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Abstract
The iterative rational Krylov algorithm (IRKA) is a popular approach for producing locally
optimal reduced-order H2-approximations to linear time-invariant (LTI) dynamical sys-
tems. Overall, IRKA has seen significant practical success in computing high fidelity
(locally) optimal reduced models and has been successfully applied in a variety of large-
scale settings. Moreover, IRKA has provided a foundation for recent extensions to the
systematic model reduction of bilinear and nonlinear dynamical systems. Convergence of
the basic IRKA iteration is generally observed to be rapid—but not always; and despite
the simplicity of the iteration, its convergence behavior is remarkably complex and not
well understood aside from a few special cases. The overall effectiveness and computa-
tional robustness of the basic IRKA iteration is surprising since its algorithmic goals are
very similar to a pole assignment problem, which can be notoriously ill-conditioned. We
investigate this connection here and discuss a variety of nice properties of the IRKA itera-
tion that are revealed when the iteration is framed with respect to a primitive basis. We find
that the connection with pole assignment suggests refinements to the basic algorithm that
can improve convergence behavior, leading also to new choices for termination criteria that
assure backward stability.

Keywords Interpolation · Model reduction · H2-optimality · Pole placement · Backward
stability

Mathematics Subject Classification (2010) 15A12 · 41A05 · 49K15 · 93A15 · 93C05 ·
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1 Introduction

The iterative rational Krylov algorithm (IRKA) was introduced in [29] as an approach for
producing locally optimal reduced-order H2-approximations to linear time-invariant (LTI)
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dynamical systems given, say, as

ẋ(t) = Ax(t) + bu(t), y(t) = cT x(t), (1)

where A ∈ R
n×n, and b, c ∈ R

n. We will assume that the dynamical system is stable, i.e.,
all the eigenvalues of A have negative real parts. The cases of interest will be when n is very
large, and we seek a substantially lower order dynamical system, say,

ẋr (t) = Arxr (t) + br u(t), yr (t) = cT
r xr (t), (2)

with Ar ∈ R
r×r , and br , cr ∈ R

r . One seeks a realization (2) so that the reduced system
order r � n and the reduced system output yr ≈ y uniformly well over all inputs u ∈ L2
with

∫ ∞
0 |u(t)|2 dt ≤ 1.

Projection-based model reduction is a common framework to obtain reduced models:
Given the full model (1), construct two model reduction bases V,W ∈ C

n×r with WT V
invertible. Then the reduced model quantities in (2) are given by

Ar = (WT V)−1WT AV, br = (WT V)−1WT b, and cr = cV. (3)

The following question arises: How to choose V and W so that the reduced model is a high-
fidelity approximation to the original one? There are many different ways to construct V and
W, and we refer the reader to [3, 4, 14] for detailed descriptions of such methods for linear
dynamical systems. Here we focus on constructing optimal interpolatory reduced models.

To discuss interpolation and optimality, we first need to define the concept of transfer
function. Let Y(s), Yr (s), and U(s) denote the Laplace transforms of y(t), yr(t), and u(t),
respectively. Taking the Laplace transforms of (1) and (2) yields

Y(s) = H(s)U(s) where H(s) = cT (sI − A)−1b, and

Yr (s) = Hr(s)U(s) where Hr(s) = cT
r (sIr − Ar )

−1br .

The rational functions H(s) and Hr(s) are the transfer functions associated with the full
model (1) and the reduced model (2). While H(s) is a degree-n rational function, Hr(s) is
of degree-r .

Interpolatory model reduction aims to construct an Hr(s) that interpolates H(s) at
selected points in the complex plane. Indeed, we will focus on Hermite interpolation, as this
will be tied to optimality later. Suppose we are given r mutually distinct interpolation points
(also called shifts), σ = {σ1, σ2, . . . , σr }, in the complex plane. We will assume that the
shifts have positive real parts and that are closed (as a set) under conjugation, i.e., there exists
an index permutation (i1, i2, . . . , ir ) such that σ = {σ1, σ2, . . . , σr } = {σi1 , σi2 , . . . , σir }.

Given σ , construct the model reduction bases V ∈ C
n×r and W ∈ C

n×r such that

Range(V) = span
{
(σ1I − A)−1b, . . . , (σrI − A)−1b

}
and (4)

Range(W) = span
{
(σ1I − AT )−1c, . . . , (σrI − AT )−1c

}
. (5)

Then, the reduced model (2) constructed as in (3) satisfies

Hr(σi) = H(σi) and H ′
r (σi) = H ′(σi) for i = 1, 2, . . . , r . (6)
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In other words, Hr(s) is a rational Hermite interpolant to H(s) at the specified interpolation
points. However, this construction requires knowing the interpolation points. How should
one choose them to guarantee a high-fidelity reduced model?

We will measure fidelity using the H2 norm: The H2 norm of a dynamical system with
transfer function H(s) is defined as

‖H‖H2 =
√

1

2π

∫ ∞

−∞
|H(iω)|2dω.

For the full model (1) and the reduced model (2), the output error satisfies

‖y − yr‖L∞ ≤ ‖H − Hr‖H2‖u‖L2 ,

where ‖y − yr‖L∞ = supt≥0 |y(t) − yr(t)| and ‖u‖L2 =
√∫ ∞

0 |u(t)|2dt . So, a reduced

model that minimizes the H2 distance ‖H − Hr‖H2 is guaranteed to yield uniformly good
approximations over finite energy inputs. Therefore, it is desirable to find a reduced model
with transfer function Hr(s) that minimizes the H2 distance, i.e., to find Hr(s) such that

‖H − Hr‖H2 = min
Gr stable

order Gr≤r

‖H − Gr‖H2

at least locally in a neighborhood of Hr . This is a heavily studied topic; see, e.g., [13, 33, 41,
44, 45] for Sylvester-equation formulation and [9, 16, 29, 34, 38, 42, 46] for interpolation
formulation. Indeed, these two formulations are equivalent as shown in [29] and we focus
on the interpolatory formulation.

