
Design Trade-offs for Decentralized Baseband
Processing in Massive MU-MIMO Systems

Kaipeng Li1, James McNaney1, Chance Tarver1, Oscar Castañeda2,
Charles Jeon2, Joseph R. Cavallaro1, and Christoph Studer2

1Department of Electrical and Computer Engineering, Rice University, Houston, TX
2Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY

Abstract—Massive multi-user (MU) multiple-input multiple-
output (MIMO) provides high spectral efficiency by means of
spatial multiplexing and fine-grained beamforming. However, con-
ventional base-station (BS) architectures for systems with hun-
dreds of antennas that rely on centralized baseband process-
ing inevitably suffer from (i) excessive interconnect data rates
between radio-frequency circuitry and processing fabrics, and
(ii) prohibitive complexity at the centralized baseband processor.
Recently, decentralized baseband processing (DBP) architectures
and algorithms have been proposed, which mitigate the inter-
connect bandwidth and complexity bottlenecks. This paper sys-
tematically explores the design trade-offs between error-rate per-
formance, computational complexity, and data transfer latency
of DBP architectures under different system configurations and
channel conditions. Considering architecture, algorithm, and nu-
merical precision aspects, we provide practical guidelines to select
the DBP architecture and algorithm that are able to realize the
full benefits of massive MU-MIMO in the uplink and downlink.

I. INTRODUCTION

Massive multi-user (MU) multiple-input multiple-output
(MIMO) will be a key technology component in fifth-generation
(5G) and future wireless communication systems [1]. The idea
of this technology is to equip the infrastructure base-stations
(BSs) with hundreds of antenna elements while serving tens
of user equipments (UEs) simultaneously and in the same
frequency band. The presence of a large number of antennas
at the BSs enables fine-grained beamforming, which provides
higher spectral efficiency than traditional, small-scale MIMO
systems [2], [3]. However, naïvely scaling up small-scale
MIMO systems to large antenna arrays will inevitably result in
a range of practical implementation challenges [4] which must
be resolved before deploying massive MU-MIMO in practice.

A. Challenges with Centralized Baseband Processing

The excessively large amount of raw baseband data that must
be transferred between the BS antenna array and the baseband
processing backhaul is among the most critical challenges
that arise with large antenna arrays [4]–[7]. As an example,
a 256-BS-antenna massive MU-MIMO system with 12-bit
digital-to-analog converters (DACs) supporting a bandwidth
of 80 MHz requires raw baseband data rates from and to the

The work was supported in part by Xilinx, Inc. and by the US NSF
under grants ECCS-1408370, CNS-1717218, CNS-1827940, ECCS-1408006,
CCF1535897, CCF-1652065, and CNS-1717559.

FE
C

m
ap

.

RF

FE
C

m
ap

.

RF

𝑈

user equipments (UEs)

up
lin

k
ch

an
ne

l RF
RF

RF
RF

CHEST

Detector

Decoder

base-station (BS)

𝐵𝒔 𝒚
𝑯

𝒙�

Fig. 1. Illustration of a base-station (BS) in the massive MU-MIMO uplink
with a centralized baseband processing architecture. The large amount of
raw baseband data that must be transferred between the RF chains and the
computing fabric (illustrated with red color) is a key implementation challenge.

radio-frequency (RF) chains that approach 1 Tb/s. Such high
data rates not only exceed the limits of existing interconnect
technology by large margins, e.g., that of the Common Public
Radio Interface (CPRI) [8], but also push chip input/output
(I/O) interfaces, power dissipation, and processing capabilities
of modern computing fabrics, such as graphics processing units
(GPUs), field-programable gate arrays (FPGAs), or application-
specific integrated circuits (ASICs), to their limits.

Figure 1 illustrates the interconnect bandwidth and com-
plexity bottlenecks (highlighted with red color) in the massive
MU-MIMO uplink (UEs transmit to BS) with conventional
centralized baseband processing architectures. Note that we
face the same bottlenecks in the downlink (BS transmits to
UEs). Although one could resort to maximum ratio combining
(MRC) for fully distributed data detection and maximum ratio
transmission (MRT) for fully distributed precoding, MRC and
MRT result in low spectral-efficiency compared to that of
more complex centralized algorithms, such as minimum mean-
square error (MMSE) equalization [2] or linear Wiener filter
precoding [9]. Existing massive MU-MIMO testbeds, such as
the BigStation [10] and the Lund testbed [11], incorporate
centralized MMSE and ZF algorithms while parallelizing the
computation workload across subcarriers. While this approach
mitigates the complexity bottleneck, it still suffers from the
interconnect and chip I/O bottlenecks as one must transfer raw
baseband data from and to all antennas.

