
PHYSICAL REVIEW B 102, 155307 (2020)
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We report the measurement and analysis of weak antilocalization in Pb1-xSnxSe topological quantum wells in
a regime where the elastic scattering length is larger than the magnetic length. We achieve this regime through
the development of high-quality epitaxy and doping of topological crystalline insulator quantum wells. We
obtain elastic scattering lengths that exceed 100 nm and become comparable to the magnetic length. In this
transport regime, the Hikami-Larkin-Nagaoka model is no longer valid. We employ the model of Wittmann and
Schmid to extract the coherence time from the magnetoresistance. We find that despite our improved transport
characteristics, the coherence time may be limited by scattering channels that are not strongly carrier dependent,
such as electron-phonon or defect scattering.
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I. INTRODUCTION

The Z2 topological insulator class—discovered more than
a decade ago—has delivered several exciting fundamental
advances and promises applications in quantum computing
and spintronics. Recently, a crystalline symmetry-protected
topological phase has been identified in the IV–VI Pb1-xSnxTe
and Pb1-xSnxSe material class. The two systems have been
shown to host four Dirac cones per surface [1–3]. Crystalline
symmetry and valley degeneracy in these materials were pro-
posed to yield a quantum Hall ferroelectric and a quantum
anomalous Hall effect with a high Chern number [4–7]. These
research frontiers have remained unexplored. Their realization
requires IV–VI topological quantum wells (QWs) with low
carrier density and a controlled interface chemistry and band
alignment [shown in Figs. 1(a) and 1(b)]. Such single QWs
are not readily available.

Most previous studies reporting transport measurements
on TCIs have studied weak antilocalization (WAL) in SnTe,
a material known to host carrier densities on the order of
1020 cm−3/Vs and mobilities on the order of 10–100 cm2/Vs
[8–11]. Trivial PbSe, PbTe, and the ternary nontrivial
Pb1-xSnxSe and Pb1-xSnxTe have been synthesized with supe-
rior quality in the form of bulk epilayers and heterostructures
[12–18]. However, there has not been any effort dedicated
to the synthesis of high-quality single QWs of the nontrivial
class of those materials. Thus, while WAL has been exten-
sively studied in topological insulators (TIs) and spin-orbit
coupled systems, it remains underexplored in topological
crystalline insulator (TCIs)—especially in high-mobility sam-
ples. WAL is a very useful tool to probe the properties of Dirac
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electrons [19–22], particularly the Berry phase and how it is
impacted by different symmetry-breaking perturbations.

This work reports the realization of single QWs of TCI
Pb0.7Sn0.3Se with carrier density lower than 1013 cm−2 and
mobility exceeding 10 000 cm2/Vs. This improved quality
allows us to reach a quantum coherent regime where the
elastic scattering length Le exceeds the magnetic length
(L2

B = h̄/2eB) for B < 0.1 T. In this limit, the well-known
Hikami-Larkin-Nagaoka (HLN) model [23] is no longer valid.
We thus implement a quantum coherent transport model de-
veloped by Wittmann and Schmid (WS) [24] that remains
valid beyond the fully diffusive regime to extract the inelastic
scattering time τφ and the Thouless coherence length. We
show that the HLN model tends to underestimate degeneracies
and overestimates the Thouless length LTh when compared
to the WS model, but still reliably captures its decay versus
temperature. Importantly, both models indicate that while LTh
exceeds 1 μm in low density QWs, its decay is also enhanced.
Our results suggest that scattering channels that are not
strongly carrier density-dependent dominate electron decoher-
ence in the IV–VI system. Most notably, electron-phonon or
long-range electron-defect scattering play a dominant role.

II. EXPERIMENT RESULTS

A. Growth and characterization

Quantum wells of Pb1-xSnxSe with x ≈ 0.3 ± 0.03 ori-
ented in the (111) direction are grown by molecular-beam
epitaxy on (111)-BaF2 substrates. A buffer layer structure
is utilized to reduce the lattice mismatch between the well
(a = 6.085 Å) and the BaF2 substrate (a = 6.196 Å). The
buffer layer consists of a starting buffer layer of Pb0.92Eu0.08Se
(50 nm, a = 6.130 Å) followed by a 50 short-period superlat-
tice of PbSe (1.6 nm)/EuSe (1 nm). The purpose of this initial
structure is to suppress the propagation of lattice dislocations
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FIG. 1. Basic properties for Pb1-xSnxSe (111) quantum well. (a) Energy diagram of the topological QW, showing the symmetric con-
finement potential and the inversion of the bulk conduction and valence bands in the well. εA/B denotes the well (A) and barrier (B) energy
gap, respectively. V denotes the band offset at the interface and d is the thickness of the well. A band inversion occurs at the interfaces. (b)
Structure diagram of quantum well. (c) X-ray diffraction reciprocal-space map of (222) plane showing peaks attributed to the well, barrier,
superlattice, and substrate (d) Reciprocal-space map of (513) plane. It is clear that the superlattice is completely relaxed with respect to BaF2

but it yields a slight in-plane tensile strain to Pb0.7Sn0.3Se. The expected fully relaxed and fully strained lines of Pb0.7Sn0.3Se are marked by
(�, �), respectively.