How does the H2 optimality relate to Hermite interpolation? Let μ1, . . . , μr be the
eigenvalues of Ar , assumed simple. If Hr(s) is an H2-optimal approximation to H(s), then
it is a Hermite interpolant to H(s) at the points σi = −μi , i.e.,

Hr(−μi) = H(−μi) and H ′
r (−μi) = H ′(−μi), for i = 1, 2, . . . , r . (7)

These conditions are known as Meier–Luenberger conditions for optimality [38]. How-
ever, one cannot simply use σi = −μi in constructing V and W in (4)–(5) since μis are not
known a priori. This requires an iteratively corrected algorithm. The iterative rational Krylov
algorithm IRKA [29] as outlined in Algorithm 1 precisely achieves this task. It reflects the
intermediate interpolation points until the required optimality criterion, i.e., σi = −μi is
met. Upon convergence, the reduced model is a locally optimal H2-approximation to (2).
IRKA has been successful in producing locally optimal reduced models at a modest cost and
many variants have been proposed; see, e.g., [7–9, 15, 27, 28, 32, 39, 40, 43]. Moreover, it
has been successfully extended to model reduction of bilinear [11, 26] and quadratic-bilinear
systems [12], two important classes of structured nonlinear systems.
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Our goal in this paper is not to compare model reduction techniques, nor is it to illustrate
the effectiveness of IRKA and its variants. For example, reduced models produced by IRKA,
as specified in Algorithm 1, are not a priori guaranteed to be asymptotically stable although
there is overwhelming numerical evidence that one should expect this [4, 5]. In practice,
one might consider only mirroring the stable eigenvalues in Step 8 of Algorithm 1. We will
ignore these issues here and refer instead to sources cited above for supporting analyses.
Our main goal here is to revisit IRKA in its original form and reveal new connections to the
pole placement problem (Section 3) by a thorough analysis of the quantities involved in a
special basis (Section 2). This will lead to a backward stability formulation relating then to
new stopping criteria (Section 4).

In order to keep the discussion concise, we focus here on single-input/single-output
dynamical systems, i.e., u(t), y(t), yr (t) ∈ R. For detailed discussion of H2-optimal model
reduction in the complementary multi-input/multi-output case, see [4, 5, 14].

2 Structure in the Primitive Bases

In Steps 3 and 4 of IRKA as laid out in Algorithm 1 above, the matrices V and W are each
chosen as bases for a pair of rational Krylov subspaces. The reduced model is independent of
the particular bases chosen and one usually constructs them to be orthonormal. We consider
a different choice in this section, and show that if V and W are chosen instead as primitive
bases, i.e., if

V = [
(σ1I − A)−1b . . . (σr I − A)−1b

]
and W = [

(σ1I − A)−T c . . . (σr I − A)−T c
]
, (8)

then the state-space realization of the reduced model exhibits an important structure which
forms the foundation of our analysis that follows in Sections 3 and 4. Therefore, in the rest
of the paper, we use primitive bases for V and W as given in (8). We emphasize that this does
not change the reduced model Hr(s); it is simply a change of basis that reveals nontrivial
structure that can be exploited both in the theoretical analysis of the algorithm and for its
efficient software implementation.

It is easy to check that ([29]), for V and W as primitive bases (8), the matrices WT AV
and WT V are symmetric; but not necessarily Hermitian. Moreover, one may directly verify
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that ([5]), WT V is the Loewner matrix whose (i, j)th entry, for i, j = 1, . . . , r , is given by

(WT V)ij = [σi, σj ]H := H(σi) − H(σj )

σi − σj

, (9)

with the convention that [σi, σi]H = H ′(σi).

Lemma 1 Let ωr(z) = (z − σ1)(z − σ2) . . . (z − σr) be the nodal polynomial associated
with the shifts σ = {σ1, σ2, . . . , σr }. For any monic polynomial pr ∈ Pr , define the vector

q = (q1, . . . , qr )
T , qi = pr(σi)

ω′
r (σi)

, i = 1, . . . , r,

and the matrixAr = �r −qeT with �r = diag(σ1, . . . , σr ). Then det(zI−Ar ) = pr(z) and

AV − VAr = −pr(A)[ωr(A)]−1beT , (10)

WT A − AT
r W

T = −ecT pr(A)[ωr(A)]−1. (11)

Proof Pick any index 1 ≤ k ≤ r and consider fk(z) = pr(z)− z ·∏i 
=k(z − σi). Evidently,
fk ∈ Pr−1 and so the Lagrange interpolant on σ1, σ2, . . . , σr is exact:

fk(z) = pr(z) − z ·
∏

i 
=k

(z − σi) =
r∑

i=1

fk(σi)
ωr(z)

(z − σi)ω′
r (σi)

.

Divide by ωr(z) and rearrange to obtain

z

σk − z
−

r∑

i=1

(

− fk(σi)

ω′
r (σi)

)
1

σi − z
= −pr(z)

ωr(z)
. (12)

Let � be a Jordan curve that separates C into two open, simply-connected sets, C1, C2 with
C1 containing all the eigenvalues of A and C2 containing both the point at ∞ and the shifts
{σ1, . . . , σr }. For any function f (z) that is analytic in a compact set containing C1, f (A)

can be defined as f (A) = 1
2πi

∫
�

f (z)(zI − A)−1dz. Applying this to (12) gives

A(σkI − A)−1 −
r∑

i=1

(

− fk(σi)

ω′
r (σi)

)

(σiI − A)−1 = −pr(A)[ωr(A)]−1.

Postmultiplication by b provides the kth column of (10), while premultiplication by cT (and
since (σkI − A)−1 commutes with A) provides the kth row of (11).

To compute the characteristic polynomial of Ar , we use the alternative factorizations1,
(

zI − �r q
eT −1

)

=
(

I −q
0T 1

) (
zI − Ar 0

0T −1

)(
I 0

−eT 1

)

(
zI − �r q

eT −1

)

=
(

I 0
eT (zI − �r )

−1 1

)(
zI − �r 0

0T −a(z)

)(
I (zI − �r )

−1q
0 1

)

,

1For the reader’s convenience, here we actually reproduce the proof of the Sherman–Morrison determinant
formula.
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where a(z) = 1 + eT (zI − �r )
−1q. Then we have that

det(zI − Ar ) = det(zI − �r ) · a(z) = ωr(z) ·
(

1 + eT (zI − �r )
−1q

)

= ωr(z) +
r∑

i=1

pr(σi)

(
ωr(z)

ω′
r (σi)(z − σi)

)

= pr(z), (13)

where the last equality follows by observing that the penultimate expression describes a
monic polynomial of degree r that interpolates pr at σ1, σ2, . . . , σr .

Lemma 1, and more specifically (10) and (11), reveal the rational Krylov structure arising
from the choice of V and W in (8). At first, connection of the involved quantities such as
the vector q to IRKA quantities might not be clear. In the following result, we make these
connections precise.

Lemma 2 Let the reduced model Hr(s) = cT
r (sI − Ar )

−1br be obtained by projection as
in (3) using the primitive basesW and V in (8). Let

pr(z) = det(zWT V − WT AV)/ det(WT V).

Then (10) and (11) hold with Ar = (WT V)−1WT AV. In particular, br =
(WT V)−1WT b = q and Ar = (WT V)−1WT AV = �r − eqT . Moreover, if μ� is an
eigenvalue of Ar , then

x� = (�r − μ�I)−1 q (14)

is an associated (right) eigenvector of Ar for � = 1, 2, . . . , r . Similarly, the vector

xT
� W

T V = ν�eT (�r − μ�I)−1 (15)

is an associated left eigenvector of Ar , for � = 1, 2, . . . , r , with ν� = φ̂�
p′

r (μ�)

ωr (μ�)
, and φ̂� is

the residue of Hr(s) at s = μ�, i.e., φ̂� = lims→μ�
(s − μ�)Hr(s).

