C-Space Tunnel Discovery for Puzzle Path Planning

XINYA ZHANG, The University of Texas at Austin
ROBERT BELFER, McGill University

PAUL G. KRY, McGill University

ETIENNE VOUGA, The University of Texas at Austin

B B oo dts we e

D 4

Fig. 1. Puzzles we solve using our approach, roughly ordered by difficulty from left to right. Top row: alpha, alpha-z, alpha-j, alpha-g, double-alpha, claw, and
enigma. Bottom row: duet (with 4 different grid sizes), Mobius, ABC, and Key. All but the alpha variants are Hanayama puzzles.

Rigid body disentanglement puzzles are challenging for both humans and
motion planning algorithms because their solutions involve tricky twisting
and sliding moves that correspond to navigating through narrow tunnels in
the puzzle’s configuration space (C-space). We propose a tunnel-discovery
and planning strategy for solving these puzzles. First, we locate important
features on the pieces using geometric heuristics and machine learning, and
then match pairs of these features to discover collision free states in the
puzzle’s C-space that lie within the narrow tunnels. Second, we propose
a Rapidly-exploring Dense Tree (RDT) motion planner variant that builds
tunnel escape roadmaps and then connects these roadmaps into a solution
path connecting start and goal states. We evaluate our approach on a vari-
ety of challenging disentanglement puzzles and provide extensive baseline
comparisons with other motion planning techniques.

CCS Concepts: « Computing methodologies — Motion path plan-
ning; Neural networks.

Additional Key Words and Phrases: sampling strategies

ACM Reference Format:

Xinya Zhang, Robert Belfer, Paul G. Kry, and Etienne Vouga. 2020. C-Space
Tunnel Discovery for Puzzle Path Planning. ACM Trans. Graph. 39, 4, Arti-
cle 104 (July 2020), 14 pages. https://doi.org/10.1145/3386569.3392468

Authors’ addresses: Xinya Zhang, xinyazhang@utexas.edu, The University of Texas at
Austin; Robert Belfer, belfer2470@gmail.com, McGill University; Paul G. Kry, kry@cs.
mcgill.ca, McGill University; Etienne Vouga, evouga@cs.utexas.edu, The University of
Texas at Austin.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2020/7-ART104 $15.00

https://doi.org/10.1145/3386569.3392468

1 INTRODUCTION

The Piano Mover’s Problem asks whether one can move a piano
between rooms through a sequence of rigid-body motions. This
problem has inspired a great deal of work in computational geometry
and robotics because it has a vast number of practical applications,
from collision-free navigation in automated warehouses, to path
planning in pharmaceutical drug design. Rigid disentanglement
puzzles are an interesting variant of the problem because they are
specifically designed to be difficult to take apart: they are notoriously
difficult for both humans and computers to solve. One of the easiest
puzzle in Figure 1, the alpha puzzle at top-left, requires a counter-
intuitive twisting motion, and is frequently used as the most difficult
benchmark when testing path-planning algorithms [Amato et al.
1998b; Kuffner 2004; Zhang et al. 2008; Zhang and Manocha 2008].
The reason for the difficulty can be understood by considering the
geometry of the admissible configuration space.

Tunnels and Bubbles. Consider the 2D disentanglement puzzle
shown in Figure 2, where a red brick can only escape the lower
chamber through a thin gap. The configuration space (C-space) is
SE(2), that is, rigid translation and rotation of the red brick in the
plane. The admissible region of C-space, Cyee, is all of the collision-
free points in SE(2), which we visualize as a volume in R? at right
in Figure 2. The red brick has a large range of motion within both
lower and upper chambers. We call these large and open regions
of Cgee bubbles. Two very thin tunnels connect the bubbles, and
correspond to translations of the brick as it slides through the gap at
one of two possible vertical orientations. Any solution path for this
puzzle must find and navigate through one of these tunnels, while
not getting caught in dead-ends or complex geometric features of
Ctree (the creased boundary on the left side of the right tower in
Figure 2 corresponds to configurations where the brick jams into
the gap at non-vertical orientations). This tunnel-bubble geometry

ACM Trans. Graph., Vol. 39, No. 4, Article 104. Publication date: July 2020.

https://doi.org/10.1145/3386569.3392468
https://doi.org/10.1145/3386569.3392468

104:2 « Zhang, Belfer, Kry, Vouga

Fig. 2. A 2D disentanglement puzzle (left) consisting of a red brick that
must pass through a narrow gap in the blue piece. The C-space is a subset
of SE(2), visualized (right) in 3D, with two translation axes, and a third
periodic axis corresponding to rotation of the red brick. The collision-free
C-space consists of two large bubbles (states where the red piece is trapped
either in the upper or lower chamber), connected by two very thin tunnels
(for each orientation that allows the brick to slide through the gap).

is characteristic of all disentanglement puzzles, such as those shown
in Figure 1—except that C-space is now six-dimensional, the tunnels
can be curved or corkscrewed, and often the bubbles and tunnels
form a complex graph, so that disentangling the pieces requires
passing through the correct sequence of tunnels and bubbles.

The Challenge. Any algorithm that plans a solution path through
C-space must account for its bubble-tunnel geometry. Consequently
algorithms must overcome several practical challenges:

o Curse of dimensionality precludes computing the exact ge-
ometry of Cgee (or its five-dimensional boundary). Similarly,
there is no obvious volumetric representation (based on vox-
els, or 20-trees, etc.) that can resolve the narrow tunnels ac-
curately while scaling tractably to six dimensions.

o Sampling SE(3) (either in top-down fashion, or via tree-based
exploration) is extremely unlikely to find the narrow tunnels,
since they have tiny volume and are local features (sampling
the bubbles and sporadic points on their boundary does not
give any hints as to where the tunnels might be). Strategies
that treat Cpee as a black box, and ignore information the 3D
shapes of the pieces reveal about potential tunnel locations,
are unlikely to succeed.

¢ Finding one tunnel is not enough: if the probability to find
a path through a narrow tunnel is p, the probability to find
a path through N tunnels may become as small as pN if
the algorithm design has not taken the bubble-and-tunnel
structure of Cee into consideration.

Key Insight. As revealed by the challenges above, successfully
solving a difficult path-planning problem, such as a disentanglement
puzzle, centers on the ability to efficiently find and navigate through
the problem’s narrow tunnels [Hsu et al. 1999]. We believe that
effective strategies for tunnel discovery must start from insights
and priors about how the 3D geometry of the moving pieces induces
narrow tunnels. Accordingly, in this paper we assume that most
narrow tunnels correspond to alignment of geometric features on

ACM Trans. Graph., Vol. 39, No. 4, Article 104. Publication date: July 2020.

the two pieces: two narrow gaps sliding through each other, or a
gap on one piece sliding over a thin part (notch) of the other piece.

We will show that this assumption is widely valid for disentangle-
ment puzzles. Although we focused on puzzles as one particularly
striking class of challenging path-planning problem, in other path-
planning applications, from motion planning to industrial assembly
to docking problems, narrow tunnels are often also the result of
special alignment of geometric features on the parts.

In this paper, we design a planner around this connection be-
tween geometric features and the tunnel-bubble structure in C-
space. Although our framework is more complex than black-box
path-planning algorithms, it succeeds at finding narrow tunnels that
the generic planners are very unlikely to stumble upon by chance,
and so can solve puzzles with difficulty well beyond what was previ-
ously possible. Of course, in cases where our assumptions about the
character of narrow tunnels are invalid (see Section 8.1 for one such
example), our method loses its advantage, though it is easy to aug-
ment our overall approach to accommodate new problem-specific
priors about narrow tunnels.

Contribution. We describe a path-planning pipeline that addresses
the difficulties described above, and successfully solves disentan-
glement puzzles of unprecedented complexity, including all of the
puzzles shown in Figure 1. Our main contributions are a strategy
for detecting key configurations within each narrow tunnel (Sec-
tion 5), based on detecting and pairing important features on the 3D
geometry of the pieces (Section 4), and a parallel, distributed motion
planner that accepts these key configurations and robustly and effi-
ciently joins them together into a network of partial paths meeting
within the bubbles (Section 6). We thoroughly evaluate our method
on a wide variety of wire and Hanayama puzzles (Section 7).

2 RELATED WORK

The design and solution of geometric puzzles are problems of inter-
est to researchers in the computer graphics and visual computing
domains. Recent puzzle design algorithms have studied recursive
interlocking puzzles [Song et al. 2012], burr puzzles [Xin et al. 2011],
twisty puzzles like Rubik’s cubes [Sun and Zheng 2015], and in-
terlocking 3D jigsaw puzzles [Lo et al. 2009]. Likewise, a recent
example of puzzle solving is the work by Huang et al. [2006], which
reassembles fractured objects using geometric features, and is one
example among many that use geometric analysis for restoration in
cultural heritage applications [Pintus et al. 2016]. Computational
geometry approaches can be used to solve jigsaws by analyzing
their shape alone [Goldberg et al. 2004]. Recently, neural networks
have shown promise in solving difficult puzzles, such as image jig-
saw puzzles in 2D [Cho et al. 2010]. One particularly promising
recent result [Ichter et al. 2018] trains a variational autoencoder
conditioned on the obstacle geometry. This approach works well
for path-planning around simple obstacles such as mazes with rec-
tilinear walls and gaps, which can be easily represented using an
occupancy grid, but it’s not obvious how the method could be ex-
tended to disentanglement puzzles involving pairs of nontrivial 3D
pieces. For general motion planning, deep reinforcement learning
has shown success for tasks including robot grasping [Levine et al.
2018; Pinto and Gupta 2016], robot motion control [Finn and Levine

Key Configs

Features C-Space

Geodesic
Ratio

Medial
Notch

Neural
Network

C-Space Tunnel Discovery for Puzzle Path Planning « 104:3

Blooming Forest Connect Solution

gl

Fig. 3. An overview of our pipeline. Features are identified on the puzzle pieces with three techniques (shown here, for illustration purposes, on only one of the
two pieces of the ABC puzzle each): Geodesic-Euclidean Ratio for gaps and notches (Section 4.1), Medial Axis Notches (Section 4.2), and neural-network-based
features (Section 4.3). Features are paired, one from each piece, and valid collision-free key configurations are identified. The key configurations, along with
start (S) and goal (G) states, seed the blooming step, shown here with an abstract 2D illustration. Blooming builds local road-maps within the bubbles around
the start and end states, while also planning escape routes from key configurations, out of tunnels, and into adjacent bubbles. The forest connection step

searches for collision-free trajectories between nodes of the different trees grown during the blooming step. Once the start and goal state trees belong to the

same connected component, we construct the solution path.