during growth and to maintain a smooth surface prior to the
growth of the QW. A Pb0.92Eu0.08Se barrier (45 nm) is then
grown on the superlattice followed by the Pb0.7Sn0.3Se well
(55 ± 5 nm) and a final capping layer Pb0.92Eu0.08Se (35 nm)
is synthesized on top. A schematic of the structure is shown
in Fig. 1(b). High-resolution x-ray diffraction (HRXRD) and
transmission electron microscopy (TEM, Appendix A) are
performed to characterize the heterostructures.

HRXRD is performed around the symmetric (222) node
and the asymmetric (513) node. The resulting reciprocal-
space maps are shown in Figs. 1(c) and 1(d), respectively.
Along the growth direction [qz||(111)], the Bragg peak result-
ing from the well is seen at the highest Bragg angle, clearly
separated from the superlattice and buffer layer peaks. The
Pb0.7Sn0.3Se peak appears at an angle slightly higher than
what is expected from the bulk lattice constant, suggesting
that the layer maintains a slight residual lattice strain that is
tensile in the plane but compressive out of plane. The (513)
space map shown in Fig. 1(d) confirms that while the buffer
heterostructure is completely relaxed with respect to the BaF2

substrate, the Pb1-xSnxSe well is only partially relaxed with
respect to the Pb0.9Eu0.08Se buffer and the superlattice. Bi
doping is used to tune Fermi energy of the Pb1-xSnxSe well,
using an approach similar to what is already achieved in
previous work [25,26]. A series of four samples with varying
Bi content are grown. Their characteristics are summarized in
Table I.

B. Electrical transport measurements

Electrical Hall-effect measurements performed
on this sample series up to 5 T and down to
2 K are shown in Fig. 2(a). A control sample of
Pb0.9Eu0.08Se/(PbSe, EuSe)/Pb0.9Eu0.08Se is checked
to confirm that the buffer heterostructure is electrically
insulating. Its resistance is found to exceed 33 M� at
room temperature, four orders of magnitude higher than
with the QW. Pristine Pb0.7Sn0.3Se is p type with a Hall
concentration close to 3.6 × 1013 cm−2 likely due to group
IV atom vacancies or substitutional defects. Bi is introduced
into the lattice by coevaporation during synthesis of the
quantum well. Bi is a known donor in IV–VI materials
and can alleviate defect-induced p doping. The lowest 2D
density that we reach is 6 × 1012 electrons/cm2 with a
mobility that is above 11 000 cm2/Vs. Table I summarizes the
carrier density and mobility (μ) extracted for four samples
along with the corresponding elastic scattering length Le
and characteristic transport field Btr . The computation of
Le requires a knowledge of the effective Fermi velocity v f

and carrier effective mass m. Since the energy bands in
IV–VI quantum wells are highly nonparabolic [18,27], both
quantities depend on the Fermi energy. In Appendix B and C,
we discuss our determination of those two quantities given
that multiple QW subbands are occupied [28,29]. After v f

TABLE I. Sample information. From QW-1 to QW-4 we gradually increase the Bi doping density. The carrier density, mobility, mean-free
path, and characteristic transport field are shown. They are all measured at 4.2 K and found to not vary much between 4.2 and 10 K.

Sample Bi cell ρ (µ�.cm) Density (cm−2) Mobility (cm2/Vs) Le = vF τe Btr = h̄
2eL2

e

QW-1 No Bi 2.3 3.6 × 1013 4 130 80 nm 530 Oe
QW-2 305 °C 3.8 3.1 × 1013 2 950 (52 ± 4) nm (1220 ± 180) Oe
QW-3 310 °C 4.6 −6.6 × 1012 11 300 133 nm 185 Oe
QW-4 32 0°C 3.1 −1.3 × 1013 8 630 (114 ± 8) nm (252 ± 35) Oe
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FIG. 2. (a) Hall resistance of four QWs with different Bi doping density. (b) Change in resistance versus magnetic field measured in QW-2
and QW-4 at different temperatures. (c) Magnetoconductance at low field showing weak antilocalization effect in QW-2 and QW-4 at 2 K.
(d) Magnetoconductance for QW-4 showing a coexisting cusp and parabolic field dependence. A curve fit is shown in green and yields a
parabolic contribution equal to 820 ± 30e2/(πhT 2)B2.

