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Abstract—We consider a system where a human operator
processes a sequence of tasks that are similar in nature under
a total time constraint. In these systems, the performance of the
operator depends on its past utilization. This is akin to state-
dependent channels where the past actions of the transmitter
affects the future quality of the channel (also known as action-
dependent or use-dependent channels). For human channels, a
well-known psychological phenomena, known as Yerkes-Dodson
law, states that a human operator performs worse when he/she is
over-utilized or under-utilized. Over such a use-dependent human
channel, we consider the problem of maximizing a utility func-
tion, which is monotonically increasing and concave in the time
allocated for each task, under explicit minimum and maximum
utilization constraints. We show that the optimal solution is to
keep the utilization ratio of the operator as high as possible,
and to process all the tasks. We prove that the optimal policy
consists of two major strategies: utilize the operator without
resting until reaching the maximum allowable utilization ratio,
and then alternate between working and resting the operator each
time reaching the maximum allowable utilization at the end of
work-period. We show that even though the tasks are similar
in difficulty, the time allocated for the tasks can be different
depending on the strategy in which a task is processed; however,
the tasks processed in the same strategy are processed equally.

I. INTRODUCTION

We consider scheduling a human operator who processes
a sequence of tasks that are similar in difficulty over a fixed
duration. Performance of a human operator is closely related
to his/her workload. Yerkes-Dodson law [1] states that human
operators perform worse when their workload is too high or
too low. We use utilization ratio to keep track of the operator’s
past workload. Utilization ratio of the operator increases when
the operator processes a task, and decreases when the operator
idles (rests). We enforce explicit constraints in the form of
minimum and maximum allowable utilization ratios, in order
to keep the performance of the human operator high.

This problem is intimately related to a general class of
problems in communication and information theory. In the
communication and information theoretic treatment of certain
modern applications, the channel can no longer be mod-
eled as static or i.i.d. over time. In such applications, the
characteristics of the communication channel changes as a
function of its past utilization. Examples include, for instance,
channel that die [2], channels that heat up [3]-[5], channels
that wear out over time [6], binary symmetric channel where
the crossover probability changes over time due to usage [7],
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channels that get biased over time [8], and queuing systems
where the service quality of the queue depends on the queue
length [9]. In particular, we will see a remarkable similarity
between scheduling a human operator subject to utilization
ratio constraints in this paper and scheduling a communication
channel subject to temperature constraints in [4], [5].

When the operator processes a task, the system receives a
certain reward (utility). We model the utility function, u(t), as
a monotonically increasing concave function of the processing
time. Examples of such utility functions are observed, for
instance, in speed accuracy trade-off (SAT) studies [10] where
the utility function is modeled as an exponential growth to
a saturation point, as u(t) = 1 — e~ %; in rate-distortion
[11, Eqgns. (1), (3), (4)] where the time required to achieve
an outcome with a certain distortion under a fixed energy is
u(t) = %b/t; and in many scenarios where more time spent
on a task results in diminishing (sub-linear) returns over time,
e.g., a runner can make considerable improvement at the initial
stages of training, a student can quickly answer easier parts of
the questions, a monitor can quickly determine the general area
where a target is, however, in each of these examples, getting
a higher running performance, solving difficult parts of the
questions, detecting the target with more precision, require
much more time, and returns become sub-linear. Another
simple such sub-linear function is u(t) = log(1 + ).

Our work is most closely related to [12]-[15]. In [15],
the authors consider sigmoid functions for the utility func-
tion, whereas here, we consider monotone increasing concave
functions. [15] imposes minimum processing times for the
tasks, prioritizes the tasks, and considers the case where some
tasks are mandatory. In our paper, there is no minimum time
allocation for the tasks, and all the tasks are identical in
importance and difficulty. Thus, our model can be viewed as
a simplified version of [15]. Our goal for this simplification is
to obtain general and structural results, as we discuss next.

