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Abstract—We consider an information updating system where
an information provider and an information receiver engage
in an update process over time. Different from the existing
literature where updates are countable (hard) and take effect
either immediately or after a delay, but instantaneously in both
cases, here updates start taking effect right away but gradually
over time. We coin this setting soft updates. When the updating
process starts, the age decreases until the soft update period ends.
We constrain the number of times the information provider and
the information receiver meet (number of update periods) and the
total duration of the update periods. We consider two models for
the decrease of age during an update period: In the first model,
the rate of decrease of the age is proportional to the current
age, and in the second model, the rate of decrease of the age
is constant. The first model results in an exponentially decaying
age, and the second model results in a linearly decaying age.
In both cases, we determine the optimum updating schemes, by
determining the optimum start times and the optimum durations
of the updates, subject to the constraints on the number of update
periods (number of meetings) and the total update duration.

I. INTRODUCTION

We consider a system where an information provider up-
dates an information receiver (information consumer) over
time. We introduce the concept of soft updates, where different
from the existing literature where updates are countable (hard)
and drop the age instantaneously (possibly after a delay),
here, updates are soft and begin reducing the age immediately
but drop it gradually over time. Our setting models human
interactions where updates are soft, and also social media
interactions where an update consists of viewing and digesting
many small pieces of information posted, that are of varying
importance, relevance and interest to the receiver.

Consider a typical information update system as shown in
Fig. 1. Starting from time zero, information at the receiver gets
stale over time, i.e., the age increases linearly. A time comes
when the information source decides to update the information
receiver. In the existing literature, this is a hard update, which
is contained in an information packet. This hard update takes
effect and reduces the age instantaneously to the age of the
packet itself at the time of its arrival at the receiver. This is
denoted as instantaneous decay in Fig. 1. The time for the
update to take effect (denoted by c; for the first update) is
either random [1]-[13], or fixed and deterministic [14], [15],
or zero [16]-[25]. Essentially, this is the time for the update
packet to travel from the transmitter to the receiver, and when
it arrives, it drops the age instantaneously. This travel time is
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Fig. 1. Evolution of a(t) for different models.

random if the update goes through a queue, and it is fixed
or zero if the update goes through a wireless channel with a
non-negligible or a negligible distance, respectively, between
the transmitter and the receiver. In contrast, in this work, the
soft update begins reducing the age at the time of information
source making a decision to update. However, the drop in age
is not instantaneous, rather it is gradual over time.

We consider two models for the soft update process: In
the first model, the rate of decrease in age is proportional to
the current age; see (1). This is motivated by the fact that
information is most valuable when it is most aged, i.e., when
the new information is most innovative. This model leads
to an exponential decay in the age (denoted by exponential
decay in Fig. 1). Note also that, this is consistent with
information dissemination in human interactions as well as
in social media feeds, where the most important information
is conveyed/displayed first, reducing the age faster initially,
and less important information is conveyed/displayed next,
reducing the age slower subsequently. In the second model,
the rate of decrease in age is constant; see (2). In this case,
the age decreases linearly (denoted by linear decay in Fig. 1).

In this paper, we determine the optimum updating schemes
for soft update systems. In this problem, we are given the
total system duration over which the average age is calculated
T, the number of update periods (i.e., the number of times
information provider and information receiver are allowed to
meet) N, and the total allowed update duration 7,.. We solve
for the optimum start times of the soft updates and their
optimum durations in order to minimize the overall age. For



the exponentially decaying age model, if 7 is large enough,
only one soft update period takes place, even though N periods
are allowed, and the system starts updating at time zero,
continues updating until 7, and lets age grow then on until
the end. On the other hand, when 7 is low, the optimal policy
is to have exactly N soft update periods with equal lengths.
For the linearly decaying age model, the optimal policy is to
update exactly N times and allocate equal amounts of time for
each soft update. In the linear decay model, we also prove that
the age after each soft update goes down exactly to zero. In
addition, for the linear decay model, we show that the resulting
age decreases with N. Finally, we provide numerical results
where not only the number of soft update opportunities and
the total duration of updates are constrained, but also the time
periods during which update encounters may take place.