and m are found, we have

Le = v f τe = v f μ m

e
,

τe is the elastic scattering time. The magnetoresistance (MR)
of two samples (QW-2, QW-4) that this work will center
on is shown in Fig. 2(b). The MR is dominated by a non-
parabolic behavior at fields of order 1 T; it is parabolic at
intermediate fields and exhibits a clear cusp at low magnetic
field [Fig. 2(c)]. The high-field MR is stronger in the higher-
mobility QW4 but can be consistently decoupled from the
field dependence of the cusp. This is shown in Fig. 2(d) where
a curve fit allows us to determine the parabolic part of the
magnetoconductivity at intermediate fields for which WAL is
nearly saturated. In both samples, the low-field cusp character-
istic of weak antilocalization is observed at low temperatures,
as typically seen in materials with strong spin-orbit coupling
[30,31] and topological materials [32–34]. The cusp yields a
magnetoconductance on the order of e2/h while the zero-field
Drude conductance is on the order of 100–1000 e2/h [in QW4
σ2D(0) = 330 e2/h at 2 K], further confirming that it is due
to the correction from quantum interference of backscattered
electrons [35]. The field dependence of the resistance due to
WAL yields the coherence length (or time) of charge carriers
in the system.

In TIs, the WAL effect is particularly interesting to mea-
sure, as it can be a direct probe of the spin-momentum locking
and the Berry phase of topological surface states, when the
Fermi level is not too far from the Dirac point. In conven-
tional semiconductors with strong spin-orbit coupling, WAL
is generally accompanied by a crossover to weak localiza-
tion (WL) as a function of magnetic field determined by the
strength of the spin-orbit relaxation length. In TIs, WL is not
allowed, as long as the Dirac surface states are not gapped, and
spin-momentum locking is preserved thereby suppressing all
backscattering. In TCI QWs, valley degeneracy can addition-
ally yield a significant enhancement of the WAL correction.

C. Modeling weak antilocalization

The well-known Hikami-Larkin-Nagaoka model [23,36]
that describes the interference of electrons in the diffusive

limit is used to extract the Thouless coherence length. At low
magnetic fields, the quantum correction to the conductivity in
this model in the limit of strong spin-orbit coupling applies to
topological insulators and is given by

	σ2D = αe2

πh

[
ψ

(
h̄

4eBL2
T h

+ 1

2

)
− ln

(
h̄

4eBL2
T h

)]
+ βB2.

(1)

α = −1/2 per WAL channel, a channel defined as a contri-
bution from a separate valley or subband. ψ is the digamma
function. LTh = √

Dτφ is the Thouless coherence length re-
lated to the coherence time τϕ and D is the diffusion constant.
βB2 is added to account for cyclotronic magnetoresistance.
β is determined in Fig. 2(d) independently to best fit the
parabolic part of the magnetoconductivity at intermediate
field.

We note that the HLN model is valid only if LTh � Le and
if the applied field B � Btr . For QW with high mobility such
as QW-4, we find that Btr = 252 Oe, of the same order of
magnitude as the applied field. When B ∼ Btr , the number of
collision events per trajectory approaches 1. We are likely at
the limit of validity of the HLN model [23,37].

In conjunction with this model, we utilize a model de-
veloped by Wittmann and Schmid [24] (WS) that remains
valid beyond the diffusive regime, to independently extract
the coherence time τφ . The WS model [24] is implemented
by computing the quantum correction to conductivity from
interfering electron wave packets. In general, the quantum
coherent correction to the conductivity is given by [24]

	σ = − e2

πh
F (b, γ )

γ = τe

τφ

= Bφ

Btr
where Bφ = h̄

4eDτφ

(2)

b = B

Btr (1 + γ )2 .
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F (b, γ ) (<0) is related to the backscattering probability and
given by

F (b, γ ) = b
∞∑
n=0

ϕ3
n

1 − ϕn
− ln

(
1 + γ

γ

)

ϕn(b) =
∫ ∞

0
dte−t−( bt2

4 )Ln

(
bt2

2

)
.

ϕn is the probability of a particle going back to the origin after
(n − 1) scattering events. Ln is the nth Laguerre polynomial.
	σ in Eq. (2) is thus a positive magnetoconductance resulting
from weak localization. The WS model is only valid if spin
effects are neglected. Zduniak et al. [38] have considered the
role of spin-orbit coupling in modifying the quantum correc-
tion given by WS. The spin-orbit coupling is treated as a spin
relaxation in their model. As a result, they get

	σ (B) = − e2

πh

[
F (b, γ1) + 1

2
F (b, γ2) − 1

2
F (b, γ )

]
, (3)

where spin relaxation is introduced via the relaxation time τSO
and the corresponding field BSO so that

γ1 = Bφ + Bso

Btr
, γ2 = Bφ + 2Bso

Btr
.