Proof Choose a monic polynomial p̂r ∈ Pr so that WT p̂r (A)[ωr(A)]−1b = 0. Then (10)
and (11) hold with an associated Ar = �r − qeT as given in Lemma 1. But then applying
WT to (10) yields Ar = (WT V)−1WT AV. This in turn implies p̂r (z) = pr(z).

Suppose that μ� is an eigenvalue of Ar . Directly substitute x� = (�r − μ�I)−1q and use
(13) with z = μ� to obtain

Arx� =
(
�r − qeT

)
(�r − μ�I)−1 q =

(
�r − μ�I − qeT + μ�I

)
(�r − μ�I)−1 q

= q
(

1 − eT (�r − μ�I)−1 q
)

+ μ� (�r − μ�I)−1 q = μ�x�.

Thus, x� is a right eigenvector for Ar associated with μ�. Note that x� also solves the
generalized eigenvalue problems:

(a) WT AVx� = μ�WT Vx� and (b) xT
� W

T AV = μ� xT
� W

T V. (16)

(16a) is immediate from the definition of Ar . (16b) is obtained by transposition of (16a) and
using the facts that WT AV and WT V are symmetric. Notice that (16b) shows that xT

� W
T V

is a left eigenvector for Ar associated with μ�. On the other hand, direct substitution also
shows that

[
eT (�r − μ�I)−1

]
Ar =

[
eT (�r − μ�I)−1

] (
�r − qeT

)
= μ�

[
eT (�r − μ�I)−1

]
,
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so eT (�r − μ�I)−1 is also a left eigenvector of Ar associated with μ�. We must have then

xT
� W

T V = ν�eT (�r − μ�I)−1

for some scalar ν� which we now determine. Using (9) and (14), the j th component of each
side of the equation can be expressed as

(
xT
� W

T V
)

j
=

r∑

i=1

pr(σi)

ω′
r (σi)

[σi, σj ]Hr

σi − μ�

= ν�

σj − μ�

. (17)

Define the function f (z) = pr(z)[z, σj ]Hr . It is easily checked that f (z) is a polynomial
of degree r − 1 and so Lagrange interpolation on {σ1, σ2, . . . , σr } is exact:

f (z) =
r∑

i=1

(
pr(σi)[σi, σj ]Hr

) ωr(z)

(z − σi)ω′
r (σi)

.

Now evaluate this expression at z = μ�:
r∑

i=1

(pr(σi)[σi, σj ]Hr)ωr(μ�)

(μ� − σi)ω′
r (σi)

= f (μ�) = lim
z→μ�

pr(z)
Hr(z) − Hr(σj )

z − σj

= p′
r (μ�)φ̂�

μ� − σj

,

where we observe that limz→μ�
pr(z)Hr(z) = φ̂�

∏
i 
=�(μ� − μi) = φ̂�p

′
r (μ�). Comparing

this expression to (17) we find ν� = φ̂�
p′

r (μ�)

ωr (μ�)
.

Lemma 2 illustrates that if the primitive bases V and W in (8) are employed in IRKA,
then the reduced matrix Ar at every iteration step is a rank-1 perturbation of the diagonal
matrix of shifts. This matrix Ar = �r −qeT is known as the generalized companion matrix.
This special structure allows explicit computation of the left and right eigenvectors of Ar as
well. The next corollary gives further details about the spectral decomposition of Ar .

Corollary 1 Consider the setup in Lemma 2. Define the r × r Cauchy matrix C = C(σ ,μ)

as

Cij = 1

σi − μj

for i, j = 1, 2, . . . , r, (18)

and the r × r diagonal matrix Dq = diag(q1, q2, . . . , qr ). Then Ar = � − qeT has the
spectral decomposition

Ar = XMX−1 where M = diag(μ1, μ2, . . . , μr) and X = DqC. (19)

Moreover, AT
r = D−1

q ArDq and its spectral decomposition is

AT
r = � − eqT = D−1

q ArDq = CMC−1. (20)

Proof The spectral decomposition of Ar in (19) directly follows from (14) by observing that

x� = (�r − μ�I)−1q =
[

q1
σ1−μ�

q2
σ2−μ�

· · · qr

σr−μ�

]T

. Therefore, the eigenvector matrix

X = [
x1 x2 . . . xr

]
can be written as X = DqC, proving (19). The spectral decomposition

of AT
r in (20) can be proved similarly using (15), i.e., the fact that (�r−μ�I)−T e is an eigen-

vector of AT
r . Finally, D−1

q ArDq = D−1
q (�r − qeT )Dq = �r − D−1

q qeT Dq since both Dq

and �r are diagonal. Moreover, it follows from the definition of Dq = diag(q1, q2, . . . , qr )

that D−1
q q = e and eT Dq = q, thus completing the proof.
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3 A Pole Placement Connection

The main goal of this paper is to reveal the structure of the iterations in Algorithm 1, and
in particular to study the limiting behaviour of the sequence of the shifts σ (k), k = 1, 2, . . ..
In this section, we explore an intriguing idea to recast the computation of the shifts in
Algorithm 1 in a pole placement framework, and then to examine its potential for improving
the convergence.

As Lemma 2 illustrates, if the primitive bases (8) are employed in IRKA, then at every
step of IRKA, we have Ar = �r − qeT . Then, in the kth step, we start with the shifts
σ

(k)
1 , . . . , σ

(k)
r and use them to build the matrix

A(k+1)
r (σ (k)) = diag

(
σ

(k)
1 , . . . , σ (k)

r

)
− q(k+1)eT , (21)

where the vector q(k+1) (the reduced input in step k) ensures that the Hermite interpolation
conditions are fulfilled, see (6). If σ

(k)
i is real, then q

(k+1)
i is real as well; if for some i 
=

jσ
(k)
i = σ

(k)
j , then q

(k+1)
i = q

(k+1)
j . As a consequence, A(k+1)

r is similar to a real matrix and

its eigenvalues will remain closed under complex conjugation. Further, if some q
(k+1)
i = 0,

then the corresponding σ
(k)
i is an eigenvalue of A(k+1)

r (σ (k)); thus, if we assume that the

shifts are in the open right half-plane and that A(k+1)
r (σ (k)) is stable, then q

(k+1)
i 
= 0

for all i. Then, the new set of shifts is defined as

σ (k+1) = −μ(k+1), where μ(k+1) = eig(A(k+1)
r (σ (k))), (22)

where eig(·)is a numerical algorithm that computes the eigenvalues and returns them in
some order.2 In the limit as k → ∞ the shifts should satisfy (6) and (7).