2017; Zhang et al. 2015], and navigating video games [Jaderberg
et al. 2016; Justesen et al. 2019].

Our work is based on the intuition that the pieces in a disen-
tanglement puzzle have important geometric surface features that
come into close proximity at key configurations, i.e., at crux points
of the solution path. Certainly from visual inspection, human intu-
ition can guess these features, and we rely on both geometric and
neural network approaches in our solution. While our geometric
features involve computing geodesic distance [Crane et al. 2013],
and a smooth medial axis representation [Tagliasacchi et al. 2012],
we note that there are many other shape features that might like-
wise be useful, as is the case for automatic geometry segmentation
and labeling [Kalogerakis et al. 2010]. Neural networks now excel
at solving classical geometry feature detection and processing tasks,
like mesh classification [Lian et al. 2011] and segmentation [Wang
et al. 2012]. Recent work likewise addresses a variety of geometry
representations: multi-view images [Qi et al. 2016; Su et al. 2015],
point clouds [Hanocka et al. 2019; Li et al. 2018; Qi et al. 2017],
voxels with hierarchical structure [Wang et al. 2017, 2018], and
meshes [Hanocka et al. 2019].

The core problem we solve in this work is the Piano-Mover’s Prob-
lem, which has been known to be NP-complete since the 1970s [Reif
1979]. However, motivated by its importance in robot path-planning
and manipulation tasks, there has been a tremendous amount of
work on devising practical path-planning algorithms [LaValle 2006].

Sampling-based Path Planning Strategies. While exact approaches
are possible in very simple cases, the majority of path planning
research focuses on practical solutions that use sampling. Rather
than exhaustively searching for solution paths, the focus is to con-
nect sparse points sampled in Cpee; these methods enjoy increased
efficiency and practical effectiveness at the cost of only probabilistic

completeness guarantees [Karaman et al. 2011; Kavraki et al. 1998;
Ladd and Kavraki 2004].

The probabilistic roadmap method (PRM) [Kavraki et al. 1996]
samples states in C-space and, if they are feasible, adds them to a
roadmap graph. PRM attempts to connect together pairs of promis-
ing states, adding edges to the graph when a rigid motion through
Crree €xists between the states, and periodically checks for connec-
tivity between the start and goal states. Various heuristics have been
proposed both for sampling C-space and for choosing which pair of
vertices to try to connect; at its simplest, PRM uniformly samples
C-space and tries to connect each newly-sampled configuration to
its nearest n vertices in the graph. More sophisticated heuristics
are also possible, including those that combine several sampling
strategies simultaneously [Hsu et al. 2005].

A second family of popular and effective path-planners are based
on Rapidly-exploring Random/Dense Trees (RRTs and RDTs) [Lavalle
1998], with the main idea being to grow a connected tree incremen-
tally from a starting configuration. At each iteration, a C-space state
is sampled and added to the tree if it can be connected to its nearest
vertex on the tree. The algorithm occasionally checks whether the
goal state can be connected to the tree, and if so, terminates.

Many variants exist within the family of tree-based planners
that vary in how they grow the tree and/or deal with contact con-
straints, including the popular RRT*, BIT* [Gammell et al. 2015], and
EST [Hsu et al. 1999] methods. For example, RRT-connect [Kuffner
and LaValle 2000] modifies RRT by growing two trees simultane-
ously, one rooted at the starting state and the other rooted at the
goal. After adding a sampled configuration point to one tree, RRT-
connect attempts to also connect the new point to the other tree.
A solution path is found when an inter-tree edge is first detected.
We call attention to one particular variant of RDT, described in
LaValle [2006] chapter 14.4.3, which we will call RDTo. When a
newly sampled state cannot be connected to its nearest neighbor

ACM Trans. Graph., Vol. 39, No. 4, Article 104. Publication date: July 2020.

104:4 « Zhang, Belfer, Kry, Vouga

on the tree, RDTo shoots a ray from the nearest neighbor towards
the sample, and adds the first intersection of the ray with Cgp (the
inadmissible region; the complement of Cpee) to the tree. RDTo
trades a denser tree for increased ability to resolve complex obstacle
geometry (such as that of disentanglement puzzles).

Methods for Handling Tunnels. Several planners have been devel-
oped that address the problem of navigating through narrow tunnels
in C-space. While these methods can accelerate path-planning by
improving the chance of successfully traversing a tunnel, we stress
that often the hard part of the untangling problem is finding those
tunnels in the first place. Biased exploration of C-space towards
the medial axis of Cge, is a strategy that has been applied to both
RRTs [Denny et al. 2014; Rodriguez et al. 2006] and PRMs [Wilmarth
et al. 1999]. Although it is intractable to compute the medial axis
exactly, these methods push a given configuration in Cpee to the
medial axis by finding the closest configuration where the pair of
closest points on the two pieces suddenly jumps. This search is
more challenging for states in Cyps, and moreover scales poorly to
six dimensions; these methods therefore choose to find the closest
collision free state under translation only. For the example in Figure
2, a tunnel state would be found only if the orientation of the initial
sample point happens to line up with the tunnel. In contrast, we
find key configuration states within the tunnel directly.

Another family of path planners focus on generating samples
on the boundary between Cpee and Copg. RDT+ [Vahrenkamp et al.
2011] proposes a parameter-free RRT-connect-like algorithm for
dynamically adjusting the search distance to better sample within
narrow tunnels. Obstacle-based PRM [Amato et al. 1998b] sam-
ples configurations by selecting pairs of points, one on each object,
translating the objects so that the chosen points coincide in R3, and
applying random translations and rotations together with binary
search to try to find collision-free configurations near Cgy,g; our
key configuration generation algorithm (Section 5) adopts a similar
approach. Along similar lines, Rodriguez et al. [2006] propose mul-
tiple growth strategies for RRT, including choosing configurations
corresponding to alignment and sliding of nearby triangles on the
two moving objects. Amato et al. [1998b] also describe a three-stage
connection strategy which uses powerful local planners to more
reliably connect together components of the probabilistic roadmap.
Pan and Manocha [2016] present a local planner with accelerated
probabilistic collision detection based on hashing and reusing prior
collision queries; to remain robust when navigating narrow tun-
nels, their method randomly augments probabilistic queries with
occasional exact collision queries.

Finally, D-plan [Zhang et al. 2008] is based on RRT, but intro-
duces retraction-based sampling [Zhang and Manocha 2008] and
constrained interpolation [Zhang and Manocha 2010] for connect-
ing configurations. Retraction finds samples in Cfee that are close to
Cobs using a combination of projections and local search. To check
if two configurations connect, D-plan computes the closest points
between the two objects at each configuration, and computes an
interpolating trajectory that does not decrease the distance between
the closest points. These trajectories are more likely to be collision-
free, though there is still the challenge of successfully sampling
states within the tunnel. Nevertheless, the key high-level idea of

ACM Trans. Graph., Vol. 39, No. 4, Article 104. Publication date: July 2020.

D-plan is to exploit available information about the 3D geometry of
the objects during path-planning. We take this approach as well.

3 PIPELINE OVERVIEW

The greatest challenge for solving disentanglement puzzles is lo-
cating the narrow tunnels. If we knew a few key configurations in
Crree located inside each narrow tunnel, we could grow roadmaps
rooted at each of these key configurations. Eventually each road-
map would expand into the large bubbles adjacent to the tunnels,
where they become easy to connect to each other.

The pipeline of our solution to disentanglement puzzles is shown
in Figure 3. There are three main parts to our solution, corresponding
to the strategy above: feature detection takes the geometry of the
puzzle pieces and finds surface points that are likely involved in the
solution; feature alignment takes pairs of features and produces a set
of key configurations likely to be in narrow tunnels; and planning
takes these key configurations as seeds, blooms them into roadmaps,
and connects them together to produce a solution path as output.
We briefly outline each part in more detail, before going into depth
in the following sections.

Feature Detection. The goal of feature detection and alignment is
to produce key configurations in C-space; since directly exploring
C-space in the hopes of finding narrow tunnels is intractable, we
instead exploit the observation in the introduction that most tunnels
correspond to alignment of geometric features on the two pieces.

We locate feature points on the 3D geometry of the individual
puzzle pieces, using several different strategies. Pairs of points on the
surface that form a local minimum of the Euclidean-geodesic radio
are a good indication of gaps, and we use a combination of gradient
descent and random search to try find them all (Section 4.1). While
this ratio can identify notches, it is not reliable for finding these
largely local features. Instead, we can rely on finding notches by
searching a smoothed medial axis representation for locations where
the geometry is locally narrow (Section 4.2). Finally, we exploit
neural networks to identify gaps, notches, and other features by
training the network on easy puzzles with known solutions, and
then using the network to identify the same types of features on
novel puzzle pieces (Section 4.3).

Feature Alignment. With important features identified on the
two pieces of a puzzle, we test pairs of features (one from each
piece) by searching for collision free configurations where the pieces
align at their features [Amato et al. 1998b]. This alignment involves
testing a subset of rotations depending on the features involved.
Because some puzzles may produce many configurations that are
all in proximity, we use clustering to avoid placing too many key
configurations into any given tunnel.