In the presence of spin-momentum locking, in the topo-
logical crystalline insulator, we assume fast spin relaxation
so that Bso is very large, at least of the same order as Btr .
This is equivalent to the simplectic limit of the HLN model,
known to hold in the case of topological insulators [19]. In
this limit, since Bφ � Btr and Bφ � Bso, γ1 ∼ γ2 ∼ 1 and we
can neglect F (b, γ1) and F (b, γ2) (see Appendix D). Hence,
In the limit of strong spin-orbit coupling or spin-momentum
locking, Eq. (3) reduces to

	σ (B) = + e2

2πh
[F (b, γ )].

Recall that F (b, γ ) < 0, making 	σ a negative magneto-
conductance expected for WAL. We can thus justify simply
using the WS model Eq. (2) with an opposite sign to describe
WAL in our topological system:

	σ (B) = α
e2

πh(1 + γ 2)
|F (b, γ )| + βB2, (4)

α = 1/2 per WAL channel. Previous work on III–V quantum
wells have discussed a simplified implementation of the WS
model [37] that we use to fit our data. Only two fit parameters
are needed, α and γ . α has the same meaning as for HLN. γ

yields the coherence time τφ . The next section of the paper
shows the results and analysis obtained for two samples QW2
and QW4.

D. Comparison between the two models

Figure 3(a) shows the curve fit by WS [Eq. (4)] performed
on the WAL cusp observed between 2 and 11 K in QW-2.
The fit parameters from the WS model Eq. (4) are shown
in Fig. 3(b). β is neglected in this case, since the parabolic
variation of the MR is extremely small below 0.06 T as seen
in Fig. 2(b). The coherence time increases with decreasing
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FIG. 3. WAL analysis for QW-2. (a) WAL data at small field
<0.06 T (≈0.5Btr) from 2 to 10 K. The solid red lines are the
fitting curves obtained by the WS model and the points represent
experimental data. (b) Fit parameters obtained from WS fitting.
(c) Same as (a) with the fitting curve obtained by the HLN model.
(d) Fit parameters obtained from HLN. β is fixed at 0 for both WS
and HLN. The lines in (b) and (d) are a guide for the eye.

temperature up to 3 K, indicating a decreasing inelastic scat-
tering rate. A possible saturation is observed between 2 and
3 K. A maximum coherence time close to 53 ps is attained
at 3 K. Figure 3(c) shows the same data analyzed using the
HLN model Eq. (2), with β also neglected. For QW-2, Btr =
1220 Oe, the applied field is only half of that value, limiting
the validity of the HLN model [Eq. (1)]. The fit parameters are
shown in Fig. 3(d). LTh reaches a maximum close to 880 nm
and then saturates. The behavior of LTh mirrors the decay
of τφ as inelastic scattering is—as expected—enhanced with
increasing temperature.

Figure 4 shows an identical analysis performed for QW-4
between 2 and 10 K. Figure 4(a) shows curve fits obtained
using the WS model Eq. (4), up to 600 Oe, with the resulting
fit parameters shown in Fig. 4(b). β is fixed to (820 ± 30)
e2/πh(T)2 at all temperatures [see Fig. 2(d)]. The decay of τφ

is again evident. A maximum that exceeds 100 ps is obtained
at 3 K followed by a possible saturation. A curve fit using the
HLN model is shown in Fig. 4(c), and the fit parameters are
plotted in Fig. 4(d). A similar enhancement of the coherence
length is observed up to a possible maximum at 3 K.

The disagreement between the two values of α recovered
from the two models [Fig. 3(b) compared to 3(d) and Fig. 4(b)
compared to 4(d)] is expected as discussed by Wittmann and
Schmid in their work when the condition b � 1 is not satis-
fied [24]. We have established that both models are expected
to yield |α| = 1

2 per independent WAL contribution. It thus
evident from this that HLN underestimates α. This fact can-
not be overlooked for TCI-QWs, where crystalline symmetry
inherently yields multiple WAL contributions resulting from
valley degeneracy. Particularly, in future studies on quantum
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<0.06 T (≈2.4Btr) from 2 to 10 K. The solid red lines are the fitting
curves obtained by the WS model and the points represent experi-
mental data. (b) Fit parameters obtained from WS fitting. (c) Same
data as (a) with the fitting curve obtained by the HLN model. (d) Fit
parameters obtained from HLN. β is fixed to the value obtained in
Fig. 2 for both WS and HLN. The lines in (b) and (d) are a guide for
the eye.

coherent transport in high-mobility TCI QWs, the HLN model
may be inadequate to properly describe the valley degeneracy
and the QW subbands.

