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Abstract. This work is devoted to a review of our recent studies in the modeling and
computation of nano optical devices. Motivated by technological advances at nano
scale, to quantitatively understand the mechanism and improve the designing, we
make an effort to model nano optical systems involving multiple physical processes
across different time and space scales, and develop multiscale and adaptive numerical
methods for simulation. Challenges on rigorous analysis of the models and algorithms
are also discussed.
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1 Introduction

Recent advances in nano optical technology have been made in a variety of fields such as
molecular imaging, optical-mechanical systems, negative-index metamaterials, etc. The
study of efficient and accurate numerical methods for multiphysical models of nano scale
optical devices has become more important than ever [1]. When size of optical structures
reaches sub-micro scale, the energy level for the electron excitation becomes comparable
to the wavelength of the incident light. In this case, to faithfully capture light-matter in-
teractions, it is imperative to consider microscopic fields generated by electronic charges
in motion. As a complete characterization of the microscopic interaction of light and
charged particles, the Quantum Electrodynamics Theory (QED) [2] has been widely used
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with much success in atomic modeling of optical phenomena. However, the fact that
QED requires extremely intense computation prohibits it from many applications at meso
and nano scales. To avoid the complexity of QED while keeping essential physics, semi-
classical models have been recently developed in the form of a nonlocal response the-
ory [3–5], in which the evolution of electromagnetic (EM) field is described continuously
using classical Maxwell’s equations, and the motion of electrons is treated quantum me-
chanically by the Schrödinger equation. Compared with QED, the semiclassical model
only takes into account averaged quantities, such as certain amplitude and phase, instead
of detailed properties, of the statistical ensemble of photons in each mode.

Although the semiclassical approach reduces the computational cost that would oth-
erwise be tremendous in QED, a time dependent many body Schrödinger equation is
still involved, for which numerical solutions are prohibitively expensive in many prac-
tical situations. A recent effort by the authors [6–12] is to adopt the Time Dependent
Current Density Functional Theory (TD-CDFT) [14] to further simplify the semiclassical
model and its computation. In the Density Functional Theory (DFT), a one-to-one corre-
spondence (up to an arbitrary constant) between the external potential and the ground
state electron density has been proved in the seminal work of Hohenberg and Kohn [15].
Hence, the wavefunction can be obtained as a functional of the electron density, which
allows evaluation of all observables of the system. Similar results have been extended to
the case of time evolutionary electronic structures in the form of Time Dependent Density
Functional Theory (TD-DFT) by Runge and Gross [16]; and later to the situation of exter-
nal electric and magnetic fields with arbitrary time dependence by Ghosh and Dhara [14]
in the form of TD-CDFT, where the current density is introduced as the fundamental vari-
able. A synthetic noninteracting many body system under an effective external potential,
referred as the Kohn-Sham (KS) system [17], is designed to calculate electron and current
densities, which greatly simplifies the computation by reducing dimension of the prob-
lem. In the KS system, many body effects are included via so called exchange-correlation
(xc) potentials.

The incorporation of TD-CDFT into the framework of the semiclassical optical re-
sponse theory leads to a system formulated as coupled Maxwell-Kohn-Sham (MKS) equa-
tions (also see [18–20] for similar systems). Challenges still remain in numerically solv-
ing the MKS system when applied to nano optical applications of interest. First of all,
the MKS system has a multiscale nature due to space and time scale separations between
electrodynamics and electronic motions, for the fact that the EM field spreads the whole
medium domain while electrons are confined in nano scale structures. It is recently ob-
served that at nano scale, the speed of photon excited electrons is about 375 times slower
than the speed of light [21]. Direct and uniform space and time discretizations of the MKS
system will result in very large and ill-conditioned equations. The situation becomes
more subtle when it comes to non-adiabatic coupling of different physical processes, e.g.,
light driven molecular motions and transitions under strong external fields, where the
dynamics can be highly nonlinear and a large number of degrees of freedom is needed to
resolve details across all scales.
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In this paper, we discuss recent progress and ongoing efforts on the multiscale and
adaptive methods for multiphysical models of nano optical structures, as well as theo-
retical issues raised by modeling and simulation. There are two major progress. Firstly,
in the regime of linear responses, we derived a system of linear equations for simul-
taneously determining the EM fields, and the current and electron densities, for nano
optical structures. The zero eigenvalue problem of the linear system corresponds to the
resonant frequencies and self-sustaining modes of the nano optical response. To deal
with disparate space scales of the system, a multiscale scheme is proposed [6, 7] to solve
the system self-consistently by allowing communications between the macro solver for
Maxwell’s equations and the micro solver for the Kohn-Sham equations. More recently,
we apply the method to study light driven nano devices by further incorporating Ehren-
fest molecular dynamics [8]. Secondly, aiming at nonlinear problems involving strong
attosecond (10−18s) laser pulses and metallic nano particles, we have developed several
adaptive techniques for the time dependent Density Functional Theory [9–12], based on a
posteriori error estimates of Finite Element Methods for the time dependent Kohn-Sham
equation, and more recently a novel spectral method [13] in the semiclassical regime us-
ing a Fourier integral operator commonly known as the Frozen Gaussian approximation
(FGA) ansatz.

