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Abstract—We demonstrate digital predistortion (DPD) using a
novel, neural-network (NN) method to combat the nonlinearities
in power amplifiers (PAs), which limit the power efficiency of
mobile devices, increase the error vector magnitude, and cause
inadequate spectral containment. DPD is commonly done with
polynomial-based methods that use an indirect-learning archi-
tecture (ILA) which can be computationally intensive, especially
for mobile devices, and overly sensitive to noise. Our approach
using NNs avoids the problems associated with ILAs by first
training a NN to model the PA then training a predistorter
by backpropagating through the PA NN model. The NN DPD
effectively learns the unique PA distortions, which may not easily
fit a polynomial-based model, and hence may offer a favorable
tradeoff between computation overhead and DPD performance.
We demonstrate the performance of our NN method using two
different power amplifier systems and investigate the complexity
tradeoffs.

Index Terms—DPD, neural networks

I. INTRODUCTION

With the deployment of 5G New Radio (NR), the chal-
lenges on the physical layer have never been higher. One
of these challenges is power amplifier (PA) nonlinearities.
Two characteristics of 5G exacerbate this challenge. The 5G
waveform is OFDM based and hence suffers from a high peak-
to-average power ratio (PAPR) [1]. Moreover, NR supports
bandwidths as large as 400 MHz for mmWave[2], which may
lead to severe memory effects in the PA. The high PAPR
and large bandwidths can degrade the error vector magnitude
(EVM) and cause adjacent channel leakage in the frequency
domain. Moreover, with massive MIMO, these corrections
may need to be done for many antennas, drastically increasing
the computational burden on systems.

A common way to correct for nonlinearities in PAs is
through digital predistortion (DPD), where the PA nonlin-
earities are learned so that an inverse can be applied in the
digital baseband. Most DPD works rely on some form of
memory polynomials (MPs) to create the predistorter [3], [4].
Although their performance can be adequate, the computa-
tional complexity needed to achieve such performance can
be extreme with generalized memory polynomials (GMPs),
sometimes needing hundreds of coefficients.
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Neural networks (NNs) are well known to be able to learn
any arbitrary nonlinear function according to the universal ap-
proximation theorem [5]. Considering that DPD is a nonlinear
function, it is natural to consider NNs for predistortion, and
many works have already applied NNs to DPD [6].

These NN implementations and most other DPD works
rely on an indirect learning architecture (ILA) to train the
predistorter. The ILA, which was originally designed for NNs
[7], was first applied to DPD in [8] and has since been widely
used. In an ILA, a postdistorter is used to learn an inverse
model, and then the postdistorter is copied to the predistorter.
However, learning a postdistorter is known to be susceptible
to bias due to noise in the feedback signal and does not
necessarily converge to the best possible predistorter [9], [10].

In this paper, we seek to combat the nonlinearities in PAs
with a novel predistortion technique that utilizes (NNs) while
avoiding the ILA. However, we cannot immediately train a NN
based predistorter since the ideal PA input signal is unknown.
Instead, we choose to use a NN to model the PA. We then
connect a NN for DPD with the NN PA model. Given that
we know the ideal PA output, we can then calculate the
linearization error of the cascaded NN DPD and PA model
and then backpropagate this error through the NNs to update
the DPD NN. This DPD NN can then be used in front of
the actual PA and achieve performance that rivals MP-based
predistorters.

The NN based predistorter also has the advantage of being
more flexible than polynomial based methods. For large, GMP-
based solutions, the DPD designer will often fit hundreds
of coefficients then prune any that have negligible effect.
A NN based solution does not have this issue in that it
will learn whatever effects contribute most to a specified
error function without the DPD designer having to consider
all possible causes of distortion in a model explicitly. For
example, a simple memory polynomial cannot correct for IQ
imbalance. To correct for IQ imbalance, the authors of [11]
add a conjugate branch and DC term to the predistorter which
significantly increases the model complexity. By the nature of
the fully connected NN, the NN can learn such impairments
and correct them.

The main contributions of this work are as follows: (1) We
propose a novel, NN-based DPD algorithm. (2) We introduce
a new NN topology for DPD by including skip connections
to form a linear bypass so that the hidden layers focus on
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Figure 1. Architecture of the NN DPD system. The DPD NN, Ĥ−1 and PA
NN model, Ĥ , have structures resembling Fig. 2. After broadcasting through
the PA, the input/output PA data is used to train Ĥ . By backpropagating an
error through Ĥ , we train Ĥ−1. This DPD NN is then used with the actual
PA. Training and predistortion are done in the digital baseband, so we omit
the DAC, up/downconverters, and ADC in this figure.

the cancellation of nonlinearities. (3) We present a novel
training method for a NN controller connected to a black box
(in this case a PA). (4) We evaluate the complexity of the
proposed algorithms. (5) We test the proposed NN algorithm’s
predistortion capabilities on multiple real PA platforms. (6) We
investigate what the NNs are learning compared to the MPs.