In Figs. 5(a) and 5(b), the coherence length LTh = √
Dτφ

extracted from WS is plotted in comparison with that obtained
from HLN model. The Thouless length extract from WS is at
least 30% lower than what is found using HLN. The result
from HLN is consistently outside the error estimated for the
WS fit parameters. In both QWs, the lack of agreement likely
results from B being comparable to Btr .
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FIG. 5. Coherence length LTh as a function of temperature ob-
tained from each model for QW-2 (a) and QW-4 (b) by fitting up to
0.06 T. The uncertainty on LTh in the WS model is dominated by the
uncertainty on the diffusion constant discussed in Appendix B.

E. Comparison between the two samples

When comparing the two samples, it is evident that QW4
achieves a large Thouless length exceeding 1 µm. Thus, the
improved growth of topological QWs allows reduction of
impurities that cause both elastic and inelastic scattering. Re-
gardless of the model used, a power-law decay is obtained
such that Lth ∼ T−p with p ≈ 0.7 ∼ 0.8. We conclude that
with the improvement of sample quality we approach the limit
of validity of models that assume fully diffusive transport
(Le � Lth or B <,Btr) in topological systems, such as the
HLN model. In this limit, the extracted value of Lth is not
reliable, however its decay versus temperature still agrees with
WS model. A decay exponent p ≈ 0.7 ∼ 0.8 in a QW sug-
gests the coexistence of multiple dephasing mechanisms. In
most 2D systems, p = 0.5 is found. It is explained by the work
of Altshuler et al. that links decoherence at low temperature
to Nyquist noise from the carrier bath impacting the single
particle [39,40]:

τ−1
φ = D

L2
Th

∼ kBT

2πNDh̄2 ln (πNDh̄).

N is density-of-states at the Fermi level. Electron-phonon
scattering [35,41,42] and nonmomentum conserving electron-
electron scattering in the clean limit [35,43,44], are both
known to yield LTh ∼ T−1. Their coexistence with the T−1/2

exponent rule can yield an intermediate decay exponent.
Decay exponents exceeding p = 0.5 have been reported in
previous measurements on Pb1-xSnxSe with lower mobility
and high carrier density [16,45], ruling out a mechanism
that is highly density dependent and favoring electron-phonon
scattering as a possible explanation. A saturation of LTh is
also observed at 2 K; however, more measurements at low
temperature are needed to further understand this mechanism.

In both QWs, α is seen to be strongly enhanced below
4 K, despite the saturation of LTh, suggesting that multiple
transport channels start contributing WAL. It is worth noting
that in our TCI QWs, in addition to valley degeneracy, mul-
tiple subbands can be occupied even at low density as seen
in the band structure calculated in Appendix B and shown in
Fig. 6. If the intersubband (or intervalley) scattering time is
longer than the coherence time, an independent contribution
to WAL from each subband (valley) is observed and |α| gets
larger. Consequently, one can conclude that one of these two
scattering times is also getting enhanced at low temperature,
and starts to exceed τφ between 3 and 4 K. |α| is larger in
QW-2, regardless of model, while at the same time, more
subbands are partially occupied in QW2, the sample with
the higher carrier density (Fig. 6). We thus hypothesize that
the large |α| and its increase are more likely due to the
presence of multiple subbands all yielding WAL; however,
the proper understanding of how trivial QW subbands in
Pb1-xSnxSe yield WAL still requires further experiments [16].

F. Comparison with previous work

Lastly, Table II shows a systematic comparison between
our results and transport parameters extracted from previous
work on TCIs and trivial IV–VI systems. We highlight that the
mobility is at least an order of magnitude higher than in any
previously reported TCI single QW and the carrier density is
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TABLE II. Carrier density, mobility, and Thouless length obtained from different works on TCI QWs.

Reference Density (cm−2) Mobility (cm2/Vs) Thouless length (nm)

This work – QW-4 1.3 × 1013 8600 1250 (3 K) – WS
1750 (3 K) – HLN

This work – QW-3 6.6 × 1012 11 300
[9] SnTe (40 nm) on BaF2 > 4 × 1013 <800 500 (2 K)
[45] Pb1-xSnxSe on STO 2 × 1013 <100 350 (2 K)
[10] SnTe (ultrathin) on STO 5 × 1014 <100 200 (1.8 K)
[11] SnTe on BaF2 5 × 1012, 1.7 × 1014 400, 900 200, 635 (4 K)
[16] Pb0.76Sn0.24Se (50 nm) 8.5 × 1013 930 1830 (1.5 K) – HLN

a factor of 2 to 4 lower than in Pb1-xSnxSe on STO (see Ta-
ble II). A dramatic improvement of the transport properties of
TCI single QWs is thus achieved approaching what has been
realized in multiquantum wells and bulk materials [17,46].
While elastic scattering is dramatically reduced compared to
other works, the inelastic scattering length is comparable to
what was recently measured by Kazakov et al. [16]. This
corroborates the reasoning that phonons or morphological
defects (domain boundaries, surface scattering …) play a role
in limiting quantum coherence in Pb1-xSnxSe .