In this paper, we consider a scheduling problem for a single
human operator who performs tasks similar in difficulty over
a given fixed time. The number of tasks N and the total
duration 7" are known a priori. The structural solution for this
problem consists of two major sub-policies: In the first policy,
the operator starts processing tasks, and continues to process
tasks without idling until he/she reaches the allowable upper
bound for his/her utilization ratio. In the second policy, which
starts after the operator reaches the allowable upper bound for
the utilization ratio, the operator must idle (rest) during each
task. We show that the operator should allocate equal time for



each task it performs in the same sub-policy. However, the
times allocated for the tasks performed during different sub-
policies may be different even though the tasks are identical
in difficulty. We note that the structure of the utilization ratio
here is similar to the evolution of the temperature in the case
of single energy arrival in [4].

II. SYSTEM MODEL AND THE PROBLEM

We consider a system where a human operator processes N
tasks over a duration of 7" units of time, see Fig. 1. We model

the utilization ratio, x(t), where x(t) € [0, 1], as [15],
dz(t
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where b(t) = 1 if the operator is working at time ¢, and b(t) =
0 if the operator is idling at time ¢, and « (which is denoted
as % in [15]) is a constant that depends on the resistance of
the operator to the workload.! Here, x(t) increases when the
operator is working, and decreases when the operator is idling.

After resting for r and working for ¢, x(t) evolves as,
z(t+71)=1—e " 4 goe 2+ )

According to the Yerkes-Dodson law [1], the performance
of the operator will be worse if the utilization ratio x(t) is too
low or too high. Therefore, we aim to keep () between a
pre-specified minimum, x,,;,, and maximum, ... For each
task 7, the operator works (processes the task) for ¢; seconds
and rests (idles) for r; seconds. Without loss of generality, we
assume that the operator idles first (if any) before processing
a task. We denote by z; the utilization ratio =(t) right after
the operator finishes processing task <. We denote by Z; the
utilization ratio x(t) right before the operator starts processing
task 14, i.e., right after the operator finishes resting (if any) for
task ¢; see the top part of Fig. 1. Thus,

Ty = w12 3)

rp=1—e 4 3o 4)

Due to the monotonicity of x(¢) during processing and
idling periods, if the initial utilization ratio is between x,,;,
and x4, it suffices to check the utilization ratio only at the
ends of idling and processing times, i.e., at Z; and x;, to make
sure that it is between x,,,;,, and x,,4, at all times. The reward
acquired from task 7 is u(¢;). Thus, we formulate the problem,

Zu(fi)

=1

max

{ts,rs}
N
S.t. Z ti+r; <T
=1
fi Z Tmin, X4 S Tmax, VZ (5)
which we solve in the rest of this paper.
INote the similarity between utilization-workload equation in (1) and
temperature-power equation in [4, Eqn. (3)]. In particular, (1) here is the
same as [4, Eqn. (3)] when 7c = 0, ¢ = 0 and a = b = « in [4, Eqn.

(3)], with the mapping of utilization ratio (z(¢)) and workload (b(t)) here to
temperature (7°(¢)) and transmit power (P(t)), respectively, in [4].
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Fig. 1. A human operator processing /N tasks in a duration of 7". For task
i, the operator idles for r;, processes for ¢;, and receives an award of u(t;).

III. STRUCTURE OF THE OPTIMAL SOLUTION

In this section, we identify some important properties of
the optimal solution for the problem given in (5). First, the
following lemma states that, in the optimal solution, if the total
time 7' is not completely utilized, then the operator must have
hit the minimum and maximum allowable utilization ratios for
every task by resting and working as much as possible.

Lemma 1 In the optimal policy, if Zi\il ti +r; < T, then
Ti = Tmin and T; = Tymaq, for all 1.

Proof: We prove this by contradiction. Assume that vazl ti+
r; < T and one of the following cases is true: i) Z; > Zmin
and ; = Tymazx, 1) T; = Tmin and z; < Toppe, O 1ii) T; >
Tomin and x; < X,,q.. Consider case i). Since the total time
constraint is inactive, we can increase r; without violating any
other constraints, and then, increase the corresponding ¢;. The
resulting new policy gives strictly higher reward. In this case,
we can increase the reward until either vazl ti+r;="1T, or
Zﬁvzl t; +r;, < T and T; = x,4in. Thus, if Zf\il ti +1r <
T, then Z; > T, cannot be optimal. In case ii), we can
increase t; and r;;1 so that the policy is still feasible and
gives higher reward. We can continue to increase ¢; until either
Zi\[: ti+r; =T, or Zivzl t;+7; < T and ; = Tmas. Thus,
if Zi:l ti +r; < T, then z; = x,,4, cannot be optimal.
In case iii), we can apply the procedure in ii) first to make
T; = Tmaz, Which will bring the setting to the case in i), and
we can apply the process in i) next. H