The rest of this paper is organized as follows. In Section II,
we overview the full NN DPD system and the architecture
of the NNs. We then investigate the complexity of a MP
and a NN-based predistorter in Section III. In Section IV we
present predistortion results using two PAs. In Section V we
begin investigating the features learned by the NNs. We then
conclude by discussing possible extensions to this work.

II. ARCHITECTURE

A. NN DPD System Overview

Consider a complex signal at baseband, x(n), to be broad-
cast through a PA. Let a PA with discrete time-domain transfer
function H(n) have output signal y(n). It is the goal of DPD
to find an approximate inverse transfer function of the PA,
Ĥ−1, with output x̂(n) as shown in (1), so that the output of
the PA is an amplified version of the original input as shown
in (2) where G is a scalar representing the gain of the PA.

x̂(n) = Ĥ−1(x(n)) (1)
y(n) = Gx(n) = H(x̂(n)) (2)

In this work, we use a NN to find Ĥ−1 for predistortion.
To train a NN, typically example input and output training
data are required. However, the ideal x̂(n) is unknown, so
we cannot directly train to create a NN for DPD. Many other
works overcome this through the ILA. In this work, we avoid
the ILA by creating a second NN to model the PA. Given
input data, x̂(n), and output data, y(n)

G , for any PA, we can
train the PA NN model for regression on this data so that it
learns an approximate transfer function of the PA, Ĥ .

Once a PA NN Model is created, we freeze its weights and
connect the NN DPD to the PA NN Model. We then can use
the original input data x(n) as the input and the output training
data for this system to calculate an error via a loss function,
which can then be backpropagated through Ĥ to update Ĥ−1.
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Figure 2. General structure of the NNs with K hidden layers and N neurons
per hidden layer. There are always two input and output neurons for the real
and imaginary parts of the signal. The inputs are connected to the output
neurons via a skip connection so that the hidden layers concentrate on the
nonlinear portion of the signal.

For example, when using a mean square error (MSE) loss
function over a window of N samples, the output error, e, is
given as

e =
N∑
i=1

∥∥∥Ĥ(Ĥ−1x(i))− x(i)
∥∥∥2 . (3)

Once e is sufficiently close to 0, then we have learned an
approximate inverse of the PA. This NN can be used with the
actual PA to provide predistortion, as was shown in (1). Fig.
1 illustrates the complete DPD system.

B. NN Design

There are two separate NNs in this project: a DPD NN,
which will be used to predistort the actual PA, and a PA NN
model, which is used to train the DPD NN. For the sake
of simplicity, we keep the design of these NNs the same.
However, since the PA NN is only used during the DPD
training phase, it can be made arbitrarily complex to improve
accuracy in the inverse model.

Since the baseband signal is complex, we design our NNs
to have two input neurons and two output neurons: one neuron
for the real part of the signal, and one for the imaginary part.
We then have at least one fully connected hidden layer with
rectified linear unit (ReLU) activation functions. We chose
ReLU activation functions due to their low implementation
complexity.

Due to the dominant linear component in any PA model or
DPD model, we chose to connect the input neurons directly
to the output neurons bypassing the hidden layer. By doing
so, the expressive power of the NN can be used exclusively
for the nonlinear portion of the signal. This skip connection is
similar to what is seen in well-performing image classification
convolutional neural networks such as Resnet-50. Our NN
architecture is illustrated in Fig. 2.

The output of the NN is mathematically provided in the fol-
lowing equations. Here, f is any nonlinear activation function,
Wi and bi are weight matrices and bias vectors corresponding
to the ith layer in the NN. The output of the first hidden
layer is given by (4). The output of hidden layer i for



i ∈ N : 2 ≤ i ≤ T is given in (5). The final output of the
network after hidden layer T is given by (6) where the first
element represents the real part of the signal, and the second
element represents the imaginary part,

h1(n) = f

(
W1

[
<(x)
=(x)

]
+ b1

)
, (4)

hi(n) = f (Wihi−1(n) + bi) , (5)

x̂(n) =WT+1hT + bT+1 +Wlinear

[
<(x)
=(x)

]
. (6)

In (6), Wlinear is a 2×2 matrix of the weights corresponding to
the linear bypass. In practice, it is expected that it will nearly
be the identity matrix, I2. However, in systems with strong IQ
imbalance, this can deviate from that identity matrix.