III. CONCLUSION

In summary, we have grown high-quality
Pb0.7Sn0.3Se/Pb0.9Eu0.1Se single quantum wells and reached
a regime where the HLN model is no longer valid. We
implement the WS model—modified to apply to the limit
of very strong spin-orbit coupling—to extract the inelastic
scattering parameters, which gives us access to the inelastic
scattering time, in addition to the Thouless length. Although
previously considered for HgTe [28,47], models that are valid
beyond the diffusion limit have not yet been employed in 3D
topological insulators. Our work shows that in high-mobility
TIs, the HLN model can underestimate valley and subband
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FIG. 6. Band structure computed using the k.p formalism de-
tailed in Appendix B and the band alignment shown in Fig. 1(a).
QW subbands are shown in black and the topological interface states
are shown in red and blue. The Fermi level position of QW-2 and
QW-4 is shown in green. The bands are offset compared to the model
parameters to have the midgap lie at zero energy. These energy bands
are fourfold valley degenerate in TCIs.

degeneracy, thereby justifying our use of the WS model. More
experiments are needed to further develop an understanding
of the impact of valley and subband degeneracy on WAL in
TCIs using the model developed here. Owing to our improved
mobility, we also reach a coherence time that exceeds 100 ps
at 3 K. However, it appears that electron-phonon scattering or
morphological defects play a key role in limiting it.

Despite this limitation, our work has achieved needed
progress making single TCI QWs with high mobility avail-
able for future studies at high magnetic field. Even more
importantly, we achieve this in a structure that hosts a type-I
topological band alignment [Fig. 1(a)], in contrast with the
broken gap alignment of the SnTe-PbTe interface [48]. With
this ideal band alignment and the improved transport char-
acteristics realized in a single well, our work enables future
transport measurements in the Hall-quantized regime of TCIs
[49] and in the second-order topological insulating regime
predicted in strained TCIs [50].
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APPENDIX A: TRANSMISSION ELECTRON
MICROSCOPY

Transmission electron microscopy measurements are per-
formed on QW-4. Energy-dispersive x-ray (EDX) maps
[Figs. 7(a)–7(c)] show the distribution of Sn, Eu, and Pb
across the heterostructure. It is evident that Sn in concentrated
in well. The EDX measurements allow us to estimate the
position of the barrier/well interface. A zoom in [Fig. 7(d)]
at an interface confirms that the two barriers and the well are
indeed pseudomorphic.

APPENDIX B: BAND-STRUCTURE k.p ENVELOPE
FUNCTION MODEL

We use a k.p envelope function model to compute the band
structure of our TCI QW [17,51,52]. The band structure of
Pb1-xSnxSe in the bulk comprises the conduction band L−

6 and
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FIG. 7. (a)–(c) EDX maps of QW-4 in the vicinity of the well.
The scale bar is 100 nm. (d) Real-space TEM image of QW top
interface.

the valence band L+
6 which have opposite parity [53]. The

heterostructure comprises a QW of Pb0.7Sn0.3Se sandwiched

between two layers of Pb0.9Eu0.08Se grown along the [111]
direction (referred to as the ẑ direction) as shown in Fig. 1(a).
The Sn/Pb ratio is fixed at x = 0.3 as determined from x-
ray diffraction measurements on the QW and control bulk
samples. The well hosts an inverted band structure while the
barrier hosts noninverted levels [18,27,54,55].

In this structure, a quasisymmetric potential barrier of mag-
nitude V confines electrons in the well [17]. Since the band
gap (−εA) of the well material is negative, an inverted junction
is created at the interfaces and topological Dirac states emerge
at this interface. The four-band k.p envelope function model
described here is used to compute the band dispersion of the
topological and trivial states of the QW [17]. The thickness
of the well along the growth axis is d and the point z = 0 is
chosen in the middle of the well so that the confining potential
is an even function. In the setup illustrated in Fig. 1(a), zero
energy is taken to be at the bottom of the bulk conduction
band. If we consider only the nearest bands and spin and
neglect far bands the Hamiltonian can be expressed in the
basis |L+

6 ,↑〉, |L+
6 ,↓〉, |L−

6 ,↑〉, |L−
6 ,↓〉 [53] as

Ĥ =

⎛
⎜⎝

V− 0 h̄vzkz h̄v⊥(kx − iky)
0 V− h̄v⊥(kx + iky) −h̄vzkz

h̄vzkz h̄v⊥(kx − iky) −εA +V+ 0
h̄v⊥(kx + iky) −h̄vzkz 0 −εA +V+

⎞
⎟⎠.