Planning. Path planning begins by appending the start and goal
states to the key configurations and setting these C-space states as
roots in separate RDTo planners. We call this process blooming, and
expand the blooming trees until they reach a user-defined size. The
benefit of growing separate trees include improved exploration by
preventing the samples of one tree from interfering with another,
and easy parallelization.

Fig. 4. Euclidean-geodesic ratio is minimized for the indicated pair of green
points. The red dot marks the midpoint; it will be paired against another
midpoint on the other piece to estimate a key configuration.

Given the forest produced by the blooming stage, we use k-
nearest-neighbor search to connect each blooming tree with the
others. We then use a breadth-first search to identify a path from the
start to goal state. We called this process forest connection. Although
our goal is to find any solution path, not necessarily the shortest
or smoothest, we post-process our solution paths using OMPL’s
smoothing algorithms [Mainprice et al. 2011; Sucan et al. 2012] to
improve them.

4 FEATURE DETECTION

Our approach to finding key configurations within C-space tunnels
starts with identifying important feature points on the surface of
each puzzle piece. The intuition is that narrow tunnels in puzzle
solutions often align gaps from its two pieces, or align a gap from
one piece against a notch from the other piece. This motivates
our search for narrow tunnel configurations by locating gaps and
notches on puzzle pieces. Likewise, given that human intuition can
identify good features, we also train neural networks to identify
important geometric features for solving puzzles.

4.1 Euclidean-Geodesic Ratio (EGR)

A pair of points with a low Euclidean-to-geodesic ratio are close
together in Euclidean space, but distant with respect to the shortest
path on the surface. A low ratio is typically indicative of a narrow
gap or notch in the object, as shown in Figures 3 (top left) and 4.
The situation is more complex when the object exhibits symmetry.
For intuition, consider some examples: for a sphere, every pair of
antipodal points share the same optimal ratio 2/x. Finding such
antipodal points is useful, for alignment with a cylindrical gap on the
other piece. For a general surface of revolution, there will similarly
be circles of antipodal points with locally minimal EGR, but in this
case we are most interested in pairs of points that also minimize the
Euclidean distance: pairs of points that have a smaller Euclidean
distance are part of the thinnest, tightest area of the gap (or notch),
and are most likely to be part of a key configuration in a C-space
tunnel. Thus, our search is for local minima of the EGR plus a small
Euclidean bias,
e(u, v)
9(u,v)
where u and v represent points (not necessarily vertices) on the
surface of the object, with e(-) and ¢(-) denoting Euclidean and
geodesic distances respectively. This bias also helps us eliminate
point-pairs on diametrically opposite sharp edges or corners, as
they do not form useful features with respect to identifying gaps.
With many geodesic distances to compute, we use the heat kernel
method [Crane et al. 2013], which provides smooth approximations

r(u,v) = +a-e(u,v), (1)

C-Space Tunnel Discovery for Puzzle Path Planning « 104:5

Fig. 5. Smoothed medial skeleton (left) for the Duet grid in red, and the
location of identified notches in green (right).

of the distance, and a fast method for querying new vertices (i.e.,
back-solve with Cholesky factors). It is impractical to use brute force
to find all local minima, even if we restrict the search to only pairs of
surface vertices. Instead, we use a Monte Carlo algorithm to locate
minima.

We initially select a random vertex u. We then find all vertices
that locally minimize r when paired with u, and select one vertex v
from that list at random. Although selecting the vertex that globally
minimizes r(u, -) may seem like a good idea, doing so prevent us
from finding other relevant important pairs: the global minimum
is not always relevant for path planning. For example, the alpha-g
puzzle has two gaps, and only the larger gap contributes to the
solution as the smaller gap is too narrow. Therefore, we consider
any pair that locally minimizes r.

We then iteratively improve our selection via a local search by
moving either u or v to an adjacent vertex if it will lower the r
value. Once none of the neighboring vertices can lower the value,
we proceed to a continuous optimization constrained within the
faces of the mesh using an active set conjugate gradient algorithm.
Because the problems are very small, few iterations are needed to
produce reasonable solutions.

We use @ = 0.05 to bias the ratio function during the initial
search as well as during continuous optimization, and then polish the
solution point pair further by repeating our continuous optimization
with @ = 0 to remove the Euclidean bias, as its effect can be large at
narrow gaps where the ratio is small. Finally, we reject the detected
feature point pair if the solution is degenerate: if the pair involves
points on adjacent faces, or if the line segment strictly between
them intersects the object surface, as can occur for larger gaps.

We repeat the entire procedure above ng,p times with different
random initializations u to find up to ng,p pairs of feature points.

4.2 Medial Axis Notch (MAN) Detection

The geometry of some objects can be thin in local regions. As men-
tioned above, we call this type of feature a notch. Although the
Euclidean-geodesic ratio can sometimes find notches, it does not do
so reliably, especially on pieces with many flat, parallel faces, such
as the Duet puzzle piece in Figure 5 (a notch will not be found unless
the initial randomly-sampled point u happens to be on a notch).
To better detect notches, we use a smoothed medial skeleton of
the object, and search for medial points where the medial radius
is small. A small radius indicates that a notch is present, or that
the object is particularly thin in that area. We obtain the medial
skeleton of each puzzle piece by first calculating its medial axis (a
2D surface), and then performing mean curvature flow on it until

ACM Trans. Graph., Vol. 39, No. 4, Article 104. Publication date: July 2020.

104:6 « Zhang, Belfer, Kry, Vouga

only a curve remains [Gao et al. 2019; Tagliasacchi et al. 2012]. The
smoothing and dimension-reduction simplifies our search, with the
drawback that points on the curve only approximate the centerline
of the object.

For each point on the skeleton, we approximate the medial radius
by finding the closest point on the surface. This closest point be-
comes one endpoint of the notch; we then find the other endpoint by
looking for the closest surface point in the opposite direction from
the skeleton. As both points will not typically be equidistant from
the skeleton, we shift the skeleton to the midpoint. We repeat this
process one more time, i.e., identifying closest point, opposite point,
and recomputing the midpoint, to gently refine skeleton positions
and radii, but do not iterate further to avoid having skeleton points
migrate far from their original position. The result is a set of refined
skeleton points, radii, and surface point-pairs that may correspond
to notches.

With the approximated medial radius from samples on the medial
skeleton, we then locate the notches as the local minima of the
medial radius. However, this simple approach is susceptible to noise.
To make notch detection more robust, we first group nearby ver-
tices into vertex groups, by repeatedly merging neighbors to groups
seeded with medial skeleton vertices that have a locally minimal
radius. Merging repeats as long as neighbors do not exceed 1 + €
of the medial radius of the initial vertex. For each group, we denote
the medial radius of the initial vertex as group radius.

After clustering vertices into groups, we check each group against
all of its neighbouring groups. If the group radius is smaller than
(1 + €1)7! of all its neighbouring groups, this group is marked as a
local minimal group, and the medial radius from all vertices in this
local minimal group are marked as features of this geometry.

We use €y = 0.1 and €1 = 0.05 throughout this paper. Empirically
this choice effectively eliminates false positives while keeping the
real notches.

4.3 Neural Network Feature Detection

In the previous sections, we described geometric strategies for iden-
tifying gaps and notches in the piece geometry. Given recent suc-
cesses by machine learning algorithms in solving similar classifi-
cation tasks in computer vision, a natural complementary strategy
is to train a neural network to identify geometric features on ras-
terizations of the puzzle pieces from different camera angles. This
approach can succeed when a narrow tunnel does not exactly cor-
respond to gaps or notches detected in Sections 4.1 and 4.2, either
due to variations in puzzle design or noise in the piece geometry.

Overview. Although it is surely possible to train a neural network
to label gaps, notches, and other geometric features on a puzzle
piece, given a sufficiently rich corpus of training data, we propose
a different approach that does not require such data. Following
classic path-planning work such as OBPRM [Amato et al. 1998b],
for the neural network feature detector we will focus on finding
contact configurations within narrow tunnels—key configurations
where a point on each of the two pieces touch. We train three neural
networks for three different types of features (gaps, notches, and
protruding teeth), and each predicts a feature density function ¥
on the surface of each puzzle piece, with i/(u) proportional to the

ACM Trans. Graph., Vol. 39, No. 4, Article 104. Publication date: July 2020.

probability that u participates as a contact point in a narrow tunnel
contact configuration.

We generate training data by choosing easy puzzles that can be
solved using a conventional planner, yet contain geometric features
analogous to those we expect in the difficult puzzles: we used the
alpha 1.15 puzzle, which is an easier variant constructed from the
alpha puzzle [Amato et al. 1998a] with a wider gap, and a small
piece of the Duet maze cut out from the main puzzle (see Figure
1, bottom-left), whose maze piece is representative of notch-type
features, and whose ring piece is representative of protruding teeth.

4.3.1 Generating Feature Density Training Data. Given a training
puzzle, we generate a ground-truth feature density function i based
on the solution paths found by traditional path-planners. We assume
that the training puzzle is simple enough that these planners always
succeed in finding a solution path, and that the puzzle contains only
one narrow tunnel, which any solution path must travel through.
We represent the output ¢ for each piece as a scalar function over a
4096 X 4096-pixel texture atlas parameterizing the piece surface.

To compute ¢/, we solve the puzzle 100 times using the RDTo
planner to collect 100 solution trajectories. For each trajectory, we
uniformly sample 1024 configurations g; along the path.

We then estimate whether each sampled configuration is inside a
narrow tunnel, or inside a bubble. From g; we shoot 1024 rays in ran-
dom directions into C-space, and compute the average distance that
the rays travel before intersecting C,ps. We declare the 3 sampled
configurations with lowest average distance as lying inside a narrow
tunnel. Note here we assume there is only one narrow tunnel in the
training puzzle, and the goal of using multiple configurations is to
capture more samples deep in the narrow tunnel (rather than just
at the entrance).

If we believe that trajectory configuration g; lies in a narrow
tunnel, we shoot 1024 rays from g;, and compute their intersec-
tion points g;; with Cys, as well as the pair of points u;; and v;;
on each piece that are touching at the configuration g;;. We incre-
ment ¥(u;;) by llgij — gi |71, where the weighting accounts for the
fact that configurations closer to q; are more likely to be contact
configurations in the narrow tunnel.

