (k)
[Tj=1(0;" + o) 2 (k)l—[ ) (kt1)
k k PRGEENGN
[T = o) J#w“ oy =
J#

Hence, foﬁk) is the characteristic polynomial of diag(o ®)) — f*+De”  and we have further

(k)
. k1 e+, @ (2)
(k+1)(Z) — (k)(Z) + Z(akq( +1) +(1- ak)fi( + )) r ©
i=1 Z—0;

© Loy 0 + (1 —apP 6) o ()
=@+ © 0 ®
i—1 (wr ) (0;) z—o0;
v (k k
= w®( )+Xr: P06 o)
e @Dy 0P 7o’

(k+1) -

which implies that @, is the characteristic polynomial of the matrix A£k+] ) (0%, repre-
sented by the vector q(k'H) from Lines 3 and 4 of Algorithm 2. This follows from the proof
of Lemma 1. O

Krajewski and Viaro [35] use a fixed value of the parameter o, and show that differ-
ent (fixed) values may lead to quite different convergence behavior. This modification can
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turn a non-convergent process into a convergent one, but it can also slow down an already
convergent one.? Following the discussion from [24], « is best chosen to move the small-
est eigenvalue of the Jacobian of @, (evaluated at the fixed point of @) into the interval
(=1, 1). This does not seem to be a simple task as it requires estimates of the eigenvalues
of the (estimated) Jacobian. Another option is to try different values of « in an iterative
reduced order model design.

This equivalence of the schemes in Algorithm 2 and in Algorithm 3 reveals a problem
that is not easily seen in the framework of Algorithm 3. Now we may clearly see that part
of the “energy” in Algorithm 3 is put into reflecting the shifts, and this, at least in some
situations, may be wasted effort. Although the optimal reduced order model is guaranteed to
be stable, the iterates, generally, are not. This means that some shifts ai(k) may be in the left-
half plane, and the f**1 component of the modified g**1 will tend to reflect them to the
right-half plane. This in turn forces the new reduced matrix A£k+l) to have some eigenvalues
in the right-half plane, thus creating a vicious cycle. Hence, in the first step (Line 1), one
should correct ¢ ® | if necessary.

Remark 1 The facts that pole placement may be extremely ill-conditioned [31], where
(depending on the distribution of the target values) even as small as » = 15 could lead to
ill-conditioning, and that IRKA is actually doing pole placement in disguise, opens many
nontrivial issues. For instance, what is a reasonable threshold for the stopping criterion?
Will we be able to actually test it (and detect convergence) in finite precision? What are
relevant condition numbers in the overall process? Do IRKA iterations drive the shifts to
well-conditioned configurations for which the feedback vector (the reduced input) is rea-
sonably small (in norm, as illustrated in the right panels of Figs. 2 and 3 in Example 2
below) and successful in achieving numerical convergence? If yes, what is the underlying
principle/driving mechanism? In the next section, we touch upon some of these issues.

4 Perturbation Effects and Backward Stability in IRKA

We turn our attention now to numerical considerations in the implementation of IRKA. We
focus on two issues: (i) What are the perturbative effects of finite-precision arithmetic in
terms of system-theoretic quantities? (ii) What are the effects of “numerical convergence”
on the reduced model?

4.1 Limitations of Finite Precision Arithmetic

Suppose that we are given magic shifts o so that the eigenvalues of A, = X, — qe’ are
exactly A = —o, or A & —o up to a small tolerance €. However, in floating point compu-
tations, the vector ¢ = (W7 V)~!'WTb is computed up to an error 8q, and therefore instead
of A,, we have A, = X, — (q + Sq)eT. In practice, the source of §q is twofold: First, in
large-scale settings, the primitive Krylov bases V and W are usually computed by an iter-
ative method which uses restricted information from suitably chosen subspaces and thus
generates a truncation error; see, e.g., [1, 2, 10]. In addition, computation is polluted by

3We should point out here that the dimensions 7 and r are rather small in all reported numerical experiments
in [35].
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omnipresent rounding errors of finite precision arithmetic. How the size of dq influences the
other components of the IRKA is relevant information that we investigate in this subsection.

Assume for the moment that dq is the only perturbation in one step of IRKA. We want to
understand how the eigenvalues of A, and A, differ as a function of dq. In particular, we
want to discover the relevant condition numbers that play a role in this perturbation analysis.

