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Abstract—Massive multi-user (MU) multiple-input multiple-
output (MIMO) provides high spectral efficiency by means of
spatial multiplexing and fine-grained beamforming. However, con-
ventional base-station (BS) architectures for systems with hun-
dreds of antennas that rely on centralized baseband process-
ing inevitably suffer from (i) excessive interconnect data rates
between radio-frequency circuitry and processing fabrics, and
(ii) prohibitive complexity at the centralized baseband processor.
Recently, decentralized baseband processing (DBP) architectures
and algorithms have been proposed, which mitigate the inter-
connect bandwidth and complexity bottlenecks. This paper sys-
tematically explores the design trade-offs between error-rate per-
formance, computational complexity, and data transfer latency
of DBP architectures under different system configurations and
channel conditions. Considering architecture, algorithm, and nu-
merical precision aspects, we provide practical guidelines to select
the DBP architecture and algorithm that are able to realize the
full benefits of massive MU-MIMO in the uplink and downlink.

I. INTRODUCTION

Massive multi-user (MU) multiple-input multiple-output
(MIMO) will be a key technology component in fifth-generation
(5G) and future wireless communication systems [1]. The idea
of this technology is to equip the infrastructure base-stations
(BSs) with hundreds of antenna elements while serving tens
of user equipments (UEs) simultaneously and in the same
frequency band. The presence of a large number of antennas
at the BSs enables fine-grained beamforming, which provides
higher spectral efficiency than traditional, small-scale MIMO
systems [2], [3]. However, naively scaling up small-scale
MIMO systems to large antenna arrays will inevitably result in
a range of practical implementation challenges [4] which must
be resolved before deploying massive MU-MIMO in practice.

A. Challenges with Centralized Baseband Processing

The excessively large amount of raw baseband data that must
be transferred between the BS antenna array and the baseband
processing backhaul is among the most critical challenges
that arise with large antenna arrays [4]-[7]. As an example,
a 256-BS-antenna massive MU-MIMO system with 12-bit
digital-to-analog converters (DACs) supporting a bandwidth
of 80 MHz requires raw baseband data rates from and to the
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Fig. 1. Illustration of a base-station (BS) in the massive MU-MIMO uplink
with a centralized baseband processing architecture. The large amount of
raw baseband data that must be transferred between the RF chains and the
computing fabric (illustrated with red color) is a key implementation challenge.

radio-frequency (RF) chains that approach 1Tb/s. Such high
data rates not only exceed the limits of existing interconnect
technology by large margins, e.g., that of the Common Public
Radio Interface (CPRI) [8], but also push chip input/output
(I/0) interfaces, power dissipation, and processing capabilities
of modern computing fabrics, such as graphics processing units
(GPUg), field-programable gate arrays (FPGAs), or application-
specific integrated circuits (ASICs), to their limits.

Figure 1 illustrates the interconnect bandwidth and com-
plexity bottlenecks (highlighted with red color) in the massive
MU-MIMO uplink (UEs transmit to BS) with conventional
centralized baseband processing architectures. Note that we
face the same bottlenecks in the downlink (BS transmits to
UEs). Although one could resort to maximum ratio combining
(MRC) for fully distributed data detection and maximum ratio
transmission (MRT) for fully distributed precoding, MRC and
MRT result in low spectral-efficiency compared to that of
more complex centralized algorithms, such as minimum mean-
square error (MMSE) equalization [2] or linear Wiener filter
precoding [9]. Existing massive MU-MIMO testbeds, such as
the BigStation [10] and the Lund testbed [11], incorporate
centralized MMSE and ZF algorithms while parallelizing the
computation workload across subcarriers. While this approach
mitigates the complexity bottleneck, it still suffers from the
interconnect and chip I/O bottlenecks as one must transfer raw
baseband data from and to all antennas.



B. Decentralized Baseband Processing

To effectively avoid the bottlenecks of centralized baseband
processing and to enable scalability to massive MU-MIMO
architectures with hundreds or even thousands of antenna
elements, recent work [4], [7], [12] introduced decentralized
baseband processing (DBP). DBP partitions the antenna ar-
ray into smaller clusters, each associated with separate RF
circuitry and baseband processing fabrics. Each antenna cluster
only connects with the associated computing fabrics which
perform local baseband processing tasks, such as channel
estimation, data detection in the uplink, and precoding in
the downlink. While consensus-sharing based methods have
been proposed for these tasks [4], [13], [14], the iterative
exchange of information among clusters suffers from data
transfer latency which negatively affects the design efficiency.
Recently, the references [15]-[17] and [9] proposed feedforward
DBP architectures for uplink detection and downlink precoding,
respectively. Such feedforward architectures avoid the repeated
exchange of information among clusters, which mitigates data
transfer latency issues [9]. Furthermore, the theoretical analysis
in [16] revealed that feedforward equalization architectures
with linear algorithms are able to achieve the same or similar
spectral efficiency as their centralized counterparts.