B. Decentralized Baseband Processing

To effectively avoid the bottlenecks of centralized baseband
processing and to enable scalability to massive MU-MIMO
architectures with hundreds or even thousands of antenna
elements, recent work [4], [7], [12] introduced decentralized
baseband processing (DBP). DBP partitions the antenna ar-
ray into smaller clusters, each associated with separate RF
circuitry and baseband processing fabrics. Each antenna cluster
only connects with the associated computing fabrics which
perform local baseband processing tasks, such as channel
estimation, data detection in the uplink, and precoding in
the downlink. While consensus-sharing based methods have
been proposed for these tasks [4], [13], [14], the iterative
exchange of information among clusters suffers from data
transfer latency which negatively affects the design efficiency.
Recently, the references [15]–[17] and [9] proposed feedforward
DBP architectures for uplink detection and downlink precoding,
respectively. Such feedforward architectures avoid the repeated
exchange of information among clusters, which mitigates data
transfer latency issues [9]. Furthermore, the theoretical analysis
in [16] revealed that feedforward equalization architectures
with linear algorithms are able to achieve the same or similar
spectral efficiency as their centralized counterparts.

C. Contributions

While the literature describes a number of feedforward DBP
architectures and algorithms [7], [9], [16], a systematic trade-
off analysis under different system configurations and channel
conditions is missing. Such a trade-off analysis, however,
is critical to making design decisions for practical massive
MU-MIMO systems that rely on DBP. This paper focuses
on such trade-offs at different levels for feedforward DBP
architectures and algorithms which avoid iterative consensus
exchange. In Section II, we analyze the performance and data
transfer bandwidth trade-offs of two feedforward architectures
dependent on system configuration and channel conditions,
and we show that the channel coherence time is a critical
design factor for architecture-level trade-offs. In Section III,
we investigate the performance and complexity trade-offs of dif-
ferent feedforward equalization and precoding algorithms, and
we show that channel coherence time and channel reciprocity
are important design factors for algorithm-level trade-offs. In
Section IV, we study the performance and efficiency trade-offs
when reducing the arithmetic precision of data transfers and
numerical computations. In Section V, we conclude the paper
and summarize practical design guidelines.

II. ARCHITECTURE TRADE-OFFS

We now study the performance and data transfer bandwidth
trade-offs in the uplink and downlink for DBP feedforward
architectures dependent on the channel’s coherence time.

A. System Models and Architectures

We now detail the uplink and downlink channel models and
provide details on DBP feedforward architectures.

RF

RF

CHEST

𝐶

Preproc.
𝐵1

RF

RF CHEST

Preproc.
𝐵𝐶

F

De
co

de
r𝒚1MRC,𝑮1

𝒙�,𝜎2

𝒚𝐶MRC,𝑮𝐶 De
te

ct
or

(a) Partially decentralized (PD)

RF

RF

CHEST

𝐶

Detector
𝐵1

RF

RF CHEST

Detector
𝐵𝐶

F

De
co

de
r

𝒙�1,𝜎12

𝒙�𝐶 ,𝜎𝐶2
𝒙�,𝜎2

(b) Fully decentralized (FD)

Fig. 2. Decentralized feedforward architectures for the massive MU-MIMO
uplink. (a) The partially-decentralized (PD) architecture separates preprocessing
and data detection. (b) The fully-decentralized (FD) architecture performs data
detection at each antenna cluster followed by centralized data fusion.

1) Uplink: The uplink consists of U single-antenna UEs
transmitting data to a BS with B antennas. The data of the U
UEs is contained in the transmit vector xul ∈ OU , where O is
the constellation (e.g., 16-QAM). The BS receives the vector
yul ∈ CB , which we model using the baseband input-output
relation yul = Hulxul + nul, where Hul ∈ CB×U represents
the channel matrix, and nul ∈ CB is i.i.d. complex circularly-
symmetric Gaussian noise with variance N0 per entry.

The feedforward DBP architectures proposed in [15], [16]
partition the B BS-antennas into C antenna clusters; Fig. 2
illustrates two DBP architectures. The cth cluster has Bc anten-
nas where B =

∑C
c=1Bc, and each cluster receives its own

yul
c ∈ CBc . The input-output relation at each cluster is then

yul
c = Hul

c x
ul + nul

c , c = 1, 2, . . . , C. (1)

Here, Hul
c ∈ CBc×U is the local channel matrix, a sub-matrix of

Hul, and nul
c ∈ CBc represents the local noise vector at cluster

c. We focus on two distinct feedforward DBP architectures put
forward in [15]: the partially-decentralized (PD) architecture
and fully-decentralized (FD) architecture shown in Fig. 2(a)
and Fig. 2(b), respectively. Both architectures allow each BS
cluster to estimate the local matrix Hul

c and perform local
preprocessing based on Hul

c and the local receive vector yul
c to

form the local Gram matrix Gul
c = Hul

c
H
Hul
c and matched filter

output yMRC
c = Hul

c
H
yc. The PD architecture performs fusion

of Gul
c and yMRC

c at the centralized processing unit to produce
the equalization output x̂ul. The FD architecture performs local
equalization and requires data fusion of the local equalization
outputs x̂ul

c and noise variance σ̂ul
c to produce the equalization

output x̂ul. See [15], [16] for the details.
2) Downlink System: In the downlink, the BS computes the

precoding vector xdl = Pdlsdl, where xdl ∈ CB , Pdl ∈ CB×U
is the precoding matrix and sdl ∈ OU is the transmit data
vector. At the UEs, the receive vector ydl ∈ CU is given by
ydl = Hdlxdl +ndl, where Hdl ∈ CU×B and ndl ∈ CU are the
downlink channel matrix and noise vector, respectively.