C. Training

An overview of the training algorithm for the NN DPD
system is shown in Algorithm 1. For this algorithm, we use
the MSE of the time domain signals as our loss function. The
weights of the NNs are updated via backpropagation and any
of the standard optimizers, such as stochastic gradient descent
or Adam [12]. After training the DPD NN, the procedure can
be repeated to further fine-tune the models and improve the
performance for a total of D training iterations.

Algorithm 1 DPD Training
x̂[n]← x[n]
for i ≤ D do
y[n]← H (x̂[n]): // PA Broadcast
Ĥ ← Train on x̂[n], y[n]G // Update PA NN Model

// Freeze NN weights of Ĥ
Ĥ ← Train on x[n]. // Use Ĥ−1(Ĥ(x(n)))
x̂[n]← Ĥ−1 (x[n]): // Predistort

end for

D. Software

We use Keras [13] with the TensorFlow backend to design
and train the NNs. The software is written in Python and uses
the Matlab engine for Python to communicate to WARPLab
or RFWebLab for experimental testing with physical PAs.

III. COMPLEXITY CONSIDERATIONS

To be able to compare the complexity/performance tradeoffs
for the NN with MPs, we develop expressions for the number
of parameters and multiplications for each. We only consider
the running complexity of the predistorter, which corresponds
to inference of the DPD NN.

A. Memory Polynomial

The MP is implemented in (7) with a conjugate branch
[11]. The conjugate branch allows for the predistorter to also
correct for IQ imbalance. Although this increases complexity,
we include a conjugate branch here to make for a more fair
comparison with the NN DPD since it is also able to correct
this impairment. In (7), α and β are the complex coefficients
for the predistorter, x(n) is the original signal to be predis-
torted, P and Q are the highest degree polynomial considered
for the primary and conjugate branches respectively, M and
L are the memory depth per polynomial order for the primary
and conjugate branches, and c is a DC offset correction term,

x̂(n) =
P∑

p=1,
p odd

M∑
m=0

αp,mx(n−m)|x(n−m)|p−1+

Q∑
q=1,
q odd

L∑
l=0

βq,lx
∗(n− l)|x∗(n− l)|q−1 + c.

(7)

The total number of complex parameters is given as

npoly =M

(
P + 1

2

)
L

(
Q+ 1

2

)
+ 1. (8)

Assuming three real multiplications per complex multiply, we
get the following number of multiplies from the complex
coefficients multiplied by the basis function generation plus
the actual generation of the basis functions,

nMUL, poly = 3npoly + 3

(
P − 1

2
− 1

)
+ 3

(
Q− 1

2
− 1

)
.

(9)

B. Neural Network

We implement the NN shown in Fig. 1 with the linear
bypass. Let K be the number of hidden layers and let N be the
number of neurons per hidden layer. The complexity can then
be calculated in terms of number of parameters, nNN; number
of multiplies, nMUL, NN; and number of additions, nADD, NN.
The number of parameters in the NN model is equal to the
number of weights and biases,

nNN = (K − 1)N2 + (4 +K)N + 6. (10)

The number of multiplies is equal to the sum of the sizes of
the weight matrices for all layers,

nMULT, NN = (K − 1)N2 + 4N + 4. (11)

The additions come from the inner products of multiplying
each weight matrix by the layer output,

nADD, NN = (K − 1)N2 + (4−K)N. (12)

The number of activation functions, nact. func, is given by
the number of hidden layer neurons. Here we use a ReLU
activation function which can be implemented with a simple
multiplexer,

nact. func = KN. (13)



Moreover, feedforward NNs also have a regular structure
consisting primarily of matrix-vector multiplications. The reg-
ular structure of the NN is attractive for implementation
purposes and is easily parallelizable and pipelinable leading
to high-throughput, low-latency custom accelerators.

From these equations, we can see that complexity scales
quadratically with the number of neurons if there is more than
one hidden layer. For a single hidden layer, the complexity
grows linearly with the number of neurons. The universal
approximation theorem states that a single hidden layer can
be used for arbitrary function approximation, so for imple-
mentations where complexity may be a significant concern, a
single hidden layer may be desirable.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results for using the
NN based DPD. We test on two separate power amplifiers. The
first is the RFWebLab system and the second is the PA from
the WARPv3 board corresponding to devices that are similar
to what would be seen in base stations and user equipments
(UEs), respectively.

1) RFWebLab: RFWebLab is a web-connected PA at
Chalmers University [14]. This system uses a Cree
CGH40006-TB GaN PA with a peak output power of 6 W.
Using their Matlab API, we test the NN predistorter. We
broadcast a 10 MHz LTE-like OFDM signal through the PA.
We train on 10 symbols then validate on 10 different symbols
with N = 16 and K = 1. The Adam optimizer is used with
an MSE loss function. ReLU activation functions are used at
the hidden layer neurons.