The paper is organized as follows. In Section 2, we will first introduce nano optical
systems that motivate the research. Details on the multiscale computation of linear nano
optical responses and numerical methods for nonlinear TD-DFT are presented in Sec-
tion 3 and Section 4, respectively. Finally, we discuss ongoing efforts on applications of
the numerical schemes to novel nano optical structures, as well as challenges for further
analysis of the models and algorithms.

2 Motivating examples of nano optical systems

In this section, we present some recent advances in optical nano technology. A quantita-
tive investigation will provide the badly needed guidance for optimal designs and novel
applications.

2.1 Photon driven nano devices

Optically manipulated nano devices have attracted a lot of recent interest with applica-
tions in solar energy harvesting, molecular sensing and non-invasive regulation of intra-
cellular reactions [22, 23]. Fig. 1 shows two such examples: (a) a photoresponsive DNA
nanomotor enhanced by silver nanowires, and (b) a laser driven micromotor in a fluid
environment. Illuminated by UV and visible lights, the DNA nanomotors (a) can switch
back and forth between ’open’ and ’loop’ states, thereby converting photon energy to
mechanical energy [24]. The mechanism is facilitated by incorporating azobenzene moi-
eties that can change the conformational structure through the cis-trans isomerisation.
The efficiency of the conversion can be significantly enhanced by a plasmonic near-field
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(a) Photoresponsive DNA nanomotors [24]
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(b) Photon driven micromotors [26]

Figure 1: Photon driven nano and micro devices.

coupling with silver nanoparticles, due to the spectral overlap between the azobenzene
absorption band and plasmonic resonances of silver nanowires. Recent applications in-
clude photon manipulated drug release from nanocontainers, building nanostructures
using photonic energy, a photocontrolled molecular beacon for mRNA detection in liv-
ing cells [25], etc. The micromotors (b) are birefringent vaterite particles with positions
being controlled by a linearly polarized laser beam. Meanwhile, a circularly polarized
laser with an angular momentum can cause the trapped beads to spin, and generate a lo-
calized microfluidic flow. Also shown in the figure is a growing nerve fibre from the gold-
fish retinal ganglion cell. The direction of axonal growth can be precisely manipulated
by changing rotational direction and position of the optically driven micromotor [26]. A
more recent example is the light propulsion of bulk graphene material [27], which has
great potential for applications in solar sail and space transportation. The modeling and
simulation of such systems will obviously require the coupling of light scattering and
transmission, electronic excitation, as well as molecular motion.
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2.2 Optical response to strong laser pulses

Recent development in laser technology has led to reliable production of attosecond
(10−18s) pulses, which enables ultrafast and highly nonlinear photon excitations and al-
lows real time molecular orbital imaging [28, 29]. In high order harmonic generations
(HHG), the spectrum of the response light can extend over many orders of magnitudes
at multiples of the driving frequency. What is of great practical interest is the optimal
control of the efficiency and spectral characteristics of the harmonic radiation by modify-
ing the incident pulse. Time Dependent Density Functional Theory (TD-DFT) has been
adopted as a major tool for investigating physics with intense laser pulses, especially for
HHG and multiphoton ionizations [30, 31]. Much of the effort has been focused on de-
veloping appropriate exchange-correlation functionals that reproduce experimental ob-
servations. Efficient numerical schemes that can capture the femtosecond dynamics will
be greatly useful to the understanding of the mechanism and interpretation of data.

2.3 Metal nano structures

Metal nano structures have attracted a great deal of interest for being able to significantly
enhance the local field due to light induced surface plasmons [32], and further affect op-
tical scattering of molecular structures, which has led to successful applications in photo-
voltaics, sensing, spectroscopy and metamaterials [33, 34]. Theoretical efforts on under-
standing nano plasmonic systems have been focused on the quantum effects as a result
of the reduced size, that can not be captured by macroscopic electrodynamics. DFT/TD-
DFT based approaches for modeling optical properties of metal nano structures have the
advantage of numerically and (relatively) theoretically tractable, especially in the regime
of linear responses [35]. The difficulty lies in the nonlinear effects, which will require
not only time domain simulations for interactions between a large number of ions and
electrons, but also model simplification and validation for nano scale systems [36].

3 Multiscale computation of light driven molecular dynamics

In this section, we present results for the Maxwell-Ehrenfest-Kohn-Sham system that cou-
ples the evolution of the electromagnetic fields, the molecular motion and the electronic
excitation for the study of light driven nano devices. Details of the derivation and more
numerical results can be found in [6–8].