C. Contributions

While the literature describes a number of feedforward DBP
architectures and algorithms [7], [9], [16], a systematic trade-
off analysis under different system configurations and channel
conditions is missing. Such a trade-off analysis, however,
is critical to making design decisions for practical massive
MU-MIMO systems that rely on DBP. This paper focuses
on such trade-offs at different levels for feedforward DBP
architectures and algorithms which avoid iterative consensus
exchange. In Section II, we analyze the performance and data
transfer bandwidth trade-offs of two feedforward architectures
dependent on system configuration and channel conditions,
and we show that the channel coherence time is a critical
design factor for architecture-level trade-offs. In Section III,
we investigate the performance and complexity trade-offs of dif-
ferent feedforward equalization and precoding algorithms, and
we show that channel coherence time and channel reciprocity
are important design factors for algorithm-level trade-offs. In
Section IV, we study the performance and efficiency trade-offs
when reducing the arithmetic precision of data transfers and
numerical computations. In Section V, we conclude the paper
and summarize practical design guidelines.

II. ARCHITECTURE TRADE-OFFS

We now study the performance and data transfer bandwidth
trade-offs in the uplink and downlink for DBP feedforward
architectures dependent on the channel’s coherence time.

A. System Models and Architectures

We now detail the uplink and downlink channel models and
provide details on DBP feedforward architectures.

(a) Partially decentralized (PD)

(b) Fully decentralized (FD)

Fig. 2. Decentralized feedforward architectures for the massive MU-MIMO
uplink. (a) The partially-decentralized (PD) architecture separates preprocessing
and data detection. (b) The fully-decentralized (FD) architecture performs data
detection at each antenna cluster followed by centralized data fusion.

1) Uplink: The uplink consists of U single-antenna UEs
transmitting data to a BS with B antennas. The data of the U
UEs is contained in the transmit vector x" € OV, where O is
the constellation (e.g., 16-QAM). The BS receives the vector
y" € CB, which we model using the baseband input-output
relation y"' = HYx" + n", where H" € CB*V represents
the channel matrix, and n"' € C? is i.i.d. complex circularly-
symmetric Gaussian noise with variance Ny per entry.

The feedforward DBP architectures proposed in [15], [16]
partition the B BS-antennas into C' antenna clusters; Fig. 2
illustrates two DBP architectures. The ¢ cluster has B, anten-
nas where B = Zle B., and each cluster receives its own
y! € CB¢. The input-output relation at each cluster is then

yl=%"4n" c=1,2,...,C. (1)
Here, HY! € CB<*U is the local channel matrix, a sub-matrix of
HY, and n% € CP¢ represents the local noise vector at cluster
c. We focus on two distinct feedforward DBP architectures put
forward in [15]: the partially-decentralized (PD) architecture
and fully-decentralized (FD) architecture shown in Fig. 2(a)
and Fig. 2(b), respectively. Both architectures allow each BS
cluster to estimate the local matrix HY and perform local
preprocessing based on HY! and the local receive vector y¥ to
form the local Gram matrix GY = HngHg1 and matched filter
output yMRC = H‘C’lHyc. The PD architecture performs fusion
of GY and yMRC at the centralized processing unit to produce
the equalization output x*'. The FD architecture performs local
equalization and requires data fusion of the local equalization
outputs X% and noise variance "' to produce the equalization
output X%, See [15], [16] for the details.

2) Downlink System: In the downlink, the BS computes the
precoding vector x4 = P45, where x € CB, P4 ¢ CB*V
is the precoding matrix and s € OV is the transmit data
vector. At the UEs, the receive vector y¥ € CY is given by
y& = H%Y + n, where HY € CV*B and n? € CV are the
downlink channel matrix and noise vector, respectively.