4.3.2 Network Design and Training. Each of the three networks is
a single hourglass [Newell et al. 2016]. The input to the networks
consists of a five-channel 256 x 256 image [Eigen and Fergus 2015;
Qi et al. 2016; Socher et al. 2012; Su et al. 2015; Yang et al. 2019]:
one for the luminance, one for depth, and three for the normal.
For both training and testing we render the pieces using a Lamber-
tian material with a single point light placed in a spot fixed with
respect to the camera; we also place the piece with centroid cen-
tered in the camera’s view at a fixed view distance. The output is
a single-channel 256 X 256 image, the predicted i values for each
pixel in the input image. Our network architecture consists of a
single hourglass, without the downsampling from 256 to 64 pixels
suggested by Newell et al. [2016]. To compensate for the increased
input resolution, we use 6 residual modules instead of 4.

To train the network, we compute i for each of our two training
puzzles, as described in section 4.3.1, and generate around 300, 000
image pairs for each puzzle piece, each with a randomly-chosen

Fig. 6. The feature density function ¢ predicted by our network, for four
different puzzle pieces. Warmer colors indicate higher values of ¢, corre-
sponding to points the network believes have higher probability of being
feature points.

translation and rotation of the puzzle. We use Adam optimization
[Kingma and Ba 2015] with learning rate 2.5 - 107 to train our
network.

4.3.3 Data Augmentation. Data augmentation is a classic approach
for reducing overfitting on image data [Krizhevsky et al. 2012], and
we find it is crucial in our case because of the low number of train-
ing geometries (two puzzles with two pieces each). The following
augmentation filters are applied to the input images during training
to reduce overfitting:

(1) we apply random noise with Poisson distribution A = 0.05 to
the luminance channel of whole image input image;

(2) we randomly pick a 64 X 64 tile which contains pixels with
non-zero { value, and clear everything in the input image
outside that tile; this filter is designed to make our hourglass
focus more on local features.

(3) we randomly pick a 64 x 64 tile with ¢ value identically zero,
and delete that tile from the input image. Intuitively this filter
removes random blocks from the input image, synthetically
increasing puzzle variety.

For each rendered image, we randomly choose one of the filters to
apply, with probabilities 0.1, 0.7 and 0.2 respectively.

4.3.4 Feature Prediction. We use the trained hourglass networks to
predict ¢ for new puzzle geometries. To get good coverage of the
puzzle piece, we select 4096 random camera orientations, and ras-
terize the piece to a five-channel image for each chosen orientation
in a manner identical to the setup during training. The predicted
i for each image is essentially a sixth color channel on that image;
we map the predicted ¢ values to a texture atlas of the piece and
aggregate ¢ over all 4096 views for all three networks (see examples
in Figure 6). Finally, we sample the texture atlas nyn times, with
probability distribution proportional to ¢, to select feature points
for key configuration generation.

C-Space Tunnel Discovery for Puzzle Path Planning « 104:7

350 1

300 ¢ @ @ J

Rotation Angle 2

0 50 100 150 200 250 300 350

Rotation Angle 1

Fig. 7. The four key configuration (top-right) formed by aligning a pair of
gaps in the alpha puzzle (top-left); here the cyan piece is fixed and the
orientation of the red piece was found by sweeping over its possible ori-
entations, with a search resolution of 1 degree. Visualization of the valid
regions (dark) of this angle search space (bottom). Red circles identify the
four key configurations. The other dark regions are alignments of the two
pieces that are collision-free, but not in a narrow tunnel.

5 KEY CONFIGURATION GENERATION

The previous section describes different strategies for locating key
points on the 3D geometry of the puzzle pieces. Next we must turn
these key points into key configurations that lie in the tunnels of the
six-dimensional puzzle C-space. A natural idea is to choose a feature
point on each of the two pieces, and translate the pieces so that
these points overlap. We then rotate the second piece while keeping
the two points in contact, searching the space of orientations of
the second piece for configurations that lie in Cgee. This pairing
and search process is slightly different for feature points that come
from the EGR and MAN strategies than for those that come from
the neural network, since in each case we have access to different
orientation cues to help position the two pieces.

5.1 Aligning EGR and MAN Features

Recall that the features detected using the EGR strategy are pairs of
points delineating a notch or gap, while MAN detects only notches.
We classify each pair of EGR feature points as either a gap or notch—
depending on whether the surface normal at the two feature points
are oriented towards or away from each other—and form key con-
figurations by pairing gaps with gaps, and gaps with notches.

ACM Trans. Graph., Vol. 39, No. 4, Article 104. Publication date: July 2020.

104:8 « Zhang, Belfer, Kry, Vouga

Gap-gap Key Configurations. We form key configurations from
pairs of gaps by choosing a matching pair of EGR feature points
(u, v1) and (uz, v2) on each piece, computing the midpoints (center
of the notch or gap) mj, my of each pair, and positioning the two
pieces so that m; and my coincide, and the gap vectors vz — uy and
vi — u; are orthogonal (since orthogonal alignment corresponds to
orientations of maximum clearance between the two pieces, and so
the most likely key configurations).

There are two rotational degrees of freedom for the second piece
which keep the gap vectors orthogonal: rotation of the second piece
about either of the two gap vectors. We sweep this two-dimensional
space of rotations, in increments of one degree, looking for configu-
rations where the two pieces do not intersect. Here and throughout
the paper, we perform collision checking in C-space using discrete
collision detection with the FCL library (the default implemented in
OMPL). The alpha puzzle seen in Figure 7 shows a key configuration
formed by pairing gaps in this way. The plot at the bottom of Figure
7 shows in dark areas the configurations in Cf.ee found during the
angle sweep.

While the alpha puzzle has one unique Euclidean-geodesic ratio
minimum, after performing the angle sweep we discover six con-
nected regions of potential key configurations in Cgee. The two
large regions contain states that do not contribute to a solution path
(dead end tunnels) and the four small regions contain key configu-
rations that are each on a distinct solution path. We note that the
configuration space of the alpha puzzle has three bubbles: two where
the pieces are tangled, and one where the pieces are completely
separated. Due to the symmetry of the alpha puzzle pieces, there
are two possible ways to untangle the pieces. Hence there are four
distinct tunnels total, two from each tangled bubble to the solved
state bubble. The small size of these regions demonstrates why the
alpha puzzle is a tough challenge for planners to solve. They are
unlikely to randomly sample a state in the tunnel region.

Since seeding near-identical configurations into our planner is
unnecessary and can reduce performance, we select the key config-
uration with the highest clearance (separation distance of the two
pieces) per connected valid region in the 2D angle grid.

Gap-notch Key Configurations. The process for pairing gap fea-
tures above changes slightly when pairing a gap with a notch. First
we trivially reject a gap-notch pairing if the gap is smaller than the
notch thickness. We then align the gap and notch vectors so that
they are parallel and search the one-dimensional space of rotations
for collision free configurations. Since the gap and notch vectors
can be parallel with the vectors pointing in the same or opposite
directions, we perform the search twice.

5.2 Aligning Neural Network Features

Each feature from the neural network detector consists of a surface
point p and its corresponding surface normal n. We form key config-
urations from feature pairs (p1, n1) and (p2, nz) on the two pieces by
rotating the geometry so that n; and ny are anti-parallel, and then
translating the pieces so that they coincide with a slight normal
offset: p; = p2 +€ny. As in the case of gap-notch features, this setup
leaves a one-dimensional family of rotations that we once again

ACM Trans. Graph., Vol. 39, No. 4, Article 104. Publication date: July 2020.

sweep for configurations in Cpee. The offset € (we use € = 107°)
helps avoid collision false positives during the sweep.

Since neural network feature quality has high variance, we adopt
an oversampling strategy when generating key configurations: to
provide the planner with N key configurations, we sample 10N key
configurations and only keep the N with lowest average distance to
Cobs (computed as in Section 4.3.1). In this way key configurations
are more likely to lie in narrow tunnels than in bubbles.

5.3 Key Configuration Clustering

The key configurations generated by the algorithms above tend to
contain many duplicates that lie within the same narrow tunnel. To
remove these duplicates, we connect the key configurations into
a graph G, with edges between pairs of configurations that can be
connected by a straight line in Cpee. We then keep only one key
configuration per connected component.

Finally, we reject any key configuration corresponding to a disen-
tangled state (for which the two bounding boxes of the two pieces
do not overlap).

6 PATH PLANNING WITH BLOOMING

The strategies described in Section 5 predict key configurations
that lie in narrow tunnels. To turn these key configurations into a
solution path, we must find trajectories that connect them together.

Perhaps the most straightforward solution would be to add all
the key configurations as milestones of a PRM planner, and to keep
sampling additional points in C-space until the planner is able to
connect the points together into a complete solution path. Unfor-
tunately, as we show in Section 7.3, and as also observed by Shi et
al. [2014], it is difficult for PRM to find paths connecting narrow
tunnel configurations to each other, without requiring an extremely
large number of samples. LaValle’s classic textbook [2006] suggests
using multiple RDT trees rooted at different points in C-space, as an
extension of the usual single- or dual-tree RDT algorithm; methods
[Strandberg 2004] such as SparkPRM [Shi et al. 2014] further explore
this idea by maintaining a global PRM data structure, and switching
to the RRT algorithm locally if a narrow tunnel configuration is sam-
pled. We propose a two-stage algorithm to solve disentanglement
puzzles inspired by this approach.

First, we expand a forest of exploring trees rooted at each key
configuration, using the RDTo planner (which we found to be far
more effective than RRT; see also Section 7.3). We call this stage
blooming, and the resulting trees blooming trees. Ideally, starting
from the root inside a narrow tunnel, these trees grow into the large
bubbles at both ends of the tunnel, where multiple blooming trees
all occupy the same space. In the second forest connection stage, we
attempt to connect the forest of blooming trees into a single graph.