3.1 Semiclassical theory

In the semiclassical theory [3] of nano optics, the evolution of the EM fields is determined
by Maxwell’s equations in terms of the vector and scalar potentials {A,φ} under the
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Coulomb gauge ∇·A=0 such that

1

c2
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∂(∇φ(r,t))

∂t
=

4π
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−∇2φ(r,t)=4πρ(r,t),

(3.1)

where c is the speed of light in vacuum, and j and ρ are the current and charge densi-
ties. Meanwhile, quantum mechanically, the motion of a system of N charged particles is
governed by the time dependent Schrödinger equation [2]:

ιh̄
∂Ψ(r1,··· ,rN ,t)

∂t
=HΨ(r1,··· ,rN ,t), (3.2)

where ι=
√
−1, h̄ is the reduced Planck constant, and the general nonrelativistic Hamil-

tonian takes the form

H
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with el , ml, rl and pl being the charge, mass, coordinate and conjugate momentum of
the lth particle, respectively. Note that we are not separating the positive and negative
charges right now. The initial state Ψ0 before the incident light is applied is assumed to be
the ground state. The current and charge densities {j,ρ} can be computed as expectations
with respect to the solution of the Schrödinger equation:

j(r,t)= 〈Ψ|ĵ|Ψ〉, ρ(r,t)= 〈Ψ|ρ̂|Ψ〉, (3.4)

with the current and charge density operators {ĵ,ρ̂} given by

ĵ=
N

∑
l=1

el

2ml

[

plI(r−rl)+I(r−rl)pl

]

−
N

∑
l=1

e2
l

mlc
A(rl,t),

ρ̂=
N

∑
l=1

elI(r−rl),

(3.5)

where I(·) is the Dirac delta function. In the semiclassical model, the light-matter interac-
tion is completely described by (A,φ) and Ψ as a coupled system of Maxwell’s equations
(3.1) and Schrödinger equation (3.2), through the current and charge densities by (3.4).
Therefore the system must be solved self-consistently.

3.2 Ehrenfest molecular dynamics

To incorporate the molecular motion, we adopt the Ehrenfest molecular dynamics. We
first separate the electronic and nuclear degrees of freedom by denoting the positions of
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the electrons and nuclei with~r=(r1,··· ,rNe) and
−→
R =(R1,··· ,RNn), where Ne and Nn are

the total number of electrons and nuclei. The electronic and nuclear wavefunctions are
given by ψ and Φ, respectively. We denote by (e,m,rl,pl) the charge, mass, coordinate,
and conjugate momentum of lth electron, while (Zk,Mk,Rk,Pk) represent the correspond-
ing variables for the kth nucleus. The Coulomb interactions can be partitioned into

Wee(~r)=
1

2
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∑
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, Wnn(

−→
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.

(3.6)

We assume the following single determinant ansatz for the solution of (3.2):
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R ,t)=ψ(~r,t)Φ(
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R ,t)exp

(
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)

, (3.7)

where 〈·〉z denotes expectation with respect to z variable and

He =
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∑
l=1

1

2m

[

pl−
e

c
A(rl)

]2
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The motion of nuclei is further approximated with the mean field approximation by as-
suming that the nuclear wavefunction has the WKB ansatz [37]

Φ(
−→
R ,t)≈A(

−→
R ,t)eιS(

−→
R ,t)/h̄, as h̄→0, (3.9)

where A is the amplitude and S is the phase. It can be shown [8, 37] that under (3.7) and
(3.9), the motion of electrons is determined by the electronic Schrödinger equation

ιh̄
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=
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)

ψ(~r,t), (3.10)

and the motion of nuclei is determined by Hamiltonian dynamics
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dt2
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−Zk

c
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for k=1,··· ,Nn, and
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∑
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. (3.12)

The coupled equation (3.10) and (3.11) is referred as Ehrenfest dynamics of electrons and
nuclei.
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3.3 Time dependent current density functional theory (TD-CDFT)

For computing the electronic charge and current densities, denoted as {ρe,je}, instead of
solving the many body Schrödinger equation (3.10), TD-CDFT is adopted. The advantage
of TD-CDFT is the greatly reduced computational cost by restricting to the charge and
current densities that are functions of only three dimensional (3D) spatial variables. For
a system satisfying the time dependent Schrödinger equation (3.10), a system of time
dependent Kohn-Sham (TDKS) equations can also be constructed in TD-CDFT [14] in the
following form:

ιh̄
∂ψl(r,t)

∂t
=HKSψl(r,t), for l=1,··· ,Ne, (3.13)

with the Hamiltonian

HKS(r,p,t)=
1

2m

[

p− e

c
AKS(r,t)

]2
+vKS(r,t). (3.14)

The scalar time dependent KS potential is given by

vKS(r,t)=v(r,t)+vH(r,t)+vxc(r,t), (3.15)

where v is the external potential due to nuclear attraction, and vH is the Hartree potential
given as

vH(r,t)= e
∫

ρe(r′,t)
|r−r′| dr′. (3.16)

The exchange-correlation (xc) potential vxc contains the many body effects as a functional
of ρe. The vector KS potential has the form:

AKS(r,t)=A(r,t)+Axc(r,t), (3.17)

with A being the vector potential of the EM field, and Axc being the vector xc-potential
that is a functional of the current density je. Once the KS system (3.13) is solved, we can
compute the electronic charge density ρe by

