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The fluid dynamics of a bubble collapsing near an elastic or viscoelastic material is
coupled with the mechanical response of the material. We apply a multiphase fluid–solid
coupled computational model to simulate the collapse of an air bubble in water induced
by an ultrasound shock wave, near different types of materials including metals (e.g.
aluminium), polymers (e.g. polyurea), minerals (e.g. gypsum), glass and foams. We
characterize the two-way fluid–material interaction by examining the fluid pressure and
velocity fields, the time history of bubble shape and volume and the maximum tensile and
shear stresses produced in the material. We show that the ratio of the longitudinal acoustic
impedance of the material compared to that of the ambient fluid, Z/Z0, plays a significant
role. When Z/Z0 < 1, the material reflects the compressive front of the incident shock
into a tensile wave. The reflected tensile wave impinges on the bubble and decelerates
its collapse. As a result, the collapse produces a liquid jet, but not necessarily a shock
wave. When Z/Z0 > 1, the reflected wave is compressive and accelerates the bubble’s
collapse, leading to the emission of a shock wave whose amplitude increases linearly
with log(Z/Z0), and can be much higher than the amplitude of the incident shock. The
reflection of this emitted shock wave impinges on the bubble during its rebound. It reduces
the speed of the bubble’s rebound and the velocity of the liquid jet. Furthermore, we show
that, for a set of materials with Z/Z0 ∈ [0.04, 10.8], the effect of acoustic impedance on
the bubble’s collapse time and minimum volume can be captured using phenomenological
models constructed based on the solution of Rayleigh–Plesset equation.
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1. Introduction

The collapse of a bubble near a material surface features a rapid, non-spherical
compression of the internal gas, which may release mechanical and thermal energy in
the forms of shock wave, liquid jet and increased local temperature. This process is a
fundamental event in many science and engineering applications that involve cavitation,
either as a harmful byproduct leading to erosion, noise and performance degradation, or
as a useful mechanism for desired material modification and fabrication. Within the latter
category, it has been demonstrated that the energy pulses released from bubble collapse
may be used to remove contaminants or unwanted particles on a surface (Brems et al.
2014; Guo et al. 2014), fabricate nanostructured solid materials (Xu, Zeiger & Suslick
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2013), break agglomerates in a liquid metal (Kudryashova & Vorozhtsov 2016), facilitate
kidney stone destruction in shock wave lithotripsy (Zhong 2013), increase the permeability
of human tissue or cell membrane for targeted drug/gene delivery (Coussios & Roy 2008;
Brennen 2015) and mediate cellular mechanotransduction (Li et al. 2018) – just to name
a few examples. A common issue in these applications is that the location, extent and
intensity of cavitation need to be controlled carefully, as the boundary between meritorious
effects and deleterious effects can be narrow. For example, using cavitation to remove
biofouling on ship hulls needs to avoid damage to hull coatings (Guo et al. 2014). In
lithotripsy, cavitation bubbles can contribute to stone fragmentation; yet they may also
damage human tissue and scatter the focused ultrasound waves (Zhong, Zhou & Zhu 2001;
Pishchalnikov et al. 2003; Maeda et al. 2018). Similarly, the use of cavitation to produce
cell sonoporation produces therapeutic effects only when the detrimental side effects due
to overdose do not occur (Ohl et al. 2006). In general, the need for controlled cavitation
bubble collapse near various solid and soft materials calls for improved understanding of
the two-way coupling between bubble dynamics and the material’s response.

In the past, the non-spherical collapse of a bubble near different types of material
boundaries has been studied using experimental and computational methods. The
investigated material boundaries include a rigid wall (e.g. Zhang, Duncan & Chahine
1993; Brujan et al. 2002; Calvisi, Iloreta & Szeri 2008; Johnsen & Colonius 2009; Brujan
& Matsumoto 2012; Wang 2014), a surface of elastic solid bodies (e.g. Brujan et al.
2001; Sankin & Zhong 2006), thin films (e.g. Turangan et al. 2006), a surface of soft
tissues (e.g. Kodama & Takayama 1998) and free liquid–gas interfaces (e.g. Blake &
Gibson 1981; Robinson et al. 2001). The damage and fracture (e.g. pits, cracks, holes) in a
nearby material after multiple cycles of bubble collapse have also been investigated (e.g.
Philipp & Lauterborn 1998; Dular, Delgosha & Petkovšek 2013). Nonetheless, knowledge
of the dynamic response of different types of materials to bubble collapse – such as the
amplitude, profile and propagation of surface and bulk elastic waves – is still limited.
In this regard, a few teams (e.g. Freund, Shukla & Evan 2009; Kobayashi, Kodama &
Takahira 2011) have applied Eulerian multiphase fluid dynamics solvers to simulate the
interaction of collapsing bubbles with soft materials (e.g. biological tissues), in which the
materials are modelled as fluids. Turangan et al. (2017) have applied a Lagrangian solver
to simulate shock-induced bubble collapse near aluminium walls and foils. Chahine &
Hsiao (2015) have applied a fluid–solid coupled solver to simulate bubble collapse near
metals and polymers, including the resulting permanent deformation (e.g. pitting). Wang
(2017) has applied a fluid–solid coupled solver to simulate shock-bubble–stone interaction
in the context of shock wave lithotripsy. Moreover, although a few studies using high-speed
photography and acoustic measurements have revealed significant impact of the Young’s
modulus of the material on bubble dynamics (e.g. Gibson & Blake 1982; Brujan et al.
2001; Sankin & Zhong 2006), the detailed reciprocal effects of the acoustic, elastic and
viscoelastic properties of the material on bubble dynamics are still largely unknown.

In this paper, we present a computational study of shock-induced bubble collapse near
different solid materials, focusing on describing the two-way fluid–material interaction
and investigating the effect of the material’s acoustic impedance. Specifically, we consider
an air bubble in water next to a planar material boundary. We send an ultrasound shock
wave with a sharp compressive front towards the bubble, which drives it to collapse. This
setting is relevant to a number of ultrasound applications, and is possible to replicate in
a laboratory environment. The acoustic impedance of a material is defined as Z = ρc,
where ρ and c denote mass density and acoustic (P-wave) velocity, respectively. Our
interest in the effect of Z is motivated by two considerations. First, it is a fundamental
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material property that can often clearly distinguish different ‘hard’ and ‘soft’ materials
in an application. Second, a few previous studies on bubble collapse near a rigid wall
have indicated that the reflection of the shock wave against a material surface may have
significant effects. For example, Calvisi et al. (2008) highlighted that the reflected shock
against a rigid wall intensifies the non-spherical bubble collapse. The results of Johnsen
& Colonius (2009) and Wang (2017) also support this finding. Acoustic impedance is a
key parameter in wave reflection and transmission; a rigid wall can be considered as an
extreme case with Z = ∞. Therefore, the finding mentioned above naturally suggests that
it is valuable to investigate real materials with different (and finite) values of Z, including
cases where its value is smaller than the acoustic impedance of the ambient fluid.

We employ a recently developed three-dimensional (3-D), multiphase fluid–solid
coupled computational framework in this study (Wang, Lea & Farhat 2015; Huang, De
Santis & Farhat 2018). The important components of this framework relevant to the present
study include: (a) an Eulerian finite volume, multiphase compressible Navier–Stokes
equation solver, equipped with a level-set method for tracking the surface of the bubble;
(b) a Lagrangian finite element solid mechanics (elasticity and viscoelasticity) solver;
(c) an embedded boundary method for tracking the fluid–solid interface in an unstructured,
non-interface-conforming fluid mesh (Wang et al. 2012; Huang et al. 2018); (d) the
FIVER (‘Finite Volume method with Exact multi-material Riemann solvers’) method for
enforcing the interface conditions at the liquid–gas and fluid–solid interfaces (Wang et al.
2011; Farhat, Gerbeau & Rallu 2012; Main et al. 2017); and (e) a second-order, numerically
stable partitioned procedure for coupling the fluid and solid solvers (Farhat et al.
2010). This computational framework has been applied to simulate several fluid–structure
interaction problems involving shock waves, large structural deformation, instability and
fracture (e.g. Farhat et al. 2013; Wang et al. 2014; Chung et al. 2018; Cao et al. 2019).
It has also been verified and validated for a few two-phase flow problems involving a
bubble collapsing near a rigid wall (e.g. Farhat, Rallu & Shankaran 2008; Main et al.
2017; Wang 2017). For example, Main et al. (2017) simulated a laboratory experiment
of underwater bubble implosion, in which the gas content (air) is initially enclosed by
a thin-walled glass sphere (Turner 2007). They showed that the simulated pressure time
history agrees favourably with the measurement obtained in the laboratory. In this work,
we simulate the collapse of a bubble near a broad range of materials including metals (e.g.
aluminium), polymers (e.g. polyurea), minerals (e.g. gypsum), glass and foams. In each
case, we characterize the two-way fluid–material interaction using fluid pressure, velocity,
bubble volume and the maximum tensile and shear stresses in the material. To highlight
the effect of acoustic impedance on the dynamics of bubble collapse, we compare the
bubble’s collapse time, the minimum bubble volume, the jet velocity and the pressure
load induced by the emitted shock wave on the material surface.