The diagonal terms contain the step functions defined as V±(z) = ±V for z outside the well, else V±(z) = 0. Ĥ thus depends
on the energy parameters V and εA, the wave vector k = (kx, ky, kz ), and the empirically determined Dirac velocity vD. Note
that vz is the out-of-plane velocity and v⊥ is the in-plane velocity, assumed to be equal, and that these values are closely related
to the Kane matrix element P according to vz = P/m0.

The potential barrier in the ẑ results in confinement such that kz is not a good quantum number. Conversely, the particle is
free in the x̂ and ŷ direction so the other two components of the wave vector are good quantum numbers. We proceed by fixing
kx = ky = 0. The simplified Hamiltonian is then

Ĥ =

⎛
⎜⎝

V− 0 −ih̄vz∂z 0
0 V− 0 +ih̄vz∂z

+ih̄vz∂z 0 −εA +V+ 0
0 −ih̄vz∂z 0 −εA +V+

⎞
⎟⎠.

This matrix is independent of x and y, so that in the eigenvalue equation we cancel out all but the z-dependent parts of the
L+

6 and L−
6 envelope functions, χ1(z) and χ2(z). The potential is even in z, ensuring that the χ (z) functions in the well are

alternatively even and odd. Outside the well, we require they take the evanescent form χ (z) = Be−ρ(|z|−d/2) so that the wave
function will be normalizable. Furthermore, since all the nonzero matrix elements are purely 〈↑|Ĥ |↑〉 or 〈↓|Ĥ |↓〉, we may
separate the problem by spin into

Ĥ↓�̃n = E�̃n for Ĥ↓ =
(

V− −ih̄vz∂z
−ih̄vz∂z −εA +V+

)
and �̃n =

(
χn

1

χn
2

)

and

Ĥ↑ �ϕn = E �ϕn for Ĥ↑ =
(

V− ih̄vz∂z
ih̄vz∂z −εA +V+

)
and �ϕn =

(
χn

1−χn
2

)

Here the index n refers to the energy level. Enforcement of the appropriate boundary conditions at z = d
2 for the even case

χ1 = Acos(kzz) gives two equations,

Acos

(
kz
d

2

)
= B and

−Akz
−E − εA

sin

(
kzd

2

)
= −Bρ

−E − εA +V
,
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which can be divided to obtain a single equation which can be solved for E ,

tan

(
kzd

2

)
= ρ(E + εA)

kz(E + εA −V )
for χ1 even. (B1)

This process is easily repeated to obtain three additional equations,

cotan

(
kzd

2

)
= − ρ(E + εA)

kz(E + εA −V )
for χ1 odd, (B2)

tanh

(−ikzd

2

)
= ρ(E + εA)

ikz(E + εA −V )
for χ1 even and kz imaginary, (B3)

and

cotanh

(−ikzd

2

)
= ρ(E + εA)

ikz(E + εA −V )
for χ1 odd and kz imaginary. (B4)

The appropriate wave numbers are given by
kz = 1

h̄vz

√
E (E + εA) inside the well and ρ =

1
h̄vz

√
(E +V )(−E − εA +V ) inside the barrier.

Note that Eqs. (B3) and (B4) are valid in the energy regime
−εA < E < 0 and each can admit only one solution represent-
ing the topological interface states of the system. Equations
(B1) and (B2) are valid at any other energy and represent the
confined levels of the QW. This approach is identical to the
one utilized in Ref. [17]. to determine the energy levels of
Pb1-xSnxSe QW.

The energy dispersion of the QW states is needed to deter-
mine the diffusion constant. A systematic perturbation scheme
is usually applied to the QW states to determine the dispersion
[17]. The result is evidently a set of massive Dirac bands and
one massless Dirac state representing the topological state. In
Ref. [17], one can notice that the Dirac velocity that deter-
mines the dispersion of the QW states is almost equal to that
of the bulk bands [17]. Therefore, we can justify, a posteriori,
simply using

Ei(k) =
√

	2
i + (h̄vDk)2,

with vD ≈ 3.95 × 105 m/s to compute the energy dispersion
of all the QW levels including the topological interface states.
	i is the energy separation between each subband edge and
the midgap. It is equal to 0 for the topological states. Using
the following input parameters for the model, d = 50 nm,
EA = −100 meV, vD = vz = 3.95 × 105 m/s [27] and V =
V+/− = ±250 meV [55], we obtain the band dispersion
shown in Fig. 6.

APPENDIX C: THE DIFFUSION CONSTANT
IN A MULTIBAND SYSTEM

In order to determine the diffusion constant in a multiband
system, a good knowledge of the band structure is required.
This is a consequence of the fact that

D = 1
2v2

f τ.

There, v f is the Fermi velocity. From our measured carrier
density, we are able to determine the Fermi energy with fair
reliability. The scattering time τ can be obtained directly from
the mobility. Below, we show a detailed description of how D
is determined.