ρe(r)=
Ne

∑
l=1

e fl |ψl(r)|2, (3.18)

where fl is the occupation number of orbital ψl , and the electronic current density is given
by

je(r,t)=− ιh̄e

2m

Ne

∑
l=1

fl

[

ψ∗
l (r,t)∇ψl(r,t)−ψl(r,t)∇ψ∗

l (r,t)
]

− e

mc
ρe(r,t)AKS(r,t). (3.19)
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The initial condition can be obtained by solving the ground state Kohn-Sham (KS) system

H0ψl(r)=ǫlψl(r), for l=1,··· ,Ne, (3.20)

with

H0(r,p)=
1

2m
p2+vKS(r). (3.21)

In practice, both the scalar xc-potential vxc and the vector xc-potential Axc need to
be approximated. For vxc, the local density approximation (LDA) is chosen for for the
ground states, and the adiabatic local density approximation (ALDA) is used in time
dependent case, with parametrization of Vosko, Wilk, and Nusair (VWN) [38]. For the
vector xc-potential Axc, the Vignale-Kohn (VK) functional [39] is adopted.

3.4 The coupled Maxwell-Ehrenfest-Kohn-Sham (MEKS) system

The coupled system that is capable of describing the interactions between the induced
EM field, the molecular motion and the electronic excitation consists of Maxwell’s equa-
tions (3.1) for the EM field, the Ehrenfest dynamics for the nuclei (3.11), and time de-
pendent Kohn-Sham system for the electrons (3.13). We refer to this system as Maxwell-
Ehrenfest-Kohn-Sham (MEKS) equations which must be solved simultaneously. On the
right hand side of Maxwell’s equation (3.1), the current and charge densities are parti-
tioned into the electronic and nuclear contributions such as

j(r,t)= je(r,t)+jn(r,t), ρ(r,t)=ρe(r,t)+ρn(r,t).

The electronic current and charge densities can be obtained by the KS equation (3.13),
and the current and charge densities due to nuclear motion, denoted as (jn,ρn), are given
as

ρn(R,t)=
Nn

∑
k=1

ZkI(R−Rk), jn(R,t)=
Nn

∑
k=1

ZkvkI(R−Rk), (3.22)

with vk =
dRk
dt . The so obtained MEKS system is multiphysical in nature, as a result of the

coupling of physical processes at different time and space scales. It also poses a numerical
challenge due to well separated scales, which will lead to a stiff system if one uses direct
discretization.

To investigate the resonance effects of light on the molecular structure, we consider
the linear response regime by treating the incident light as resonant perturbations driving
the system away from the local minimum of the molecular energy landscape. To this end,
we assume the nuclei are at equilibrium position before the incident light is switched on.
In particular, tackling the system within the linear response regime allows us to solve
the coupled system in the frequency (ω) domain. To identify the resonant condition for
the nano optical mechanical system, we reformulate the coupled system in a compact
form with the P -matrix notation and define the resonant frequencies as solutions of an
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eigenvalue problem. As in [40, 41], we adopt the following spectral expansion of the
unknowns for the linearized MEKS system:

δje(r,ω)=∑
ia

ω fi

ǫi−ǫa
ψi(r)jpψa(r)Pia(ω),

δρe(r,ω)=−∑
ia

fiψi(r)ψa(r)Pia(ω),
(3.23)

where i and a indicate occupied and unoccupied ground state KS orbitals respectively
(hereafter, we use i, j for occupied orbitals and a,b for unoccupied orbitals). Pia(ω) is
the spectral coefficient for each corresponding orbital. The paramagnetic current density
operator jp is defined as jp =−ι(∇−∇†)/2, with ∇† acting on the term to the left. We

can also write (δA,δφ,δRk,δρn,δjn) as linear expansions in terms of (ψi,ψa) and a linear
system for the coefficient matrix P (see [7, 8] for details) can be obtained based on the
linearized MEKS system such that

(

S(ω)−ω2I
)

P=F(ω), (3.24)

where S(ω) is a coefficient matrix and F(ω) depends on the incident light, both being
functions in terms of ω. The resonant frequency can be determined by the nonlinear
eigenvalue problem

det
(

S(ω)−ω2I
)

=0. (3.25)

The linearized Maxwell-Ehrenfest-Kohn-Sham system avoids the numerical challenge
from multiple time scales by solving the system in the frequency domain, but it still in-
herits the spacewise multiscale nature such that the EM fields extend on the macroscopic
domain, while the molecular and electronic structures vary in a microscopic region. A
direct discretization of the system with a uniform mesh will lead to a stiff matrix that is
numerically ill-conditioned. In [7], we introduced a multiscale scheme in which a macro
solver for the EM field is performed in a larger domain partitioned with coarse meshes,
while a micro solver for the electronic and molecular dynamics is conducted on a refined
mesh covering a smaller domain enclosing the optical device. The coupling of the macro
and micro solvers is achieved through self-consistent iterations. Linear interpolation is
used for the communication between numerical solutions of the micro and macro solvers.