3.1 Measuring Numerical Convergence

Numerical convergence in an implementation of Algorithm 1 is declared if σ (k+1) ≈ σ (k),
where the distance between two consecutive sets of shifts is measured using the optimal
matching3

d(σ (k+1), σ (k)) = min
π∈Sr

max
i=1:r|σ

(k+1)
π(i) − σ

(k)
i |, where Sr denotes the symmetric group.

In an implementation, it is convenient to use the easier to compute Hausdorff distance

h(σ (k+1), σ (k)) = max

{

max
j

min
i

∣
∣
∣σ (k+1)j − σ

(k)
i

∣
∣
∣ , max

i
min

j

∣
∣
∣σ (k)

i − σ
(k+1)
j

∣
∣
∣

}

for which h(σ (k+1), σ (k)) ≤ d(σ (k+1), σ (k)), so the stopping criterion (Line 9 in Algo-
rithm 1) must be first satisfied in the Hausdorff metric.

Numerical evidence shows that many scenarios are possible during the iterations in Algo-
rithm 1—from swift to slow convergence. Characterizing the limit behavior in general is an
open problem; in the case of symmetric systems local convergence is established in [25].
Moreover, we have also encountered misconvergence in form of the existence of at least two
accumulation points that seem to indicate existence of periodic points of the mapping (22).
This is illustrated in the following example.

2Since the matrix is a rank one perturbation of the diagonal matrix, all eigenvalues can be computed in O(r2)

operations by specially tailored algorithms.
3The shifts (eigenvalues) are naturally considered as equivalence classes in C

r /Sr .
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Example 1 We take the matrix A ∈ R
120×120 from the CD player benchmark example [18,

19] from the NICONET benchmark collection [17] and set b = c = e. With a particular set
of r = 29 initial shifts, we obtained separate behaviours for the odd and the even iterates,
as shown in Fig. 1.

Hence, it is of both theoretical and practical interest to explore possibilities for improv-
ing the convergence. Supplying good initial shifts is certainly beneficial, and in [20, 21]
we show that the less expensive Vector Fitting algorithm can be used for preprocess-
ing/preconditioning to generate good shifts that are then forwarded to IRKA to advance them
to a local optimum.

An alternative course of action is to deploy an additional control in the iterations which
will keep steering the shifts toward the desired positions. In fact, an example of such an inter-
vention has been already used in the numerical implementation of Algorithm 1. Namely,
it can happen that in some steps the matrix (21) is not stable and some of its eigenvalues
(22) are in the right half-plane. To correct this situation, the unstable ones (real or complex-
conjugate pair(s)) are flipped across the imaginary axis, so that the new shifts σ (k+1) stay in
the right-half plane.

This is an explicit (brute force) post-festum reassignment of the shifts to correct for
stability. In [20], we showed that such a step (in the framework of Vector Fitting) can be
recast as pole placement. Now that we have resorted (implicitly) to the pole placement
mechanism, we can think of using it as a proactive strategy for improving convergence. In

Fig. 1 (Example 1) The history of the shifts obtained using Algorithm 1. The iterations are colored using
six colors periodically as follows: Note how the odd and the even iterates build two
separated pairs of “smoke rings” (abscissa range [6000, 10000]); more smaller rings can be identified in the
abscissa range [3000, 5000]. The shifts do not converge to a fixed point, but the difference between the two
sub-sequences (the even and the odd indices) converges to a nonzero value
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the rest of this section, we explore this idea and discover interesting connections with some
variations of IRKA.

3.2 Reduced Input-to-State Vector as a Pole Placement Feedback Vector

Motivated by the above discussion, we reinterpret (a posteriori) the vector q(k+1) in (21)
as the feedback vector that reallocates the eigenvalues4 of diag(σ (k)) into μ(k+1); in other
words we view (21) as a pole-placement problem. Then we can use the uniqueness argument
and write q(k+1) explicitly as (see [36, 37])

− q
(k+1)
i =

∏r
j=1(σ

(k)
i − μ

(k+1)
j )

∏r
j=1
j 
=i

(σ
(k)
i − σ

(k)
j )

=
(
σ

(k)
i − μ

(k+1)
i

) r∏

j=1
j 
=i

σ
(k)
i − μ

(k+1)
j

σ
(k)
i − σ

(k)
j

, i = 1, . . . , r .

(23)
On the other hand, for the fulfillment of the necessary conditions for optimality, besides the
Hermite interpolation built in (23), the additional fixed point condition should hold:

eig
(
A(k+1)

r (σ (k))
)

≈ −σ (k). (24)

The latter is what we hope to reach with the equality in the limit as k → ∞, and in practice
up to a reasonable tolerance, see Section 4.1. If we consider the condition (24) as an eigen-
value assignment problem, and think of the vector q(k+1) in (21) simply as the feedback
vector, then (24) can be satisfied in one step, provided we drop the interpolation condition
and use an appropriate feedback f(k+1) vector instead of q(k+1). The feedback f(k+1) can be
constructed explicitly (see [36, 37]) as

f
(k+1)
i = −2σ

(k)
i

r∏

j=1
j 
=i

σ
(k)
i + σ

(k)
j

σ
(k)
i − σ

(k)
j

, i = 1, . . . , r . (25)

Of course, the above formula is a special case of (23), where we reflect the poles. However,
if at a particular step some of the eigenvalues are unstable, we should not reflect the cor-
responding shifts. This means that in an implementation, we may apply only partial pole
placement. Hence, altogether, it would make sense to interweave interpolation and eigen-
value assignment by combining f(k+1) and q(k+1) using an appropriately chosen parameter
αk ∈ [0, 1], and thus obtain a modified iteration step, as outlined in Algorithm 2. To incor-
porate this new shift-updating scheme into IRKA, Algorithm 2 should replace Step 8 in
Algorithm 1.

4We tacitly assume that throughout the iterations all shifts are simple.
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Proposition 1 For the real LTI system (1), and σ (k) closed under complex conjugation,
the matrix Ă(k+1)

r (σ (k)) is similar to a real matrix and, thus, σ (k+1) remains closed under
complex conjugation.

Proof From (25), we conclude that f
(k+1)
i is real if σ

(k)
i is real. Further, if for some i 
= j

σ
(k)
i = σ

(k)
j , then f

(k+1)
i = f

(k+1)
j . We have already concluded that q(k+1) has an analogous

structure. Since αk is real, Ă(k+1)
r (σ (k)) is similar to a real matrix.

It remains an open problem how to chose the coefficients αk adaptively and turn Algo-
rithm 2 into a robust black-box scheme. We now show an interesting connection that might
provide some guidelines.