Given the band structure calculated above, we can calculate
Fermi energy Ef based on measured carrier density n by

Ei(k) =
√

	2
i + (h̄vDk)2

ni = k2

2π
with nexperiment = 4

∑
ni.

The factor of 4 is due to the fourfold valley degeneracy of
TCIs. i is the subband index. The effective mass m is energy
dependent in nonparabolic and Dirac semiconductors. m at the
Fermi energy can be calculated from

1

m
= 2

h̄2

dE

d (k2)
= v2

D

Ef
.

We can then calculate effective Fermi velocity at Ef for
each subband simply using

vi(k) = h̄k

m
.

The effective Fermi velocity is then a weighted average
velocity over all partially occupied subbands:

v f =
∑ vi · Ni

Ntot
.

Here Ni is the density of states and vi the Fermi velocity
at the Fermi level for each partially occupied band, and Ntot

is the sum over all density of states, as discussed in previous
experimental work on HgTe QW [28] and in general for any
multiband system [29]. IV–VI materials host a nearly ideal
massive Dirac dispersion. v f is then a simple average over all
partially occupied bands.

The elastic scattering time can now be extracted from the
experimental measurement of the mobility:

τe = mμ

e
.

We can now determine Le = v f τe and the diffusion con-
stant D. We use this computed Le to determine Btr as shown
in Table I. For QW-4, we find the effective mass m ≈
0.089m0 and v f ≈ (2.7 ± 0.2) × 105 m/s. From the mobil-
ity, we get τe ≈ 0.42 ps, so elastic scattering length Le =
v f τe ≈ (114 ± 8) nm and D ≈ (160 ± 24) cm2/s. For QW-2,
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m ≈ 0.13m0 and v f ≈ (2.8 ± 0.2) × 105 m/s. The Hall mo-
bility thus gives τe ≈ 0.18 ps, Le = (52 ± 4) nm, and D =
(73 ± 10) cm2/s.

The uncertainty on v f is dominantly due to the uncertainty
on the composition of the well, i.e., the bulk band gap on
Pb1-xSnxSe layer (with x = 0.3 ± 0.03).

APPENDIX D: THE STRONG SPIN-ORBIT COUPLING
LIMIT OF QUANTUM INTERFERENCE MODELS

We further justify our choice to employ the Wittmann and
Schmid model with an inverted sign beyond the fully diffusive
limit as follows.

For the WS model,

	σWL(b) = −2e2

π h̄
D

∫
dt0 Wtoe

− t0
τφ .

Wto is related to the probability of return of a charge carrier to
its starting point at time 0 in a given time t0. By the same
reasoning considered by Zduniak et al. [38], Germanenko
et al. [56,57], and Abrikosov [58] in the presence of spin-orbit
relaxation,

	σWAL(b) = −2e2

π h̄
D

∫
dt0 Wto

[
e−t0/τSO + 1

2
e−2t0/τSO − 1

2

]
e−t0/τφ .

e−t0/τSO and e−2t0/τSO represent spin relaxation in the triplet channel for the in-plane and out-of-plane directions.

	σWAL (b) = −2e2

π h̄
D

∫
Wto

[
e
−t0( 1

τφ
+ 1

τSO
) + 1

2
e
−t0( 1

τφ
+ 2

τSO
) − 1

2
e−t0/τφ

]
dt0.

For a topological system τSO is very small (τSO ∼ τe) �
τφ .

So, e
−t0( 1

τφ
+ 1

τSO
) ∼ e

−t0( 1
τφ

+ 2
τSO

) � e−t0/τφ

	σWAL(b) = 2e2

π h̄
D

∫
Wto

[
1
2e

−t0/τφ
]
dt = − 1

2	σWL.

The multiplicative factor of −1/2 in the limit of strong
spin-orbit coupling appears regardless of model used for
WAL. It is worthwhile noting that we simply treat topological
surface states as states with very strong spin-orbit coupling,
strong enough to neglect the spin-triplet terms considered by
Zduniak et al. For near-ideal topological surface states with
spin locked to the momentum, indeed the triplet channel can
be completely neglected as shown in Refs. [19,22].

Lastly we would like to note that apart from the WS model,
Kawabata has provided a theory that is also valid beyond the
diffusion limit; however, it was argued in subsequent liter-
ature that Kawabata’s expression included additional terms
from N = 1 and N = 2 loops in Eq. (1) that do not yield
any quantum interference [59]. For this reason, the Kawa-
bata model was argued to be incomplete. Dmitriev et al.
have also treated the problem beyond the diffusion limit
and included nonbackscattering contributions; however, their
expression is more cumbersome to implement and did not
include spin relaxation [60]. The treatment of WS followed
by the work of Refs. [37,38] makes the WS model ideal to
consider in our context due to its relative simplicity and its
assumptions.
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