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Abstract—Digital predistortion is the process of using digital
signal processing to correct nonlinearities caused by the analog
RF front-end of a wireless transmitter. These nonlinearities
contribute to adjacent channel leakage, degrade the error vector
magnitude of transmitted signals, and often force the transmitter
to reduce its transmission power into a more linear but less
power-efficient region of the device. Most predistortion tech-
niques are based on polynomial models with an indirect learning
architecture which have been shown to be overly sensitive to
noise. In this work, we use neural network based predistortion
with a novel neural network training method that avoids the
indirect learning architecture and that shows significant improve-
ments in both the adjacent channel leakage ratio and error vector
magnitude. Moreover, we show that, by using a neural network
based predistorter, we are able to achieve a 42% reduction in
latency and 9.6% increase in throughput on an FPGA accelerator
with 15% fewer multiplications per sample when compared to a
similarly performing memory-polynomial implementation.

Index Terms—Digital predistortion, neural networks, FPGA.

I. INTRODUCTION

Efficiently correcting nonlinearities in power amplifiers
(PAs) through digital predistortion (DPD) is critical for en-
abling next-generation mobile broadband where there may be
multiple radio frequency (RF) transmit (TX) chains arranged
to form a massive multiple-input multiple-output (MIMO)
system [1], as well as new waveforms with bandwidths on the
order of 100 MHz in the case of mmWave communications [2].
Traditional DPDs use variations of the Volterra series [3], such
as memory polynomials [4, 5]. These models consist of sums
of various order polynomials and finite impule responce (FIR)
filters to model the nonlinearities and the memory effects in a
PA, respectively.

To learn the values of the parameters in a polynomial based
model, an indirect learning architecture (ILA) is typically used
in conjunction with some variation of a least squares (LS) fit
of the data to the model [5]. In an ILA, a postinverse model
of the predistorter is fitted based on the output of the PA [6,
7]. After learning the postinverter, the coefficients are copied
to the predistorter. Although this simplifies the learning of
DPD coefficients, it has been shown to converge to a biased
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solution due to noise in the PA output [8, 9]. Moreover, the
LS problem is often poorly conditioned [4]. In [10], a mobile
graphics processing units (GPU) was used to implement the
polynomial DPD with I/Q imbalance correction from [4]. This
GPU implementation used floating-point and was able to avoid
the challenges associated with the dynamic range requirements
for memory polynomials. When implemented on an FPGA, a
memory polynomial can be challenging due to the bit-widths
that are necessary to perform the high-order exponentiation in
fixed-point precision [11].

The overall DPD challenge has strong similarities to the
problems encountered in in-band full-duplex (IBFD) commu-
nications [12–14], where a transceiver simultaneously trans-
mits and receives on the same frequency, increasing the
spectral efficiency of the communication system. However,
this requires (among other techniques) digitally removing the
significant self-interference from the received signal which
not only consists of the intended transmission but also the
nonlinearities added by the imperfections in the transmit chain
including the PA. In [15], the author used neural networks
(NNs) to perform the self-interference cancellation and found
that it could achieve similar performance to polynomial based
self-interference cancellation. This work was later extended
to create both FPGA and ASIC implementations of the NN-
based self-interference canceller [16]. It was found that, due
to the regular structure of the NN and the lower bit-width
requirements, it can be implemented to have both a higher
throughput and lower resource utilization.

Inspired by the full-duplex NN work and the known prob-
lems of polynomial based predistortion with an ILAs, we
recently proposed in [17] to use NNs for the forward DPD
application. The NNs are a natural choice for such application
as they are able to approximate any nonlinear function [18],
making them a reasonable candidate for predistortion. The idea
of using various NNs for predistortion has been explored in
many works [19, 20]. However, the training method is unclear
in [19], and their implementations require over ten thousand
parameters. In [20], the training of the NN is done using an
ILA which can subject the learned predistorter to the same
problems seen with all ILAs.

Contribution: In our previous work [17], we avoided the
standard ILA and we improved the overall performance by
using a novel training algorithm where we first modeled the
PA with a NN and then backpropagated through it to train a
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Figure 1. Architecture of the NN DPD system. The signal processing
is done in the digital baseband and focuses on PA effects. The DAC,
up/downconverters, and ADC are not shown in this figure, though their
impairments are also captured.