Blooming. For each key configuration (as well as the start and
goal state), we use RDTo to compute a local roadmap rooted at that
configuration. We use three termination criteria: we stop growing
the tree if it ever connects to another key configuration, exceeds
a maximum user-defined size K, or if the running time reaches a
user-defined limit (we chose 15 minutes). The latter is needed since
the configuration space of a complex disentanglement puzzle often
includes tiny disconnected components of Cee not connected to

the main admissible region of C-space. Inside these pockets, it may
be impossible for a tree to grow to the desired size of K vertices.

Forest Connection. During the forest connection step, we have
N blooming trees we want to connect together. For each tree T;,
we create a kd-tree nearest neighbor data structure for all vertices
in the remaining N — 1 trees. We then iterate through the vertices
v € T;, compute its C nearest neighbors in the remaining N — 1
trees, and add an inter-tree edge between v and its nearest neighbor
if the edge lies entirely within Cpee. We used C = 8.

After merging a tree T; into T; in this way, we delete all vertices
of T; from the nearest neighbor data structure. In this way, if T;
contains many vertices very close to those of T;, it does not prevent
our algorithm from connecting T; to other blooming trees whose
vertices are slightly more distant.

Finally, after completing the forest connection process, we check
for a path from the start to the goal state using standard breadth-first
search. Our method has succeeded if such a path is found.

6.1 Paralellization

When the number of key configurations is large,the wall-clock time
required by the planning process can be reduced substantially by
exploiting opportunities for parallelization. The blooming process is
already embarrassingly parallel; the forest connection and extraction
of a final solution path can also be parallelized with a few minor
modifications.

During forest connection, we process each of the trees T; indepen-
dently in parallel, and accumulate the inter-tree edges that should
be added that involve T; (there are at most N — 1 of these). After
every tree has been processed, we construct an N-vertex tree-level
graph from the inter-tree edges, and compute a path from the start
to the goal state using BFS at the tree level. We now know which
blooming trees the solution path traverses, and the start and end
vertices s; and g; within tree T; of each segment of the solution path.
We find the path connecting s; to g; within T; using BFS in parallel.

6.2 Sample Interference

A notable aspect of this planner’s design is that the blooming trees
are merged in the last step of planning, instead of earlier. A majority
of the key configurations we find are false positives not located in
tunnels, so it may seem that merging trees early would improve
the efficiency of our planner, by allowing it to spend more time
growing trees that are still exploring the tunnels. However, in our
experiments we found that (in addition to posing parallelization
challenges) eagerly merging the trees often reduces the performance
of the planner, due to a phenomenon we call sample interference.

Sample interference occurs when a tree grows to a large size and
covers a significant portion of configuration space. It is harder for a
large tree to navigate a tunnel than a small one, as a consequence
of the nearest neighbor heuristic used by RRTs: when a tree covers
a large region in C-space, it is less likely that the nearest neighbor
of a sampled state is a state in a tunnel.

In our early experiments with eager planners, we found that key
configurations in tunnels connect quickly to one of the two adjacent
bubbles, but then due to sample interference rarely connect to the
other bubble. Sample interference has interesting implications for

C-Space Tunnel Discovery for Puzzle Path Planning « 104:9

RRTs, and suggests that, to quickly find a solution, it is more efficient
to run many small trials and hope to get lucky than to search for a
tunnel in a single, extended trial.

7 EVALUATION

We evaluate our method on 17 disentanglement puzzles of varying
type and difficulty:

o in addition to the traditional alpha and alpha-1.1 puzzles, we
calipered and 3D-modeled six other wire-type puzzles: the
Hanayama claw, and six alpha-puzzle variants from Teeni-
tor’s “10-piece Metal Iron Brain Teaser IQ Test Assembly &
Disentanglement Puzzle Toy” box set;

e we also calipered and modeled Hanayama’s Duet puzzle. The
puzzle is actually two in one: two identical circular pieces
must escape the same maze, in two different ways. We include
both sub-puzzles (each involving only one circular piece and
the maze) as duet-g9 and duet-g9a. We also cut the Duet maze
into smaller pieces to yield easier puzzles (duet-g1 through
duet-g4);

e Mobius, ABC, and key are Hanayama puzzles that we 3D-
scanned. The Hanayama Enigma includes three pieces; our
enigma is a sub-puzzle involving only two of those pieces,
modeled by a 3D artist.

Our collection of puzzles was obtained by various methods and
had different representations. We chose to represent them using
meshes, since the collision detection algorithms we use require them
as input. We illustrate many of these puzzles in Figure 1, and provide
their meshes as supplementary material.

Since both the feature alignment and planning phases of our
pipeline depend on random sampling, success or failure to find a
solution path for a given puzzle can vary across executions. For each
puzzle, we therefore run our pipeline with identical parameters ten
times, and use the ratio of successes as an approximation of our
method’s probability of solving that puzzle.

We run our pipeline on an HTCondor cluster [Litzkow et al. 1987]
of heterogeneous machines (ranging from Opteron 2218s to Xeon E5-
2670v2), to which we distribute the work of running the blooming
and forest-connection steps of our planner.

We show in Table 2 the overall chance of our method to solve
each puzzle, using all key configuration prediction strategies (the
Combined column). Videos of the solution paths for many of the
puzzles are provided in the supplemental materials. We will publicly
release the source code of our method on GitHub.

We selectively present a few disentanglement plans found during
the experiments in Figure 8 and Figure 9.

7.1 Choice of Parameters

Most of our method’s tunable parameters are held fixed throughout
all experiments we report, and their values have been provided in the
text. For the remaining parameters, we use three sets of values, each
for a different puzzle difficulty. These parameters are listed in Table
1, and are intended to provide the planner with more guidance for
harder puzzles, at the cost of increased computation. The last listed
parameter specifies whether we do key configuration clustering to
eliminate nearby configurations in narrow tunnels. By disabling

ACM Trans. Graph., Vol. 39, No. 4, Article 104. Publication date: July 2020.

104:10 + Zhang, Belfer, Kry, Vouga

Fig. 8. Disentanglement plan of alpha-1.0, Mobius and claw found by our pipeline

1@

@® @
2] B |

Front side @

Fig. 9. Disentanglement plan of duet-g9. The number indicates the step at
which the gap in the ring should pass through a notch in the grid.

Back side

Table 1. Parameters values for different difficulty levels.

. Difficulty
Name Section Easy Hard Extreme
EGR detection attempts ng,p 4.1 12 20 32
NN feature samples nyN 434 32 512 1024
Size of blooming tree K 6 3072 4096 6144
Key config. clustering 5.3 Yes Yes No

this step we allow multiple key configurations in the same narrow
tunnel, simplifying the planning task.

7.2 Effectiveness of Individual Key Point Strategies

We test the effectiveness of each of our three key point discovery
strategies (Euclidean-Geodesic Ratio, Medial Axis Notch Detection,
and Neural Network Feature Detection) in an ablation experiment

ACM Trans. Graph., Vol. 39, No. 4, Article 104. Publication date: July 2020.

where we attempt to solve each puzzle ten times using only one
of these strategies. The success rates for each strategy are listed in
the EGR, MAN, and NN columns of Table 2. Note that since these
experiments are equal-effort, in some cases the trial runs using only
one strategy have a higher success rate than the trials using all three
strategies combined. In Table 4, we also show how many narrow
tunnels were detected by each strategy, as well as how many narrow
tunnels along the solution path were detected by only one strategy.

A trend shown in the tables is that the geometric key point de-
tection strategies are good at certain subsets of the puzzles, e.g.,
Euclidean-Geodesic Ratio for the alpha-type puzzles, and Medial
Axis Notch for the duet puzzles. The neural-network-based strategy
is applicable to a broader cross-section of puzzles, but generally not
as effective on a given puzzle as the best geometric strategy.

7.3 Comparisons to Other Planners

To provide a fair equal-effort comparison, we measure the number
of edge connections in C-space that our planner attempts to make,
and limit other planners to the same number. This choice of metric
is motivated by the observation that edge connection, which entails
performing collision detection as the puzzle pieces sweep from
one configuration to another, dominates the computational cost of
planners (e.g. our planner spends over 60% of the total time on edge
connections), and gives us a measure of planner performance that
is invariant to hardware speeds or code optimization.

We tried the OMPL built-in planners (including RRT, EST, BIT*,
RRT-Connect, etc) but none of them were able to complete even the
basic alpha-1.0 puzzle after 100 equal-effort attempts, so we exclude
them from our table. RDTo and RDTo-Connect (modified from their
vanilla OMPL implementations as described in Section 2) fare better,
and we run them end-to-end on each puzzle. We also run the PRM
planner, with our key configurations seeded as initial milestones, to
demonstrate the effectiveness of our blooming-based planner.

D-plan [Zhang et al. 2008] is far more effective at solving the
alpha puzzle than RRT, and would be a natural point of comparison,
but unfortunately we contacted D-plan’s authors for source code,
and the code no longer exists. We note, however, that our method
succeeds in solving puzzles far more complex than the alpha puzzle
benchmark studied by D-plan.

We measure the mean number of edge connections attempted
by our planner over its ten attempts at each puzzle; these numbers
are listed in the Mean Edge Conn. column in Table 2. We impose
this edge connection budget on the three baseline planners, halting
them if the number of edge connections exceeds the specified budget,
or if the planner runs out of memory (around 10 GiB) or runs for
more than 10 days without solving the puzzle. We run the baseline
planners 100 times for the easy and hard puzzles, to achieve higher
precision in the success rate. We only run them 10 times for the
extreme puzzles, due to their great computational cost.

Overall, our approach is capable of solving difficult disentangle-
ment puzzles on which the classical planners struggle. The most
notable success stories are the duet-g9, duet-g9a, and ABC puzzles.