The remainder of this paper is organized as follows. Section 2 presents the physical
model and numerical methods used in this study. Section 3.1 presents a verification of the
computational framework using a 3-D benchmark problem featuring wave transmission
and deflection at a fluid–solid interface. Section 4 presents the results of shock-induced
bubble collapse near three representative materials, focusing on describing the two-way
interaction between the fluid dynamics and the response of the material. Furthermore,
§ 5 presents a parametric study that considers different materials with acoustic impedance
ranging from 0.063 to 17.28 MPa·s m−1. We show that the effect of acoustic impedance on
the bubble’s collapse time and minimum volume can be captured using phenomenological
models constructed based on the solution of the Rayleigh–Plesset equation. Finally, we
provide a few concluding remarks in § 6.
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FIGURE 1. A 3-D fluid–solid coupled model of shock-induced bubble collapse near a solid or
soft material.

2. Physical model and numerical methods

2.1. Governing equations and constitutive models
We consider a 3-D spatial domain comprised of multiple subdomains occupied by different
fluid and solid materials. Figure 1 presents a schematic drawing of the problem set-up. A
spherical gas bubble with a radius of R0 is placed in a liquid at a standoff distance D0
from the solid material (measured from the centre of the bubble). An incident shock wave
propagates towards the bubble from the opposite side, causing its collapse. Let ΩG, ΩL
and ΩS denote the subdomains occupied by the bubble, the ambient fluid (liquid) and
the solid material, respectively. We model both the gas inside the bubble and the ambient
fluid as compressible inviscid fluids. Dropping of viscosity can be justified by the high
pressure of the incident shock wave in the current problem set-up (see, e.g. Brujan (2019)
for a different and more complex fluid environment) and a relatively small time frame
considered within this study.

Therefore, in ΩG and ΩL, we solve the following Euler equations in the Eulerian frame:

∂W (x, t)
∂t

+ ∇ · F(W ) = 0, ∀ x ∈ ΩL(t) ∪ ΩG(t), t > 0, (2.1)

with

W =
⎡
⎣ ρ

ρV
ρet

⎤
⎦ , F =

⎡
⎢⎣

ρV T

ρV ⊗ V + pI

(ρet + p)V T

⎤
⎥⎦ , (2.2a,b)

where ρ, V , p and et denote the fluid density, velocity, pressure and the total energy per unit
mass, respectively; I is the 3 × 3 identity matrix. Equation (2.1) is closed by an equation
of state (EOS) for each fluid material. We apply the perfect gas EOS to the gas inside the
bubble, i.e.

p = (γG − 1)ρe, (2.3)

where γG is the heat capacity ratio, and e is the internal energy per unit mass. In this work,
we set γG = 1.4. We assume the ambient fluid is water, and apply the stiffened equation
of state, i.e.

p = (γL − 1)ρe − γLpL, (2.4)

where γL = 6.59 and pL = 410 MPa (Johnsen & Colonius 2008).
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Within the subdomain of the solid material, i.e. ΩS, we adopt the Lagrangian frame and
solve the following equation of motion that enforces the balance of linear momentum:

ρsü(X , t) − ∇ · σ (u, u̇) = b, ∀ X ∈ ΩS(0), t > 0, (2.5)

where u denotes displacement, ρs the material’s mass density and σ the Cauchy stress
tensor; b denotes the body force acting in ΩS, which is assumed to be zero in this study.

We adopt the generalized Maxwell model of viscoelasticity (Cheneler 2016), which
combines linear springs and linear dashpots. Assuming zero strain at t = 0, the stress
at any time instance t > 0 can be written in the form of the hereditary integral,

σ (t) =
∫ t

0
GR(t − s)

dε(s)
ds

ds, (2.6)

where ε denotes the strain tensor; GR(t) is the relaxation modulus. In this work, we express
GR(t) as a Prony series, i.e.

GR(t) = G0

[
1 −

N∑
i=1

gi(1 − e−t/τi)

]
, (2.7)

where G0 = GR(0) is the instantaneous modulus, gi and τi are material-specific model
parameters. The Prony series is appealing particularly from a numerical viewpoint, as it
does not require storing of the time history of strain. Specifically, we compute σ(t) using
a recursive formula, as shown in Goh, Charalambides & Williams (2004).

For some of the materials investigated in this study (e.g. a strengthened gypsum,
metals), the viscoelastic effect of the material is negligible. These materials are modelled
essentially by linear elasticity, with constitutive equation

σ = Eν

(1 + ν)(1 − 2ν)
tr(ε)I + E

1 + ν
ε, (2.8)

where E and ν are the Young’s modulus and Poisson’s ratio of the material, respectively;
tr(·) denotes the trace operator.

At the fluid–solid interface, ΓFS = ∂ΩS(t) ∩ (∂ΩL(t) ∪ ∂ΩG(t)), we enforce the
continuity of normal velocity and surface traction, i.e.

(V − u̇) · n = 0,

−pn = σ (u, u̇) · n,
on ΓFS, (2.9)

where n denotes the unit normal to ΓFS.
At the liquid–gas interface, ΓFF(t) = ∂ΩL(t) ∩ ∂ΩG(t), we assume that the two fluid

materials are immiscible. Also, surface tension is negligible compared to the pressure of
the prescribed shock wave. Thus, the interface conditions are those describing a contact
discontinuity, i.e.

(V L − V G) · n = 0,

pL = pG,
on ΓFF. (2.10)

2.2. Fluid–solid coupled computational framework
We apply a recently developed fluid–solid coupled computational framework to solve the
above model equations. The framework couples a finite volume, multiphase compressible
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FIGURE 2. Illustration of the spatial (a) and temporal (b) discretization methods applied in the
computational framework.

flow solver with a finite element solid dynamics solver using an embedded boundary
method and a staggered partitioned procedure (figure 2).

As illustrated in figure 2(a), the fluid governing equations are semi-discretized in
an augmented fluid domain, Ω̃ = ΩL ∪ ΩG ∪ ΩS, using an unstructured, node centred,
non-interface-conforming finite volume mesh, denoted by Ω̃h. For each node of the mesh
(e.g. node i), a dual cell (i.e. control volume) Ci is constructed. Integrating (2.1) within Ci
gives

∂W i

∂t
+ 1

‖Ci‖
∑

j∈Nei(i)

∫
∂Cij

F(W ) · nij dS = 0, (2.11)

where W i denotes the average of W in Ci, ‖Ci‖ denotes the volume of Ci, Nei(i) denotes
the set of nodes connected to node i by an edge, ∂Cij = ∂Ci ∩ ∂Cj and nij is the unit normal
to ∂Cij. Depending on the location of nodes i and j, four scenarios arise in the calculation
of the surface integral over ∂Cij:

(a) If nodes i and j belong to the same fluid subdomain (ΩL or ΩG), the flux across
∂Cij is calculated using the well-known monotonic upwind scheme conservation law
(MUSCL) scheme (Van Leer 1979) and Roe’s flux (Roe 1981).