II. SYSTEM MODEL AND THE PROBLEM

Let a(t) be the instantaneous age at time ¢. Without loss
of generality, let a(0) = 0. When there is no update, the age
increases linearly with time. We consider two different soft
update models. In the first model, the rate of decrease in age
is proportional to the current age:

L0 _ aalt (1)
where « is a fixed constant. In this model, the age decreases
exponentially during a soft update period. In the second model,
the rate of decrease in age does not depend on the current age,
instead it remains constant:

da(t)
dt
where « is a fixed constant. In this model, the age decreases
linearly during a soft update period.

Let us denote the beginning of the ith soft update period by
t; and the end of the ith soft update period by ¢;. Then, the
age evolves as:

a é a(tgfl) +ta
W {f(a(tn,a,t),

where f(a(t;),o,t) = a(t;)e=*¢=%) for the exponentially
decaying age model, and f(a(t;), o, t) = a(t;) — a(t —t;) for
the linearly decaying age model.

Our objective is to minimize the average age of information
(Aol) of the system subject to a total of N soft update periods,
a total update duration of 7T, over a total time period of 7.
We formulate the problem as:
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We define the duration of the ith update period as ¢; = t} —t;,
and the ith aging period as s; = ¢; — t}_;.
Let Ay £ fOT a(t)dt be the total age. Note that minimizing
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Fig. 2. Evolution of age in the case of exponentially decaying age.

% is equivalent to minimizing A7 since T is a known

constant. In the following sections, we provide the optimal
policies that minimize the age for the cases of exponentially
and linearly decaying age models.

III. EXPONENTIALLY DECAYING AGE MODEL

In the case of exponentially decaying age, the age function
evolves as in Fig. 2. Age, in this case, is given as:

21 : :
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We minimize Ar in (5) by choosing ¢; and ¢, equivalently,
by choosing s; and c;, for all <. In the following lemma, we
show that the total updating time, 7, should be fully utilized.

Lemma 1 In the optimal policy, we must have Zf\il c; =T,

Proof: We prove this by contradiction. Assume that there
exists an optimal policy such that Zivzl ¢; < T,. Then, we
can obtain another feasible policy by increasing one of the
c¢; and decreasing one of the s;. Note that this new policy
yields a smaller age. Thus, we reached a contradiction, and
SN ¢ = T, must be satistied. W

In Lemma 1, we observe that the total updating time should
be fully used. Then, we need to determine when to start a soft
update and the duration of each soft update. In the case of
T. = T, the optimal policy is to start updating at ¢ = 0 and
continue to update until £ = T'. The optimal age in this case
is A7 = 0. Thus, for the rest of this section, we consider the
case where T, < T. Next, we consider the cases of N =1
and N = 2 soft update period(s).

For N =1, At in (5) becomes:

2 1 53
Ar = — 4+ —s51(1 — e 1) 4 5951+ = (6)
2 « 2

where s5 =T — s; —c¢1. Due to Lemma 1, ¢; = T,. Thus, we
need to find s; that minimizes Ar. By taking the derivative
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By solving (10) and (11), we obtain:
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Fig. 4. Optimal evolution of age if 7" < Te — . Then, by substituting s] and s3 into (12), we obtain ¢] = ¢ =
%. We then substitute ¢} and ¢ back to determine s7 and s3.
of Ar with respect to s1, we obtain Note that other (degenerate) critical points are: ¢; = 0,

co =T, and ¢y =T, co = 0. These degenerate critical points
(1— e oTe) <S1 + 1 T+ s, + TC> -0 (7) correspond to the optimal solution for N = 1. By checking
@ the Hessian, we conclude that ¢ = ¢ = % gives the global

Since T, > 0, we obtain the critical point as follows: minimum, and the critical points at ¢; = 0 and ¢; = T} cannot
T _1 be optimum. Evolution of the optimum age is shown in Fig. 5.