3.3 Connection to the Krajewski–Viaro Scheme

Improving the convergence of fixed point iterations is an important topic. In general, the
fixed point problem f (x) = x can be equivalently solved as the problem

fα(x) = x, where fα(x) = αf (x) + (1 − α)x, α 
= 0,

where the parameter α is used, e.g., to modify eigenvalues of the corresponding Jacobian.
This is a well-known technique (Mann iteration), with many variations. In the context of
H2 model reduction, this scheme has been successfully applied by Ferrante, Krajewski,
Lepschy and Viarro [24], and Krajewski and Viaro [35]. Concretely, Krajewski and Viaro
[35, Algorithm 4] propose a modified step for the IRKA procedure, outlined in Algorithm 3:

Φ

Φ

Krajewski and Viaro [35] do not elaborate on the details of computing the coefficients of
the characteristic polynomials of the reduced matrix (WT

k Vk)
−1WT

k AVk . From a numerical
point of view, this is not feasible, not even for moderate dimensions. Computing coefficients
of the characteristic polynomial by, e.g., the classical Faddeev–Leverrier trace formulas is
both too expensive (O(r4)) and too ill-conditioned. A modern approach would reduce the
matrix to a Schur or Hessenberg form and then exploit the triangular or, respectively, Hes-
senberg structure. However, after completing all those (tedious) tasks, the zeros of ℘̆(k+1)

r

in Line 4 are best computed by transforming the problem into an eigenvalue computation
for an appropriate companion matrix. Ultimately, this approach is only conceptually inter-
esting as a technique for improving convergence, and in this form it is applicable only for
small values of r .
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We now show that when represented in a proper basis, this computation involving char-
acteristic polynomials becomes rather elegant and simple, and further provides interesting
insights. In particular, in this proper basis, Algorithm 3 is equivalent to Algorithm 2.

Theorem 1 In the Lagrange basis of ω
(k)
r + Pr−1, the Krajewski–Viaro iteration is

equivalent to the “IRKA + pole placement” iteration of Algorithm 2.

Proof Note that by Lemma 1 we can write A(k+1)
r = diag(σ

(k)
i )−q(k+1)eT , where q

(k+1)
i =

℘
(k+1)
r (σi)/(ω

(k+1)
r )′(σi), i = 1, . . . , r , and ℘

(k+1)
r (z) is the characteristic polynomial of

A(k+1)
r . Further, using Lemma 1, we can write ℘

(k+1)
r (z) as

℘(k+1)
r (z) = ω(k)

r (z) +
r∑

i=1

℘(k+1)
r (σ

(k)
i )

ω
(k)
r (z)

(ω
(k)
r )′(σ (k)

i )(z − σ
(k)
i )

= ω(k)
r (z) +

r∑

i=1

q
(k+1)
i

ω
(k)
r (z)

z − σ
(k)
i

, ω(k)
r (z) =

r∏

i=1

(z − σ
(k)
i ).

If we consider the monic polynomials of degree r as the linear manifold ω
(k)
r + Pr−1, and

fix in Pr−1 the Lagrange basis with the nodes σ
(k)
i , i = 1, . . . , r , then

℘̆(k)
r (z) = ω(k)

r (z) +
r∑

i=1

℘̆k(σ
(k)
i )

ω
(k)
r (z)

(ω
(k)
r )′(σ (k)

i )(z − σ
(k)
i )

= ω(k)
r (z) +

r∑

i=1

∏r
j=1(σ

(k)
i + σj )

(k)

∏r
j=1
j 
=i

(σ
(k)
i − σ

(k)
j )

ω
(k)
r (z)

z − σ
(k)
i

= ω(k)
r (z) +

r∑

i=1

f
(k+1)
i

ω
(k)
r (z)

z − σ
(k)
i

,

where we used that ℘̆(k)
r (σ

(k)
i ) = ∏r

j=1(σ
(k)
i + σ

(k)
j ), (ω

(k)
r )′(σ (k)

i ) = ∏r
j=1
j 
=i

(σ
(k)
i − σ

(k)
j )

and that the feedback vector (25) can be written as
∏r

j=1(σ
(k)
i + σ

(k)
j )

∏r
j=1
j 
=i

(σ
(k)
i − σ

(k)
j )

= 2σ
(k)
i

∏r
j=1
j 
=i

(σ
(k)
i + σ

(k)
j )

(σ
(k)
i − σ

(k)
j )

= f
(k+1)
i .

Hence, ℘̆(k)
r is the characteristic polynomial of diag(σ (k)) − f(k+1)eT , and we have further

℘̆(k+1)
r (z) = ω(k)

r (z) +
r∑

i=1

(αkq
(k+1)
i + (1 − αk)f

(k+1)
i )

ω
(k)
r (z)

z − σ
(k)
i

= ω(k)
r (z) +

r∑

i=1

αk℘
(k+1)
r (σ

(k)
i ) + (1 − αk)℘̆

(k)
r (σ

(k)
i )

(ω
(k)
r )′(σ (k)

i )

ω
(k)
r (z)

z − σ
(k)
i

= ω(k)
r (z) +

r∑

i=1

p̆
(k+1)
r (σ

(k)
i )

(ω
(k)
r )′(σ (k)

i )

ω
(k)
r (z)

z − σ
(k)
i

,

which implies that ℘̆(k+1)
r is the characteristic polynomial of the matrix Ă(k+1)

r (σ (k)), repre-
sented by the vector q̆(k+1) from Lines 3 and 4 of Algorithm 2. This follows from the proof
of Lemma 1.

Krajewski and Viaro [35] use a fixed value of the parameter α, and show that differ-
ent (fixed) values may lead to quite different convergence behavior. This modification can
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turn a non-convergent process into a convergent one, but it can also slow down an already
convergent one.5 Following the discussion from [24], α is best chosen to move the small-
est eigenvalue of the Jacobian of 
α (evaluated at the fixed point of 
) into the interval
(−1, 1). This does not seem to be a simple task as it requires estimates of the eigenvalues
of the (estimated) Jacobian. Another option is to try different values of α in an iterative
reduced order model design.

This equivalence of the schemes in Algorithm 2 and in Algorithm 3 reveals a problem
that is not easily seen in the framework of Algorithm 3. Now we may clearly see that part
of the “energy” in Algorithm 3 is put into reflecting the shifts, and this, at least in some
situations, may be wasted effort. Although the optimal reduced order model is guaranteed to
be stable, the iterates, generally, are not. This means that some shifts σ

(k)
i may be in the left-

half plane, and the f(k+1) component of the modified q̆(k+1) will tend to reflect them to the
right-half plane. This in turn forces the new reduced matrix Ă(k+1)

r to have some eigenvalues
in the right-half plane, thus creating a vicious cycle. Hence, in the first step (Line 1), one
should correct σ (k), if necessary.