Analogous to the uplink, reference [9] proposed feedforward
DPB architectures for the downlink, where each of the C
antenna clusters uses the local downlink channel matrix HY' =

T . e
HY", the transpose of HY!, assuming channel reciprocity, in
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Fig. 3. PD vs. FD architecture trade-off on uncoded BER and data transfer
size.

order to form the local beamforming vector xgl. See [9] for
the details. The input-output relation at each cluster is

y=HIx" 4 nd HIcCU*B c=1,2,...,C. Q)

B. PD Architecture vs. FD Architecture

We now compare the PD architecture and FD architecture
and explore the trade-offs for architecture selection. We first
focus on a case study of the linear MMSE data detector in
the uplink with the PD and FD architectures, to showcase
how architecture selection for a certain algorithm affects the
error rate performance, computational complexity, and data
transfer size under different antenna configurations and channel
conditions, such as channel coherence time. We later extend
our analysis to precoding in the downlink and discuss more
algorithm variations and their trade-offs in Section IIL

Linear uplink data detection can be formulated as the fol-
lowing optimization problem (we omit the superscript “):

3)

~ . 2 2
% = arg min ||y — Hx||; + pllx||; .
xeClV

Here, p = % is used for linear MMSE equalization where

E is the pef—UE transmit power. The corresponding closed
form solution for (centralized) MMSE detection is given by
%X = (H'H + pI)"'H"y. For PD-MMSE detection, we
first compute G, = HXYH, and yMR¢ = HXy at each
decentralized cluster. We then fuse the matrices G and yMRC
to form the global Gram matrix G = HYH = ¢ ;G and
MRC vector yMRC = Hy = ¢ yMRC at the centralized
processor. Finally, we calculate the matrix inversion to perform
equalization at the centralized processor, which yields the global
equalization output % and noise variance ¢2. For FD-MMSE
detection, we first compute G. and yMRC locally, the same
as for PD-MMSE. We then calculate a matrix inversion and
perform equalization locally to obtain the local estimate X,
and noise variance Jf. Finally, we fuse the local estimates
%. together with the local noise variances o2 at the central-
ized processor, which yields the global equalization output
% =X A%, where )\, = 5(2521%/)—1; see [15], [16]
for the details. ’ ‘

From the above explanations, we see that the timing com-
plexity, which we measure as the number of real-valued multi-

plications, is approximately the same' for both architectures.
The key factor that can lead to different efficiency of PD
and FD architectures lies at the data transfer size at the data
fusion stage. For the PD architecture, data fusion requires the
transfer of both local G, a U x U complex-value Hermitian
matrix consisting of U? unique real values and local yMRC, a
U-dimensional complex-valued vector that contains 2U real
values, which leads to a total of C' x (U? + 2U) real values
for each data symbol. If we consider a typical scenario for
which the estimated channel in the uplink is static across Ncgp
contiguous symbols, then the local Gram matrix G., which
depends only on the local channel matrix H,, can be transferred
only once for every Non symbols, while the transfer of yMRC is
required for every symbol. Therefore, the average data transfer
size mpp for each symbol at the fusion stage of PD architecture
is as follows:
m 7CX(U2+2N00},U)
i N, coh '
In contrast, for the FD architecture, data fusion requires the
transfer of the local x., a U-entry complex-valued vector, and
oc, a U-entry real-valued vector, which leads to a total of 3U
real values that must be transferred for every symbol regardless
of the channel coherence time. Therefore, the average data
transfer size mpp for each symbol in FD architecture is

C x 3NCOhU
Ncoh

When extended to a multi-subcarrier transmission, e.g., using
orthogonal frequency-division multiplexing (OFDM), the quan-
tities mpp and mpp represent the average data transfer size
per symbol on each subcarrier. From (4) and (5), we see that
the channel coherence time determines whether the PD or FD
architecture requires more or less data to be transferred.

“4)

= 3CU. (5)

Mmgp =

C. Trade-off Analysis

While the data transfer size and efficiency of the PD and
FD architectures depend on system parameters and channel
conditions, the PD architecture always outperforms the FD
architecture in terms of error-rate performance, as it is able to
achieve the same performance as centralized data detection [15],
[16]. Figure 3(a) compares the uncoded bit error-rate (BER)
of PD-MMSE and FD-MMSE data detection for a single-
carrier system with a cluster size of B, = 32, C' = 4 clusters,
and U = 16 UEs with 16-QAM. We simulate the BER
performance with a simple i.i.d. Rayleigh fading channel, and
a more realistic urban micro-campus non-line-of-sight (NLOS)
Quadriga channel [18], where we place the UEs randomly in
a 120° sector at a distance of 50 to 100 from the BS, which
is using a uniform linear array.