Theorem 2 Let A, = %, —qe’ and A, =3, —qel be diagonalizable, where q = q+8q.
Let A, and A, have~ the spectral decompositions A, = XMX ! and A, = XMX:I, szerNe
M = diag(u;);_,, M = diag(j1;);_, and the eigenvector matrices X = DqC and X = DqC
as described in Corollary 1. Then there exists a permutation 7w such that

2

B0 < el aea(©)l5ge” |- (26)

l

3

i=1

Proof Note that we can equivalently compare the spectra of A7 and KrT From (15), we
know that the spectral decomposition of ArT is given by

Al =%, —eq" =D'A,Dy=CMC™". (27)
Similarly for A7, we obtain
Al =3, — G’ =Dy 'A, Dy =CMC . (28)

Next we employ the perturbation results of Elsner and Friedland [23], and Eisenstat and
Ipsen [22], while taking into account the special structure of both matrices. Write A,T =
ArT + 8ArT , where 8ArT = —edq”. Using the spectral decompositions (20) and (28), the
matrix A-TAT — T = A-T§AT can be transformed into

M~ (C'COM — (C'C) = C'ATSATC. (29)

Set Y = C~!C and take the absolute value of Yij» an arbitrary entry of Y at the (i, j)th
position, to obtain

i AT ATE -
lyijl | =% — ’=|<C 'A;TSAT )il for 1<, j <,

l

Hence
2 ~
=IC'A;TSATCl T

r r
j{:j{:lyulz — =

i=1 j=1

A
%

where the Hadamard product matrix Y o Y = (|y; ; |2){, i1 is entry-wise bounded by
omin(Y)*Sij < (Y 0 Y)ij < omax (Y)?Sij,
where S is a doubly-stochastic matrix; see [23]. Hence

iisw‘

i=1 j=I

~ 2
M j _ 1. — ~ ~ _
L 1] <Y T'BICTIASTSAT CIlE: < k2(C) 22 (C)? || A TSAT 113

Wi

(30)
The expression on the left-hand side of (30) can be considered as a function defined on
the convex polyhedral set of doubly-stochastic matrices, whose extreme points are the
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permutation matrices. Thus, for some permutation 7, we obtain

r 2

2

i=1

(i) — Mi

" <Y 'I3ICT AT SAT CIlg
1

Then, using (20), the spectral decomposition of A;T, and the definition of §A, complete
the proof. O

Remark 2 One can write (29) as YM - MY = C~! SA,.T(Nj and conclude that there exists a
permutation p such that (see [23])

n
D lipa) — 1il? < k2(Ce2(C)[18ge” 2.

i=1

Remark 3 The right-hand side in relation (26) can also be bounded by

~ )
rea(Cye© 0l

min; ||

From the numerical point of view, Theorem 2 cannot be good news—Cauchy matrices
can be ill-conditioned. A few random trials will quickly produce a 10 x 10 Cauchy matrix
with condition number greater than 10'°. The most notorious example is the Hilbert matrix,
which at the dimension 100 has a condition number larger than 10'3°. No function of the
matrix that is influenced by that condition number of the eigenvectors can be satisfactorily
computed in 32 bit machine arithmetic. The 64 bit double precision allows only slightly
larger dimensions before the condition number takes over the machine double precision.

On the other hand, we note that our goal is not to place the shifts at any predefined loca-
tions in the complex plane. Instead, we are willing to let them go wherever they want, under
the condition that they remain closed under conjugation and stationary at those positions. It
should also be noted that the distribution of the shifts obviously plays a role in this consid-
erations. The following example will illustrate this; especially the impact of the optimal 7,
interpolation points.

Example 2 As in Example 1, we first take the CD player model [18, 19] of order n = 120
and apply IRKA as in Algorithm 1 for » = 2, r = 16, and r = 26. In each case, IRKA is
initialized by randomly assigned shifts. The condition numbers of C for each case, recorded
throughout the iterations, are shown on the left panel of Fig. 2. IRKA drastically reduces
the condition number of C throughout the iteration, more than 15 order of magnitudes for
r = 16 and r = 26 cases. Therefore, IRKA keeps assigning shifts in such a way that
C becomes better and better conditioned; thus in affect limiting the perturbation effects
predicted by Theorem 2. Moreover, we can observe that the reduced input vectors q*,
which act also as feedback vectors that steer the shifts, diminish in norm over the iterations;
see the right panel of Fig. 2.