Analogous to the uplink, reference [9] proposed feedforward
DPB architectures for the downlink, where each of the C
antenna clusters uses the local downlink channel matrix Hdl

c =

Hul
c
T , the transpose of Hul

c , assuming channel reciprocity, in

-15 -10 -5 0 5 10 15
10-3

10-2

10-1

100

average SNR per receive antenna [dB]

un
co

de
d

bi
t e

rr
or

 ra
te

 (B
ER

)

FD-MMSE Quadriga urban NLOS
PD-MMSE Quadriga urban NLOS
FD-MMSE i.i.d. Rayleigh fading
PD-MMSE i.i.d. Rayleigh fading

(a) BER: PD-MMSE vs. FD-MMSE

0 5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

coherence time (# symbols)

av
er

ag
e

pe
r-

sy
m

bo
l

da
ta

 tr
an

sf
er

 s
iz

e
(#

 re
al

 s
am

pl
es

)

PD-MMSE
FD-MMSE

(b) Data transfer size vs. Ncoh

Fig. 3. PD vs. FD architecture trade-off on uncoded BER and data transfer
size.

order to form the local beamforming vector xdl
c . See [9] for

the details. The input-output relation at each cluster is

ydl
c = Hdl

c x
dl + ndl

c , Hdl
c ∈ CU×Bc , c = 1, 2, . . . , C. (2)

B. PD Architecture vs. FD Architecture

We now compare the PD architecture and FD architecture
and explore the trade-offs for architecture selection. We first
focus on a case study of the linear MMSE data detector in
the uplink with the PD and FD architectures, to showcase
how architecture selection for a certain algorithm affects the
error rate performance, computational complexity, and data
transfer size under different antenna configurations and channel
conditions, such as channel coherence time. We later extend
our analysis to precoding in the downlink and discuss more
algorithm variations and their trade-offs in Section III.

Linear uplink data detection can be formulated as the fol-
lowing optimization problem (we omit the superscript ul):

x̂ = arg min
x∈CU

‖y −Hx‖22 + ρ‖x‖22 . (3)

Here, ρ = N0

Es
is used for linear MMSE equalization where

Es is the per-UE transmit power. The corresponding closed
form solution for (centralized) MMSE detection is given by
x̂ = (HHH + ρI)−1HHy. For PD-MMSE detection, we
first compute Gc = HH

c Hc and yMRC
c = HH

c y at each
decentralized cluster. We then fuse the matrices Gc and yMRC

c

to form the global Gram matrix G = HHH = ΣCc=1Gc and
MRC vector yMRC = HHy = ΣCc=1y

MRC
c at the centralized

processor. Finally, we calculate the matrix inversion to perform
equalization at the centralized processor, which yields the global
equalization output x̂ and noise variance σ2. For FD-MMSE
detection, we first compute Gc and yMRC

c locally, the same
as for PD-MMSE. We then calculate a matrix inversion and
perform equalization locally to obtain the local estimate x̂c
and noise variance σ2

c . Finally, we fuse the local estimates
x̂c together with the local noise variances σ2

c at the central-
ized processor, which yields the global equalization output
x̂ = ΣCc=1λcx̂c, where λc = 1

σ2
c
(ΣCc′=1

1
σ2
c′

)−1; see [15], [16]
for the details.

From the above explanations, we see that the timing com-
plexity, which we measure as the number of real-valued multi-

plications, is approximately the same1 for both architectures.
The key factor that can lead to different efficiency of PD
and FD architectures lies at the data transfer size at the data
fusion stage. For the PD architecture, data fusion requires the
transfer of both local Gc, a U × U complex-value Hermitian
matrix consisting of U2 unique real values and local yMRC

c , a
U -dimensional complex-valued vector that contains 2U real
values, which leads to a total of C × (U2 + 2U) real values
for each data symbol. If we consider a typical scenario for
which the estimated channel in the uplink is static across Ncoh
contiguous symbols, then the local Gram matrix Gc, which
depends only on the local channel matrix Hc, can be transferred
only once for every Ncoh symbols, while the transfer of yMRC

c is
required for every symbol. Therefore, the average data transfer
size mPD for each symbol at the fusion stage of PD architecture
is as follows:

mPD =
C × (U2 + 2NcohU)

Ncoh
. (4)

In contrast, for the FD architecture, data fusion requires the
transfer of the local xc, a U -entry complex-valued vector, and
σc, a U -entry real-valued vector, which leads to a total of 3U
real values that must be transferred for every symbol regardless
of the channel coherence time. Therefore, the average data
transfer size mFD for each symbol in FD architecture is

mFD =
C × 3NcohU

Ncoh
= 3CU. (5)

When extended to a multi-subcarrier transmission, e.g., using
orthogonal frequency-division multiplexing (OFDM), the quan-
tities mPD and mFD represent the average data transfer size
per symbol on each subcarrier. From (4) and (5), we see that
the channel coherence time determines whether the PD or FD
architecture requires more or less data to be transferred.