§t = I« 8) WhenT <T.+ 1. the optimal solution is to utilize only one

2 soft update period even though N = 2 is allowed, and start

By checking the second derivative of Ay, we conclude that the soft update at t = 0, continue the update until ¢ = 7T}, and
s7 in (8) is the global minimum and gives the minimum age. let the age grow till the end as shown in Fig. 4.

Evolution of the optimal age is shown in Fig. 3. Note that Thus, we have determined the optimal soft update policies
when T < T, 4+ %, we have sj = 0 which corresponds to  for exponentially decaying age model for N = 1 and N = 2.
starting the soft update at ¢ = 0, continuing to update until We determine the optimal policies for general N in [26].

t = T,, and then letting age grow till the end. Evolution of

the optimal age is shown in Fig. 4. IV. LINEARLY DECAYING AGE MODEL
For N =2, Ar in (5) becomes: In this section, we consider the case of linearly decaying
2 9 age with o = 1 for simplicity. We generalize the result for
57 1 S5 . . . . .
Ap =3 + —s1 (1 — e_“cl) + o> + 5185071 arbitrary « in Section V. An example evolution of age for this
@ 9 case is shown in Fig. 6. Age, in this case, is given as:
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where s3 = T'— T, — s1 — so. Thus, we need to find s7, s3, ¢}

and c5. Due to Lemma 1, co = T, — ¢;. Next, we determine (T -2 Zf\/:l ci)Q

all critical points that satisfy the first order conditions as: 9 (15)

1 _ _ _ _ where ¢o = 0.
T—-T.— =) (1—- aTe) acy acs 1— aT,. 0
( a) ( ¢ ) 52 (e ¢ + ¢ ) Here, at first, we assume that we stop the soft update when

+ 251 (1 — e‘“TC) (10)  the age goes down to zero. This will imply that Zle S;—¢i >
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Fig. 6. Evolution of age in the case of linearly decaying age.

0 for all £ < N. Thus, we formulate the problem as follows:
Ar

min
{si,ci}

N
S.t. Z ¢ <T,
=1

k
D si—ei >0, Vk (16)
=1

Next, we identify some important properties of the optimal
solution for the problem in (16). First, the following lemma
states that, in the optimal solution, if the total updating time
T, is not fully utilized, then the age should be equal to zero
at the end of each soft update period.

Lemma 2 In the optimal policy, if Zf\il ¢ < T, then

a(t)) = 0 for all i. Additionally, s; = ¢; = INTT and we
must have T, > 2%%
Proof: We prove this by contradiction. Assume that

vazl ¢; < T, and the update policy is such that the age at
the end of each update period is not zero. Let us choose the
smallest index, j, such that a(t}) > 0. We can decrease the
age further by increasing c;. This policy is still feasible since
the total update time constraint is not tight. Thus, we continue
to increase c; until either a(t}) = 0 or SN e =T If
a(t}) = 0 and vazl ¢; < Te, we move to the second smallest
index such that the age at the end of the update period is not
zero and apply the same procedure. We apply thisl\fprocedure
until a(t;) = 0 for all 4. At the end, we obtain » ;" , ¢; < T,
and a(t}) = 0 for all 7. This new policy has smaller age at
each step, implying we have reached a contradiction. Thus, in
the optimal policy, if vazl ¢; < T, then a(t;) = 0 for all i.

Since a(t;) = 0 for all 4, this implies that s; = ¢; for all
i. Thus, evolution of the age will be as in Fig. 7. Then, the
problem becomes:

{si,ci

1
. 2 2
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N
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Fig. 7. Evolution of age in the case of N = 2 and s; = ¢;, Vi.