We see that PD-MMSE clearly outperforms FD-MMSE
under both channel environments in terms of uncoded BER. To
showcase the trade-off of PD and FD on BER vs. data transfer

'Here, the timing complexity indicates that decentralized computations
performed in parallel at each cluster should be counted only once to reflect
the computation latency on real hardware.



size, in Fig. 3(b), we also compare the average per-symbol
data transfer size mpp and mgp for PD and FD architectures,
respectively, under the same antenna configuration but for
different channel coherence times characterized by Neon. We
find that at small coherence times Ncop, if Neon < U, then
mpp < mpp, which implies that one should select the FD
rather than the PD architecture if the data fusion efficiency
has higher priority than BER performance. If No, > U, then
mpp < Mgp, then the PD architecture is always preferred for
both better data fusion efficiency and BER performance.

Similarly to the uplink, we can use the PD and FD archi-
tectures to realize decentralized precoding in the downlink,
e.g., using linear Wiener filter (WF) precoding [9]. For PD-
WF precoding, the total data transfer size, which consists
of both fusion of local Gram matrices G, and broadcasting
of centralized whitened vector (scaled with U), is always
larger than that of FD-WF precoding, which only requires
the broadcasting of the transmit vector s (scaled with U)
and a scalar power allocation value. We can calculate similar
average per-symbol data transfer sizes for downlink precoding
by mpp = %2?”“[]) and mpp = %ﬁ“’hw Clearly,
the FD architecture is more efficient on data transfer since
mep < mpp holds in typical scenarios. Only if Ny > U 2,
i.e., for nearly static channels, we have mgp =~ mpp. However,
for the BER performance, PD-WF is never worse than that
of FD-WEF. Therefore, selecting the PD or FD architecture for
the downlink is solely determined by the system designer’s
preference, i.e., whether BER or data transfer is the critical
factor.

III. ALGORITHM TRADE-OFFS

We now investigate the selection of data detection or precod-
ing algorithms, given that either the PD or FD architecture has
been already chosen. We first discuss the trade-offs for various
decentralized algorithms, where we focus on explicit and
implicit matrix-inversion-based uplink equalization methods
with the PD architecture. A similar trade-off analysis applies
for the FD architecture and downlink systems. We also explore
situations in which we are able to store and reuse computa-
tion results from the uplink in order to facilitate downlink
precoding, which enables additional complexity reduction in a
time-division duplex (TDD) system.

A. Explicit vs. Implicit Algorithms

As discussed in Section II, a closed form solution for (central-
ized) MMSE data detection is given by X = (G + pI)~1yMRC
and requires (i) Gram matrix computation and (ii) matrix
inversion of the regularized Gram matrix, both of which are
computationally intensive but only depend on the channel ma-
trix H. For the PD or FD architectures, the timing complexity
of Gram matrix computation at each cluster is reduced because
of smaller matrix size (B, x U), while the dimension of the
complete Gram matrix is still the same (i.e., U x U). This
implies that the matrix inversion timing complexity is the
same as that of the centralized MMSE equalizer. To reduce
complexity, we can (i) take advantage of channel coherence,

which allows us to reuse intermediate computation results
across Nqon symbols, and (ii) avoid an explicit computation of
the matrix inversion.

Consider PD-MMSE as an example. At each cluster, if we
compute G, only once and reuse it across N, receive symbols,
then the average timing complexity (number of real-valued
multiplications) per receive symbol for computing G, + pI
can be as low as 2B,U? /Neon. However, the computation of
yMRC — Hy . relies not only on channel H,. but also on the
receive symbol y., which leads to 4B.U timing complexity
per receive symbol. Then for explicit Cholesky-based matrix
inversion of a U x U matrix, which only depends on H, we
can still compute the matrix inversion only once and reuse
it across N receive symbols, and therefore the average
complexity per receive symbol is (%U 3 %U )/Neon [19].
Finally, to compute the equalization output X, the matrix-vector
multiplication requires an additional 4U2 operations per receive
symbol. Therefore, the timing complexity n.x of all above steps
to obtain X averaged on each symbol for the explicit matrix
inversion based PD-MMSE is

Nex = (2BU? + BU3 — 2U) /Neon + 4B.U +4U%. (6)