C. Trade-off Analysis

While the data transfer size and efficiency of the PD and
FD architectures depend on system parameters and channel
conditions, the PD architecture always outperforms the FD
architecture in terms of error-rate performance, as it is able to
achieve the same performance as centralized data detection [15],
[16]. Figure 3(a) compares the uncoded bit error-rate (BER)
of PD-MMSE and FD-MMSE data detection for a single-
carrier system with a cluster size of Bc = 32, C = 4 clusters,
and U = 16 UEs with 16-QAM. We simulate the BER
performance with a simple i.i.d. Rayleigh fading channel, and
a more realistic urban micro-campus non-line-of-sight (NLOS)
Quadriga channel [18], where we place the UEs randomly in
a 120◦ sector at a distance of 50 to 100 from the BS, which
is using a uniform linear array.

We see that PD-MMSE clearly outperforms FD-MMSE
under both channel environments in terms of uncoded BER. To
showcase the trade-off of PD and FD on BER vs. data transfer

1Here, the timing complexity indicates that decentralized computations
performed in parallel at each cluster should be counted only once to reflect
the computation latency on real hardware.

size, in Fig. 3(b), we also compare the average per-symbol
data transfer size mPD and mFD for PD and FD architectures,
respectively, under the same antenna configuration but for
different channel coherence times characterized by Ncoh. We
find that at small coherence times Ncoh, if Ncoh < U , then
mFD < mPD, which implies that one should select the FD
rather than the PD architecture if the data fusion efficiency
has higher priority than BER performance. If Ncoh > U , then
mPD < mFD, then the PD architecture is always preferred for
both better data fusion efficiency and BER performance.

Similarly to the uplink, we can use the PD and FD archi-
tectures to realize decentralized precoding in the downlink,
e.g., using linear Wiener filter (WF) precoding [9]. For PD-
WF precoding, the total data transfer size, which consists
of both fusion of local Gram matrices Gc and broadcasting
of centralized whitened vector (scaled with U), is always
larger than that of FD-WF precoding, which only requires
the broadcasting of the transmit vector s (scaled with U)
and a scalar power allocation value. We can calculate similar
average per-symbol data transfer sizes for downlink precoding
by mPD = C(U2+2NcohU)

Ncoh
and mFD = C(1+2NcohU)

Ncoh
. Clearly,

the FD architecture is more efficient on data transfer since
mFD < mPD holds in typical scenarios. Only if Ncoh � U2,
i.e., for nearly static channels, we have mFD ≈ mPD. However,
for the BER performance, PD-WF is never worse than that
of FD-WF. Therefore, selecting the PD or FD architecture for
the downlink is solely determined by the system designer’s
preference, i.e., whether BER or data transfer is the critical
factor.

III. ALGORITHM TRADE-OFFS

We now investigate the selection of data detection or precod-
ing algorithms, given that either the PD or FD architecture has
been already chosen. We first discuss the trade-offs for various
decentralized algorithms, where we focus on explicit and
implicit matrix-inversion-based uplink equalization methods
with the PD architecture. A similar trade-off analysis applies
for the FD architecture and downlink systems. We also explore
situations in which we are able to store and reuse computa-
tion results from the uplink in order to facilitate downlink
precoding, which enables additional complexity reduction in a
time-division duplex (TDD) system.

A. Explicit vs. Implicit Algorithms

As discussed in Section II, a closed form solution for (central-
ized) MMSE data detection is given by x̂ = (G+ ρI)−1yMRC

and requires (i) Gram matrix computation and (ii) matrix
inversion of the regularized Gram matrix, both of which are
computationally intensive but only depend on the channel ma-
trix H. For the PD or FD architectures, the timing complexity
of Gram matrix computation at each cluster is reduced because
of smaller matrix size (Bc × U), while the dimension of the
complete Gram matrix is still the same (i.e., U × U). This
implies that the matrix inversion timing complexity is the
same as that of the centralized MMSE equalizer. To reduce
complexity, we can (i) take advantage of channel coherence,

which allows us to reuse intermediate computation results
across Ncoh symbols, and (ii) avoid an explicit computation of
the matrix inversion.