DPD NN. We extend that work here to show that not only do
we improve performance when compared to polynomial based
DPD, but we do so with reduced implementation complexity.
Furthermore, to realize the gains of the NN DPD, we design
a custom FPGA accelerator for the task and compare it to our
own polynomial DPD accelerator.

Outline: The rest of the paper is organized as follows. In
Section II, we give an overview of our DPD architecture and
methods. In Section III, we compare performance/complexity
tradeoffs for the DPD NN to polynomial based predistorters. In
Section IV, we compare FPGA implementations for memory
polynomial and NN predistortion. Finally, in Section V we
conclude the paper.

II. NEURAL NETWORK DPD ALGORITHM OVERVIEW

For the NN DPD system, we seek to place a NN based
predistorter inline with the PA so that the cascade of the two
is a linear system, as shown in Fig. 1. However, to train a
NN, it is necessary to have training data, and in this scenario
the ideal NN output is unknown; only the ideal PA output is
known. To overcome this problem, we train a PA NN model to
emulate the PA. We then backpropagate the mean squared error
(MSE) through the PA NN model to update the parameters in
the NN DPD [17].

A. Neural Network Architecture

We use a feed-forward NN that is fully-connected with
K hidden layers, and N neurons per hidden layer. The
nonlinear activation applied in hidden layers is chosen to be
a rectified linear unit (ReLU), shown in (1), which can easily
be implemented with a single multiplexer in hardware.

ReLU(x) = max(0, x) (1)

The input and output data to the predistorter is complex-
valued, while NNs typically operate on real-valued data. To
accommodate this, we split the real and imaginary parts of
each time-domain input sample, x(n), on to separate neurons.

Although PA-induced nonlinearities are present in the trans-
mitted signal, the relationship between the input and output
data is still mostly linear. Although in principle, a NN can
learn this relationship given training data, this turns out to
be difficult in practice [15]. As such, we implement a linear
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Figure 2. General structure of the DPD and PA neural networks. There are
two input and output neurons for the real and imaginary parts of the signal, N
neurons per hidden layer, and K hidden layers. The inputs are directly added
to the output neurons so that the hidden layers concentrate on the nonlinear
portion of the signal.

bypass in our NN that directly passes the inputs to the output
neurons where they are added in with the output from the
final hidden layer, as can be seen in Fig. 2. This way, the NN
entirely focuses on the nonlinear portion of the signal.

B. Training

This work primarily focuses on the implementation and
running complexity of the DPD application, which consists of
inference on a pre-trained NN. The training is assumed to be
able to run offline and, once the model is learned, significant
updates will not be necessary and occasional offline re-training
to account for long-term variations would be sufficient.

In [17], we first use input/output data of the PA to train
a NN to model the PA behavior. We then connect a second
DPD NN to the PA NN model. We treat the combined DPD
NN and PA NN as one large NN. However, during the second
training phase, we only update the weights corresponding to
the DPD NN. We then connect the DPD NN to the real PA
and use it to predistort for the actual device.

The process of predistorting can excite a different region
of the PA than when predistortion is not used. To account
for this, it is not uncommon in other DPD methods to have
multiple training iterations. A similar idea is adopted in [17]
and in this work. Once training of the PA and the DPD is
performed, we then retransmit through the actual PA while
using the DPD NN. Using the new batch of input/output data,
we then can update the PA NN model and in turn refine the
DPD NN. An example of the iterative training procedure is
shown in Fig. 3, where the MSE training loss is shown for
the PA NN model and the combined DPD-PA is shown for
two training iterations.

III. COMPLEXITY COMPARISON

To evaluate the NN based predistortion, we present the
formulation of both a memory polynomial and the NN. We
then derive expressions for the number of multiplications as a
function of the number of parameters in the models. In most
implementations, multiplications are considered to be more
expensive as they typically have higher latency and require
more area and power. Additions typically have a minor impact
on these metrics when compared to multiplications, so we omit
them from this high-level analysis.
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Figure 3. Example of iterative NN-DPD training for two training iterations,
where 20 and 5 epochs are used in the first and second iteration, respectively.