There is one exception: the RDTo planner is able to solve the key
puzzle with 100% success rate, which exceeds that of our approach.
We hypothesize that the C-space of this puzzle only contains one
bubble connecting two tunnels, so that key’s true difficulty is similar
to that of the trivial duet-g2 puzzle, despite the visual impressiveness
of the puzzle. Given the much higher edge connection budget for
key (6.56 G vs 3.13 M), it is not surprising the classical planner can
solve this puzzle with a high success rate.

7.4 Feature and Key Configuration Statistics

The number of detected features, and key configuration statistics, are
reported in Tables 3 and 4, respectively. Note that different pipeline
parameters, as set by Table 1, generate different numbers of features,
and the notch statistics for the wire puzzles are not reliable, since
all points are equidistant from the medial axis in these puzzles. The
key configuration statistics show that our planner scales seamlessly
up to the thousands of key configurations required by the toughest
puzzles. Notice that different types of puzzles leaned more heavily
on different types of key configurations.

7.5 System Resource Consumption

Our pipeline uses the HTCondor cluster to take advantage of the
parallelism of our approach, but access to a computing cluster is
not required to solve challenging puzzles using our method.

The three most time-intensive parts of our pipeline are:

(1) Computing neural network features, which consumes 3 — 7
CPU hours for easy puzzles, 4 — 27 hours for hard puzzles,
and 52, 63 hours for the ABC and key puzzles respectively.
Most of this time is spent computing average distances.

(2) Blooming all key configurations takes less than 3, 4 — 31, and
255 — 320 CPU hours total for the three difficulty levels.

(3) Forest connection takes less than 2 CPU hours for both the
easy and hard puzzles, and only ABC and key require more
time (95 and 135 hours respectively.)

Other parts of the pipeline consume relatively negligible time.

C-Space Tunnel Discovery for Puzzle Path Planning « 104:11

In total, using a 4-core 8-thread workstation alone, it takes less
than one hour to finish all the stages of our pipeline for the easy
puzzles, and up to three days for the most demanding ABC/key
puzzles. With access to HTCondor, we are able to solve all puzzles in
approximately five wall-clock hours (though performance depends
on number of HTCondor machines available, their workloads and
hardware specifications, etc.)

In terms of memory consumption, each blooming tree takes less
than 100 MiB of memory, and the maximum memory usage during
the forest connection stage is 4937 MiB.

8 CONCLUSION

We presented a new pipeline for solving the Piano Mover’s Problem
for two-piece disentanglement puzzles that
stump both humans and existing motion-
planning algorithms. The key to our method
is a set of algorithms that extract geometric
and visual features from objects, which we
used to find puzzle configurations that are
likely in narrow tunnels of C-space. To take ~Fig-10. HanayamaElk
advantage of this configuration prediction technique, we designed
a parallel motion planning algorithm which can solve motion plan-
ning problems on a distributed system and can scale up to thousands
of seed configurations. While there exists the rare case where a base-
line planner can outperform our pipeline, they fail to produce any
solution for the vast majority of puzzles that we can solve.

8.1 Future Work: Challenges, and Beyond SE(3)

Some puzzles we investigated elude our efforts to find key configu-
rations. The Elk puzzle shown in Figure 10 is an example where our
geometric features do not lead to useful key configurations, and an
easier version of the puzzle on which to train the network is not
available. The narrow tunnels in this puzzle involve joint features
from both pieces of the geometry, while all our feature detectors
focus on each piece independently.

A key assumption underlying the design of our three key point
selection strategies in Section 4 is that narrow tunnels correspond
to alignment of gap and notch features on the puzzle pieces. In cases
like the Elk where this assumption is not valid, our framework could
be adapted by augmenting or replacing the three strategies with new
geometric strategies tailored to additional types of narrow tunnel
geometries. Other potential extensions include improvements to the
existing strategies (such as using geodesic loops [Xin et al. 2012] to
detect gaps and notches); broadening our neural network approach
by training on new exemplars of new narrow tunnel features; or
exploring entirely new modalities for key point discovery such as
manual guidance.

Throughout this paper we assume that puzzles consist of pairs of
rigid moving pieces in 3D. However, many puzzles either contain
more than two pieces (the full Enigma), and others involve non-
rigid elements like ropes. In these cases, our planner may still work
(albeit at additional cost due to the higher-dimensional configuration
space), but the key configuration generation would require joint
prediction from multiple features on multiple pieces, which is non-
trivial compared with our current approach. An interesting start

ACM Trans. Graph., Vol. 39, No. 4, Article 104. Publication date: July 2020.

104:12 + Zhang, Belfer, Kry, Vouga

Table 2. Left: our method’s success rate at solving each puzzle. We show the success rate when using all three proposed strategies for key point prediction
(Combined column) as well as compare to our results if only one strategy is used (EGR, MAN, and NN columns). Right: comparison against baseline planners,
when run with equal effort, measured in terms of number of attempted edge connections. Notes: we do not use the medial-axis notch heuristic on the wire
puzzles, for which it is meaningless. We write OOM for cases where the planner always runs out of memory before solving the puzzle, and OOT for cases

where the planner fails to solve the puzzle before 10 days.

. Our Success Rate % Baseline Success Rate %
Difficulty | Puzzle Name | poop \AN NN Combined Mican Edge Conn. RDTo RDTo-connect PRM
alpha-g 0 — 0 20 18.34 M 4 1 0
alpha-j 70 — 0 60 1.14 M 0 0 0
alpha-j2 70 - 10 90 3.85 M 0 0 0
alpha-l.O 50 — 20 30 4.61 M 0 0 0
Easy alpha-1.1 90 — 30 80 3.56 M 1 0 0
alpha-z 60 - 0 80 1.37 M 0 0 0
claw 40 — 0 10 93.02 M 0 0 0
double-alpha 60 — 0 70 873 M 0 0 0
duet-g1 60 90 90 920 888.40 K 100 98 10
duet-g2 10 60 100 100 3.13 M 0 63 0
duet—g4 10 30 10 20 103.68 M 27 28 0
duet-g9 0 0 0 20 789.74 M 0 OOM OOM
Hard duet—g9a 0 10 10 30 806.57 M 0 OOM OOM
Enigma 0 20 20 40 24430 M 0 0 OOM
Mobius 0 0 0 10 746.12 M 4 OOM OOM
Fxtreme ABC 0 10 60 10 5.52 G OO0T OOM OOM
Key 40 0 60 20 6.56 G 100 OOM OOM

Table 3. Mean and standard deviation o of the number of feature points
identified by different feature detection strategies.

. EGR MAN

Difficulty | Puzzle Part Mean Stdev Mean Stdev
alpha-1.1 3.60 0.92 42.70 123.44

alpha-1.0 4.50 1.07 23.20 91.72

alpha-g 665 119 390 1.09

alpha-j 6.67 1.75 24.82 99.51

Eas alpha-z 6.85 1.28 2.90 0.89
y double-alpha 580 166 230 078
claw 12.25 2.23 N/A N/A

duet ring 4.92 1.57 18.72 59.68

duet-g1 grid 550 163 3240 1.69

duet-g2 grid 4.70 1.85 63.60 35.11

duet ring 6.33 1.35 15.33 55.15

duet-g4 grid 870 1.55 183.20 26.37

Hard duet-g9(a) grid | 11.30 1.71 420.00 42.90
Enigma part 1 13.80 3.74 276.40 33.89

Enigma part 2 14.80 1.89 17390 15.92

ABC part AB 17.00 2.00 366.20 3543

Extreme ABC part C 18.50 1.80 185.90 5.13
Key part 1 18.80 244 176.00 10.46

Key part 2 19.00 2.57 175.00 5.39

would be to place two pieces into a key configuration, and then try
to place the third piece into the bubbles formed by the first two.
The high-dimensional path planning problems that arise in puzzles

ACM Trans. Graph., Vol. 39, No. 4, Article 104. Publication date: July 2020.

with more than two pieces would clearly benefit from our general
strategy of seeding path planning with key configurations.

ACKNOWLEDGMENTS

We would like to thank Alec Jacobson, Dave Levin, L. Mahadevan,
and Richard Tsai for their discussions and feedback related to this
project, and the NSF (CHS-1910274), NSERC, Side Effects Software
Inc., and Adobe Inc. for their generous support. The Bellairs Work-
shop on Computer Animation was instrumental in incubating the
research presented in this paper.

REFERENCES

Nancy M Amato, O Burchan Bayazit, Lucia K Dale, Christopher Jones, and Daniel Vallejo.
1998a. Choosing good distance metrics and local planners for probabilistic roadmap
methods. In Robotics and Automation, 1998. Proceedings. 1998 IEEE International
Conference on, Vol. 1. IEEE, 630-637.

Nancy M Amato, O Burchan Bayazit, Lucia K Dale, Christopher Jones, and Daniel
Vallejo. 1998b. OBPRM: An obstacle-based PRM for 3D workspaces. In Proc. Int.
Workshop on Algorithmic Foundations of Robotics (WAFR). 155-168.

Taeg Sang Cho, Shai Avidan, and William T Freeman. 2010. A probabilistic image
jigsaw puzzle solver. In 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. IEEE, 183-190.

Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013. Geodesics in Heat: A
New Approach to Computing Distance Based on Heat Flow. ACM Trans. Graph. 32,
5, Article 152 (Oct. 2013), 11 pages. https://doi.org/10.1145/2516971.2516977

J. Denny, E. Greco, S. Thomas, and N. M. Amato. 2014. MARRT: Medial Axis biased
rapidly-exploring random trees. In 2014 IEEE International Conference on Robotics
and Automation (ICRA). 90-97. https://doi.org/10.1109/ICRA.2014.6906594

David Eigen and Rob Fergus. 2015. Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture. In Proceedings of the
IEEE international conference on computer vision. 2650—2658.