Consider PD-MMSE as an example. At each cluster, if we
compute Gc only once and reuse it across Ncoh receive symbols,
then the average timing complexity (number of real-valued
multiplications) per receive symbol for computing Gc + ρI
can be as low as 2BcU

2/Ncoh. However, the computation of
yMRC
c = HH

c yc relies not only on channel Hc but also on the
receive symbol yc, which leads to 4BcU timing complexity
per receive symbol. Then for explicit Cholesky-based matrix
inversion of a U × U matrix, which only depends on H, we
can still compute the matrix inversion only once and reuse
it across Ncoh receive symbols, and therefore the average
complexity per receive symbol is (10

3 U
3 − 4

3U)/Ncoh [19].
Finally, to compute the equalization output x̂, the matrix-vector
multiplication requires an additional 4U2 operations per receive
symbol. Therefore, the timing complexity nex of all above steps
to obtain x̂ averaged on each symbol for the explicit matrix
inversion based PD-MMSE is

nex =
(
2BcU

2 + 10
3 U

3 − 4
3U
)
/Ncoh + 4BcU + 4U2. (6)

The literature describes a number of implicit methods that can
be used for directly computing x̂ while avoiding an explicit
matrix inversion, such as the decentralized conjugate gradient
method [13] or decentralized coordinate descent method [20].
Such iterative methods typically obtain an approximate result2,
which entails a small BER loss. Furthermore, such implicit
methods are unable to exploit the benefits of channel coherence
since all iterative updates need to be computed for every
symbol. We therefore propose to integrate implicit Cholesky-
based MMSE detection [19] with the PD architecture, which
is not only able to compute the exact linear MMSE equalizer
but also realize low complexity compared to other iterative
methods, especially for large Ncoh when the intermediate
Cholesky decomposition results can be reused. The implicit
PD-MMSE algorithm computes the local Gram matrix Gc

and MRC vector yMRC
c and fuses them to obtain the global

Gram matrix G and MRC vector yMRC similarly to explicit PD-
MMSE. After fusion, the implicit PD-MMSE method factorizes
the regularized Gram matrix A = G + ρI by Cholesky de-
composition A = LLH , where L represents a lower triangular
matrix. One can then solve Lz = yMRC and finally LH x̂ = z,
by forward and backward substitution, respectively, in order
to obtain x̂. While the forward and backward substitutions
have to be carried out for every symbol with a total of 4U2

operations (including real-valued multiplications and divisions),
the Cholesky decomposition, which dominates the complexity
at 2

3U
3− 2

3U , can be computed only once every Ncoh symbols.
Therefore, the resulting timing complexity nim per symbol for
the implicit Cholesky based PD-MMSE approach is

nim =
(
2BcU

2 + 2
3U

3 − 2
3U
)
/Ncoh + 4BcU + 4U2. (7)

2While the conjugate gradient method can obtain the exact MMSE solution
after U iterations, we typically perform a smaller number of iterations (less
than U) to reduce complexity.

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5 x 104

coherence time (# symbols)

tim
in

g
co

m
pl

ex
ity

 (#
 re

al
-v

al
ue

 m
ul

tip
lic

at
io

ns
)

explicit PD-MMSE
implicit PD-MMSE

Fig. 4. Complexity of explicit vs. implicit PD-MMSE at different Ncoh.

In OFDM systems, the quantities nex and nim represent the
detection complexity on each subcarrier.

By comparing (6) and (7), we see that the U3 term in nex
and nim dominates the complexity and nim < nex since nim
has smaller constant associated with this term; this indicates
that the implicit method can reduce complexity at no loss
in terms of BER compared to the explicit method. Figure 4
shows an example for a system with Bc = 32, U = 16, and
C = 4 where we compare the timing complexity of explicit PD-
MMSE and implicit PD-MMSE depending on the coherence
time. We observe that the implicit method always achieves
lower complexity, whereas the complexity is similar to that of
the explicit method for large values of Ncoh.

We conclude by noting that we can similarly leverage both
channel coherence and implicit inversion to reduce the com-
plexity for FD-based uplink data detection. However, for the
downlink, implicit inversion is not particularly helpful for the
PD-WF or FD-WF precoding algorithms, which require the
computation of an optimal scaling factor that depends on the
explicit matrix inversion result of a regularized Gram matrix [9].

As an alternative, one can resort to ZF-based algorithms
(e.g., PD-ZF and FD-ZF), which enable implicit methods for
both uplink detection and downlink precoding. Here, for ZF
precoding, we can simply scale the normalized ZF precoding
vector x̂

‖x̂‖2
without the need of explicit matrix inversion to

satisfy the same transmit power constraint as WF precoding.