Therefore, in the remainder, we focus on the case where the
allowed time T is completely utilized. Then, at time 7', the
utilization ratio x(T") will either reach its maximum allowed
value x4, or not. The following lemma identifies the optimal
solution when the utilization ratio does not reach ., at 1.

Lemma 2 In the optimal policy, when Zf\; ti+r; =1T:0f
2(T) < Tymay then r; =0 and t; = % for all i.

Proof: We prove this by contradiction. Assume that (7)) <
Tmae and 7; # 0 for some i. Choose the maximum task



Fig. 2. Black curve shows the hypothetical optimal policy; blue dashed curve
shows the new feasible policy that yields a larger reward (Lemma 3).

index, j, such that r; # 0. Since the operator idles before
processing a task, the operator completes the remaining tasks
after idling for r;, and without idling for the rest of the tasks.
Since z(T) < Zmaq, We can decrease r; and increase the
processing times of the remaining tasks. The new policy is still
feasible and gives a larger reward. We continue to apply this
process until either 7; = 0 or (1) = Tmaz- If 2(T') < Tmaa
and r; = 0, then we choose the next highest task index £ such
that 7 # 0 and apply the same procedure. At the end, either
2(T) = Tymaq or if (T) < Tymax, then r; = 0, for all 4. Thus,
if at the end 2(T") < %40, we have all 7; = 0 in this case,
and the transition from z( to z(7T") can be expressed as,

2(T)=1—-e°T 4 gge=T (6)

Note that in this case, transition of utilization ratio is inde-
pendent of the time allocated to each task. Since the reward
function is a symmetric sum of concave functions, allocating
equal amount of time for each task gives the highest reward.
Thus, t; = % for all 4 is optimal, if 2(T) < Zpq,. W

Thus, in the remainder, we focus on the case where the
allowed time 7" is completely utilized and the utilization ratio
at the end reaches 44, that is ©(T) = 4. The following
lemma states that, in this case, if the operator does not reach
Tmaz fOr a task, then he/she should not idle for that task.

Lemma 3 In the optimal policy, when vazl ti+r; =T and
2(T) = Tpaq: for any given task i, if ©; < Timaq, then r; = 0.

Proof: We prove this by contradiction. Assume that there is an
optimal policy such that there exists an index ¢ where r; # 0
and T; # Typee. From Lemma 2, we know that if r; # 0 for
some 7, then (T) = Tpae. Thus, T; = XTyas is satisfied at
least once at i« = N. Let k be the largest 7 such that r; # 0
and x; # Zpaz, and choose the smallest ¢ such that £ > k
and z; = Ty We know that ¢ exists since ¢ = N satisfies
the condition. Then, we construct a new feasible policy such

Tmax

Lo

Fig. 3. Black curve shows the hypothetical optimal policy; blue dashed curve
shows the new feasible policy that yields a larger reward (Lemma 4).

that the difference of xj_1 — Tj is decreased by § and the
difference of x,_; — Z, is increased by 0, by decreasing the
resting time of task k. We denote the new policy with primes.
The original and new policies are shown in Fig. 2. Then,

§=ap_1e” Ok —xy_je Tk @)
b=a) , —a)_ e (8)

where 7, is the resting time for the kth task in the new policy,

and r—r, = 3, ry—re = (3. Since Ty, is increased by 9, x4
is also changed to be xj,_, where z}_, — x4_1 = ¢. Then,

§ =y —xpq =8O Ti=l(9)
ppore k(1 —e ) =5 > 5 =a) ;(1—e)  (10)