3.5 Numerical example: Surface plasmon enhancement

Numerical experiments are conducted through the coupled metal nano particles and
molecular systems. As demonstrated in Fig. 2, we present here one example such that
trans-Azobenzene is situated between two Gold nano particles of radius 30 nm that are
2 nm apart. The Lorentz-Drude model for metal nano particles is used with parameters
adopted from [42]. The Maxwell’s equations are solved with hybrid nodal-edge element
methods with absorbing boundary conditions [43]. Fig. 2 shows intensity of the total
EM field with the incident light shed in the y direction and polarized in the x direction.
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(a) Gold nano particles + molecule system (b) Intensity of the EM field

Figure 2: Gold nano particles and trans-Azobenzene system. (a) trans-Azobenzene is situated between the two
Gold nano particles of radius 30 nm that are 2 nm apart. (b) The intensity of the total EM field projected on
the xz plane is demonstrated. The incident field with magnitude 1 and frequency ω=0.13 (a.u.) is shed in the
positive y direction with polarization along the positive x direction.

The computational domain for the Maxwell’s equations is centered at the molecule with
radius 100nm. The domain is discretized with 103317 tetrahedra and 17530 nodes. We
remark that in order to incorporate the multiple space scales, the mesh at the molecule
is refined while the mesh far away from the molecule is relatively coarsened. The com-
puted lowest eigenfrequency is approximately 0.143 (a.u.) (about 318 nm). Choosing the
tolerance of relative residual reduction for solving Maxwell equations to be O(10−8), the
CPUtime on a Dell 2.66G workstation is 2.08×104 seconds (2.41 days).

4 Numerical methods for time dependent density functional

theory

To study highly nonlinear dynamics of large scale electronic structures in the non-
perturbative regime, the time domain solver for the electromagnetic fields and the elec-
tron density is particularly important. Since we will focus on the situation of strong laser
pulses, the magnetic field is so small that it will be ignored. Therefore the vector potential,
as the conjugate variable of the magnetic field, will also be removed from the Hamilto-
nian, which reduces TD-CDFT to TD-DFT. In this section, we summarize our work on the
adaptive Finite Element Methods (FEM) [7, 9–12] and spectral methods based on Frozen
Gaussian Beams [13] for TD-DFT.

We first introduce some notations. Ω⊂R
3 denotes the computational domain, and

the set T = {Kj=1,2,···,Nt
} denotes a simplex partition of Ω in which Kj represents the jth

tetrahedral element in the mesh, where Nt denotes the total number of the tetrahedral



12 G. Bao et al. / CSIAM Trans. Appl. Math., 1 (2020), pp. 1-23

elements in the mesh. We assume that the mesh T covers the whole computational do-
main Ω, and that the intersection between two tetrahedronal elements is either empty or
a common vertex or edge. On T , a linear finite element space, Vh=

{

v|v∈C(Ω̄), and v|K∈
P1, ∀K∈T

}

, is constructed for the space discretization of the Kohn-Sham equations, and
will be used for both the ground state calculation and the time dependent simulation.

4.1 Adaptive methods for ground state Kohn-Sham equation

With the above notations, the discrete system of the Kohn-Sham equation (3.20) can be
written as: to find (ǫh

j ,ψh
j )∈R×Vh such that ∀φ∈Vh,

h̄2

2m

(

∇ψh
j (r),∇φ(r)

)

+
(

vKS(r)ψ
h
j (r), φ(r)

)

=ǫh
j

(

ψh(r), φ(r)
)

, (4.1)

subject to

||ψh
j (r)||2 =1, ψh

j (r)=0 on ∂Ω, (4.2)

for j= 1,2,··· ,Ne, where the Kohn-Sham effective potential vKS(r) has the same form as
(3.21). LDA for the exchange-correlation functional is used for all simulations.

The main numerical issues on solving the above system include nonlinearity of the
equation, nonlocality of the Hartree potential vH , and the associated generalized eigen-
value problems. To deal with the nonlinearity, the popular Self-Consistent Field (SCF)
iteration method is employed to linearize the system at each iteration. In the kth iteration,

the Hamiltonian H0 is evaluated by using the current electron density ρ
(k)
e . Then the next

wavefunctions, ψ
(k+1)
j=1,2,···,Ne

, are obtained by solving the derived linear eigenvalue system.

To conduct efficient simulation for the nonuniform meshes and domains with complex
geometry, instead of using the popular Fast Fourier Transform (FFT), we obtain vH by
solving the following Poisson equation equivalent to the original integral:

−∇2vH(r)=4πeρe(r), (4.3)

subject to vH(r)=0, ||r||→∞. For accurate approximations of the above unbounded prob-
lem in Ω, the boundary value of the Hartree potential is given by a multipole expansion.
And an algebraic multigrid method delivers a linearly scaled solver for the well defined
Poisson system. A generalized eigenvalue problem Aψ=ǫBψ needs to be solved in each
SCF iteration, and the quality of the eigensolver becomes crucial since it could affect the
overall efficiency of the scheme. We employ the Locally Optimal Blocked Preconditioned
Conjugate Gradient (LOBPCG) method together with the Gram-Schmidt orthogonaliza-
tion to handle the eigenvalue problem, which has been proved to be effective in our
study, even though the convergence of SCF can not be guaranteed for general cases. It
is noted that the computational complexity of the Gram-Schmidt process is asymptoti-
cally quadratic with respect to Ne, which continuously motivates lots of work towards
the (sub)linear scaling methods for large scale systems [44].
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Figure 3: Left: Uniform refinement of a tetrahedron. Right: Octree tree for recording the mesh refinement.