(b) If nodes i and j belong to different fluid subdomains (i.e. one in ΩL, the other in ΩG),
a one-dimensional (1-D) two-fluid Riemann problem is constructed along edge i–j,
i.e.

∂w
∂τ

+ ∂F(w)

∂ξ
= 0, with w(ξ, 0) =

{
wi if ξ ≤ 0,

wj if ξ > 0,
(2.12)

where τ denotes the time coordinate; ξ denotes the spatial coordinate along the 1-D
axis aligned with nij and centred at the midpoint between nodes i and j. The initial
states wi and wj are projections of W i and W j on the ξ axis. Equations (2.10) are
enforced at the moving interface for τ > 0. The exact solution of this 1-D Riemann
problem is supplied to Roe’s flux function to compute the flux across ∂Cij (Farhat
et al. 2012).

(c) If one of the two nodes (e.g. node i) belongs to a fluid subdomain (ΩL or ΩG), while
the other node belongs to the solid subdomain (ΩS), a 1-D fluid–solid Riemann
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problem with a moving wall boundary is constructed, i.e.

∂w
∂τ

+ ∂F(w)

∂ξ
= 0, τ > 0, ξ < vSτ, (2.13)

w(ξ, 0) = wi, ξ < 0, (2.14)

v(vSτ, τ ) = vS, τ > 0, (2.15)

where ξ is the spatial coordinate along the normal direction of the fluid–solid
interface and centred at the midpoint between nodes i and j. The initial state wi

is the reconstructed fluid state at the interface; v denotes the fluid velocity at the
moving wall boundary, and vS the normal velocity of the wetted surface of the solid
structure (i.e. the fluid–solid interface) at its intersection with fluid edge i–j, which
is computed by the solid dynamics solver. Similar to the previous case, the exact
solution of this 1-D Riemann problem is supplied to Roe’s flux function to compute
the flux across ∂Cij (Wang et al. 2011).

(d) If nodes i and j both belong to the solid subdomain (ΩS), the flux across ∂Cij is set
to 0.

The above method is referred to as FIVER (Farhat et al. 2012). It is ideally suited for
solving the present problem, as the problem involves both multi-fluid (i.e. liquid–gas) and
fluid–solid interfaces.

FIVER requires tracking of the liquid–gas and fluid–solid interfaces in the unstructured,
non-interface-conforming mesh Ω̃h. We track the evolution of the liquid–gas interface by
solving the level-set equation,

∂φ(x, t)
∂t

+ V · ∇φ = 0, ∀ x ∈ ΩL ∪ ΩG ∪ ΩS, (2.16)

where φ(x, t) represents the signed shortest distance from x to the interface. In this
way, the large deformation and topological changes (e.g. splitting and merging) of the
bubble surface are naturally accommodated. To track the fluid–solid interface, we apply
a collision-based computational geometry algorithm as presented in Wang et al. (2012,
2015).

In this work, (2.16) is recast in the form

∂φ

∂t
+ ∇ · (φV ) = φ∇ · V , (2.17)

and solved on the same fluid mesh using a finite volume method. The convection term,
∇ · (φV ), is discretized using the MUSCL scheme with the upwinding flux. The term
φ∇ · V is added as a source term. Additional numerical details can be found in Main et al.
(2017) and Main (2014).

A standard Galerkin finite element method is used to semi-discretize the weak form of
(2.5), which yields

M
∂2uh

∂t2
+ f int

(
uh,

∂uh

∂t

)
= f ex t, (2.18)

where M denotes the mass matrix, uh denotes the discrete displacement vector; f int and
f ex t denote the discrete internal force and external force vector, respectively.
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FIGURE 3. (a) Problem set-up (the dynamic pressure of the fluid at t = 0 is visualized).
(b) Snapshots of numerical solution at four different time instances, showing the dynamic
pressure of the fluid and the maximum principal stress in the solid.

We use a staggered fluid–solid time integrator presented in Farhat et al. (2010) to
advance the fluid and solid subsystems. The fluid subsystem is time integrated using the
explicit fourth-order Runge–Kutta scheme, while the solid subsystem is time integrated
using the second-order central difference scheme. Notably, the fluid and solid time steps
are offset by half a step (figure 2b). This is a designed feature to achieve second-order
accuracy in time while maintaining optimal numerical stability.

3. Verification and validation of the computational framework

3.1. Wave propagation across a plane fluid–solid interface
We first apply the computational framework described in § 2.2 to solve a 3-D model
problem featuring the propagation of an impulsive pressure wave across a planar
fluid–solid interface. The objective is to verify the computational framework for predicting
wave transmission and deflection at a fluid–solid interface, which is an important feature
of the bubble–material interaction problem under investigation. Figure 3(a) presents the
set-up of the problem. We consider a cylindrical fluid–solid domain with a diameter of
12 mm and a height of 20 mm. In the fluid subdomain, we impose a spherical pressure
wave generated from a monopole source, similar to the shock wave emitted from the rapid
collapse of a bubble. Specifically, we specify a Ricker wavelet, which is widely used as
a model of the seismic waves from a point excitation. Table 1 shows the geometric and
material information involved in the simulation.

We prescribe the Ricker wavelet as the initial condition of the fluid. Specifically, the
initial pressure at a distance r from the source is given by

p(r) = p0 + Q(−r/c0)

r
, (3.1)
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Ricker monopole source Fluid Solid

f0 (MHz) 1.43 ρ0 (kg m−3) 1000 ρs (kg m−3) 1995
s1 (μs) 0.76 p0 (MPa) 0.101 cL (m s−1) 4159
H (mm) 2.4 cT (m s−1) 2319

TABLE 1. Parameters of the verification problem.
cL: longitudinal wave speed; cT : transverse wave speed.

with
Q(s) = [1 − 2π2f 2

0 (s + s1)
2] exp(−π2f 2

0 (s + s1)
2), (3.2)

where p0 denotes the hydrostatic pressure, c0 the speed of sound in the fluid, f0 the
frequency of Ricker wavelet and s1 is a constant that controls the initial position of the
wavelet. The values of these parameters are given in table 1. The initial velocity of the
fluid is then prescribed according to the acoustic theory. The initial pressure wave has a
peak magnitude of 913 Pa and a width of ∼2 mm in the radial directions (figure 3a). Its
central peak is located at ∼1.31 mm above the material surface.

The simulation is carried out using an unstructured, finite volume fluid mesh with 21.9
million tetrahedral elements and a finite element solid mesh with 6.7 million tetrahedral
elements. In the most refined region, the characteristic element size is approximately 0.01
mm for the fluid and 0.04 mm for the solid. A constant time step size of 5.0 × 10−4 μs is
used in both solvers.

Figure 3(b) presents the numerical solution at four time instances, showing the fluid
pressure field and the maximum principal stress in the solid. The simulation captures
the transient dynamics of wave propagation across the fluid–solid interface, including
the reflection of the pressure wave and the elastodynamic response of the solid. More
specifically, figure 4 shows different types of waves that occur at a specific time instance,
including the incident and the reflected waves in the fluid, the longitudinal (or P) and
transverse (or S) waves in the solid, and the head waves generated by the advancing of the
transmitted P wave along the interface.

In this problem, the maximum dynamic pressure in the fluid is two orders of magnitude
smaller than the hydrostatic pressure. Therefore, the incident wave can be considered as a
small disturbance and modelled as an acoustic wave propagating in a homogeneous fluid
medium. Given the assumption that the solid material is isotropic and linear elastic, this
problem can thus be modelled adequately by coupling the linear acoustic wave equation
with the equation of motion for a linear elastic solid. The exact solution of this problem
can be obtained using the Cagniard–de Hoop method (de Hoop & Van der Hijden 1984),
therefore providing a reliable reference for verifying our numerical solver. We use an
open-source code, Gar6more3D (INRIA 2013), to compute the exact solution. Figure 5
presents a comparison of the numerical and the analytical solutions at three sensors located
in the fluid and in the solid. A close agreement is obtained. For example, the peak dynamic
pressure recorded at sensor (−1.4, 1.05, 0.35) mm differs by only 0.66 % between the
numerical and the analytical solutions.