Since xp_1e” "k < a_,, we have 1 — e > 1 — ¢
which implies 3 < 3. Thus, we can decrease the time for
idling by an amount of 3 — 3 > 0 in the new policy, and
utilize the extra time for the processing times of the task(s) in
between k and ¢. Thus, the new policy will give strictly higher
reward. We can continue to apply this procedure until either
r, =0 0r &)_; = Tpmas. If 7, =0, then we determine a new
k among the remaining tasks with the highest index ¢ such that
r; # 0 and x; # Tpmaq. Then, we apply the same procedure: If
x2_1 = Zmaz, WE choose the smallest task index with ¢ > k
and xy = X;q.. We continue to apply this procedure until
r; = 0 for all ¢ such that x; # x,4,. B

Lemma 3 implies that, for a given 4, if r; # 0, then z; =
Tmaz, 1-€., 1f the operator rests during processing a task 4,
then he/she must reach x,,,, at the end of processing that
task. This also implies that once the operator reaches x4,
for the first time, since he/she needs to rest to continue, the
utilization ratio should hit the upper bound after processing
each and every task after this point on. The next lemma states
that the operator should allocate equal amount of time for each
task he/she processes after reaching the maximal allowable
utilization ratio once.
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Fig. 4. Evolution of z(t) when xg is high enough so that the operator needs
to rest before processing any tasks.

Lemma 4 After the point where the utilization ratio reaches
Tmaz fOT the first time (or the point where processing another
task would increase the utilization ratio beyond T.,qz), the
operator spends equal amount of time for processing each
remaining task.

Proof: After reaching z,,,., the operator needs to idle in order
to process another task. From Lemma 3, we know that once
the operator idles, his/her utilization ratio needs to reach ;4
again. Consider tasks j and k£ where rj and r; are both non-
zero. Assume for contradiction that r; # r. Without loss of
generality, assume 7; < 7y, which also implies ¢; < t;. Then,
we have r; +t; < 11 + ty. Consider a new policy where

ri=rjto, ti=t;+0, 7, =7, —0,and tj =tx — 0. We
can choose them in such a way that 0 + 6 = + 6 = AT.
Let z;, Ty, J_C;-, and Z}, denote the utilization ratios of tasks j
and k for the original and new policies such that Z; > Zj, and

T, > 7 see Fig. 3. Then, for task j,

—  —ao __ =/
Zje =z

(1)

. _ — . —at’ _ —at’
1—e ™ 4 26 = Bpae = 1 — ™% + e (12)

~ 1— e—a@
T = T——aar (13)
Similarly, for task k,
e 7 =1y (14)
1— efatk 4 ‘,Ekefatk = Tomazr = 1— efat;c + i,;cefat; (15)
- - 1— e—a@
{E;C = Tge€ = m (16)

Since Z, < 7}, < Ef; < Z;, we have 6 > 0__ Thus, t} +
t, =tj+tp,+60—0 >t; +1t due to 6 —6 > 0. Also,
th, —t) =ty —0 —t; — 0 < ty — t;. Note that the total
task processing time is increased and the difference between
time allocations is decreased. This new policy will give strictly
larger utility due to the monotonicity and concavity of the
utility function w(t). Thus, we reached a contradiction and
Tj 7 1}, cannot be optimal. W
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Fig. 5. Evolution of x(t) when x¢ is low enough so that the operator does

not need to rest for any task.

IV. THE OPTIMAL SOLUTION

The optimal solution is composed of two major policies:
Policy 1, where the operator processes tasks without idling
until either he/she reaches x4, for the first time or processing
another task would force him/her to exceed the allowed ;42
so he/she needs to stop without reaching x,,.,; and policy
2, which starts either when the operator reaches x,,q, for
the first time, or when processing another task would force
him/her to exceed xy,4,.. After reaching x,,,4, for the first time,
the operator alternates between resting (idling) and processing
tasks in equal amounts. We define m as the number of tasks
processed in policy 1. We define ¢, and #; to be the processing
times for tasks processed in policy I and policy 2, respectively.
We define 7 to be the idling time right before the operator
reaches x,,,, for the first time, and 72 to be the idling time
after the operator reaches x,,,,. Note that ; might not always
exist. Next, we describe the optimal solution in terms of these.