We have observed the same effect in all the examples we have tried. For brevity, we
include only one more such result using the International Space Station 1R Module [6, 30]
of order n = 270. As for the CD Player model, we reduce this model with IRKA using
random initial shifts and this time chose reduced orders of »r = 10, r = 20, and r = 30. The
results depicted in Fig. 3 reveal the same behavior: The condition number 2 (C) is reduced
significantly during IRKA as shifts converge to the optimal shifts; the same holds for the
reduced input norms ||q® ||». This observation raises intriguing theoretical questions about
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CD player model: Evolution of nz(c) during IRKA CD player model: Evolution of || q |* during IRKA

102 10
S o
S S
102Q 1 10°F 1
0% 10°F
S =
£ Z
10'0 10%
10° 102 3
E
10° 100 | 1
8 0 2 4 6 8 10 12 14
IRKA iteration index IRKA iteration index

Fig.2 «,(C) and ||q(k) |2 during IRKA for the CD Player example

the distribution of the H;-optimal shifts, as their impact mimics that of Chebyshev points
(as opposed to linearly spaced ones) in polynomial interpolation. These issues will not be
studied here and are left to future papers.

4.2 Stopping Criterion and Backward Stability

Analytically, H, optimality is satisfied when & = —u. However, in practice Algorithm 1
will be terminated once a numerical convergence threshold is met. In this section, we will
investigate the impact of numerical convergence on the resulting reduced model. The pole-
placement connection we established in Section 3 will play a fundamental role in answering
this question.

Suppose that in Algorithm 1 a numerical stopping (convergence) criterion has been satis-
fied, i.e., the eigenvalues 1, ..., ug of A, are close to the reflected shifts. Both the shifts o
and the computed eigenvalues g are unordered r-tuples of complex numbers, and we mea-
sure their distance using optimal matching, see Section 3.1. Hence, we define the indexing
of w = (uy, ..., 1) so that

lw — (=0)lloo = min max |uzx) — (—ok)|.
weS, k=l:r

Recall that the shifts ¢ = {01, ..., 0,} are closed under conjugation, with strictly positive
real parts, and all assumed to be simple. The eigenvalues . = {uy, ..., u,} are assumed

ISS1R model: Evolution of.‘:2(C) during IRKA ISS1R model: Evolution of || q uduring IRKA

é =10 —f-r=10

10° k

100 L L L L L L 10 L L L L L L
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

IRKA iteration index IRKA iteration index

Fig.3 «2(C) and ||q® > during IRKA for the IRR 1R example
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also simple, and they are obviously closed under conjugation. With this setup, we write
Wik = —O0k + &k, k=1,...,r, (31)

where we note that the & ’s are closed under conjugation as well. Our goal is to relate the g ’s
and the quality of the computed reduced order model identified by the triplet (A,, b,, ¢,;) in
the sense of backward error. In particular, we need a yardstick to determine when an & is
small.

There is a caveat here: for given shifts o, the vector u consists of the computed eigenval-
ues, thus possibly highly ill-conditioned and computed with large errors. Our analysis here
considers the computed eigenvalues as exact but for a slightly changed input data,® and we
focus on the stopping criterion and how to justify it through a backward stability statement.
This means that we want to interpret the computed reduced order model as an exact reduced
order model for an LTI close to the original one (1).

The representation of the reduced order model in the primitive basis presented in
Section 2 yields an elegant structure and provides theoretical insights. On the other hand,
having numerical computation in mind, the same structure gives reasons to exercise cau-
tion. This caution is particularly justified because, as we showed in Section 3, the ultimate
step of the iteration is an eigenvalue assignment problem: find the shifts o such that the
eigenvalues of X, — q(o)e’ are the reflected shifts.

Using (23), (31), and Lemma 1, we know that the vector q = [ g1 ¢2 ... gr ]T satisfies

r r
o — [k 0; + 0k — & .
Qi:(ai_ﬂi)nﬁ:(zai_gi)nli» i=1,...,r. (32
k=1 !