Remark 1 The facts that pole placement may be extremely ill-conditioned [31], where
(depending on the distribution of the target values) even as small as r = 15 could lead to
ill-conditioning, and that IRKA is actually doing pole placement in disguise, opens many
nontrivial issues. For instance, what is a reasonable threshold for the stopping criterion?
Will we be able to actually test it (and detect convergence) in finite precision? What are
relevant condition numbers in the overall process? Do IRKA iterations drive the shifts to
well-conditioned configurations for which the feedback vector (the reduced input) is rea-
sonably small (in norm, as illustrated in the right panels of Figs. 2 and 3 in Example 2
below) and successful in achieving numerical convergence? If yes, what is the underlying
principle/driving mechanism? In the next section, we touch upon some of these issues.

4 Perturbation Effects and Backward Stability in IRKA

We turn our attention now to numerical considerations in the implementation of IRKA. We
focus on two issues: (i) What are the perturbative effects of finite-precision arithmetic in
terms of system-theoretic quantities? (ii) What are the effects of “numerical convergence”
on the reduced model?

4.1 Limitations of Finite Precision Arithmetic

Suppose that we are given magic shifts σ so that the eigenvalues of Ar = �r − qeT are
exactly λ = −σ , or λ ≈ −σ up to a small tolerance ε. However, in floating point compu-
tations, the vector q = (WT V)−1WT b is computed up to an error δq, and therefore instead
of Ar , we have Ãr = �r − (q + δq)eT . In practice, the source of δq is twofold: First, in
large-scale settings, the primitive Krylov bases V and W are usually computed by an iter-
ative method which uses restricted information from suitably chosen subspaces and thus
generates a truncation error; see, e.g., [1, 2, 10]. In addition, computation is polluted by

5We should point out here that the dimensions n and r are rather small in all reported numerical experiments
in [35].
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omnipresent rounding errors of finite precision arithmetic. How the size of δq influences the
other components of the IRKA is relevant information that we investigate in this subsection.

Assume for the moment that δq is the only perturbation in one step of IRKA. We want to
understand how the eigenvalues of Ar and Ãr differ as a function of δq. In particular, we
want to discover the relevant condition numbers that play a role in this perturbation analysis.

Theorem 2 Let Ar = �r −qeT and Ãr = �r − q̃eT be diagonalizable, where q̃ = q+δq.
Let Ar and Ãr have the spectral decompositions Ar = XMX−1 and Ãr = X̃M̃X̃−1, where
M = diag(μi)

r
i=1, M̃ = diag(μ̃i)

r
i=1 and the eigenvector matrices X = DqC and X̃ = D̃qC̃

as described in Corollary 1. Then there exists a permutation π such that

√√
√
√

r∑

i=1

∣
∣
∣
∣
μi − μ̃π(i)

μi

∣
∣
∣
∣

2

≤ ‖C‖2‖(CM)−1‖2κ2(C̃)‖δqeT ‖2. (26)

Proof Note that we can equivalently compare the spectra of AT
r and ÃT

r . From (15), we
know that the spectral decomposition of AT

r is given by

AT
r = �r − eqT = D−1

q ArDq = CMC−1. (27)

Similarly for ÃT
r , we obtain

ÃT
r = �r − ẽqT = D̃−1

q Ãr D̃q = C̃M̃C̃−1. (28)

Next we employ the perturbation results of Elsner and Friedland [23], and Eisenstat and
Ipsen [22], while taking into account the special structure of both matrices. Write ÃT

r =
AT

r + δAT
r , where δAT

r = −eδqT . Using the spectral decompositions (20) and (28), the
matrix A−T

r ÃT
r − I = A−T

r δAT
r can be transformed into

M−1(C−1C̃)M̃ − (C−1C̃) = C−1A−T
r δAT

r C̃. (29)

Set Y = C−1C̃ and take the absolute value of yij , an arbitrary entry of Y at the (i, j)th
position, to obtain

|yij |
∣
∣
∣
∣
μ̃j

μi

− 1

∣
∣
∣
∣ = |(C−1A−T

r δAT
r C̃)ij | for 1 ≤ i, j ≤ r .

Hence
r∑

i=1

r∑

j=1

|yij |2
∣
∣
∣
∣
μ̃j

μi

− 1

∣
∣
∣
∣

2

= ‖C−1A−T
r δAT

r C̃‖2
F ,

where the Hadamard product matrix Y ◦ Y = (|yij |2)ri,j=1 is entry-wise bounded by

σmin(Y)2Sij ≤ (Y ◦ Y)ij ≤ σmax(Y)2Sij ,

where S is a doubly-stochastic matrix; see [23]. Hence

r∑

i=1

r∑

j=1

Sij

∣
∣
∣
∣
μ̃j

μi

− 1

∣
∣
∣
∣

2

≤ ‖Y−1‖2
2‖C−1A−T

r δAT
r C̃‖2

F ≤ κ2(C)2κ2(C̃)2‖A−T
r δAT

r ‖2
F .

(30)
The expression on the left-hand side of (30) can be considered as a function defined on
the convex polyhedral set of doubly-stochastic matrices, whose extreme points are the
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permutation matrices. Thus, for some permutation π , we obtain
r∑

i=1

∣
∣
∣
∣
μ̃π(i) − μi

μi

∣
∣
∣
∣

2

≤ ‖Y−1‖2
2‖C−1A−T

r δAT
r C̃‖2

F .

Then, using (20), the spectral decomposition of A−T
r , and the definition of δAr complete

the proof.

Remark 2 One can write (29) as YM̃ − MY = C−1δAT
r C̃ and conclude that there exists a

permutation p such that (see [23])
√√
√
√

n∑

i=1

|μ̃p(i) − μi |2 ≤ κ2(C)κ2(C̃)‖δqeT ‖2.

Remark 3 The right-hand side in relation (26) can also be bounded by

√
rκ2(C)κ2(C̃)

‖δq‖2

mini |μi | .

From the numerical point of view, Theorem 2 cannot be good news—Cauchy matrices
can be ill-conditioned. A few random trials will quickly produce a 10 × 10 Cauchy matrix
with condition number greater than 1010. The most notorious example is the Hilbert matrix,
which at the dimension 100 has a condition number larger than 10150. No function of the
matrix that is influenced by that condition number of the eigenvectors can be satisfactorily
computed in 32 bit machine arithmetic. The 64 bit double precision allows only slightly
larger dimensions before the condition number takes over the machine double precision.

On the other hand, we note that our goal is not to place the shifts at any predefined loca-
tions in the complex plane. Instead, we are willing to let them go wherever they want, under
the condition that they remain closed under conjugation and stationary at those positions. It
should also be noted that the distribution of the shifts obviously plays a role in this consid-
erations. The following example will illustrate this; especially the impact of the optimal H2
interpolation points.