A. Memory Polynomial Predistortion

An extension of a memory polynomial from [4] is shown
in (2). This form of memory polynomial predistorts the
complex baseband PA input x(n) to be x̂(n) by computing
nonlinearities of the form x(n)|x(n)|p and convolving them
with an FIR filter for both x(n) and its conjugate, x∗(n). This
conjugate processing gives the model the expressive power to
combat PA nonlinearities and any IQ imbalance in the system.
P and M are the highest nonlinearity order and memory depth
in the main branch, while Q and L are the highest order
and memory in the conjugate branch. The complex-valued
coefficients αp,m and βq,l represent the DPD coefficients that
need to be learned for nonlinearity orders p and q and memory
tap m and l. Finally, the DC term c accounts for any local
oscillator leakage in the system.

The total number of complex-valued parameters in (2) is
given as

nPAR, poly =M

(
P + 1

2

)
+ L

(
Q+ 1

2

)
+ 1. (3)

Assuming three real multiplications per complex multiplica-
tion, we get the following number of multiplications in the
system

nMUL, poly = 3nPAR, poly +
P∑

p=3,
p odd

1

2
(p+ 5) +

Q∑
q=3,
q odd

1

2
(q + 5) .

(4)

Here, each complex coefficient accounts for three multipli-
cation. The expression, x(n)|x(n)|p−1 is computed once for
each n over a given p and delayed in the design to generate
the appropriate value for each m. We note that |x(n)|p−1 can
always be simplified to (<(x(n))2 + =(x(n)2)

p−1
2 since p is

odd. This accounts for (p−1
2 +1) multiplications before being

multiplied by the complex-valued x(n) which adds 2 more
multiplications. The same is true for the conjugate processing.

B. Neural Network Predistortion

The output of a densely connected NN is given by

h1(n) = f

(
W1

[
<(x(n))
=(x(n))

]
+ b1

)
, (5)

hi(n) = f (Wihi−1(n) + bi) , i = 2, . . . ,K, (6)

z(n) = WK+1hK(n) + bK+1 +Wlinear

[
<(x(n))
=(x(n))

]
, (7)

x̂(n) = z1(n) + 1j · z2(n), (8)

where f is a nonlinear activation function (such as the ReLU
from (1)), Wi and bi are weight matrices and bias vectors
corresponding to the ith layer in the NN, and j is the imaginary
unit. The final output of the network after hidden layer K
is given by (7) where the first element represents the real
part of the signal, and the second element represents the
imaginary part. In (7), Wlinear is a 2×2 matrix of the weights
corresponding to the linear bypass. In practice, we fix it to
be the identity matrix, I2, to reduce complexity though these
weights could also be learned in systems with significant IQ
imbalance.

Assuming N neurons per hidden layer and K hidden layers,
the number of multiplications is given by

nMUL, NN = 4N + (K − 1)N2. (9)

C. Results

The performance results for each predistorter as a func-
tion of the number of required multiplications are shown in
Figs. 4–6. These results were obtained using the RFWebLab
platform [21]. RFWebLab is a web-connected PA at Chalmers
University. This system uses a Cree CGH40006-TB GaN PA
with a peak output power of 6 W. The precision is 14 bits
for the feedback on the ADC and 16 bits for the DAC.
Using their MATLAB API, we test the NN predistorter using
a 10 MHz OFDM signal. This signal has random data on
600 subcarriers spaced apart by 15 kHz and is similar to LTE
signals commonly used in cellular deployments. It provides
an interesting test scenario in that it has a sufficiently high
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Figure 4. ACLR vs. number of multiplications for NN DPD (shown with
diamonds) with up to K = 2 hidden layers and memory polynomial (shown
with circles) with up to M = 4 memory taps. This represents the out-of-
band performance of the predistorter. The stars represent design points that
we implement in FPGA in the next section.

peak-to-average power ratio (PAPR) to make predistortion
challenging. We train on 10 OFDM symbols then validate
and present experimental results based on averaging over 10
different symbols. The Adam optimizer is used with an MSE
loss function and batches of 32 samples. ReLU activation
functions are used in the hidden layer neurons.