B. Reusing Uplink Results for Downlink

Due to channel reciprocity in TDD systems, we have Hdl =
(Hul)T , and therefore Gdl = Hdl(Hdl)H = (Hul)T (Hul)∗ =
((Hul)HHul)∗ = (Gul)∗ = (Gul)T , where (·)∗ indicates entry-
wise complex conjugate operation and Gul is an Hermitian
matrix. This indicates that the Gram matrix computed in
the uplink, can also be reused in the downlink by a simple
transpose. We can also take advantage of channel reciprocity
under decentralized architectures. For example, in FD-MMSE,
the local Gram matrix Gul

c is computed. If we perform FD-WF
precoding in the downlink, and each cluster estimates the local
precoding vector x̂c = 1

βc
(Hdl

c)H(Gdl
c + κcI)

−1s, where 1
βc

is
the scaling factor to satisfy the transmit power constraint and
κc regularizes Gdl

c as detailed in [9], then we can store the
uplink matrix Gul

c and reuse it as Gdl
c = (Gul

c)T for FD-WF

precoding, even across Ncoh symbols. This approach yields
an additional 2BcU

2/Ncoh complexity reduction per symbol
for a system that integrates FD-MMSE detection and FD-WF
precoding by re-using intermediate results compared to the
total complexity of computing them individually. A similar
approach can be used for PD-MMSE detection and PD-WF
precoding: in PD-MMSE detection, we aggregate local Gul

c and
compute the global Gul at the centralized node, and transpose
it for PD-WF precoding.

If we consider ZF detection and precoding, where the Gram
regularization coefficients ρ = 0 and κ = 0, respectively, we
can even store the matrix inversion result (Gul)−1 computed
in ZF detection and reuse it for ZF precoding which requires
(Gdl)−1 = ((Gul)T)−1 = ((Gul)−1)T . When (Gul)−1 is com-
puted explicitly, we can also use it to compute the scaling factor
β for ZF precoding in a similar way like WF precoding [9].
When it is computed implicitly, we should store and reuse
the Cholesky decomposition result Gul = LLH rather than
the matrix inversion result for implicit ZF precoding which
relies on Gdl = (LLH)T = L∗(L∗)H , and finally scale the
normalized ZF precoding vector x̂

‖x̂‖2
to reach the power

constraint. Similarly, under decentralized scenarios (PD or FD
architecture), for example, with an integrated pipeline of PD-ZF
detection and PD-ZF precoding, we can reuse such explicit or
implicit inversion results to realize further complexity reduction
compared to the integrated pipeline of PD-MMSE detection and
PD-WF precoding, at the cost of BER performance degradation.

As an example, Fig. 5(a) and 5(b) compare the uncoded BER
performance of PD-MMSE vs. PD-ZF for uplink detection,
and PD-WF vs. PD-ZF for downlink precoding, respectively,
in a single-carrier system. We see that PD-ZF methods entail
BER performance loss compared to PD-MMSE and PD-WF,
expecially under realistic Quadriga freespace channel [18].
Fig. 5(c) compares the timing complexity of different pipelines
of uplink detection and downlink precoding at different Ncoh.
Using the total complexity of individually computed explicit
PD-MMSE detection and PD-WF precoding as the baseline,
we show that the integration of PD-MMSE and PD-WF by
reusing Gul effectively reduces complexity, and the integration
of PD-ZF detection and PD-ZF precoding achieves further
complexity reduction as expected, especially when incorporated
with implicit methods. When Ncoh increases, the difference
among those complexity curves decreases, indicating that the
channel coherence plays a more important role on complexity
reduction than channel reciprocity at a large Ncoh, while at a
small Ncoh, exploiting channel reciprocity is more critical.

IV. DATA PRECISION TRADE-OFFS

Data precision is another factor in the design space. Given a
decentralized architecture and algorithm, reducing the data pre-
cision can improve efficiency on modern computing fabrics due
to fewer compiled machine instructions and memory transac-
tions, and smaller inter-cluster data transfer sizes. For example,
when using 8-bit floating point (fp8), we can pack four fp8
values into a fp32 value and execute a vectorized computation
instruction (such as vectorized addition, multiplication, etc) in a

-15 -10 -5 0 5 10 15 20 25
10-3

10-2

10-1

100

average SNR per receive antenna [dB]

un
co

de
d

bi
t e

rr
or

 ra
te

 (B
E

R
)

PD-MMSE i.i.d. Rayleigh fading
PD-ZF i.i.d. Rayleigh fading
PD-MMSE Quadriga freespace
PD-ZF Quadriga freespace

(a) BER: PD-MMSE detection vs. PD-ZF detection

-15 -10 -5 0 5 10 15 20 25
10-3

10-2

10-1

100

normalized transmit power [dB]

un
co

de
d

bi
t e

rr
or

 ra
te

 (B
E

R
)

PD-WF i.i.d. Rayleigh fading
PD-ZF i.i.d. Rayleigh fading
PD-WF Quadriga freespace
PD-ZF Quadriga freespace

(b) BER: PD-WF precoding vs. PD-ZF precoding

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7 x 104

coherence time (# symbols)

tim
in

g
co

m
pl

ex
ity

 (#
 re

al
-v

al
ue

 m
ul

tip
lic

at
io

ns
)