When the operator starts with an initial utilization ratio
xo, there are two options: either x( is high enough that the
operator needs to rest before beginning to process any tasks (an
example of this is given in Fig. 4), or x is small enough that,
from Lemma 3, the operator processes some number of tasks
without idling until he/she reaches x,,q.. If 2 is sufficiently
small, then the operator can process all of the tasks without
any idling as described in Lemma 2. In this special case,
m = N which means that all tasks are processed in policy
land t; = £, = % and r; = 0 for all tasks. An example of
this particular case is shown in Fig. 5. In the case when zg is
high, the optimal policy is: 1y = 71, r; =79, 1 € {2,..., N},
and t; = ta, i € {1,..., N}. Note that for this special case
m = 0 which means that all the tasks are processed in policy
2. An example of this particular case is shown in Fig. 4.

The two cases described above are special cases where all
the tasks are processed either in policy I or in policy 2. In
general, some of the tasks are processed in policy 1 and
the remaining tasks are processed in policy 2. These cases
correspond to 0 < m < N. For this, there are two possibilities:
In the first possibility, the operator can reach x4, for the first
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Fig. 6. Evolution of x(t). Here N = 5 and m = 2. The operator processes
m = 2 tasks before he/she hits Z,,qz.

time without idling. An example of this shown in Fig. 6. In
this case the optimal policy is: t; = 1, 7; = 0,4 € {1,...,m},
and t; =ty and 7; = 7, i € {m+1,..., N}. Note that there
is no 7 in this case. In the second possibility, the operator
will need to rest just before he/she reaches x4, for the first
time. An example of this is shown in Fig. 7. In this case,

the optimal solution is: ¢; = 1, r; = 0, i € {1,...,m} and
ti =ty i € {m+1,...,N} and rp,41 = 71 and r; = 7o,
i € {m+2,...,N}. Note that we can determine 72 from

to. Thus, in general, in order to completely characterize the
optimal solution, we need to solve for m, ¢; and t». In the
following lemma, we further characterize ¢; and to.

Lemma 5 In the optimal policy, if the evolution of x(t) is
as in Fig. 6, then t, > to. If it is as in Fig. 7, we can have
the following cases: If N > 2m, then t; > to. If N < 2m,
l_wnz~(t1710)
- T (t1,20)
L=z (B1.20) (N ) IZmia(le)

then we need to check the relation between m and

(N —m) L= Zm1(f2) If m

im+1(£2) B xm,(£1,$0) B fm+1(t~2)
then t; > to. Ifmlg:&im > (N — m)lgi’:ij&it;) then
1?1 < 1?2. Ifml;:&i(f;:)o) = (N—m)lgiiij(lf(;)z), then t~1 = t~2.

V. NUMERICAL RESULTS

In this section, we give simple numerical examples for the
optimal solution. In the first example, we take T'=7, N = 3,
Tmaz = 0.85, Tymin = 0.4 and 2y = 0.6. The optimal policy
for this case is to process all the tasks without idling. This
example corresponds to the special case described in Lemma 2,
where xn = 0.8332 < x4, Therefore, the optimal policy is
to allocate t; = % =233 and r; = 0, for all 4.

In the second example, we take 7' = 8.8, N = 3, Tyaz =
0.85, Tyin = 0.4 and ¢ = 0.7. The optimal solution is t; =
ty =t = 2.7726 and t3 = ty = 2.6740, 71 = 1o =
r3 = 7o = 0.5808. The evolution of z(t) in this case is as in
Fig. 6, where there is no 7.

In the third example, we take 7" = 7.4, N = 3, Tyaz =
0.85, Tyin = 0.4 and ¢ = 0.7. The optimal solution is ¢t; =
ty = t; = 2.4013 and t3 = ty = 2.2610, r; = 75 = 0,

0.85

0.75+4

A
~+
)
~
s

Policy 1 Policy 2

Fig. 7. Evolution of z(t). Here N = 5 and m = 1. The operator processes
m = 1 task, and then needs to idle, as processing another task would lead
z(t) to exceed Tmaz-

rg = 71 = 0.3364. The evolution of z(t) in this case is as in
Fig. 7, where there is an 7. In the second and third examples,
we observe that t; > ts.
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