Example 2 As in Example 1, we first take the CD player model [18, 19] of order n = 120
and apply IRKA as in Algorithm 1 for r = 2, r = 16, and r = 26. In each case, IRKA is
initialized by randomly assigned shifts. The condition numbers of C for each case, recorded
throughout the iterations, are shown on the left panel of Fig. 2. IRKA drastically reduces
the condition number of C throughout the iteration, more than 15 order of magnitudes for
r = 16 and r = 26 cases. Therefore, IRKA keeps assigning shifts in such a way that
C becomes better and better conditioned; thus in affect limiting the perturbation effects
predicted by Theorem 2. Moreover, we can observe that the reduced input vectors q(k),
which act also as feedback vectors that steer the shifts, diminish in norm over the iterations;
see the right panel of Fig. 2.

We have observed the same effect in all the examples we have tried. For brevity, we
include only one more such result using the International Space Station 1R Module [6, 30]
of order n = 270. As for the CD Player model, we reduce this model with IRKA using
random initial shifts and this time chose reduced orders of r = 10, r = 20, and r = 30. The
results depicted in Fig. 3 reveal the same behavior: The condition number κ2(C) is reduced
significantly during IRKA as shifts converge to the optimal shifts; the same holds for the
reduced input norms ‖q(k)‖2. This observation raises intriguing theoretical questions about
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Fig. 2 κ2(C) and ‖q(k)‖2 during IRKA for the CD Player example

the distribution of the H2-optimal shifts, as their impact mimics that of Chebyshev points
(as opposed to linearly spaced ones) in polynomial interpolation. These issues will not be
studied here and are left to future papers.

4.2 Stopping Criterion and Backward Stability

Analytically, H2 optimality is satisfied when σ = −μ. However, in practice Algorithm 1
will be terminated once a numerical convergence threshold is met. In this section, we will
investigate the impact of numerical convergence on the resulting reduced model. The pole-
placement connection we established in Section 3 will play a fundamental role in answering
this question.

Suppose that in Algorithm 1 a numerical stopping (convergence) criterion has been satis-
fied, i.e., the eigenvalues μ1, . . . , μk of Ar are close to the reflected shifts. Both the shifts σ

and the computed eigenvalues μ are unordered r-tuples of complex numbers, and we mea-
sure their distance using optimal matching, see Section 3.1. Hence, we define the indexing
of μ = (μ1, . . . , μr) so that

‖μ − (−σ )‖∞ = min
π∈Sr

max
k=1:r |μπ(k) − (−σk)|.

Recall that the shifts σ = {σ1, . . . , σr } are closed under conjugation, with strictly positive
real parts, and all assumed to be simple. The eigenvalues μ = {μ1, . . . , μr } are assumed

Fig. 3 κ2(C) and ‖q(k)‖2 during IRKA for the IRR 1R example
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also simple, and they are obviously closed under conjugation. With this setup, we write

μk = −σk + εk, k = 1, . . . , r, (31)

where we note that the εk’s are closed under conjugation as well. Our goal is to relate the εk’s
and the quality of the computed reduced order model identified by the triplet (Ar , br , cr ) in
the sense of backward error. In particular, we need a yardstick to determine when an εk is
small.

There is a caveat here: for given shifts σ , the vector μ consists of the computed eigenval-
ues, thus possibly highly ill-conditioned and computed with large errors. Our analysis here
considers the computed eigenvalues as exact but for a slightly changed input data,6 and we
focus on the stopping criterion and how to justify it through a backward stability statement.
This means that we want to interpret the computed reduced order model as an exact reduced
order model for an LTI close to the original one (1).

The representation of the reduced order model in the primitive basis presented in
Section 2 yields an elegant structure and provides theoretical insights. On the other hand,
having numerical computation in mind, the same structure gives reasons to exercise cau-
tion. This caution is particularly justified because, as we showed in Section 3, the ultimate
step of the iteration is an eigenvalue assignment problem: find the shifts σ such that the
eigenvalues of �r − q(σ )eT are the reflected shifts.

Using (23), (31), and Lemma 1, we know that the vector q = [
q1 q2 . . . qr

]T
satisfies

qi = (σi − μi)

r∏

k=1
k 
=i

σi − μk

σi − σk

= (2σi − εi)

r∏

k=1
k 
=i

σi + σk − εk

σi − σk

, i = 1, . . . , r . (32)

We now do the following Gedankenexperiment. Consider the true reflections of the shifts,
μ•

i = −σi . Since the pair (�r , e) is controllable7, there exists q• such that the eigenvalues
of �r − q•eT are precisely μ•

1, . . . , μ
•
r . In fact, by the formula (25), the feedback q• is

explicitly given as

q•
i = 2σi

r∏

k=1
k 
=i

σi + σk

σi − σk

, i = 1, . . . , r . (33)

Comparing (32) and (33), we see that our computed vector q satisfies

qi = q•
i

r∏

k=1

(

1 − εk

σi + σk

)

≡ q•
i (1 − ηi), i = 1, . . . , r . (34)

Since all the shifts are in the right-half-plane, |σi + σk| is bounded from below by
2 minj Re(σj ) > 0. We find it desirable to have our actually computed q close to q•,
because q• does exactly what we would like the computed q to achieve in the limit. This
indicates one possible stopping criterion for the iterations—the maximal allowed distance
between the new and the old shifts should guarantee small |εk/(σi + σk)| for all i, k.

If we define A•
r ≡ �r −q•eT , then its eigenvalues are the reflections of the shifts. Com-

paring this outcome with the actually computed Ar = �r − qeT , we obtain the following
result.

6This is the classical backward error interpretation.
7Let A ∈ C

n×n and b ∈ C
n. Then, the pair (A,b) is called controllable if rank

[
b Ab . . . An−1b

] = n.
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Proposition 2 Let Algorithm 1 be stopped with computed Ar = �r − qeT , and let the
eigenvalues of Ar be μk = −σk + εk , k = 1, . . . , r . Let

ε• ≡ max
1≤i≤r

∣
∣
∣
∣
∣

r∏

k=1

(

1 − εk

σi + σk

)

− 1

∣
∣
∣
∣
∣
< 1, ε ≡ max

1≤i≤r

∣
∣
∣
∣
∣

r∏

k=1

(

1 + εk

σi − μk

)

− 1

∣
∣
∣
∣
∣
< 1.

Then there exists A•
r = Ar + δAr with eigenvalues −σ1, . . . ,−σr , and q• = q − δq such

that A•
r = �r − q•eT ; ‖δq‖2 ≤ ε‖q‖2, ‖δq‖2 ≤ ε•‖q•‖2; and

‖δAr‖2 ≤ 2ε•‖A•
r‖2, ‖δAr‖2 ≤ ε

(

‖Ar‖2 +
(

1 + max
k

∣
∣
∣
∣
εk

μk

∣
∣
∣
∣

)

‖Ar‖2

)

.