Different from developing efficient numerical solvers for linear system obtained from
uniform discretization, adaptive methods aim at generating efficient discretization for
continuous equations, towards efficient simulations. In other words, adaptive methods
try to use less mesh grids to build a discrete system whose solution is still sufficiently
accurate. We have studied both r-adaptive method which relocates the mesh grids based
on harmonic maps [10], and h-adaptive method which locally refines the mesh grids
handled by a tree data structure [9]. In the following, we would summarize only our
work on h-adaptive approach since our adaptive methods for TD-DFT is also based on
h-adaptivity.

Two modules in a quality h-adaptive algorithm need to be designed carefully: i). lo-
cal refinement and coarsening of the mesh grids, and ii). generation of the local error
indicator. To handle the first module well, the so called Hierarchy Geometry Tree (HGT)
originally proposed in [45] is employed in our algorithm. In three dimensional case, the
realization of HGT is based on the octree structure in which each internal node exactly
has eight children nodes. This coincides with the behavior of the uniform refinement of
a tetrahedron very well that exactly eight sub-tetrahedron elements would be generated
after the refinement, see Fig. 3 (left column). By the “refine when required” strategy,
only two sub-tetrahedron elements may need to be further refined, and the tree would
have the structure shown in Fig. 3 (right column), which corresponds to a nonuniform
distribution of the mesh grids. By introducing two special tetrahedron elements [9], the
potential issue on the hanging point can be handled well to preserve the finite element
method conforming. The features of HGT include 1). the new mesh generation corre-
sponds to the behavior of cutting tree and collecting all leaf nodes, which unifies the
local refinement and coarsening of the mesh grids, 2). with the knowledge of the conver-
gence rate of the numerical methods, the local error information can be assigned to every
node in the tree, which enable us to fully take advantage of the error information, and 3).
according to the tree structure, each pair of elements from two different meshes would
have a belonging-to relation, allowing the efficient interpolation of the solution between
two different meshes, which is very important in a dynamical simulation.
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Figure 4: Ground state of a benzene molecule obtained with all electron calculation, in the vicinity of the
molecule on the middle slice in the y-z plane.

Inspired by the work done by Verfürth in [46], the following residual type element-
wise error indicator in solving the Kohn-Sham equation with the finite element methods
is proposed [11, 12]:

η2
K j
=

Ne

∑
k

{

∑
e

he||Je(ψ
h
k )||22,e+h2

K j
||RK j

(ψh
k )||22,K j

}

, (4.4)

where Je(ψh
k )=

1
2

(

∇ψh
k |Kl

·~ne,lj+∇ψh
k |K j

·~ne,jl

)

denotes the jump of the flux across the com-
mon face e of Kj and its neighbor Kl . ~ne,jl and ~ne,lj stand for the unit outward normals
on the face e of Kj and Kl , respectively. he is the diameters of the face e, while hK j

is the

diameter of the element Kj. The second term RK j
(ψh) denotes the element residual of

the equation, and has the following form on Kj:

RK j
(ψh

k )=ǫkψh
k +

h̄2

2m
∇2ψh

k −VKSψh
k .

The translational and rotational variance of the total energy are common issues which
affect the reliability of the simulations with real space methods such as Finite Difference
Methods and Finite Element Methods. As illustrated in [12], the adaptive meshes can
also help to alleviate this problem. To demonstrate the effectiveness of the proposed
adaptive method, results on the all-electron calculation of the ground state of a ben-
zene molecule are shown in Fig. 4. It is noted that the domain for this simulation is
[−100 (a.u.),100 (a.u.)]3, and there are around 280,000 mesh grids in the domain. It can
be observed easily from the figure that with the help of the error indicator (4.4), our adap-
tive method delivered a quality nonuniform mesh (Fig. 4, left) on which a quality electron
density is also generated (same Fig. 4, right).
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4.2 Adaptive simulations for time-dependent Kohn-Sham equation

The time-dependent Kohn-Sham (TDKS) density functional theory can be written as

ιh̄
∂ψj(r,t)

∂t
=HKS(r,t)ψj(r,t)

=

(

− h̄2

2m
∇2+vKS(r,t)+vp

)

ψj(r,t), (4.5)

for j=1,2,··· ,Ne, where vKS(r,t) is given in (3.15), and vp denotes an external electric field.
The difference between TD-DFT and TD-CDFT is that the magnetic field is not included
in TD-DFT, therefore the vector potential as a conjugate variable of the magnetic field
also does not exist in the Hamiltonian. For instance, in the study of the HHG, the external
field is so strong that the magnetic field is ignored and vp = E0z f (t)sin(ωt) would be a
time-dependent electric field term, where (E0,ω,z) represent amplitude, frequency and
direction of the electric field and f (t) is an envelope function. When vp is strong enough,
the linear response TD-DFT would be no longer applicable. To solve (4.5) in the time
domain, the equation needs to be fully discretized in time and space.