We solve this problem using a Lagrangian:

N N
1
L= 252 + §s§v+1 -2 (2_:125 + SN41 —T> (18)
Taking the derivative with respect to s; and equating to zero,
we obtain s; — A = 0, for all . Thus, the optimal solution is
§1 =89 = --- = \. Since Zfil 28; + syy1 = T, the optimal
solution is s; = ¢; = %ﬂ Since ¢; = %ﬂ for all 7, we
must have % <T.. 1
Next, the following lemma states that, in the optimal solu-
tion, if the total updating time 7, is fully utilized, the optimal
policy decreases the age down to O after each update and lets
the age grow till the end after 7 is totally utilized.
Lemma 3 In the optimal policy, if Zi\; ¢ = T, then
. . . . . T,
a(t;) = 0 for all i. Additionally, the optimal policy is c; = 3¢

. NT
for all i, and we must have T, < SN

Proof: Here, again, we want to solve the optimization problem
in (16) with the objective function in (15). This is not a convex
optimization problem as the objective function is not convex.
Our approach will be to lower bound the objective function,
minimize this lower bound, and then show that this minimized
lower bound can be achieved with a certain feasible selection
of the variables. We first note that Ap in (15) can equivalently
be written as:

N N N N 2
T—-2 -_1C;
=1 =1 Jj=t

19)

We next note that, even though we do not know the sign of
each (s; —¢;) in (19) at this point, we know that the entirety
of the middle term in (19) is always non-negative since:

N

N N 7
Dsime) D] =D [dXsi—ea)a QO
j=i

i=1 i=1 \j=1

where the right hand side is non-negative due to the constraints
in (16). Thus, we lower bound (19) by setting the middle term
as zero by choosing s; = ¢; for all <. We also note that the last
term in (19) is constant by the hypothesis of the lemma, where
Zﬁil ¢; = T,.. Then, minimizing the lower bound becomes

N ¢ subject to SN ¢ = T,

equivalent to minimizing ), _; ¢;



Fig. 8. Minimum age A7, as a function of N for 7' =5 and T, = 2.
whose solution is ¢; = % Note that, we can choose s; = ¢;
and ¢; = % for all 7 since T, < %, which makes s;
selection feasible. Finally, note that ¢; = s; for all ¢ implies
that after each soft update, the age goes down to zero. H

In summary, if we have T, > 5 Nzl, we are in Lemma 2,
where the total updating time 7 is large enough in comparison
to 7', that it is not a limiting factor, and it is not fully utilized.
In this case, the optimal policy is to choose si=¢ =3 NT I
On the other hand, if we have T, < 2N+1, we are in Lemma 3,
where the total updating time 77 is the limiting factor, and it
is fully utilized. In this case as well, the optimal policy is to
choose s; = ¢; = % Note that, in both cases, the age at the

end of each update period drops down to zero.

A. Effect of N on the Age

In this sub-section, we investigate how the final age varies
as a function of NN, the number of soft update opportunities.
Intuitively, if we are in the case of Lemma 2, since 7T, is not
fully utilized, additional soft update opportunities may help
utilize T, more and decrease the age. Additionally, even if
we are in the case of Lemma 3, where 7, is fully utilized,
an increased N may help utilize 7., more efficiently. We note
that the minimum age is expressed in terms of N for a given
T. and T as follows: If T, > then we are in Lemma 2,

2N+1’
and the minimum age is given as,
1/ T 1 71°
A== —— 2N +1) = 21
T 2<2N+1>( =581 @

whereas if T, < 2% T then we are in Lemma 3, and the

minimum age is given as,

T.\* (T —2T.,)> T2 (T -2T.)>?

A== N+ ———— =S+ ——F——
T (N) * 2 N 2

We note that in both cases A} decreases in N. As an example,

the minimum age A% as a function of NV is plotted in Fig. 8
forT =5,T, =2.