Chelsea Finn and Sergey Levine. 2017. Deep visual foresight for planning robot motion.
In 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
2786-2793.

https://doi.org/10.1145/2516971.2516977
https://doi.org/10.1109/ICRA.2014.6906594

C-Space Tunnel Discovery for Puzzle Path Planning « 104:13

Table 4. Key point strategy statistics. For each puzzle, we count the number of narrow tunnels in the puzzle, and the number along a solution path. For each
strategy, we list the mean and standard deviation of the number of its key configurations that were used by the planner (over all trials of the puzzle). We also
count how many narrow tunnels were found by that strategy, and how many of those tunnels were critical: on the solution path, and where only one strategy
found that narrow tunnel. Numbers in italics are lower bounds only, due to the difficulty in distinguishing narrow tunnels in some puzzles.

Puzzle Name Tunnels EGR-EGR EGR-MAN NN Combined
Total On-path| Mean Stdev Tun. Cr. Tun.| Mean Stdev Tun. Cr. Tun.| Mean Stdev Tun. Cr. Tun.‘ Mean Stdev
alpha-g 3 1| 16.70 7.01 3 1 0.00 0.00 0 0] 2580 3.46 0 0| 42.20 8.20
alpha-j 4 1| 31.20 9.00 4 1 0.60 1.80 0 0| 2550 3.14 4 0| 54.00 11.05
alpha-j-2 4 1| 31.10 6.47 4 1 0.60 1.80 0 0| 27.20 2.40 2 0| 56.10 7.13
alpha-1.0 4 1| 13.00 5.10 4 0 2.60 2.15 0 0| 43.70 35.31 1 0| 55.00 33.03
alpha-1.1 4 1| 8.10 1.14 4 0 0.00 0.00 0 0| 25.60 1.69 4 0| 3170 2.72
alpha-z 4 1| 36.00 21.80 4 1 0.00 0.00 0 0| 28.00 1.26 1 0| 59.40 19.17
claw 4 1{161.50 32.69 4 1 - - - -1 29.70 0.46 0 0| 188.60 32.36
double-alpha 8 2| 24.50 11.22 8 2 1.70 1.68 0 0| 27.20 172 3 0| 51.80 11.15
duet-g1 1 1| 120 1.99 0 0| 15.10 10.77 1 0| 2440 276 1 0| 37.60 10.37
duet-g2 4 2| 110 170 0 0| 39.40 30.79 4 0] 2680 1.78 4 0| 63.60 30.94
duet-g4 15 5| 110 1.70 0 0 17.30 12.51 7 4] 8150 8.03 10 1| 8690 7.11
duet-g9 33 19| 0.50 0.50 0 0| 40.10 38.12 22 4| 112.10 6.55 25 10| 132.20 20.53
duet-g9a 33 17) 0.80 0.40 0 0| 64.70 3151 22 8| 113.70 9.23 25 2| 144.40 18.33
Enigma 4 1| 72.70 18.42 4 0 4.20 2.75 4 0| 189.10 14.62 3 0| 237.20 20.38
Mobius - -| 23.40 10.41 - -l 31.60 3.41 - -1 180.50 16.49 - 166.40 15.27
ABC 12 7(107.70 31.97 4 0| 980.20 211.16 10 311022.00 0.00 12 0[2109.90 242.32
Key 3 3] 99.20 24.98 0 0[1225.10 348.65 2 2|1022.00 0.00 0 0]2346.30 355.84

Jonathan Gammell, Siddhartha Srinivasa, and Timothy Barfoot. 2015. Batch Informed
Trees (BITALU): Sampling-based optimal planning via the heuristically guided search
of implicit random geometric graphs. Proceedings - IEEE International Conference on
Robotics and Automation 2015 (06 2015), 3067-3074. https://doi.org/10.1109/ICRA.
2015.7139620

Xiang Gao, Sébastien Loriot, and Andrea Tagliasacchi. 2019. Triangulated Surface Mesh
Skeletonization. In CGAL User and Reference Manual (4.14 ed.). CGAL Editorial Board.
https://doc.cgal.org/4.14/Manual/packages.html#PkgSurfaceMeshSkeletonization

David Goldberg, Christopher Malon, and Marshall Bern. 2004. A global approach to
automatic solution of jigsaw puzzles. Computational Geometry 28, 2 (2004), 165-174.
https://doi.org/10.1016/j.comgeo.2004.03.007

Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel
Cohen-Or. 2019. MeshCNN: a network with an edge. ACM Transactions on Graphics
(TOG) 38, 4 (2019), 1-12.

David Hsu, Jean-Claude Latombe, and Rajeev Motwani. 1999. Path Planning In Ex-
pansive Configuration Spaces. International Journal of Computational Geometry &
Applications 09, 04n05 (1999), 495-512. https://doi.org/10.1142/S0218195999000285

David Hsu, Gildardo Sanchez-Ante, and Zheng Sun. 2005. Hybrid PRM sampling
with a cost-sensitive adaptive strategy. In Proceedings of the 2005 IEEE international
conference on robotics and automation. IEEE, 3874-3880.

Qi-Xing Huang, Simon Fléry, Natasha Gelfand, Michael Hofer, and Helmut Pottmann.
2006. Reassembling Fractured Objects by Geometric Matching. ACM Trans. Graph.
25, 3 (July 2006), 5695ASS78. https://doi.org/10.1145/1141911.1141925

Brian Ichter, James Harrison, and Marco Pavone. 2018. Learning Sampling Distributions
for Robot Motion Planning. 7087-7094. https://doi.org/10.1109/ICRA.2018.8460730

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z
Leibo, David Silver, and Koray Kavukcuoglu. 2016. Reinforcement learning with
unsupervised auxiliary tasks. arXiv preprint arXiv:1611.05397 (2016).

Niels Justesen, Philip Bontrager, Julian Togelius, and Sebastian Risi. 2019. Deep learning
for video game playing. IEEE Transactions on Games (2019).

Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. 2010. Learning 3D Mesh
Segmentation and Labeling. In ACM SIGGRAPH 2010 Papers (Los Angeles, California).
Association for Computing Machinery, New York, NY, USA, Article 102, 12 pages.
https://doi.org/10.1145/1833349.1778839

S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller. 2011. Anytime Motion
Planning using the RRT". In 2011 IEEE International Conference on Robotics and
Automation. 1478-1483. https://doi.org/10.1109/ICRA.2011.5980479

L. E. Kavraki, M. N. Kolountzakis, and J. . Latombe. 1998. Analysis of probabilistic
roadmaps for path planning. IEEE Transactions on Robotics and Automation 14, 1

(Feb 1998), 166-171. https://doi.org/10.1109/70.660866

L. E. Kavraki, P. Svestka, J. . Latombe, and M. H. Overmars. 1996. Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Transactions on
Robotics and Automation 12, 4 (Aug 1996), 566-580. https://doi.org/10.1109/70.
508439

Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization.
In International Conference on Learning Representations (ICLR). https://arxiv.org/
abs/1412.6980

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097-1105.

J. J. Kuffner. 2004. Effective sampling and distance metrics for 3D rigid body path plan-
ning. In IEEE International Conference on Robotics and Automation, 2004. Proceedings.
ICRA ’04. 2004, Vol. 4. 3993-3998 Vol.4. https://doi.org/10.1109/ROBOT.2004.1308895

J.J. Kuffner and S. M. LaValle. 2000. RRT-connect: An efficient approach to single-query
path planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation, Vol. 2. 995-1001 vol.2. https://doi.org/10.
1109/ROBOT.2000.844730

A. M. Ladd and L. E. Kavraki. 2004. Measure theoretic analysis of probabilistic path
planning. IEEE Transactions on Robotics and Automation 20, 2 (April 2004), 229-242.
https://doi.org/10.1109/TRA.2004.824649

Steven M. Lavalle. 1998. Rapidly-Exploring Random Trees: A New Tool for Path Planning.
Technical Report. Report No. TR 98-11, Computer Science Department, lowa State
University.

Steven M LaValle. 2006. Planning algorithms. Cambridge university press.

Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen. 2018.
Learning hand-eye coordination for robotic grasping with deep learning and large-
scale data collection. The International Journal of Robotics Research 37, 4-5 (2018),
421-436.

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. 2018.
Pointcnn: Convolution on x-transformed points. In Advances in neural information
processing systems. 820—830.

Zhouhui Lian, Afzal Godil, Benjamin Bustos, Mohamed Daoudi, Jeroen Hermans,
Shun Kawamura, Yukinori Kurita, Guillaume Lavoué, Hien Van Nguyen, Ryutarou
Ohbuchi, et al. 2011. SHREC’11 Track: Shape Retrieval on Non-rigid 3D Watertight
Meshes. 3DOR 11 (2011), 79-88.

Michel J Litzkow, Miron Livny, and Matt W Mutka. 1987. Condor-a hunter of idle
workstations. Technical Report. University of Wisconsin-Madison Department of
Computer Sciences.

ACM Trans. Graph., Vol. 39, No. 4, Article 104. Publication date: July 2020.

https://doi.org/10.1109/ICRA.2015.7139620
https://doi.org/10.1109/ICRA.2015.7139620
https://doc.cgal.org/4.14/Manual/packages.html#PkgSurfaceMeshSkeletonization
https://doi.org/10.1016/j.comgeo.2004.03.007
https://doi.org/10.1142/S0218195999000285
https://doi.org/10.1145/1141911.1141925
https://doi.org/10.1109/ICRA.2018.8460730
https://doi.org/10.1145/1833349.1778839
https://doi.org/10.1109/ICRA.2011.5980479
https://doi.org/10.1109/70.660866
https://doi.org/10.1109/70.508439
https://doi.org/10.1109/70.508439
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/ROBOT.2004.1308895
https://doi.org/10.1109/ROBOT.2000.844730
https://doi.org/10.1109/ROBOT.2000.844730
https://doi.org/10.1109/TRA.2004.824649

104:14 + Zhang, Belfer, Kry, Vouga

Kui-Yip Lo, Chi-Wing Fu, and Hongwei Li. 2009. 3D Polyomino Puzzle. ACM Trans.
Graph. 28, 5 (Dec. 2009), 1-8. https://doi.org/10.1145/1618452.1618503

Jim Mainprice, E Akin Sisbot, Léonard Jaillet, Juan Cortés, Rachid Alami, and Thierry
Siméon. 2011. Planning human-aware motions using a sampling-based costmap
planner. In 2011 IEEE International Conference on Robotics and Automation. IEEE,
5012-5017.