Proof Define q• using (33) and write q = q• + δq. Write the actually computed reduced
matrix Ar = �r − qeT as

Ar = �r − q•eT − δqeT or A•
r = �r − q•eT , where A•

r = Ar + δqeT . (35)

Note that ‖�r‖2 = spr(A•
r ) ≤ ‖A•

r‖2. Further, using q•eT = �r −A•
r and taking the norm

we get √
r‖q•‖2 ≤ spr(A•

r ) + ‖A•
r‖2 ≤ 2‖A•

r‖2,

and thus the norm of δAr = δqeT can be estimated as

‖δAr‖2 = √
r‖δq‖2 ≤ √

rε•‖q•‖2 ≤ 2ε•‖A•
r‖2,

completing the proof.

Remark 4 We conclude that in the vicinity of our computed data (reduced quantities) Ar

and q, there exist A•
r and q• that satisfy the stopping criterion exactly. Both ‖Ar − A•

r‖2
and ‖q − q•‖2 are estimated by the size of ‖δq‖2. But there is a subtlety here: we cannot
use ‖δq‖2 as the stopping criterion. In other words, if we compute q and conclude that
‖q − q•‖2 is small, it does not mean that the μk’s are close to the reflections of the σk’s.
There is difference between continuity and forward stability.

Our next goal is to interpret δAr and δq as the results of backward perturbations in the
initial data A, b.

Theorem 3 Under the assumptions of Proposition 2, there exist backward perturbations
δA and δb such that the reduced order system

corresponds to exact model reduction of the perturbed full-order model described by the
triplet of matrices (A+ δA,b− δb, c) and has its poles at the reflected shifts. Let G•

r (s) =
cT
r (sIr −A•

r )
−1b•

r and G•(s) = cT (sIn−(A+δA))−1(b−δb) denote the transfer functions
of this reduced order system, and the backward perturbed original system, respectively.
Then, G•

r (σi) = G•(σi), i = 1, . . . , r . The backward perturbations satisfy

‖δb‖2 ≤ κ2(V)

cos∠(V,W)
ε‖b‖2

and

‖δA‖2 ≤ κ2(V)2

cos∠(V,W)

2ε•

1 − 2ε• ‖A‖2, provided that ε• < 1/2,
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where V = Range(V) andW = Range(W).

Proof First, recall that q = UT b, where UT = (WT V)−1WT . Since UT has full row-rank,
we can determine δb such that δq = UT δb. (The unique δb of minimal Euclidean norm is
δb = (UT )†δq ∈ W .) Using (35) and Ar = UT AV we can write then

UT AV + UT δbeT = �r − UT (b − δb)eT ,

where ‖δb‖2 ≤ ‖U†‖2‖δq‖2 ≤ κ2(U)‖b‖2ε. Since we can express e as e = VT f with
smallest possible f = (VT )†e ∈ V , we obtain

A•
r = UT (A + δbfT )V = �r − UT (b − δb)eT .

Set δA = δbfT and note that ‖δA‖2 = ‖δb‖2‖f‖2. From Proposition 2, under the mild
assumption that ε• < 1/2, we conclude that

‖δq‖2 ≤ 2ε•
√

r(1 − 2ε•)
‖Ar‖2, and thus ‖δb‖2 ≤ 2‖U†‖2ε

•
√

r(1 − 2ε•)
‖Ar‖2.

Since ‖U†‖2 ≤ ‖V‖2 and ‖f‖2 ≤ √
r‖V†‖2, we have

‖δA‖2 ≤ κ2(V)
2ε•

1 − 2ε• ‖Ar‖2, where ‖Ar‖ ≤ κ2(V)

cos∠(V,W)
‖A‖2.

Further, it holds that

V�r − (A + δbfT )V = V�r − AV − δbfT V = beT − δbeT = (b − δb)eT ,

and this implicitly enforces the interpolation conditions.

Remark 5 To claim Hermite interpolation, the only freedom left is to change c into c + δc
to guarantee that (σiI − (AT + fδbT ))−1(c + δc) ∈ W for i = 1, . . . , r . In other words,
with some r × r matrix 	, we should have

W	� − (AT + fδbT )W	 = (c + δc)eT .

If 	 commutes with �, then δceT = ceT (	−I)−fδbT W	. We can take 	 = I and instead
of the equality (which is not possible to to obtain), we can choose δc = −(1/r)fδbT We,
which is the least squares approximation. Even though this least-squares construction might
provide a near-Hermite interpolation, a more elaborate construction is needed to obtain
exact Hermite interpolation for a backward perturbed system. The framework that Beattie

Fig. 4 κ2(V) and κ2(V)/ cos(V,W) during IRKA for the CD Player example
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Fig. 5 κ2(V) and κ2(V)/ cos(V,W) during IRKA for ISS1R Example

et al. [10] provided for Hermite interpolation of a backward perturbed system in the special
case of inexact solves might prove helpful in this direction.

Our analysis in Section 4.1, specifically Theorem 2, illustrated that the condition number
of the Cauchy matrix C plays a crucial role in the perturbation analysis. And the numerical
examples showed that despite Cauchy matrices are known to be extremely ill-conditioned,
the IRKA iterations drastically reduced these conditions numbers as the shifts converge to
the optimal ones, i.e., as IRKA converges. Our analysis in this section now reveals another
important quantity measure: κ2(V)

cos∠(V,W)
. Next, we will repeat the same numerical examples

of Section 4.1 and inspect how κ2(V) and κ2(V)
cos∠(V,W)

vary during IRKA.

Example 3 We use the same models and experiments from Example 2. During the reduction
of the CD player model to r = 2, r = 16, and r = 26 via IRKA, we record the evolution of
κ2(V) and κ2(V)

cos∠(V,W)
. The results depicted in Fig. 4 show a similar story: Both quantities

are drastically reduced during the iteration thus leading to significantly smaller backward
errors ‖δq‖ and ‖δA‖ in Theorem 3.

We repeat the same experiments for the ISS 1R model and the results are shown in Fig. 5.
The conclusion is the same: κ2(V) and κ2(V)

cos∠(V,W)
are reduced ten orders of magnitudes

during IRKA.

5 Conclusions

By employing primitive rational Krylov bases, we have provided here an analysis for the
structure of reduced order quantities appearing in IRKA that reveals a deep connection to
the classic pole-placement problem. We exploited this connection to motivate algorithmic
modifications to IRKA and developed a complementary backward stability analysis. Several
numerical examples demonstrate IRKA’s remarkable tendency to realign shifts (interpolation
points) in a way that drastically reduces the condition numbers of the quantities involved,
thus minimizing perturbative effects and accounting in some measure for IRKA’s observed
robustness.
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