3.2. Collapse of a spherical bubble in an infinite medium
To demonstrate the numerical model’s capability of capturing single bubble dynamics, we
simulate the collapse of a spherical bubble in an infinite liquid medium. The simulation
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is based on the experiment of Kröninger et al. (2010) in which the dynamics of a
laser-generated spherical bubble in water is captured using high-speed photography. We
focus on simulating the initial collapse of the bubble from its maximum radius R0 = 0.747
mm. We assume that when the bubble is at its maximum size, velocity is zero both inside
and outside of the bubble, and the thermodynamic variables have constant values within
each subdomain. Specifically, the initial density and pressure of liquid water are set to
1000 kg m−3 and 0.101 MPa, respectively; and the stiffened equation of state described in
§ 2.1 is applied. The composition and state of the gas inside the bubble was not measured
in the experiment. In the simulation, we set the gas material to be air, modelled using the
perfect gas equation of state ((2.3)). In previous computational studies, the initial state
of the bubble is often estimated via theoretical models or data fitting (e.g. Müller et al.
2009; Koch et al. 2016) due to the lack of experimental data. Although the time history of
bubble radius in those studies shows good agreement with the experimental data, the initial
pressure and temperature applied therein are often unrealistically small (e.g. p0 = 4.579 Pa
in Müller et al. 2009). Here, we apply the initial density calculated in Müller et al. (2009)
(i.e. ρ0 = 0.957 × 10−3 kg m−3) but use a more realistic initial pressure, p0 = 100 Pa.
Leveraging the spherical symmetry in this problem, the computational domain is set to be
a tall and slender tetrahedron whose apex coincides with the centre of the bubble, with
symmetric boundary condition applied at its three side surfaces.

Five simulations are carried out using meshes of different resolutions. Specifically, the
characteristic element size (Δh) within and around the region of the bubble is refined from
60 to 3.75 μm.

Figure 6 presents the time evolution of bubble radius obtained using the five meshes.
Evidently, as the mesh gets refined, the numerical result converges gradually to the
experimental data for the period of bubble collapse. Figure 7 presents the velocity
magnitude and the pressure field around bubble at four time instances for the converged
solution. Driven by pressure difference, the bubble interface accelerates toward its interior
and remains spherical during the collapse. When the bubble reaches its minimum volume,
a strong shock wave is emitted.

It is noteworthy that for the time period of the bubble’s rebound, the converged
numerical result does not closely match the experimental data. This is likely due to the
fact that the numerical model does not account for some physical processes (e.g. liquid/gas
phase change) that become important when the bubble is at its minimum volume, as
well as the inconsistent modelling of the bubble content (c.f. Koch et al. 2016). However,
since the main focus of this work is the initial collapse of the bubble, the agreement with
the experimental data presented above provides support for the validity of the numerical
model.

4. Shock-induced bubble collapse near three representative materials

4.1. Set-up of numerical experiment
In this section, we consider shock-induced bubble collapse near three representative
materials, namely a strengthened gypsum (BegoStone 15 : 3, Esch et al. 2010; Simmons
et al. 2010), an elastomer (polyurea P1000, Amirkhizi et al. 2006; Chahine & Hsiao 2015)
and a foam rubber (Rubatex R8702 styrene-butadiene rubber (SBR) foam, Deigan 2007).
Table 2 summarizes the main properties of these materials. In particular, the relative
acoustic impedance of the material compared to that of the ambient fluid (i.e. Z/Z0) varies
from 5.2 in the case of BegoStone to 1.1 in the case of polyurea and 0.2 in the case
of the foam. Both polyurea and the SBR foam are modelled as a viscoelastic material.
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For the BegoStone, viscoelastic effects are negligible within the small time frame
considered in this study, therefore it is modelled as a purely elastic material. As a reference,
we also simulate the same bubble collapsing near a rigid wall, which can be considered as
a material with infinite acoustic impedance.

Figure 8 shows the set-up of the numerical experiment. Initially, a spherical air bubble
with a radius of R0 = 0.05 mm is placed in the liquid, at a distance of D0 = 2R0 from
the material surface (measured from the centre of the bubble). The incident shock wave
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Young’s Acoustic
Density ρs modulus Poisson’s impedance Z

Material (kg m−3) E0 (GPa) ratio ν gi τi (μs) (MPa·s m−1) Z/Z0

BegoStone 1995 27.4 0.27 — — 8.3 5.2
Polyurea 1100 0.235 0.485 0.478 64.1 1.73 1.1
SBR foam 490 0.1586 0.3 0.37 0.01 0.32 0.2

0.18 1.0

TABLE 2. Material properties of three representative materials.

that induces the bubble’s collapse is adopted from Johnsen & Colonius (2008). It has a
compressive front with a positive peak of 35 MPa, followed by a tensile phase with a
negative peak of 10.1 MPa (figure 8). This type of waveform can be generated in water
through electrohydraulic or electromagnetic mechanisms (e.g. Church 1989; Fovargue
et al. 2013). We prescribe the incident shock wave as the initial condition of the fluid
governing equations, following the method described in Cao et al. (2019). Away from
the incident shock wave, the ambient flow velocity and hydrostatic pressure are set to
v0 = 0 mm s−1 and p0 = 0.101 MPa, respectively. The 3-D model described in § 2.1 is
applied. Notably, this problem can also be simulated using a 2-D axisymmetric model,
which may be computationally less expensive. Nonetheless, the 3-D model can be easily
extended in future to investigate more complicated cases without rotational symmetry,
such as problems involving multi-bubble interaction and misalignment between the shock
wave and the bubble. For computational efficiency, we consider a 45◦ slice of the
cylindrical domain with symmetry boundary conditions applied to the two cut planes,
instead of modelling the entire 3-D domain. The computational domains for the solid
and the fluid are discretized using 2.3 million and 19.6 million tetrahedron elements,
respectively. The meshes are refined within a region close to the bubble and the fluid–solid
interface, where the characteristic element size is Δhf = 1.5 μm for the fluid mesh and
Δhs = 3 μm for the solid mesh. For comparison, the compressive front of the incident
shock wave is approximately 700 μm in the liquid.

4.2. Result and discussion
First, a mesh convergence analysis is performed for the case of BegoStone. Four sets of
mesh, including the baseline mesh introduced in § 4.1, are tested. Within the region close
to the bubble, the fluid element size (Δhf ) varies from 6.0 to 0.75 μm and the solid element
size (Δhs) varies accordingly from 12.0 to 1.5 μm. Figure 9 presents the time history of
relative bubble volume obtained with the four sets of mesh, showing the convergence of
the results. The bubble’s collapse time obtained with the finest mesh and the baseline mesh
differ by less than 3 %.

Figure 10 presents four solution snapshots from the case of BegoStone. Several key
features are clearly captured. The impact of the incident shock wave at the proximal (left)
side of the bubble triggers the bubble’s collapse. When the bubble reaches its minimum
volume, a shock wave is generated. Also, during the non-spherical bubble collapse, a liquid
jet forms and penetrates the bubble. These features are consistent with the results of several
previous studies that considered bubble collapse near a rigid wall (e.g. Johnsen & Colonius
2008; Kobayashi et al. 2011). A remarkable feature of the current result is that it captures
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the transmission and reflection of the shock waves at the fluid–solid interface, as well as
the resulting elastic waves inside the material.

When the same bubble collapses near different materials, the dynamics of the bubble,
the fluid flow, the pressure on the material surface and the stress inside the material all
vary. Figure 11 provides a comparison of the three cases by showing the fluid pressure
field and the maximum principal stress inside the solid at six time instances. The first
major difference lies in the reflection of the incident shock wave at the material surface.
This can be observed from the second row of images in figure 11, which are taken at
t = 0.155 μs, when the reflection has just reached the distal (right) side of the bubble.
In the case of BegoStone, the reflected wave is compressive, with peak pressure around
23 MPa. In the case of polyurea, the reflected wave is also compressive, but its amplitude
is only ∼2 MPa. By contrast, the reflection is a tensile wave in the case of the foam,
with peak pressure around −25 MPa. At the same time, a fraction of the incident wave
is transmitted into the material as a compressive stress wave. Figure 11 shows that both
the amplitude and the propagation speed of the wave vary from case to case. The peak
value of the maximum principal stress is found to be around −57 MPa (compressive) for
BegoStone, −35 MPa for polyurea and −10 MPa for the foam.