Specifically, we tested the following DPDs: (1) a NN DPD
with K = 1 with N = {1, ..., 20, 25, 31} (dark green), (2) a
NN DPD with K = 2 with N = {1, ..., 8} (light green), (3) a
polynomial DPD without memory and with P = 1 to P = 13
(dark blue), (4) a polynomial DPD with M = 2 memory taps
and with P = 1 to P = 13 (light blue), and (5) a polynomial
DPD with M = 4 memory taps and with P = 1 to P = 13
(pink). For each of these polynomials, no conjugate processing
was used hence Q,L = 0. A predistorter with M = L = 4
and Q = P was also evaluated. However, the system did not
have significant IQ imbalance, so the addition of the conjugate
processing to the memory polynomial only had the effect of
significantly increasing complexity. All DPDs were evaluated
in terms of the adjacent channel leakage ratio (ACLR), the
error vector magnitude (EVM), and the spectra of the post-PA
pre-distorted signals.

1) Out-of-band performance: To measure the out-of-band
performance, which is often the metric of most interest given
by Federal Communications Commission (FCC) regulations
and 3GPP standards, we compute the ACLR shown below as

ACLR = 10 log10
Padjacent

Pchannel
, (10)

where Pchannel is the signal power in the main channel, and
Padjacent is the signal power in the remainder of the band.

In Fig. 4, we observe that the NN DPD offers similar perfor-
mance to the memoryless polynomial DPD for low numbers
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Figure 5. EVM vs. number of real multiplications for NN DPD (shown with
diamonds) with up to K = 2 hidden layers and memory polynomial (shown
with circles) with up to M = 4 memory taps. This represents the in-band
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implement in FPGA in the next section
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Figure 6. Example spectrum for the M = 4 polynomial and K = 1 NN.
Each of these use around 80 multiplications per time-domain input sample to
the DPD.

of multiplications and it is able to significantly outperform all
polynomial DPDs as the number of multiplications increases.

2) In-band performance: Although the primary goal of
predistortion is to reduce spectral regrowth around the main
carrier, predistortion also reduces the EVM of the main signal.
Reducing EVM can improve reception quality and is hence a
desirable result. The EVM is computed as

EVM =
‖ŝ− s‖
‖s‖

× 100%, (11)

where s is the vector of all original symbols mapped onto
complex constellations on OFDM subcarriers in the frequency
domain, ŝ is the corresponding received vector after passing
through the PA, and ‖·‖ represents the `2 norm.



In Fig. 5, we see the EVM versus the number of mul-
tiplications for each of the predistorters. As the number of
multiplications increases, the EVM decreases, as expected.
The memoryless polynomial DPD is able to achieve a low
EVM for the smallest number of multiplications. However,
the complexity is only slightly higher for the NN based DPD,
which is able to achieve an overall better performance than all
other examined polynomial DPDs.

3) Spectrum Comparison: The spectrum for both the mem-
ory polynomial and the NN DPDs are shown in Fig. 6. Here,
both predistorters have the same running complexity of 80
multiplications per time-domain input sample. However, the
NN is able to provide an additional 2.8 dB of suppression at
±20 MHz.

IV. FPGA ARCHITECTURE OVERVIEW

In this section, we compare a NN DPD accelerator with
a memory polynomial based implementation. We implement
both designs in Xilinx System Generator and target for the
Zynq UltraScale+ RFSoC ZCU1285 evaluation board. For the
sake of this architecture comparison, we implement each to
be fully parallelized and pipelined as to compare the highest
throughput implementations of each. Based on the previous
analysis, we implement both with 16-bit fixed point precision
throughout.

We synthesize FPGA designs targeting two separate
ACLRs. First, we target an ACLR of approximately -31.4 dB.
This target is achieved with a NN with N = 6 neurons and
K = 1 hidden layer and a 7th order memoryless polynomial.
Second, we target a more aggressive ACLR below -32 dB.
This is done with a NN with N = 14 neurons and K = 1
hidden layer. A memory polynomial with M = 2 and P = 11
is also used to achieve this.