The literature describes a number of implicit methods that can
be used for directly computing x while avoiding an explicit
matrix inversion, such as the decentralized conjugate gradient
method [13] or decentralized coordinate descent method [20].
Such iterative methods typically obtain an approximate result?,
which entails a small BER loss. Furthermore, such implicit
methods are unable to exploit the benefits of channel coherence
since all iterative updates need to be computed for every
symbol. We therefore propose to integrate implicit Cholesky-
based MMSE detection [19] with the PD architecture, which
is not only able to compute the exact linear MMSE equalizer
but also realize low complexity compared to other iterative
methods, especially for large N.,;, when the intermediate
Cholesky decomposition results can be reused. The implicit
PD-MMSE algorithm computes the local Gram matrix G.
and MRC vector yMR€ and fuses them to obtain the global
Gram matrix G and MRC vector yMRC similarly to explicit PD-
MMSE. After fusion, the implicit PD-MMSE method factorizes
the regularized Gram matrix A = G + pI by Cholesky de-
composition A = LL¥, where L represents a lower triangular
matrix. One can then solve Lz = yMRC and finally L% = z,
by forward and backward substitution, respectively, in order
to obtain x. While the forward and backward substitutions
have to be carried out for every symbol with a total of 4U?
operations (including real-valued multiplications and divisions),
the Cholesky decomposition, which dominates the complexity
at %UB — %U, can be computed only once every N, symbols.
Therefore, the resulting timing complexity n;,, per symbol for
the implicit Cholesky based PD-MMSE approach is

Nim = (2BCU2 + %Ug - %U)/Ncoh + 4BCU + 4U2 (7)

2While the conjugate gradient method can obtain the exact MMSE solution
after U iterations, we typically perform a smaller number of iterations (less
than U) to reduce complexity.
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Fig. 4. Complexity of explicit vs. implicit PD-MMSE at different Nop.

In OFDM systems, the quantities n.x and nj, represent the
detection complexity on each subcarrier.

By comparing (6) and (7), we see that the U3 term in ne,
and n;, dominates the complexity and nj, < nex since Niy
has smaller constant associated with this term; this indicates
that the implicit method can reduce complexity at no loss
in terms of BER compared to the explicit method. Figure 4
shows an example for a system with B, = 32, U = 16, and
C = 4 where we compare the timing complexity of explicit PD-
MMSE and implicit PD-MMSE depending on the coherence
time. We observe that the implicit method always achieves
lower complexity, whereas the complexity is similar to that of
the explicit method for large values of Np.

We conclude by noting that we can similarly leverage both
channel coherence and implicit inversion to reduce the com-
plexity for FD-based uplink data detection. However, for the
downlink, implicit inversion is not particularly helpful for the
PD-WF or FD-WF precoding algorithms, which require the
computation of an optimal scaling factor that depends on the
explicit matrix inversion result of a regularized Gram matrix [9].

As an alternative, one can resort to ZF-based algorithms
(e.g., PD-ZF and FD-ZF), which enable implicit methods for
both uplink detection and downlink precoding. Here, for ZF
precoding, we can simply scale the normalized ZF precoding

X_ without the need of explicit matrix inversion to

vector E1N
. 2 . . .
satisfy the same transmit power constraint as WF precoding.

B. Reusing Uplink Results for Downlink

Due to channel reciprocity in TDD systems, we have HY! =
(H")T, and therefore GY = HY(H")H = (H")T(HY)* =
(HHHTHY)* = (GY)* = (G"™)T, where (-)* indicates entry-
wise complex conjugate operation and G" is an Hermitian
matrix. This indicates that the Gram matrix computed in
the uplink, can also be reused in the downlink by a simple
transpose. We can also take advantage of channel reciprocity
under decentralized architectures. For example, in FD-MMSE,
the local Gram matrix G is computed. If we perform FD-WF
precoding in the downlink, and each cluster estimates the local
precoding vector X, = é(H‘C“)H(Gﬂl + k1)~ ts, where ﬁi is
the scaling factor to satisfy the transmit power constraint and
k. regularizes G as detailed in [9], then we can store the
uplink matrix G and reuse it as G¥ = (G")T for FD-WF

precoding, even across N symbols. This approach yields
an additional 2B.U? /N, complexity reduction per symbol
for a system that integrates FD-MMSE detection and FD-WF
precoding by re-using intermediate results compared to the
total complexity of computing them individually. A similar
approach can be used for PD-MMSE detection and PD-WF
precoding: in PD-MMSE detection, we aggregate local G!! and
compute the global G"! at the centralized node, and transpose
it for PD-WF precoding.