The differences described above can be explained by the relative acoustic impedance
of each material compared to that of the ambient fluid (i.e. Z/Z0). Consider a simplified
one-dimensional problem in which an incident wave with amplitude pi impinges on a
surface in its normal direction. According to the acoustic wave theory Brekhovskikh &
Godin 2012), the amplitude of the reflected and transmitted waves, pr and pt, are given by

pr = pi
Z/Z0 − 1
Z/Z0 + 1

, (4.1)

and

pt = pi
2Z/Z0

Z/Z0 + 1
, (4.2)

respectively. For pi = 35.0 MPa (peak pressure of the incident shock wave), we obtain
pr = 23.7 MPa and pt = 58.7 MPa for BegoStone, pr = 1.4 MPa and pt = 36.4 MPa
for polyurea, and pr = −23.3 MPa and pt = 11.7 MPa for the foam. These values match
reasonably well with the aforementioned results of the three-dimensional simulations.
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In all the three cases, the reflected wave impinges on the bubble from the distal (right)
side at a time it just started to collapse (cf. the second row of images in figure 11). In
the case of BegoStone, the reflected wave is compressive, with an amplitude comparable
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to that of the incident shock. Therefore it accelerates the bubble’s collapse. By contrast,
the reflected wave in the case of the foam creates a tensile stress field around the bubble,
which slows down its collapse. The variation in the speed of collapse can be observed from
the third row of images in figure 11, taken at t = 0.365 μs. By this time, the bubble near
BegoStone had already reached its minimum volume and is rebounding. The front of the
shock wave emitted from its collapse has just arrived at the material surface. At the same
time, the bubble near polyurea has just reached its minimum volume. The collapse of the
bubble near the foam is much slower. Its minimum volume is reached around t = 0.5 μs.

The variation in the speed of collapse has a clear impact on the emission of a shock wave
and its magnitude, which can be observed from the images taken between t = 0.365 μs
and t = 0.450 μs (i.e. the third, fourth and fifth rows of images in figure 11). A striking
difference is that the emission of shock wave is observed only in the cases of BegoStone
and polyurea, but not in the case of the foam. Moreover, the magnitude of the emitted
shock wave is much higher in the case of BegoStone than in the case of polyurea.

When the emitted shock wave reaches the material surface, a fraction of the energy is
reflected. Again, the type (i.e. compression or tension) and amplitude of the reflected wave
depend on the material’s acoustic impedance. When the reflected wave impinges on the
bubble, it is in the process of rebound. In the case of BegoStone, this instance is captured
by the snapshot at t = 0.400 μs. For a material with high acoustic impedance, the reflected
wave is compressive, and its amplitude can be higher than that of the incident shock. Later
we will show that the reflection of the emitted shock wave has an impact on both the speed
of the bubble’s rebound and the velocity of the liquid jet.

Furthermore, the images from 0.4 to 0.9 μs in figure 11 show that in all the three
cases, the bubble penetrates itself while rebounding from its minimum volume, thereby
generating a liquid jet that moves towards the material surface. In the case of the foam,
this liquid jet creates a dimple on the material surface, which can be observed from the
image at t = 0.9 μs in figure 11. In the other two cases, the deformation is smaller due to
the stiffness of the materials.

Next, we take a closer look at the fluid dynamics by examining the time history of bubble
volume, the shock wave emitted at the end of bubble collapse and the fluid velocity field.

Figure 12 compares the time history of bubble volume for all the simulated cases,
including the degenerate case of the same bubble collapsing near a rigid wall. The bubble’s
volume is initially the same in all the cases, until approximately 0.15 μs, when the
reflection of the incident shock arrives at the distal side of the bubble. Afterwards, the
four curves in figure 12 start to diverge, indicating a clear impact of the reflected wave. The
bubble’s collapse time, defined as the time between the arrival of the incident shock wave
and the time the bubble reaches its minimum volume, increases from 0.293 μs in the case
of rigid wall to 0.306 μs in the case of BegoStone, 0.335 μs in the case of polyurea, and
0.465 μs in the case of the foam. Also, the bubble’s minimum relative volume increases in
the same order from 2.4 × 10−3 in the case of the rigid wall to 4.7 × 10−2 in the case of the
foam. Given the causal relation between the material’s acoustic impedance and the type
(compression or tension) and amplitude of the reflected wave, the result shown in figure 12
suggests that in the current context, a solid material with lower acoustic impedance may
reduce both the energy released from bubble collapse and its peak power.

When the cases of rigid wall, BegoStone, and polyurea are compared, it is interesting
to note that the speed of the bubble’s rebound has the opposite trend compared to that of
the collapse. Specifically, the time it takes for the bubble to rebound from its minimum
volume to 1/5 of its initial volume decreases from 0.38 μs in the case of rigid wall to
0.24 μs in the case of BegoStone and 0.14 μs in the case of polyurea. This trend reversal
can be attributed to the reflection of the shock wave resulting from bubble collapse (i.e. the
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FIGURE 12. Comparison of the time history of bubble volume with different solid and soft
materials in its vicinity.

Material Z/Z0

Bubble’s minimum
relative volume

Bubble’s collapse
time (μs)

Peak surface
pressure (MPa)

Rigid wall ∞ 2.4 × 10−3 0.293 341
BegoStone 5.2 2.8 × 10−3 0.306 255
Polyurea 1.1 5.4 × 10−3 0.335 119
SBR foam 0.2 4.7 × 10−2 0.465 No shock wave

TABLE 3. Comparison of the dynamics of bubble collapse near rigid wall, BegoStone, polyurea
and SBR foam.

emitted shock wave) at the material surface. A material with higher acoustic impedance
sends back a stronger compressive wave, which leads to slower bubble rebound.

Figure 13 shows the time history of hydrodynamic pressure at the centre of the material
surface. The peak pressure of the shock wave emitted from bubble collapse is 341 MPa in
the case of rigid wall (which agrees reasonably well with the previous study of Johnsen &
Colonius 2008), 255 MPa in the case of BegoStone, and 119 MPa in the case of polyurea.
As expected, it correlates positively with the speed of bubble collapse (cf. figure 12). In
all these three cases, the peak pressure value is significantly higher than the amplitude of
the incident shock wave, which is 35 MPa. In the case of the foam, the bubble’s collapse
does not generate a shock wave. Therefore, compared to the other cases, the time history
of sensor pressure in the case of the foam is nearly a flat line. The impulse of dynamic
pressure at the sensor location is found to be 13.5, 11.5, 8.0 and 1.5 MPa-μs in the case of
the rigid wall, BegoStone, polyurea and the foam, respectively.

For ease of comparison, table 3 summarizes the bubble’s minimum volume, collapse
time and the peak surface pressure induced by the emitted shock wave in all four cases.
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The evolution of the fluid velocity field also varies from case to case. Figure 14 shows the
velocity field around the bubble during its collapse and rebound. The first row of images
are taken shortly after the reflection of the incident shock passes through the bubble.
Comparing the three cases shown in the figure, a variation of the speed of collapse can be
observed. To clarify the difference, figure 15 compares the time history of x-velocity at the
proximal and distal sides of the bubble for the three materials. In the case of BegoStone,
the velocity difference between the proximal and distal sides of the bubble reaches
1600 m s−1 shortly before contact. This is 1.6 times higher than the maximum velocity
observed in the case of polyurea, and 4 times higher than that for the foam.