A. Neural Network Accelerator

We implement the NN-DPD on FPGA with the goal of
realizing high throughput via maximum parallelization and
pipeling. The top-level overview of the design is shown in
Fig. 7. Here, each wire corresponds to a 16-bit bus. The real
and imaginary parts of the PA input signal stream in each clock
cycle. Weights are stored in a RAM which can be written to
from outside the FPGA design. After the RAM is loaded, the
weights and biases are written to individual registers in the
neuron processing elements (PEs) which cache them for fast
access during inference. A chain of pipeline registers pass the
inputs to the output to be added to the output of the final layer.

After the weights are loaded into RAM, the RAM controller
loads each of the weights into a weights cache in each PE.
To do this, a counter increments through each address in
the RAM. The current address and the value at that address
are broadcast to all neurons. Each address corresponds with
a specific weight or bias. Whenever the weights cache in
a neuron reads addresses corresponding to the weights and
biases for its neuron, it saves the data into a register dedicated
to that parameter. These registers output to the corresponding
multiplier or adder.
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Figure 7. General structure of the NN FPGA implementation.
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Figure 8. Example structure of a PE for the ith neuron in hidden layer 1.

An example neuron PE is shown in Fig. 8. Each PE
is implemented with a sufficient number of multipliers for
performing the multiplication of the weights by the inputs in
parallel. The results from each multiplier are added together,
along with the bias and passed to the ReLU activation function,
which is implemented with a single multiplexer.

B. Polynomial Accelerator

The memory polynomial is also implemented using 16 bits
throughout the design. We target the design for maximum
throughput by fully parallelizing and pipelining it so that a
new time-domain input sample can streamed in each clock
cycle. The main overall structure of the design is shown in
Fig. 9. Each polynomial “branch” of the memory polynomial
corresponding to nonlinear order p computes x(n)|x(n)|p−1

and there is a branch for each p in the design. This computation
from each branch is passed to an FIR filter with complex taps.
Three multiplications are used for each complex multiplication
in each filter. A RAM is implemented to interface with some
outside controller for receiving updated weights. Once the
coefficients α and β are loaded into the design, they can be
moved from the RAM to registers near each multiply similarly
to the cache implemented in the NN design.

C. Results

The Xilinx Vivado post-place-and-route utilization results
are shown in Table I. Overall, the NN-based design offers
numerous advantages over the memory polynomial. Specifi-
cally, for the target of an ACLR less than -32 dB, the NN
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Table I
COMPARISON OF PERFORMANCE AND FPGA UTILIZATION

ACLR: -31.4 dB ACLR: -32

Metric N = 6
K = 1

P = 7
M = 1

N = 14
K = 1

P = 11
M = 2

Num. of Params. 32 8 72 24
LUT 379 539 688 1424
LUTRAM 16 120 16 224
FF 538 991 1170 2730
DSP 24 27 56 66
Worst Neg. Slack (ns) 8.72 8.68 8.49 8.34
Max. Freq. (MHz) 783 756 661 603
Max. T/P (MS/s) 783 756 661 603
Latency (CC) 12 21 14 26

requires 48% of the lookup tables (LUTs), 42% of the flip-
flops (FFs), and 15% reduction in the number of digital signal
processors (DSPs). In terms of timing, there is a 9.6% increase
in throughput with a 46% decrease in latency. These reductions
in utilization occur while also seeing improved ACLR.

V. CONCLUSIONS

In this paper, we explored the complexity/performance
tradeoffs for a novel, NN based DPD and found that the NN
could outperform memory polynomials and offered overall
unrivaled ACLR and EVM performance. Furthermore, we
implemented each on an FPGA and found that the regular
matrix multiply structure in the NN based predistorter led to
a lower latency design with less hardware utilization when
compared to a similarly performing polynomial-based DPD.

This work opens up many avenues for future work.
This work can be extended to also compare perfor-
mance/complexity tradeoffs for more devices with a wider
variety of signals, including different bandwidths and multiple
component carriers. It is also possible to include memory
cells such as recurrent neural networks (RNNs) in the NN to
account for memory effects. The NN is naturally well suited
for a GPU implementation which would be interesting in soft-
ware defined radio (SDR) systems. The NN complexity could
also be further reduced with pruning, and the accuracy could

potentially be improved with retraining after quantization and
pruning.
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