If we consider ZF detection and precoding, where the Gram
regularization coefficients p = 0 and x = 0, respectively, we
can even store the matrix inversion result (G*")~! computed
in ZF detection and reuse it for ZF precoding which requires
(Gdl)—l — ((Gul)T)—l — ((Gul)—l)T. When (Gul)—l is com-
puted explicitly, we can also use it to compute the scaling factor
B for ZF precoding in a similar way like WF precoding [9].
When it is computed implicitly, we should store and reuse
the Cholesky decomposition result GY = LL¥ rather than
the matrix inversion result for implicit ZF precoding which
relies on G = (LL#)T = L*(L*)¥, and finally scale the
normalized ZF precoding vector ﬁ to reach the power
constraint. Similarly, under decentralized scenarios (PD or FD
architecture), for example, with an integrated pipeline of PD-ZF
detection and PD-ZF precoding, we can reuse such explicit or
implicit inversion results to realize further complexity reduction
compared to the integrated pipeline of PD-MMSE detection and
PD-WF precoding, at the cost of BER performance degradation.

As an example, Fig. 5(a) and 5(b) compare the uncoded BER
performance of PD-MMSE vs. PD-ZF for uplink detection,
and PD-WF vs. PD-ZF for downlink precoding, respectively,
in a single-carrier system. We see that PD-ZF methods entail
BER performance loss compared to PD-MMSE and PD-WF,
expecially under realistic Quadriga freespace channel [18].
Fig. 5(c) compares the timing complexity of different pipelines
of uplink detection and downlink precoding at different N ,p,.
Using the total complexity of individually computed explicit
PD-MMSE detection and PD-WF precoding as the baseline,
we show that the integration of PD-MMSE and PD-WF by
reusing G effectively reduces complexity, and the integration
of PD-ZF detection and PD-ZF precoding achieves further
complexity reduction as expected, especially when incorporated
with implicit methods. When N, increases, the difference
among those complexity curves decreases, indicating that the
channel coherence plays a more important role on complexity
reduction than channel reciprocity at a large N.on, while at a
small N, exploiting channel reciprocity is more critical.

I'V. DATA PRECISION TRADE-OFFS

Data precision is another factor in the design space. Given a
decentralized architecture and algorithm, reducing the data pre-
cision can improve efficiency on modern computing fabrics due
to fewer compiled machine instructions and memory transac-
tions, and smaller inter-cluster data transfer sizes. For example,
when using 8-bit floating point (fp8), we can pack four fp8
values into a fp32 value and execute a vectorized computation
instruction (such as vectorized addition, multiplication, etc) in a
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single-instruction-multiple-data (SIMD) manner to process four
fp8 values in parallel within the single instruction, contributing
to 4x smaller number of instructions and memory transactions
on the processor, and also reducing the inter-cluster bandwidth
requirement by 4x compared to corresponding fp32 design.
However, low precision sacrifices numerical accuracy and
thus reduces the BER performance of corresponding detection
or precoding algorithms. Fig. 6 compares the uncoded BER
performance at fp32 vs. fp8 precision for PD-MMSE and FD-
MMSE detectors under a realistic NLOS Quadriga channel [18]
with system configurations of C' =4, U = 16, B, = 32 and
16-QAM modulation. Here, an fp8 value contains 1 sign bit, 2
mantissa bits and 5 exponent bits while an fp32 value contains
1 sign bit, 23 mantissa bits and 8 exponent bits. We see in
Fig. 6 that fp8 precision only entails a small BER performance
loss compared to fp32 precision. In practice, the selection of
data precision depends on the trade-off of BER performance vs.
efficiency given certain system and environment configurations.

V. CONCLUSIONS

We have discussed the design trade-offs across architec-
ture, algorithm, and data precision levels for decentralized

baseband processing (DBP) in massive MU-MIMO systems,
and proposed a practical design flow that jointly considers
critical metrics for DBP including computational complexity,
data transfer sizes, and error-rate performance. As summarized
in Fig.7, given certain system configurations and channel
conditions, one should first select the PD or FD architecture
by trading off BER vs. data transfer size, and then decide on
the detection and precoding algorithms with the selected archi-
tecture according to the BER vs. complexity trade-off. Finally,
one can the lower numerical precision if higher efficiency is
more important than BER performance. To realize minimal
computational complexity and data transfer size at no or little
loss of BER, we have provided insights on taking advantage of
both channel reciprocity and channel coherence properties by
reusing intermediate results. In the future, we expect to build
reconfigurable massive MU-MIMO software-defined radios
based on programmable computing fabrics, such as GPUs or
FPGAs, in order to dynamically adapt to time-varying system
parameters and realize effective trade-offs.
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