Figure 14 also shows the formation and evolution of the liquid jet. Comparing the three
cases presented in the figure, it is notable that there is not a positive correlation between
the velocity of the liquid jet and the speed of the bubble’s collapse. In particular, after
t = 0.4 μs, the velocity of the jet is lower in the case of BegoStone than in the case of
polyurea, despite that in the former case the bubble collapsed faster. This phenomenon is
due to the reflection of the emitted shock wave at the material surface, and is essentially an
effect of the material’s acoustic impedance. More specifically, because of a higher acoustic
impedance, BegoStone reflects a larger fraction of the incident shock wave back to the
bubble (cf. figure 11, t = 0.155 μs), which accelerates the bubble’s collapse, therefore
emitting a stronger shock wave at the end of the collapse (cf. figure 13). For the same
reason, BegoStone sends back a stronger (compressive) reflected wave when the emitted
shock wave reaches the material surface. This reflection arrives at the distal side of the
bubble at t = 0.4 μs, when the liquid jet has just formed (figures 11 and 14). Thus the
velocity of the jet is reduced due to the impact of the reflected wave. In the case of the
foam, the collapse of the bubble is decelerated by the reflection of the incident wave
(which is tensile, due to the material’s low acoustic impedance). Therefore, as the liquid
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jet approaches the material surface, its velocity is higher than both of the other two cases
(see the last two rows of images in figure 14). This chain reaction highlights an interaction
of bubble, fluid and solid dynamics, and can be summarized by a sequence of events as
below.

(a) When the incident shock wave arrives, because of the difference in acoustic
impedance, BegoStone reflects a strong compressive wave to the bubble, while the
foam sends back a tensile wave (figure 11, t = 0.155 μs).

(b) Because of (a), the bubble in the case of BegoStone collapses much faster than the
bubble in the case of the foam (figures 11 and 14, t ≤ 0.365 μs for BegoStone, and
t ≤ 0.45 μs for the foam).

(c) Because of (b), the bubble in the case of BegoStone emits a strong shock wave at the
end of its collapse (figure 11, t ≤ 0.365 μs), which is absent in the case of the foam
(figure 11, t ≤ 0.45 μs).

(d) Because of (c), BegoStone sends back another compressive wave towards the bubble
when the emitted shock wave arrives at its surface (figure 11, 0.365 μs ≤ t ≤
0.4 μs). This event does not occur in the case of the foam.

(e) Because of (d), the liquid jet in the case of BegoStone is decelerated (figure 14,
0.4 μs ≤ t ≤ 0.8 μs).

( f ) Because of (e), the jet velocity at the material surface is much lower in the case of
BegoStone than in the case of the foam (figure 14, t = 0.8 μs).

The transient stress field inside the solid material also varies from case to case.
For example, figures 16(a) and 16(b) show the response of BegoStone and polyurea to
the shock wave emitted from bubble collapse. For both materials, a longitudinal wave
(P-wave) and a transverse wave (S-wave) are captured. For BegoStone, the speeds of
longitudinal and transverse waves are 4159 m s−1 and 2319 m s−1, greater than the
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FIGURE 16. (a,b) Two snapshots showing different elastic waves propagating in BegoStone and
the polyurea. (c,d) Time history of the maximum principal tensile stress and the maximum shear
stress at a sensor located at (0.05, 0.05, 0.0) mm.

speed of sound in water. Therefore, in figure 16(a) both waves have a crescent shape,
and the longitudinal wave is clearly forward of the shock wave in water. In polyurea,
the longitudinal wave travels at a speed of 1600 m s−1, which is close to the speed of
sound in water. Hence in figure 16(b) the front of the longitudinal wave is almost aligned
with the shock front at the fluid–solid interface. Also, the transverse wave in polyurea
is roughly parallel to the fluid–solid interface. This is because the speed of transverse
waves in polyurea is around 300 m s−1, much smaller than the speed of sound in water.
In addition, figure 16(c,d) compares the time history of maximum principal tensile stress
and maximum shear stress at a sensor, which also show clear differences among the three
materials.

Remark: In combination, the results of fluid pressure (figures 11 and 13) and velocity
(figure 14) suggest that under the simulated condition, the primary mechanism of material
damage may depend upon the material’s acoustic impedance. For a ‘hard’ material with
relatively high acoustic impedance, the primary mechanism may be the shock wave
emitted at the end of the bubble collapse. For a ‘soft’ material with relatively low acoustic
impedance, the primary mechanism appears to be the liquid jet. This finding is generally
consistent with the results of some previous studies, such as Tomita & Shima (1986),
Shaw et al. (2000), Sankin & Zhong (2006) and Abouel-Kasem et al. (2009), although the
material and condition considered in each study are different.
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Acoustic impedance Density ρs Young’s modulus Poisson’s
Material Z (MPa·s m−1) (kg m−3) E (GPa) ratio ν

M1 (BegoStone) 8.3 1995 27.4 0.27
M2 8.3 1995 13.7 0.418
M3 8.3 1995 6.85 0.463
M4 8.3 1995 1.71 0.491

TABLE 4. Test 1 material properties.

5. Parametric study on the effects of acoustic impedance

5.1. Acoustic impedance as a key parameter
The results presented in § 4 show that the acoustic impedance of the solid material
has significant impact on the bubble and fluid dynamics. A complexity, however, is
that acoustic impedance is a function of the material’s density and elastic properties.
Specifically (see, e.g. Brekhovskikh & Godin 2012),

Z =
√

ρsE(1 − ν)

(1 + ν)(1 − 2ν)
. (5.1)

Therefore, it is impossible to vary acoustic impedance while keeping all the other
properties the same, or to fix acoustic impedance while varying only one of the other
properties. Indeed, because the materials considered in § 4 are selected from real-world
materials of practical importance, they differ not only in Z, but also in ρs, E and ν.

To gain more insight into the role of acoustic impedance, we consider three numerical
tests that involve artificial materials with prescribed properties. In each test, we fix the
value of Z, and vary two of the three parameters: ρs, E and ν.

(i) Test 1: shock-induced bubble collapse near a series of materials that have the same
values of Z and ρs, but different values of E and ν.

(ii) Test 2: shock-induced bubble collapse near a series of materials that have the same
values of Z and ν, but different values of ρs and E.

(iii) Test 3: shock-induced bubble collapse near a series of materials that have the same
values of Z and E, but different values of ρs and ν.

In Test 1, we consider four materials as shown in table 4, including BegoStone. Their
Young’s modulus and Poisson’s ratio vary by a factor of 16 and 1.8, respectively. For
each material, we perform the numerical analysis described in § 4.1, using the same
computational model.

Table 5 summarizes the results obtained from Test 1, including the bubble’s collapse
time (tc), the minimum bubble volume (Vmin/V0), the maximum pressure at the sensor
shown in figure 13 and the maximum values of maximum principal and shear stresses at
the sensor shown in figure 16. The table shows that when Z and ρs are fixed, the bubble
and fluid dynamics are relatively insensitive to variation in E or ν. The small changes can
be explained by the fact that while the material’s density and longitudinal wave speed are
fixed, the transverse wave speed does vary among the four materials. For the same reason,
it is not surprising that the stress field inside the material clearly varies among the four
cases.
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Bubble’s collapse Minimum bubble Max. pressure at MPS MSS
Material time tc (μs) volume Vmin/V0 sensor (MPa) (MPa) (MPa)

M1 0.31 0.003 255 −23.5 76
M2 0.31 0.003 250 −75.2 47
M3 0.30 0.003 250 −96.1 30
M4 0.30 0.003 242 −96.2 12

TABLE 5. Test 1 results.
MPS and MSS: the temporal maximum of maximum principal stress and maximum shear stress at

the sensor shown in figure 16. For MPS, the negative (i.e. compressive) peak is shown.

Acoustic impedance Density ρs Young’s modulus Poisson’s
Material Z (MPa·s m−1) (kg m−3) E0 (GPa) ratio ν

M5 17.28 1500 134.4 0.33
M6 (Al7075) 17.28 2810 71.7 0.33
M7 17.28 5000 40.3 0.33
M8 17.28 10 000 20.2 0.33

TABLE 6. Test 2 material properties.

Acoustic impedance Density ρs Young’s modulus Poisson’s
Material Z (MPa·s m−1) (kg m−3) E (GPa) ratio ν

M9 1.73 733 0.235 0.490134
M10 (Polyurea) 1.73 1100 0.235 0.485
M11 1.73 2200 0.235 0.46871
M12 1.73 5500 0.235 0.40937

TABLE 7. Test 3 material properties.