Ex. PD-MMSE UL and Ex. PD-WF DL total
Ex. PD-MMSE UL and Ex. PD-WF DL integrated
Ex. PD-ZF UL and Ex. PD-ZF DL integrated
Im. PD-ZF UL and Im. PD-ZF DL integrated

(c) Complexity of integrated UL and DL

Fig. 5. UL and DL integration trade-offs on BER and complexity for a system with C = 4, U = 16, Bc = 32. (a) and (b) show the BER performance
comparison of PD-MMSE vs. PD-ZF in uplink, and PD-WF vs. PF-ZF in downlink, respectively, at 16QAM modulation. PD-ZF sacrifices the BER performance,
especially under a more realistic Quadriga channel, while achieving more significant complexity reduction with UL and DL integration, as shown in (c). We use
the total complexity of individually computed (without UL and DL integration) explicit PD-MMSE and PD-WF as the baseline (the blue curve) for comparison.

-15 -10 -5 0 5 10 15
10-3

10-2

10-1

100

average SNR per receive antenna [dB]

un
co

de
d

bi
t e

rr
or

 ra
te

 (B
E

R
)

PD-MMSE fp32
FD-MMSE fp32
PD-MMSE fp8
FD-MMSE fp8

Fig. 6. BER comparison: fp32 vs. fp8 for PD-MMSE and FD-MMSE

single-instruction-multiple-data (SIMD) manner to process four
fp8 values in parallel within the single instruction, contributing
to 4× smaller number of instructions and memory transactions
on the processor, and also reducing the inter-cluster bandwidth
requirement by 4× compared to corresponding fp32 design.
However, low precision sacrifices numerical accuracy and
thus reduces the BER performance of corresponding detection
or precoding algorithms. Fig. 6 compares the uncoded BER
performance at fp32 vs. fp8 precision for PD-MMSE and FD-
MMSE detectors under a realistic NLOS Quadriga channel [18]
with system configurations of C = 4, U = 16, Bc = 32 and
16-QAM modulation. Here, an fp8 value contains 1 sign bit, 2
mantissa bits and 5 exponent bits while an fp32 value contains
1 sign bit, 23 mantissa bits and 8 exponent bits. We see in
Fig. 6 that fp8 precision only entails a small BER performance
loss compared to fp32 precision. In practice, the selection of
data precision depends on the trade-off of BER performance vs.
efficiency given certain system and environment configurations.

V. CONCLUSIONS

We have discussed the design trade-offs across architec-
ture, algorithm, and data precision levels for decentralized

baseband processing (DBP) in massive MU-MIMO systems,
and proposed a practical design flow that jointly considers
critical metrics for DBP including computational complexity,
data transfer sizes, and error-rate performance. As summarized
in Fig.7, given certain system configurations and channel
conditions, one should first select the PD or FD architecture
by trading off BER vs. data transfer size, and then decide on
the detection and precoding algorithms with the selected archi-
tecture according to the BER vs. complexity trade-off. Finally,
one can the lower numerical precision if higher efficiency is
more important than BER performance. To realize minimal
computational complexity and data transfer size at no or little
loss of BER, we have provided insights on taking advantage of
both channel reciprocity and channel coherence properties by
reusing intermediate results. In the future, we expect to build
reconfigurable massive MU-MIMO software-defined radios
based on programmable computing fabrics, such as GPUs or
FPGAs, in order to dynamically adapt to time-varying system
parameters and realize effective trade-offs.

REFERENCES

[1] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K.
Soong, and J. C. Zhang, “What Will 5G Be?,” IEEE J. Sel. Areas
Commun., vol. 32, no. 6, pp. 1065–1082, Jun. 2014.

[2] J. Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO in the UL/DL
of Cellular Networks: How Many Antennas Do We Need?,” IEEE J. Sel.
Areas Commun., vol. 31, no. 2, pp. 160–171, Feb. 2013.

[3] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An
Overview of Massive MIMO: Benefits and Challenges,” IEEE J. Sel.
Topics in Sig. Proc., vol. 8, no. 5, pp. 742–758, Oct. 2014.

[4] K. Li, R. R. Sharan, Y. Chen, T. Goldstein, J. R. Cavallaro, and C. Studer,
“Decentralized Baseband Processing for Massive MU-MIMO Systems,”
IEEE J. Emerg. and Sel. Topics in Circ. and Sys., vol. 7, no. 4, pp.
491–507, Dec 2017.

[5] A. Puglielli, N. Narevsky, P. Lu, T. Courtade, G. Wright, B. Nikolic,
and E. Alon, “A scalable massive MIMO array architecture based on
common modules,” in IEEE Intl. Conf. Commun. Workshop. IEEE, Jun.
2015, pp. 1310–1315.