To satisfy properties such as unitary and time reversal symmetry, we employ the
Crank-Nicolson scheme in [11] for time discretization such that

(

ιh̄I−∆t

2
HKS

)

ψn+1
j =

(

ιh̄ I+
∆t

2
HKS

)

ψn
j , (4.6)

for j=1,2,··· ,Ne, where I is the identity matrix, and ∆t denotes the size of the time step.
Here HKS is chosen as the average of the Hamiltonians at two adjacent time levels, i.e.,
(Hn+1

KS +Hn
KS)/2. To handle the nonlinearity of the problem, a predication-correction pro-

cedure is introduced, and the initial Hn+1
KS is obtained with a forward Euler scheme. FEM

is used for the spatial discretization of (4.5), and the adaptive module is introduced for
partial resolving the efficiency issue. In the adaptive module, the HGT again is employed
to handle the mesh refinement and coarsening. The difference compared with the adap-
tive module to the ground state Kohn-Sham equation is the local error indicator. In [11],
the following elementwise error indicator is adopted

η2
K j
=

Ne

∑
k

{

∑
e∈K j

he∆t

2
||Je(ψ

real,n
k +ψreal,n−1

k )||22,e+h2
K j

∆t||Rreal
K j

||22,K j

+ ∑
e∈K j

he∆t

2
||Je(ψ

img,n
k +ψ

img,n−1
k )||22,e+h2

K j
∆t||Rimg

K j
||22,K j

+∆t||∇(ψreal,n
k −ψreal,n−1

k )||22,K j
+∆t||∇(ψ

img,n
k −ψ

img,n−1
k )||22,K j

}

. (4.7)

In the above formula, ψreal and ψimg stand for the real and imaginary parts of the complex-
valued wavefunction ψ, i.e., ψ=ψreal+iψimg. In [11], by splitting the real and imaginary
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Figure 5: Photoabsorption spectra for Na2 (left) and Na4 (right) calculated with adaptive method. Please refer
to [11] for detail.

parts of the wavefunction, the derived system consists of two equations, one for ψreal and
one for ψimg. Rreal and Rimg in (4.7) are the residuals for both equations, respectively.

The mask function method is a popular way to prevent nonphysical reflections of
the wavefunction from the boundary when the Dirichlet boundary is simply used in the
simulation. However, the spectra shift can be observed from the results obtained by
the mask function method when the domain size is small. This is easy to understand
since absorbing layer defined by the mask function destroys the real dynamics of the
electrons in the system. Adaptive methods have the advantage of greatly reducing the
number of mesh grids needed to partition the large domain since the exponential decay
of the wavefunction away from the ionic position. Hence, the straightforward idea of
avoiding the nonphysical reflection of the wavefunction, i.e., using a sufficiently large
computational domain, becomes possible at least for the simulations in the perturbative
regime. For example, in [11] the photoabsorption spectra of Na2 and Na4 molecules are
calculated with the pseudopotential. The domain is [−100 (a.u.), 100 (a.u.)]3, and there
are only around 3,200 mesh grids in this large domain. Results calculated with adaptive
method shown in Fig. 5 coincides with the experimental ones [47] very well. It should
be pointed out that when the external electric field is strong enough, the mask function
becomes necessary since the oscillation of the wavefunction could be dramatic.

Besides the perturbative simulations such as the photoabsorption spectra calculation
above, our time domain adaptive method can also be used to calculate the nonlinear
phenomenon such as HHG. In [11], the dynamics of a lithium atom was studied un-
der an external electric field vp = E0z f (t)sin(ωt) with the parameters E0 = 0.01 (a.u.),

ω=0.03 (a.u.). The envelope function is chosen as f (t)= sin2(πt/T) with T=2π/(5ω).
In the result of dipole power spectra in Fig. 6 (top), those generated harmonic orders ap-
pear at the odd numbers, which agrees with theoretical result very well. Furthermore, a
plateau profile can be observed after the initial exponential decay of the intensity, which
also agrees with experiments. It is noted that the computational domain in this simula-
tion is [−150 (a.u.),150 (a.u.)]3, while the peak value of the number of the mesh grids
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t=400 t=594

Figure 6: High harmonic generation for a lithium atom. Top: dipole power spectrum; Bottom: meshes at
different time instant. Please refer to [11] for detail.

during the dynamic simulation is around 1.1×105. With the adaptive method, there is a
very significant reduction on the mesh grid in our simulation, compared with a similar
numerical experiment in [48]. Fig. 6 (bottom) shows the different meshes at different time
instants.