In the same way, we perform Test 2 for the materials shown in table 6, in which ρs varies
from 1500 to 10 000 kg m−3, and E from 20.2 to 134.4 GPa. The result shows that tc varies
by less than 1 %, from 0.298 to 0.300 μs; Vmin/V0 varies by around 3 %, from 0.00275
to 0.00285. The maximum sensor pressure varies by around 5 %, from 280 to 296 MPa.
In comparison, variation in the material’s stress field is much larger. For example, at the
aforementioned sensor location (figure 16), the peak value of maximum shear stress varies
from 121.4 to 200.1 MPa.

In Test 3, we consider the four materials shown in table 7. The material’s acoustic
impedance and Young’s modulus are fixed, and their density and Poisson’s ratio vary by a
factor of 7.5 and 1.2, respectively. Again, the fluid results are relatively insensitive to the
material variations. For example, the peak pressure at the aforementioned sensor location
varies by ∼5 %, from 119 to 125 MPa.

Combining the results of the above numerical tests and those presented in § 4, it is
evident that under the simulated conditions, the solid material’s acoustic impedance (Z) is
an important parameter that controls the material’s reciprocal effect to the two-phase fluid
flow. The same bubble collapsing near materials with different values of Z can produce
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adapted from Ashby 2010).

Acoustic Young’s
impedance Z Density ρs modulus E Poisson’s

Material (MPa·s m−1) Z/Z0 (kg m−3) (GPa) ratio ν

Aluminium 7075 17.28 10.8 2810 71.7 0.33
Fused Quartz (GE Type 214) 13 8.1 2200 72 0.17
U-30 artificial stone (Esch et al. 2010) 5.38 3.4 1693 14.7 0.231
Silicone rubber (Folds 1974) 1.06 0.66 990 0.13 0.48
Polypropylene foam (Bouix, et al. 2009) 0.063 0.04 150 0.027 0.01

TABLE 8. Properties of five additional materials with different acoustic impedance.

clearly different bubble and fluid dynamics, with Z = Z0 being a transition point. On the
other hand, the same bubble collapsing near materials that have the same value of Z, yet
differ in other elastic properties, are found to produce similar bubble and fluid dynamics
(yet dissimilar stress field inside the material).

5.2. Selection of materials with different values of acoustic impedance
To characterize the effect of acoustic impedance on bubble and fluid dynamics, we select
five additional materials with acoustic impedance varying in a broader range compared
to those considered in § 4. The materials are selected from several broad categories, as
shown in figure 17. Table 8 summarizes the properties of these materials. In particular,
their acoustic impedance varies from 0.063 to 17.28 MPa·s m−1. For each material, we
conduct the same numerical analysis described in § 4.1.
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In the following, we combine the new materials in table 8 with those considered in
§ 4 (table 2), and characterize the effect of acoustic impedance on three fluid quantities
of interest, namely the bubble’s collapse time, the minimum bubble volume and the
maximum hydrodynamic pressure on the material surface.

5.3. Effect of acoustic impedance on bubble collapse time
Figure 18 shows in black dots the bubble’s collapse time, tc, for the eight materials
considered. As the material’s acoustic impedance increases, tc decreases monotonically.
This trend is consistent with what we found in § 4 using the three representative materials,
and has been explained there. The dashed line in figure 18 marks Z/Z0 = 1. For materials
with Z/Z0 > 1, the variation in tc is relatively small. For example, as Z/Z0 decreases from
10.8 (aluminium) to 1.1 (polyurea), tc increases by 10 %. When Z/Z0 < 1, tc becomes
more sensitive to Z. It increases from 0.36 μs in the case of the rubber (Z/Z0 = 0.66) to
0.465 μs in the case of the SBR foam (Z/Z0 = 0.2).

The trend shown in figure 18 can be captured using a simple model. We recall that in
the case of free-field Rayleigh collapse modelled by the Rayleigh–Plesset equation, after
neglecting the gas content inside the bubble, the collapse time can be derived as (Brennen
2014)

tR
c = 0.915

√
ρl

p∞ − pv

R0, (5.2)

in which the superscript R denotes Rayleigh collapse; ρl denotes the density of the liquid,
p∞ the far field pressure, pv the vapor pressure and R0 the initial bubble radius. Further, for
the non-spherical Rayleigh collapse of a bubble near a rigid wall, Rattray (1951) proposed
that the bubble’s collapse time can be approximated by

tR,w
c ≈ tR

c

(
1 + 0.205

R0

D0

)
= 0.915

√
ρl

p∞ − pv

R0

(
1 + 0.205

R0

D0

)
, (5.3)
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where the superscript w on tc denotes wall, and D0 is the distance between the centre of
the bubble to the wall (cf. Johnsen & Colonius 2009; Koch et al. 2016).

In the present study, the bubble’s collapse is induced by a shock wave, which is different
from a uniform pressure p∞ in Raleigh collapse. Moreover, in § 4 we have shown that the
bubble’s collapse time depends sensitively on both the incident shock and its reflection
against the material surface, while the amplitude of the reflected wave is a function of
Z/Z0. Therefore, we replace p∞ in (5.3) by

ps = pi + crpr = pi

(
1 + cr

Z/Z0 − 1
Z/Z0 + 1

)
, (5.4)

where pi is a characteristic pressure of the incident shock, pr the pressure of its reflection
((4.1)), and cr a non-dimensional coefficient that accounts for the time lag between the
impact of the incident shock wave and that of the reflected wave. In other words, we
propose that for the current study, the bubble’s collapse time can be described by

tc = 0.915

√√√√√ ρl

pi

(
1 + cr

Z/Z0 − 1
Z/Z0 + 1

)
− pv

R0

(
1 + 0.205

R0

D0

)
. (5.5)

The solid line in figure 18 shows the prediction of the above model, with pi = 20 MPa
(approximately half of the peak pressure of the incident shock) and cr = 0.7. It agrees well
with the result of the numerical analysis.

5.4. Effect of acoustic impedance on minimum bubble volume
In figure 19, the black dots show the bubble’s minimum volume normalized by its
initial volume, i.e. Vmin/V0, for the eight materials considered. As the material’s acoustic
impedance increases, Vmin/V0 decreases monotonically. The trend is nonlinear and again,
Z/Z0 = 1 roughly marks a turning point. The minimum bubble volume is more sensitive
to the nearby material’s acoustic impedance when Z/Z0 < 1. For example, Vmin/V0 in the
case of polypropylene foam (Z/Z0 = 0.04) is more than 9 times higher than that in the case
of rubber (Z/Z0 = 0.66). In comparison, the difference between the case of Ultracal-30
stone (Z/Z0 = 3.4) and the case of aluminium (Z/Z0 = 10.8) is less than 20 %.

The effect of acoustic impedance on minimum bubble volume can also be captured
using a phenomenological model derived from the Rayleigh–Plesset equation. Again, we
recall that in the case of free-field Rayleigh collapse modelled by the Rayleigh–Plesset
equation, the minimum bubble volume can be derived analytically (Brennen 2014). After
neglecting surface tension, we have

RR
min = R0

[
pG0

(γG − 1) (p∞ − pv)

]1/[3(γG−1)]

, (5.6)

where RR
min denotes the minimum radius of the bubble, which is assumed to remain

spherical all the time. Again, the superscript R denotes Rayleigh collapse; pG0 denotes
the partial pressure of gas inside the bubble; pv denotes the vapor pressure; and γG the
specific heat ratio of the internal gas.
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To account for non-spherical collapse, we generalize the definition of bubble radius (R)
as

R =
(

V
4π/3

)1/3

. (5.7)

Then, we generalize the above analytical result from Rayleigh–Plesset equation in the
same way described in § 5.3, which gives

Rmin = R0cs

⎡
⎢⎢⎣ p0

(γG − 1)

[
pi

(
1 + cr

Z − Z0

Z + Z0

)
− pv

]
⎤
⎥⎥⎦

1/[3(γG−1)]

. (5.8)

The solid line in figure 19 shows the minimum bubble volume predicted by (5.8)
with pi = 20 MPa, cr = 0.7 and cs = 7.0. The prediction agrees well with the result of
numerical analysis.