(22)

B. Assumption of Stopping Soft Updates When a(t) = 0

In this sub-section, we discuss the implications of the fact
that we have stopped the soft update process when the age has
reached zero. As a result of that, the age started to increase
linearly right away until the next soft update opportunity. We
observe that this assumption affects the optimal solution when
T, is not fully utilized. In fact, in this case, we can continue
the soft update process and as a result keep the age at the level
of zero, i.e., not allow it to increase.

With this modification, the solution changes as follows:
If 7. < 2%11, then the solution remains the same as in
Lemma 3, and the minimum age is given as in (22). However,
if T, > then we solve for x, such that

T—x T.—x

= 2
2N +1 N @3)

and then apply the solution either in Lemma 2 or Lemma 3
with the new 7" =T — x and T/, = T, — x (either lemma can
be used as now the differentiating inequality is satisfied with
equality). Note that this essentially decreases the total duration
T by moving some of unused 7, from the total duration.
Note also that, in the case that total 7. is not utilized, the
minimum age in (21) depends only on T, and it increases with
it. Therefore, this reduction in 7" by an amount z reduces the
achievable minimum age further.

2N+1’

V. LINEARLY DECAYING AGE MODEL WITH GENERAL «

So far, we have considered the case where o« = 1. However,
in general, o does not have to be 1, implying that the aging
process can be slower or faster than the updating process. In
this section, we consider the most general case where the slope
in the soft update policy « # 1 is arbitrary. In this case, the
instantaneous age becomes:

! t t t <t
a(t) é a( ’L*l) + ’ i—1 <t< (24)
a(tz) — Ck(t — ti), t, <t < t;
Then, Ap is given as:
1
g =22 Zc +2§; Z —ac;)| @9
Jj=t
T— 1 2
GEICRR)) Wi 6
and the optimization problem becomes:
min A
{si,ci} T
N
Z (& S Tc
i=1
> si—ac; >0, Vk (27)

If we substitute ¢, = ac;, we see that minimizing (26) in
(27) becomes equivalent to minimizing (19) in the proof of
Lemma 3. Thus, the optimal solution depends on whether 7,
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Fig. 9. Evolution of the optimal age when oo — oo.

is fully utilized or not in this case, which can be determined
by comparing 7, with the following term:

NT
N(a+1) +«a
NT

(28)

which reduces to previously used when o = 1.

2N+1
If T, > % then 7, is not the limiting factor i.e.,
increasing T, does not decrease the age further. In this case,

we are in Lemma 2 and the age expression in (21) becomes:

. _ T 2 (a+1Da o
AT_(N(a+1)+a> (N 2 +2) 29

NT
If 7} f; jv(a;;ijq;;,

in (22) becomes:

we are in Lemma 3 and the age expression

(a+1)aT? (T—(a+1)T.)?
2 N 2

Finally, we note that, when a — oo, T is not a limiting
factor, and the optimal age can be calculated as follows:

, 1/ T
tim 4 =5 (551) @+

In this case, the optimal age is as shown in Fig. 9, which
corresponds to the optimal age with instantaneous drops as in
the existing literature, i.e., hard updates.

Ay =

(30)

€2V

VI. NUMERICAL RESULTS

In this section, we give simple numerical examples to
illustrate our results. In the first example, we consider the
exponentially decaying age model withT'=5,T, =3, N =2
anda=1.Since T > T, — é the optimal update policy is to
update N = 2 times with equal time allocated to each update,
i.e., c1 = ca = 1.5. The evolution of a(t) is shown in Fig. 10.

In the second example, we consider the exponentially de-
caying age model with 7' =6, T, = 5, N = 2 and o = 1.
Since T is large enough, i.e., T’ < T,.— é, only one soft update
period occurs, even though N = 2 periods are allowed, and
the system starts updating at ¢ = 0, continues updating until
T., and lets age grow then on until the end. The evolution of
a(t) is shown in Fig. 11.