4.3 A spectral algorithm for the time-dependent Kohn-Sham equations

In [13], we develop a novel spectral method for solving the time-dependent Kohn-Sham
(TDKS) equations in the semiclassical regime, where the propagator is derived using
a Fourier integral operator commonly known as the Frozen Gaussian approximation
(FGA). In the case of laser potentials, we derived a simplified FGA to avoid the high
dimensional integration.
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The nonlinear TDKS equation is solved self-consistently using a predictor-corrector
algorithm through the following linear Schrödinger equation:

ih̄∂tφ=− h̄2

2m
∇2φ+V(r,t)φ, φ0(r)∈L2(R3), (4.8)

which we will be solving with the first order FGA ansatz:

φFGA(r,t)=
1

(2πh̄)9/2

∫

R9
A(t,q,p)GQ,P(r)eiS(t,q,p)/h̄Gq,p(r

′)φ0(r
′)dr′dqdp, (4.9)

where Gq,p(r) are Gaussian functions depending on phase space coordinates (q,p):

Gq,p(r)=exp

(

− 1

2h̄
|r−q|2+i

p

h̄
·(r−q)

)

.

Compared with the WKB method and the traditional Gaussian Beam method, FGA
avoids the breakdown of the solution where the corresponding Hamilton-Jacobi equa-
tion develops singularities [49] and the splitting of beams [50]. The Gaussian functions
in phase space are propagated using the Hamiltonian flow:

dQ

dt
=P,

dP

dt
=−∇QV(Q),

and the equations for the phase S and amplitude a are given by:

dS

dt
=

1

2
|P|2−V(Q),

da

dt
=

a

2
tr
(

(∂zP−i∂zQ∇2
QV)Z−1

)

,

with Z :=∂z (Q+iP) and ∂z :=∂q−i∂p.

For the case of laser potentials V(r,t) = α ·r f (t), the FGA can be further simplified,
thereby efficiently evaluated by Fast Fourier Transforms (FFT). The absorbing boundary
conditions for ionization also becomes trivial as Gaussian functions have standard devi-
ation O(

√
ǫ) and smoothly decay to zero.

We apply our FGA-based algorithm for a system of 57 valence 1 electron atoms sepa-
rated at a distance of 4 (a.u.) and arranged in a stable face centered cubic configuration.
The the full xc-potential is replaced by the pseudopotential of the form:

v0(r)=
57

∑
i=1

−1
√

1+|r−Ri|2
,
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Figure 7: Comparison of the FGA-based algorithm and the Crank-Nicolson finite difference scheme. Left: z=0
cross section of difference in densities. Right: Dipole moments

and the external potential is chosen to be

vext(dr,t)= x.

Our reference solution is computed using the Crank-Nicolson scheme with a large spatial
domain and small time steps. As can be seen by the Fig. 7, the densities differ the most
near the location of the nuclei, as a result of the smoothness of our spectral method. The
system is then propagated using the Gaussian pulse external field:

vExt(r,t)=Axexp
(

−(t−827/2)2/(2σ)
)

cos(ω(t−827/2)) .

The result on the dipole moments is shown in Fig. 7. Generally the domain size for our
type of spectral method needs to be large enough so that a significant part of the orbitals
do not leave the domain.

5 Current and future work

The ongoing research efforts include the theoretical investigation of the Maxwell-Kohn-
Sham (MKS) system, improving the current numerical schemes, and applications to com-
plex practical systems.

5.1 Rigorous analysis of the MKS system and the multiscale scheme

Understanding of regularity and long time behaviors of solutions for the coupled
Maxwell-Kohn-Sham system is vital for developing efficient and stable numerical meth-
ods. For a single particle system, the global well-posedness of the Maxwell-Schrödinger
system has been previously established in [51]. Recent progress on the regularity of the
weak solution for the time dependent Kohn-Sham has been made in [53]. The analysis of
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the multiscale scheme will also shed light on discovering new mathematical techniques
for the investigation of nano scale structures where multiscale effects and multiscale chal-
lenges are dominant. Robust and accurate algorithms for related non-linear eigenvalue
problems will also be studied.

5.2 Applications to novel nano devices

Real time simulation of coupled Maxwell’s equations and TD-DFT has been success-
fully applied in the investigation of the absorption spectrum of the N3 dye molecule
and the Raman spectrum of pyridine, under surface plasmonic enhancement by silver
nano particles [54]. Recent progress has also been made on time domain simulation of
coupled Ehrenfest molecular dynamics and TD-DFT [52, 55]. Incorporating all scales by
the full coupling of Maxwell’s equation, Ehrenfest molecular dynamics and TD-DFT will
be helpful to understand transition pathways of light driven nano devices and optimal
designing of such systems, which also poses significant challenges both for simulation
and analysis. Efficient adaptive FEM will be applied to study High order Harmonic Gen-
erations (HHG) and Metallic structures, which can be achieved by combining with recent
advances in parallel transport Crank-Nicolson (PT-CN) scheme that can significantly in-
crease the time step for real-time TDDFT [56].
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