5.5. Effect on the maximum pressure on material surface
Figure 20 shows in black dots the maximum hydrodynamic pressure on the material
surface, denoted by pw,max , for the eight materials considered. Again, a monotonic
relationship is observed. Specifically, as Z/Z0 varies from 0.04 (in the case of the
polypropylene foam) to 10.8 (in the case of aluminium 7075), pw,max increases by 26 times,
from 11.3 to 291.6 MPa. The increase of maximum pressure is nonlinear with respect to
Z/Z0, and the slope reduces as the acoustic impedance becomes larger (i.e. concave). It can
be expected that as Z/Z0 goes to infinity, pmax would approach the value obtained from the
case with a rigid wall (cf. figure 13).
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For the eight materials considered (with Z/Z0 ∈ [0.04, 10.8]), pw,max is approximately a
linear function of log(Z/Z0). Using least-squares fitting, the relationship is given by

p(1)
w,max = ρc2

0

[
0.07 log10

(
Z
Z0

)
+ 0.0416

]
, (5.9)

where c0 denotes the speed of sound in the fluid. This fitting function is plotted in figure 20.
Despite the simplicity, a linear function like (5.9) cannot capture the correct asymptotic
behaviour as Z/Z0 goes to infinity. Accounting for the case of Z/Z0 = ∞ (i.e. a rigid wall),
we find that pw,max can also be fitted using a bounded growth function,

p(2)
w,max = ρc2

0
0.0591(Z/Z0)

1 + 0.4434(Z/Z0)
, (5.10)

which is also shown in figure 20.

5.6. Effect of bubble’s stand-off distance
While the material’s acoustic impedance dictates the reflection of shock wave at the
material surface, the bubble’s stand-off distance determines the time when the reflected
shock waves reach and interact with the bubble, and hence, is an important parameter that
affects the subsequent bubble dynamics. To study how the stand-off distance D0 influences
the material’s reciprocal effects discussed above, we re-run the three representative cases
presented in § 4 using different D0 between R0 and 6R0.

Table 9 compares the results obtained with a stand-off distance of D0 = 4R0 and the
results for D0 = 2R0 from table 3. For both stand-off distances, similar trends in bubble’s
collapse time and the peak surface pressure with respect to Z/Z0 can be observed.
However, the differences between three materials in the case of D0 = 4R0 becomes
smaller, indicating that the effect of nearby materials becomes weaker with increased
stand-off distance. This is because it takes longer (i.e. approximately twice as the case of
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Bubble’s collapse time (μs) Maximum surface pressure (MPa)

Material D0 = 2R0 D0 = 4R0 D0 = 2R0 D0 = 4R0

BegoStone 0.306 0.327 255 96
Polyurea 0.335 0.335 119 53
SBR foam 0.465 0.346 No shock wave 22

TABLE 9. Comparison of the dynamics of bubble collapse with two stand-off distances
(D0 = 2R0 and D0 = 4R0).

D0 = 2R0) for the reflected wave to reach and interact with the collapsing bubble, which
thus weakens the material’s effect on the collapse process. Another interesting observation
is that because of the reduced effect from the nearby material, a shock wave is emitted in
the case of the SBR foam with D0 = 4R0.

Furthermore, there exists a limit value of standoff distance, above which the bubble
would reach its minimum volume before the reflection of the incident shock arrives,
therefore its initial collapse is not affected by the solid material. Our numerical test
suggests that for the current setting, the limit stand-off distance is approximately D∗

0 =
5.5R0.

We also find that (5.5) provides a good estimate of this limit stand-off distance.
Specifically, the time for the shock wave to travel between the bubble and the material
surface (back and forth) is given by

twp = 2D0

c
= 2D0

√
ρl

γL( p + pL)
≈ 2D0

√
ρl

γLpL
, (5.11)

where D0 denotes the bubble’s stand-off distance, γL and pL are constant coefficients of
the stiffened equation of state. At the limit stand-off distance, denoted by D∗

0, twp is equal
to the bubble’s collapse time, tc. Combining (5.5) with cr = c∗

r = 0 and (5.11) gives

2D∗
0

√
ρl

γLpL
= 0.915

√
ρl

pi − pv

R0

(
1 + 0.205

R0

D∗
0

)
(5.12)

which is a quadratic equation of R0/D∗
0. Solving this equation gives R0/D∗

0 = 0.1809, or
equivalently, D∗

0 = 5.53R0, which matches well the result of our numerical test.

6. Summary and conclusions

Using a recently developed fluid–solid coupled computational model, we have analysed
the collapse of a single bubble induced by a shock wave near different types of solid
materials, including metals, minerals, glass, polymers and foams. By coupling the
dynamics of the bubble, the ambient liquid, and the solid material, the computational
model allowed us to investigate their interactions in detail. In this study, we have focused
on elucidating the effects of the solid material’s longitudinal acoustic impedance (Z) on
the bubble and fluid dynamics, including the shock wave and liquid jet resulting from the
bubble’s collapse. We presented a detailed comparison of three representative cases with
Z/Z0 > 1, Z/Z0 ≈ 1, and Z/Z0 < 1, respectively, where Z0 is the acoustic impedance of
the ambient fluid (water). Then, we expanded the study with five additional materials to
cover a relatively broad range of Z/Z0, that is, between 0.04 and 10.8. We investigated
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the effects of Z/Z0 on the bubble’s collapse time, the minimum bubble volume and
the maximum hydrodynamic pressure on the material surface. We also designed and
calibrated phenomenological models to capture these effects.

Several main findings of this study are noteworthy. First, the study reveals a two-way
coupling between the fluids and the solid material: when the same bubble collapses near
different materials (especially, materials with different acoustic impedance), the stress
field inside the material, the bubble dynamics, the fluid pressure and velocity fields and
the shock wave and liquid jet resulting from the bubble’s collapse all vary. This finding
indicates that modelling a material surface as a rigid wall may be inaccurate, even if the
solid material has a Young’s modulus on the order of tens of GPa. (see, e.g. figure 13).
Second, the study shows that Z/Z0 is a key parameter that dominates the material’s
reciprocal effect to the bubble and fluid dynamics, including the speed of bubble collapse
and rebound, the speed of the liquid jet, and the emission (and amplitude) of the shock
wave resulting from bubble collapse. This finding is supported both by a mechanistic study
on the three representative cases with different values of Z, and a numerical parametric
study of materials that have the same Z, yet differ in density, Young’s modulus and
Poisson’s ratio. Third, the study shows that Z/Z0 = 1 can be considered as a transition
point. When Z/Z0 < 1, the material surface reflects the compressive front of the incident
shock wave as a tensile wave. The reflection reduces the speed of the bubble’s collapse.
As a result, the collapse produces a liquid jet, but not necessarily a shock wave. When
Z/Z0 > 1, the surface reflects the compressive shock front as a compressive wave. The
reflection accelerates the bubble’s collapse. As a result, the maximum pressure of the
emitted shock wave increases linearly with log(Z/Z0) (within the range mentioned above),
and can be much higher than the amplitude of the incident shock. Interestingly, this
emitted shock wave also gets reflected at the material surface, and the reflected wave
slows down the liquid jet. More generally, this finding indicates that the mechanisms of
cavitation-induced material damage may be related to the material’s acoustic impedance.
For materials with high acoustic impedance, our study indicates that the emitted shock
wave may have a peak pressure of the order of 100 MPa. But for ‘soft’ materials with
Z < Z0, the bubble’s collapse may not emit a shock wave. Instead, the high-speed liquid
jet may become a mechanism of material damage.

A few limitations of this study should also be mentioned. The study considers a specific
setting that features the collapse of an air bubble induced by a planar shock wave, while the
viscous/viscoelastic effects of the surrounding liquid on the bubble collapse are neglected.
The generality of the findings obtained for this setting – particularly, their validity
under different conditions – requires further investigation. Also, although we commented
on the mechanisms of cavitation-induced material damage based on the fluid pressure
and velocity results, the numerical simulations do not directly predict material damage
or fracture. Incorporation (and calibration) of material damage and fracture models is
non-trivial, but possible (see, e.g. Cao et al. 2019). Furthermore, the phenomenological
models proposed in § 5 can be generalized – for example, cs and cr should be functions
of the bubble’s stand-off distance. In our opinion, these are all worthwhile directions for
future study.
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