In Fig. 3, we show the MSE training loss for the NNs.
The minimum MSE achieved by the PA NN model was
0.0004. The residual error in the NN model can be attributed
to memory effects that the current NN architecture cannot
account for (adding recurrent neural networks (RNNs) to
improve this is left for future work) and noise in the data.
The DPD NN then learns how to predistort for the PA NN
model. For the learned PA model, the DPD NN is nearly able
to learn a perfect inverse with a minimum MSE achieved being
4.3× 10−6. Although the MSE for the DPD NN is near zero,
it is important to remember that this is only a training loss for
predistorting against the PA NN model and not the actual PA.

We then use the DPD NN with the actual power amplifier
to measure the frequency domain result shown in Fig. 4. This
result is shown after the training procedure shown in Fig. 3.
For the result, the RMS PA output of RFWeblab is set to -24
dBm where it is in saturation. The PAPR of the OFDM signal
used for training is 10.24 dB. We can see significant spectral
regrowth around the main carrier when DPD is not used shown
by the red curve. After applying DPD, the spectral regrowth
is significantly reduced shown by the green curve.

2) WARPv3: The WARPv3 SDR is a complete wireless
prototyping system developed at Rice University [15]. It
includes an Anadigics AWL6951 dual-band power amplifier,
which is designed for a maximum output power of 23 dBm.

For this platform, we use a coaxial cable with a 30dB
attenuator to connect the TX output port to the RX port.

We perform training on the DPD NN similarly to the
previous section. In Fig. 5 we show a result after training
with this PA. Since the WARPv3 board is limited to a 40 MHz
sampling rate, we use a 3 MHz OFDM signal to demonstrate
the performance. The NN is set to N = 10 and K = 2. This
result shows another example of the NN-DPD suppressing the
adjacent channel leakage.

V. NEURAL NETWORK VS. MEMORY POLYNOMIAL

In this section, we compare the outputs of the NN and
MP DPDs to understand better what the NN does differently.
Here, we focus on RFWeblab. We train a NN DPD with
K = 1;N = 20 and a MP DPD with P = 9;M = 1. After
training, the NN DPD has a better adjacent channel leakage
ratio (ACLR) than the MP DPD, as can be seen in Fig. 4,
and we seek to understand the reason. To do so, we create a
test vector to broadcast through the DPDs with inputs over the
complex plane from −1−1j to 1+1j. We plot the difference
between the DPD outputs compared to the input for each input
point in Figs. 6 and 7. The plotted color shows the change in
the input magnitude of the signal after predistortion for the
corresponding complex input sample.

For both Figs. 6 and 7, the red color indicates that the
DPDs increased the magnitude of the corresponding input
sample. We see that over the majority of the IQ plane, the
magnitude of the input samples was increased. This increase
is to be expected in that DPD is primarily used to overcome
compression in the PA outputs due to saturation. In Fig. 6, we
see that the MP DPD is phase invariant while in Fig. 7, the
NN DPD effect varies with the phase.

The difference between the MP and NN DPDs are high-
lighted in Fig. 8. Here we can see that the NN learned to apply
DPD differently than the MP. For positive real values, the NN
is applying more expansion of the input samples compared
to the MP. For negative real values, the NN is applying less
expansion than the MP. This effect is persistent across multiple
runs. Although this effect is still under investigation, we see
that the flexibility to apply DPD differently depending on the
phase of the input allows the NN to outperform MP based
solutions.

VI. CONCLUSIONS

In this paper, we show a novel NN structure and training
algorithm for digital predistortion. The complexity was derived
in terms of the number of multiplies and parameters for the
NN and a comparable MP implementation. We experimentally
validated the DPD method with two separate power amplifiers.
In future work, we will extend the NN to include memory
effects via RNNs and investigate in more detail the specific
physical features that the NNs are learning. We will also
examine the complexity–performance tradeoffs for the NNs
and compare this to the MP-based DPD by measuring the
ACLR to examine performance per the number of multiplies.
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Figure 4. RFWebLab PA output with and without
DPD shown in the frequency domain. The red
curve shows the PA output without DPD, and the
green curve shows the PA output on the same signal
when applying the NN DPD. The gray curve shows
MP DPD with P = 9;M = 1.
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Figure 5. WARPv3 PA output with and without
DPD shown in the frequency domain. The red
curve shows the PA output without DPD and the
green curve shows the PA output on the same signal
when appying the NN DPD.
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Figure 6. Output of MP DPD compared to the
input over the space of IQ input samples.
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Figure 7. Output of NN DPD compared to the
input over the space of IQ input samples.
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