[6] S. Jacobsson, G. Durisi, M. Coldrey, T. Goldstein, and C. Studer,
“Quantized Precoding for Massive MU-MIMO,” IEEE Trans. on Comm.,
vol. 65, no. 11, pp. 4670–4684, Nov. 2017.

𝐵𝑐 ,𝑈,𝐶

𝑵𝒄𝒐𝒉

Architecture Selection Algorithm Selection Precision Selection

Tradeoff

BER
vs.

data
transfer

size

PD

check
𝑵𝒄𝒐𝒉

FD

Tradeoff

BER
vs.

computing
complexity

Tradeoff

BER
vs.

efficiency

high
precision
(eg: fp32)

low
precision
(eg: fp8)

Design
Decisions

UL: Ex. or Im. MMSE

DL: Ex. WF

UL: Im. ZF

DL: Im. ZF

Fig. 7. Practical design decision flow: DBP architecture, algorithm and precision trade-off and selection.

[7] E. Bertilsson, O. Gustafsson, and E. G. Larsson, “A Distributed
Processing Architecture for Modular and Scalable Massive MIMO Base
Stations,” arXiv preprint: 1801.07967, Jan. 2018.

[8] http://www.cpri.info, Common public radio interface.
[9] K. Li, C. Jeon, J. R. Cavallaro, and C. Studer, “Feedforward Architectures

for Decentralized Precoding in Massive MU-MIMO Systems,” in
Asilomar Conf. on Sig., Sys., Comp., Oct. 2018, pp. 1659–1665.

[10] Q. Yang, X. Li, H. Yao, J. Fang, K. Tan, W. Hu, J. Zhang, and Y. Zhang,
“BigStation: Enabling Scalable Real-time Signal Processing in Large
MU-MIMO Systems,” in ACM SIGCOMM, Oct. 2013, pp. 399–410.

[11] J. Vieira, S. Malkowsky, K. Nieman, Z. Miers, N. Kundargi, L. Liu,
I. Wong, V. Öwall, O. Edfors, and F. Tufvesson, “A flexible 100-antenna
testbed for Massive MIMO,” in IEEE Globecom, Dec. 2014, pp. 287–293.

[12] J. Sanchez, F. Rusek, O. Edfors, M. Sarajlic, and L. Liu, “Decentralized
Massive MIMO Processing Exploring Daisy-chain Architecture and
Recursive Algorithms,” arXiv preprint: 1905.03160, May 2019.

[13] K. Li, Y. Chen, R. Sharan, T. Goldstein, J. R. Cavallaro, and C. Studer,
“Decentralized data detection for massive MU-MIMO on a Xeon Phi
cluster,” in Asilomar Conf. Sig. Sys. Comp., Nov. 2016, pp. 468–472.

[14] K. Li, R. Skaran, Y. Chen, J. R. Cavallaro, T. Goldstein, and C. Studer,
“Decentralized beamforming for massive MU-MIMO on a GPU cluster,”
in IEEE GlobalSIP, Dec. 2016, pp. 590–594.

[15] C. Jeon, K. Li, J. R. Cavallaro, and C. Studer, “On the achievable rates
of decentralized equalization in massive MU-MIMO systems,” in IEEE
Int. Symp. on Info. Theory, Jun. 2017, pp. 1102–1106.

[16] C. Jeon, K. Li, J. R. Cavallaro, and C. Studer, “Decentralized Equalization
with Feedforward Architectures for Massive MU-MIMO,” IEEE Trans.
on Sig. Proc., vol. 67, no. 17, pp. 4418–4432, Sep. 2019.

[17] K. Li, C. Jeon, J. R. Cavallaro, and C. Studer, “Decentralized Equalization
for Massive MU-MIMO on FPGA,” in Asilomar Conf. on Sig., Sys. and
Comp., Nov. 2017.

[18] https://quadriga-channel-model.de, QuaDRiGa channel model.
[19] M. Wu, B. Yin, K. Li, C. Dick, J. R. Cavallaro, and C. Studer, “Implicit

vs. Explicit Approximate Matrix Inversion for Wideband Massive MU-
MIMO Data Detection,” J. of Sig. Proc. Sys., pp. 1–18, Dec. 2017.

[20] K. Li, O. Castañeda, C. Jeon, J. R. Cavallaro, and C. Studer, “Decen-
tralized Coordinate-Descent Data Detection and Precoding for Massive
MU-MIMO,” in IEEE Int. Symp. on Circ. and Sys., May 2019, pp. 1–5.

	Introduction
	Challenges with Centralized Baseband Processing
	Decentralized Baseband Processing
	Contributions

	Architecture Trade-offs
	System Models and Architectures
	Uplink
	Downlink System

	PD Architecture vs. FD Architecture
	Trade-off Analysis

	Algorithm Trade-offs
	Explicit vs. Implicit Algorithms
	Reusing Uplink Results for Downlink

	Data Precision Trade-offs
	Conclusions
	References