Ok Pl o — Ok
ki ki
We now do the following Gedankenexperiment. Consider the true reflections of the shifts,
u; = —o;. Since the pair (%,, ) is controllable’, there exists q° such that the eigenvalues

of X, — q®e’ are precisely U3, ..., uy. In fact, by the formula (25), the feedback q° is
explicitly given as
,

gzzmrljtzz i=1...r (33)
]

k=1

ki
Comparing (32) and (33), we see that our computed vector q satisfies

.
. €k . .
%=%IIQ— )z%u—m, i=1...r. (34)

[ef} 0,
k=1 i + 0%

Since all the shifts are in the right-half-plane, |0; 4+ ok| is bounded from below by
2min; Re(oj) > 0. We find it desirable to have our actually computed q close to q°,
because q* does exactly what we would like the computed q to achieve in the limit. This
indicates one possible stopping criterion for the iterations—the maximal allowed distance
between the new and the old shifts should guarantee small |ex /(07 + oy)| for all i, k.

If we define A? = X, — q'eT, then its eigenvalues are the reflections of the shifts. Com-
paring this outcome with the actually computed A, = X, — qe’, we obtain the following
result.

SThis is the classical backward error interpretation.
TLet A € C"*" and b € C". Then, the pair (A, b) is called controllable if rank [ b Ab ... A"*lb] =n.
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Proposition 2 Let Algorithm 1 be stopped with computed A, = X, — qe’, and let the

eigenvalues of Ay be up = —or + e, k=1,...,r. Let
4 & - £
&® = max 1_[(1— k )—1<1, & = max 1_[(1+ k )—1<1.
1<i<r el o; + oy I<i<r i o; — WUk
Then there exists A? = A, + 8A, with eigenvalues —o1, ..., —0,, and q* = q — 8q such

that Ay = X, — q*e’; [|8qll2 < ellqll2, 13qll2 < &®llg®[l2; and

16A,[l2 < 2&°[|ATl2, 6A,ll2 < & <||Ar||2 + <1 + max

&k
fD ||Ar||2> :
Mk

Proof Define q° using (33) and write q = q°® + §q. Write the actually computed reduced
matrix A, = X, — qe’ as
A =%, —q% —8qe’ or A*=3%, —q%e!, where A’ =A, +5qe’. (35
Note that || X, |2 = spr(A?) < ||A}]l2. Further, using qe’ =3, — A? and taking the norm
we get
Vrla®llz < spr(A7) + A7 ]2 < 2[|Al2,
and thus the norm of §A, = 8qe” can be estimated as

I8A/ 12 = Vrlldgll2 < Vre®llg®ll2 < 2e* AT Il2,
completing the proof. O

Remark 4 We conclude that in the vicinity of our computed data (reduced quantities) A,
and q, there exist A? and q° that satisfy the stopping criterion exactly. Both [|A, — A?||>
and ||q — q°*||2 are estimated by the size of ||§q||2. But there is a subtlety here: we cannot
use ||8qll2 as the stopping criterion. In other words, if we compute q and conclude that
llq — q°||> is small, it does not mean that the u’s are close to the reflections of the oy ’s.
There is difference between continuity and forward stability.

Our next goal is to interpret A, and §q as the results of backward perturbations in the
initial data A, b.

Theorem 3 Under the assumptions of Proposition 2, there exist backward perturbations
8A and 8b such that the reduced order system

Ay =3, —q%e = (W'V)"'WI'A+35A)V | b =q* = (W'V)"'W (b — 5b)
c=c |

corresponds to exact model reduction of the perturbed full-order model described by the
triplet of matrices (A + 8A, b — 8b, ¢) and has its poles at the reflected shifts. Let G} (s) =
ch (sI —A;)_lb; and G*(s) = ¢ (s, — (A+8A)) 1 (b—8b) denote the transfer functions
of this reduced order system, and the backward perturbed original system, respectively.
Then, G?(0;) = G*(0;),i =1, ..., r. The backward perturbations satisfy

K2 (V)
8bjp < ——=———¢|b
I6bll2 < cos Z(V. W)ell ll2
and 5
K2(V) 2e* )
A, < All2, ded that €* < 1/2,
I6All2 < cos / (VW) 1= 2e° |All2, provided that €* < 1/
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where )V = Range(V) and VV = Range(W).