Alejandro Newell, Kaiyu Yang, and Jia Deng. 2016. Stacked hourglass networks for
human pose estimation. In European Conference on Computer Vision. Springer, 483—
499.

Jia Pan and Dinesh Manocha. 2016. Fast probabilistic collision checking for sampling-
based motion planning using locality-sensitive hashing. The International Jour-
nal of Robotics Research 35, 12 (2016), 1477-1496. https://doi.org/10.1177/
0278364916640908

Lerrel Pinto and Abhinav Gupta. 2016. Supersizing self-supervision: Learning to grasp
from 50k tries and 700 robot hours. In 2016 IEEE international conference on robotics
and automation (ICRA). IEEE, 3406-3413.

Ruggero Pintus, Kazim Pal, Ying Yang, Tim Weyrich, Enrico Gobbetti, and Holly Rush-
meier. 2016. A Survey of Geometric Analysis in Cultural Heritage. Comput. Graph.
Forum 35, 1 (Feb. 2016), 4-31. https://doi.org/10.1111/cgf.12668

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017. Pointnet: Deep
learning on point sets for 3d classification and segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 652—-660.

Charles R Qi, Hao Su, Matthias Niefiner, Angela Dai, Mengyuan Yan, and Leonidas J
Guibas. 2016. Volumetric and multi-view cnns for object classification on 3d data.
In Proceedings of the IEEE conference on computer vision and pattern recognition.
5648-5656.

J. H. Reif. 1979. Complexity of the mover’s problem and generalizations. In 20th
Annual Symposium on Foundations of Computer Science (sfcs 1979). 421-427. https:
//doi.org/10.1109/SFCS.1979.10

Rodriguez, Xinyu Tang, Jyh-Ming Lien, and N. M. Amato. 2006. An obstacle-based
rapidly-exploring random tree. In Proceedings 2006 IEEE International Conference
on Robotics and Automation, 2006. 895-900. https://doi.org/10.1109/ROBOT.2006.
1641823

K. Shi, J. Denny, and N. M. Amato. 2014. Spark PRM: Using RRTs within PRMs to
efficiently explore narrow passages. In 2014 IEEE International Conference on Robotics
and Automation (ICRA). 4659-4666. https://doi.org/10.1109/ICRA.2014.6907540

Richard Socher, Brody Huval, Bharath Bath, Christopher D Manning, and Andrew Y Ng.
2012. Convolutional-recursive deep learning for 3d object classification. In Advances
in neural information processing systems. 656—664.

Peng Song, Chi-Wing Fu, and Daniel Cohen-Or. 2012. Recursive Interlocking Puzzles.
ACM Trans. Graph. 31, 6, Article 128 (Nov. 2012), 10 pages. https://doi.org/10.1145/
2366145.2366147

M. Strandberg. 2004. Augmenting RRT-planners with local trees. In IEEE International
Conference on Robotics and Automation, 2004. Proceedings. ICRA 04. 2004, Vol. 4.
3258-3262 Vol.4. https://doi.org/10.1109/ROBOT.2004.1308756

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015. Multi-
view convolutional neural networks for 3d shape recognition. In Proceedings of the
IEEE international conference on computer vision. 945-953.

Ioan A. Sucan, Mark Moll, and Lydia E. Kavraki. 2012. The Open Motion Planning
Library. IEEE Robotics & Automation Magazine 19, 4 (December 2012), 72-82. https:
//doi.org/10.1109/MRA.2012.2205651 http://ompl.kavrakilab.org.

Timothy Sun and Changxi Zheng. 2015. Computational Design of Twisty Joints and
Puzzles. ACM Trans. Graph. 34, 4, Article 101 (July 2015), 11 pages. https://doi.org/
10.1145/2766961

Andrea Tagliasacchi, Ibraheem Alhashim, Matt Olson, and Hao Zhang. 2012. Mean
Curvature Skeletons. Comput. Graph. Forum 31, 5 (Aug. 2012), 1735-1744. https:
//doi.org/10.1111/.1467-8659.2012.03178.x

N. Vahrenkamp, P. Kaiser, T. Asfour, and R. Dillmann. 2011. RDT+: A parameter-
free algorithm for exact motion planning. In 2011 IEEE International Conference on
Robotics and Automation. 715-722.

Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. 2017. O-cnn:
Octree-based convolutional neural networks for 3d shape analysis. ACM Transactions
on Graphics (TOG) 36, 4 (2017), 1-11.

Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong. 2018. Adaptive O-CNN: A
patch-based deep representation of 3D shapes. ACM Transactions on Graphics (TOG)
37, 6 (2018), 1-11.

Yunhai Wang, Shmulik Asafi, Oliver Van Kaick, Hao Zhang, Daniel Cohen-Or, and
Baoquan Chen. 2012. Active co-analysis of a set of shapes. ACM Transactions on
Graphics (TOG) 31, 6 (2012), 1-10.

S. A. Wilmarth, N. M. Amato, and P. F. Stiller. 1999. MAPRM: a probabilistic roadmap
planner with sampling on the medial axis of the free space. In Proceedings 1999
IEEE International Conference on Robotics and Automation, Vol. 2. 1024-1031. https:
//doi.org/10.1109/ROBOT.1999.772448

S. Xin, C. Fu, and Y. He. 2012. Efficiently Computing Exact Geodesic Loops within
Finite Steps. IEEE Transactions on Visualization and Computer Graphics 18, 06 (jun
2012), 879-889. https://doi.org/10.1109/TVCG.2011.119

ACM Trans. Graph., Vol. 39, No. 4, Article 104. Publication date: July 2020.

Shiging Xin, Chi-Fu Lai, Chi-Wing Fu, Tien-Tsin Wong, Ying He, and Daniel Cohen-Or.
2011. Making Burr Puzzles from 3D Models. ACM Trans. Graph. 30, 4, Article 97
(July 2011), 8 pages. https://doi.org/10.1145/2010324.1964992

Zhenpei Yang, Jeffrey Z Pan, Linjie Luo, Xiaowei Zhou, Kristen Grauman, and Qixing
Huang. 2019. Extreme relative pose estimation for RGB-D scans via scene completion.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
4531-4540.

Fangyi Zhang, Jiirgen Leitner, Michael Milford, Ben Upcroft, and Peter Corke. 2015.
Towards vision-based deep reinforcement learning for robotic motion control. arXiv
preprint arXiv:1511.03791 (2015).

Liangjun Zhang, Xin Huang, Young J. Kim, and Dinesh Manocha. 2008. D-Plan: Efficient
Collision-Free Path Computation for Part Removal and Disassembly. Computer-
Aided Design and Applications 5, 6 (2008), 774-786. https://doi.org/10.3722/cadaps.
2008.774-786

Liangjun Zhang and D. Manocha. 2008. An efficient retraction-based RRT planner. In
2008 IEEE International Conference on Robotics and Automation. 3743-3750. https:
//doi.org/10.1109/ROBOT.2008.4543785

Liangjun Zhang and Dinesh Manocha. 2010. Constrained Motion Interpolation with
Distance Constraints. Springer Berlin Heidelberg, Berlin, Heidelberg, 367-384. https:
//doi.org/10.1007/978-3-642-00312-7_23

https://doi.org/10.1145/1618452.1618503
https://doi.org/10.1177/0278364916640908
https://doi.org/10.1177/0278364916640908
https://doi.org/10.1111/cgf.12668
https://doi.org/10.1109/SFCS.1979.10
https://doi.org/10.1109/SFCS.1979.10
https://doi.org/10.1109/ROBOT.2006.1641823
https://doi.org/10.1109/ROBOT.2006.1641823
https://doi.org/10.1109/ICRA.2014.6907540
https://doi.org/10.1145/2366145.2366147
https://doi.org/10.1145/2366145.2366147
https://doi.org/10.1109/ROBOT.2004.1308756
https://doi.org/10.1109/MRA.2012.2205651
https://doi.org/10.1109/MRA.2012.2205651
http://ompl.kavrakilab.org
https://doi.org/10.1145/2766961
https://doi.org/10.1145/2766961
https://doi.org/10.1111/j.1467-8659.2012.03178.x
https://doi.org/10.1111/j.1467-8659.2012.03178.x
https://doi.org/10.1109/ROBOT.1999.772448
https://doi.org/10.1109/ROBOT.1999.772448
https://doi.org/10.1109/TVCG.2011.119
https://doi.org/10.1145/2010324.1964992
https://doi.org/10.3722/cadaps.2008.774-786
https://doi.org/10.3722/cadaps.2008.774-786
https://doi.org/10.1109/ROBOT.2008.4543785
https://doi.org/10.1109/ROBOT.2008.4543785
https://doi.org/10.1007/978-3-642-00312-7_23
https://doi.org/10.1007/978-3-642-00312-7_23

	Abstract
	1 Introduction
	2 Related Work
	3 Pipeline Overview
	4 Feature Detection
	4.1 Euclidean-Geodesic Ratio (EGR)
	4.2 Medial Axis Notch (MAN) Detection
	4.3 Neural Network Feature Detection

	5 Key Configuration Generation
	5.1 Aligning EGR and MAN Features
	5.2 Aligning Neural Network Features
	5.3 Key Configuration Clustering

	6 Path Planning with Blooming
	6.1 Paralellization
	6.2 Sample Interference

	7 Evaluation
	7.1 Choice of Parameters
	7.2 Effectiveness of Individual Key Point Strategies
	7.3 Comparisons to Other Planners
	7.4 Feature and Key Configuration Statistics
	7.5 System Resource Consumption

	8 Conclusion
	8.1 Future Work: Challenges, and Beyond SE(3)

	Acknowledgments
	References