In the following three examples (third, fourth and fifth), we
consider the linearly decaying age model with & = 1. In the
third example, we see the case where 7, is fully used and 7
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Fig. 10. Evolution of a(t) in the case of exponentially decaying age model
when N =2, T =5, and T, = 3.
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Fig. 11. Evolution of a(t) in the case of exponentially decaying age model

when N =2, T =6, and T, = 5.

is not the limiting factor, i.e., if we have additional updating
time, it would not decrease the age further. The evolution of
a(t) is shown in Fig. 12.

In the fourth example, we consider the case in Lemma 2,
where T, is not fully used. We observe that even though the
system has additional time for updating, the optimal solution
is to update periodically and age should be equal to 0 after
each update which is shown in Fig. 13.

In the fifth example, we consider the case in Lemma 3,
where T is tight and increasing 7. can reduce the age further.
In this case, the optimal policy is to keep updating periodically.
When total updating time is fully utilized, the age grows till
the end. The evolution of a(¢) is shown in Fig. 14.

So far, we have provided examples of the linear case with
a = 1. In the following examples, cases with a > 1 and
« < 1 are considered. In the first case, we consider o« = 2,
N =2, T =6, and T, = 2, and in the second case, we
consider « = 0.5, N = 2, T' = 8, and T, = 4. The optimal
policies are shown in Fig. 15 and Fig. 16, respectively.
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Fig. 12. Evolution of a(¢) in the case of N =2, T =5, and T, = 2.
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Fig. 13. Evolution of a(t) in the case of N =2, T =6, and T, = 4.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we introduced the concept of soft updating
which is relevant in systems with human interactions and so-
cial media settings, where the decrease in age occurs gradually
over soft update periods. We studied two soft update regimes,
where in the first one, age decays exponentially and in the
second one age decays linearly during the soft update period.
In the case of exponentially decaying age model, we showed
that T, should be fully utilized, the update periods must be
chosen equally ¢; = % In the case of linearly decaying age
model, if we terminate an update process when the age reaches
zero, the optimal solution depends on the size of 7T, with
respect to 7. If T, is large enough, the optimal policy is to
allocate s; = ¢; = ﬁ for all ¢. Otherwise, the optimal
solution is to choose s; = ¢; = L& for all i € [1,N] and
snN+1 = T — 2T,.. We observed that for the linear case,
age decreases with N. If we do not terminate the update
process when the age reaches zero, but rather continue with
the update process, then we can further decrease the final age
by effectively decreasing the total time. Finally, we showed

0.8 ]

0.6 - ]

04r J

021 4

Fig. 14. Evolution of a(¢) in the case of N =2, T =6, and T, = 2.

that even if « # 1, the optimal solution structure is the same
as in the case with oo = 1.

For future work, further restrictions on the update times can
be considered, e.g., restrictions on the time intervals in which
meetings may take place. We provide two numerical results for
this case. In the first example, 7' =5, T, = 2 and N = 2, and
we restrict updates to take place only in the intervals ¢ € [0, 2]
and t € [4,5]. We recall that if there is no further restriction
on the update processes, the optimal age evolution is given
in Fig. 12. Since updating is not allowed in ¢ € (2,4), the
optimal age evolution is different and is shown in Fig. 17. In
this case, we see that T is fully utilized and age becomes zero
at the end of the first update period which seems to follow the
optimal policy structure with no restrictions.

In the second example, we consider the same case except
this time, updating is not allowed in ¢t € (3,4). In Fig. 18,
we see the optimal age evolution in this case. Note that even
though the system can use 7 fully, the optimal policy in this
case is different and T, is not fully utilized. Since the number
of soft updates is restricted, the system chooses to use them
at the beginning and the age becomes zero after each update.
Note that in the first example, age is not equal to zero after
each update because utilizing 7, reduces the age further. It
seems that there is a point below which utilizing 7T, is more
important whereas after this point, reducing age to zero after
each update yields an optimal solution.
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