Proof First, recall that q = UTh, where UT = (WT'V)~'WT . Since U7 has full row-rank,
we can determine 8b such that §q = U7 §b. (The unique 8b of minimal Euclidean norm is
b = (UT)T8q € W.) Using (35) and A, = UT AV we can write then

UTAV + UTébe” = =, — U (b — b)eT,
where ||6b]l> < |[UT|2118qll2 < k2(U)||b|l2€. Since we can express e as e = V' with
smallest possible f = (V)Te € V, we obtain
A* =UT(A+6btT)V =32, —UT (b —sb)e’.
Set SA = Sbf’ and note that |§A|; = |8b|l2|/fll2. From Proposition 2, under the mild
assumption that €® < 1/2, we conclude that

2e° 2|10 |2e®
b} < ——1|A/|l2, and thus éb|lp < ——||A,||7.
[ q||z_ﬁ(1_2€,)|| rll2 us  [8b]» < ﬁ(l_ze,)u rll2
Since ||UT||2 < ||V|2 and [|fll2 < +/FI[V[|2, we have
2e° k2 (V)
SA|H < VvV A2, h Al < —————— A5
184112 < 12 (V) 7= 1A Il2 where [[A,]| < s 2V Al

Further, it holds that
VE, — (A +8bfT)V=VX, — AV — §bf’V = be” — sbe’ = (b — Sb)e’,

and this implicitly enforces the interpolation conditions. O

Remark 5 To claim Hermite interpolation, the only freedom left is to change ¢ into ¢ + ¢
to guarantee that (o;1 — (AT +£8bT))"l(c+8c) e Wiori = 1,...,r. In other words,
with some r x r matrix 2, we should have

WX — (AT + 6" )WR = (¢ + dc)e’ .
If € commutes with X, then §ce! = cel (2 —I) —f6b7 WR. We can take € = I and instead
of the equality (which is not possible to to obtain), we can choose §¢ = —(1/r)fsb’ We,
which is the least squares approximation. Even though this least-squares construction might
provide a near-Hermite interpolation, a more elaborate construction is needed to obtain
exact Hermite interpolation for a backward perturbed system. The framework that Beattie

CD player model: Evolution of "‘2(\’) during IRKA CD player model: Evolution of nz(V) / cos(V,W) during IRKA
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Fig.4 «2(V) and k2(V)/ cos(V, W) during IRKA for the CD Player example
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ISS1R model: Evolution of x,(V) during IRKA ISS1R model: Evolution of ,(V) / cos(V,W) during IRKA
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Fig.5 «2(V) and «2(V)/ cos(V, W) during IRKA for ISSIR Example

et al. [10] provided for Hermite interpolation of a backward perturbed system in the special
case of inexact solves might prove helpful in this direction.

Our analysis in Section 4.1, specifically Theorem 2, illustrated that the condition number
of the Cauchy matrix C plays a crucial role in the perturbation analysis. And the numerical
examples showed that despite Cauchy matrices are known to be extremely ill-conditioned,
the IRKA iterations drastically reduced these conditions numbers as the shifts converge to
the optimal ones, i.e., as IRKA converges. Our analysis in this section now reveals another

important quantity measure: % Next, we will repeat the same numerical examples
k2 (V)

of Section 4.1 and inspect how «(V) and s Z(V ) vary during IRKA.
Example 3 We use the same models and experiments from Example 2. During the reduction
of the CD player model to r = 2, r = 16, and r = 26 via IRKA, we record the evolution of
k2(V) and % The results depicted in Fig. 4 show a similar story: Both quantities
are drastically reduced during the iteration thus leading to significantly smaller backward
errors ||8q|| and ||§A | in Theorem 3.

We repeat the same experiments for the ISS 1R model and the results are shown in Fig. 5.
The conclusion is the same: x> (V) and #X)W) are reduced ten orders of magnitudes
during IRKA.

5 Conclusions

By employing primitive rational Krylov bases, we have provided here an analysis for the
structure of reduced order quantities appearing in IRKA that reveals a deep connection to
the classic pole-placement problem. We exploited this connection to motivate algorithmic
modifications to IRKA and developed a complementary backward stability analysis. Several
numerical examples demonstrate IRKA’s remarkable tendency to realign shifts (interpolation
points) in a way that drastically reduces the condition numbers of the quantities involved,
thus minimizing perturbative effects and accounting in some measure for IRKA’s observed
robustness.
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