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ABSTRACT: An enantioselective copper-catalyzed alkynylation of unstabilized cyclic iminium ions has been developed. Whereas such al-
kynylations typically utilize pyridinium, quinolinium and isoquinolinium intermediates, this method enables use of cyclic iminium ions unsta-

bilized by resonance. With the use of a Lewis acid and copper catalyst, these iminium ions are generated in situ from readily available hemiaminal

methyl ethers and transformed into highly enantioenriched a-alkynylated cyclic amines. A variety of terminal alkynes can be incorporated in

high yields and enantiomeric excesses.

Saturated nitrogen heterocycles are important motifs in drug dis-
covery.l In particular, cyclic amines bearing o-stereocenters are pre-
sent in many pharmaceuticals, natural products, and bioactive mol-
ecules.” An attractive approach to these products is nucleophilic ad-
dition to a prochiral cyclic iminium ion, and we and others have de-
veloped enantioselective alkynylations to deliver a-chiral amine het-
erocycles functionalized with versatile alkynyl substituents.’,* De-
spite impressive advances in these alkynylations, the scope of imin-
ium ions has beenrestricted to those that are stabilized by resonance,
specifically isoquinolinium,” quinolinium,’ and pyridinium’ ions
(Scheme 1A). When we carried out this work, no examples of enan-
tioselective alkynylation to unstabilized cyclic iminium ions had
been reported. These iminium ions lack aromatic or other resonance
stabilization, making them more difficult to form and prone to unde-
sirable decomposition via E1 elimination under the basic conditions
of a copper-catalyzed alkynylation. Although Knochel has developed
an impressive enantioselective alkynylation of acyclic N-alkyl imin-
ium ions,® the only stereoselective alkynylation of a cyclic iminium
ion, done by Royer, relied upon a chiral auxiliary (sulfiniminium
ion) approach and required stoichiometric aluminum acetylide.’

Scheme 1. Cyclic Iminium Ions in Stereoselective Alkynylation
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Because of the importance of saturated nitrogen heterocycles, we
embarked on a quest to develop a high-yielding and highly enanti-

oselective alkynylation of unstabilized iminium ions. Herein, we

report a copper/pyridine-(bis)oxazoline catalyst system to accom-
plish enantioselective alkynylation of racemic hemiaminal ether sub-
strates 1a (Scheme 1B). In addition to identification of the optimal
ligand for high enantioselectivity, the successful development of this
reaction included careful balancing of the Lewis acid and base to
avoid undesired decomposition. As we prepared this manuscript, the
Wasa group reported alkynylation of N-aryl iminium ion intermedi-
ates, formed in situ via C-H activation, with trimethylsilylpropri-
olates, including enantioselective examples with cyclic systems.'
This elegant method complements our current report; in contrast to
Wasa’s method, we use racemic hemiaminal ethers as substrates, em-
ploy terminal aryl acetylenes, and deliver products with readily re-
moved carbamate protecting groups.

We selected the reaction of hemiaminal ether 1a and phenylacety-
lene for optimization. Aminal 1a can be readily prepared in two steps
from commercially available N-(benzyloxycarbonyl)piperidone.'
Because of our previous success in alkynylations of stabilized oxo-
carbenium and iminium ions using copper(I)/L1 catalysts and hin-
dered bases,* "> we examined similar conditions for this alkynyla-
tion. The use of Cul along with trimethylsilyl triflate (TMSOTY) as
Lewis acid led to a promising 53% yield and 47% ee, along with
~15% enamine from undesired elimination (Table 1, entry 1). A sig-
nificant effect of the copper counterion was observed; other coun-
terions, both halides and hexafluorophosphate, led to lower yields
and ee’s (entries 1-4). Other commercially available pyri-
dine(bis)oxazoline (PyBox) ligands also failed to improve the yield
and ee (entries 5-6). Low yields and ee were also observed when bi-
dentate (bis)oxazoline ligands L7 and L8 were used, despite their
success in enantioselective alkynylations of stabilized cations (en-
tries 7-8)." Decreasing the reaction temperature improved the en-
antioselectivity somewhat without loss in yield; this lower tempera-
ture required that dioxane was replaced with 2-Me-THEF to prevent
the solvent from freezing (entry 9). Although seeing this increase in
enantioselectivity was encouraging, it was also clear that we needed
to rethink our catalyst design to enable the dramatic increases in en-
antioselectivity that we needed.

In considering the differences between the unstabilized iminium
ion formed from aminal 1a and the stabilized quinolinium and iso-
quinolinium ions that have been used previously, we hypothesized
that the smaller size of iminium 2 might require a tighter chiral
pocket in the catalyst. Because t-Bu-substituted L2 was worse than



L1, we also hypothesized that aryl substituents were necessary. We
thus investigated Ph-PyBox derivatives with substitution at R’
which could compress the R' substituents about the chiral
pocket."*" Indeed, the enantiomeric excess increased to 82% ee with
methyl-substituted L4, and to 86% ee with ethyl-substituted LS (en-
tries 10-11). Using LS asligand, further increase in enantiomeric ex-
cess was realized by using dimethoxyethane (DME) as solvent, al-
beit in lower yield (entry 14). High yield could then be restored by
using boron trifluoride diethyl etherate as the Lewis acid (entry 15).
Finally, by lowering the reaction temperature to —-50 °C, 86% yield
and 92% ee was observed (entry 16). Alternative leaving groups on
the hemiaminal ether were less effective (see Supporting Infor-
mation).'¢
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[a] Conditions: aminal 1a (0.1 mmol), [Cu] (10 mol %), ligand (12
mol %), phenylacetylene (1.2 equiv), PMP (1.5 equiv), TMSOTf (1.1
equiv), dioxane (0.05 M), 24 h, unless otherwise noted. Yields deter-
mined by '"H NMR with 1,3,5-trimethoxybenzene as internal standard.
Ee’s determined by HPLC using a chiral stationary phase. [b] 2-Me-
THE as solvent. [c] iPr.NEt as base. [d] Dimethoxyethane as solvent.
[e] BF5-OEt, as Lewis acid. [f] nd = not determined.
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Under the optimized conditions (Table 1, entry 16), various ami-
nal substrates were examined (Scheme 2). The model reaction can
be run on 1.0-mmol scale to deliver alkyne 3 without diminished
yield or ee. In addition to the benzyloxycarbonyl (Cbz) protecting
group, tert-butoxycarbonyl (Boc) protected amine 4 can be formed
in 68% yield and 91% ee. The absolute configuration of 4 was deter-
mined by comparison of its optical rotation to the literature value."”
The absolute configuration of other products was assigned by anal-
ogy. High yield and ee is observed in the reaction of 6-membered
cyclic iminium ions, as demonstrated by formation of piperidine .
Azepane 6 can also be delivered via this method, albeit with lower ee.
Conformational analysis shows that both -faces of the 7-membered
iminium ion are more sterically encumbered than the 7-faces of the
5- and 6-membered systems. Given this difference, it is not surpris-
ing that the same catalyst would not provide high ee for the 7-mem-
bered iminium ion intermediate. Substitutions on the ring are also
well tolerated (7, 8, 9). With the use of (S,S)-LS§, excellent yield and
a single diastereomer were observed in the formation of 9 from an
enantiopure substrate. However, using (R,R)-LS afforded the same
diastereomer with diminished yield. These results show that the ste-
reoselectivity is due to substrate control, but the difference in yield
highlights the influence of the chiral catalyst in the mismatched case.
This strong substrate control has been observed in similar pyrroli-
dine systems."*

Scheme 2. Scope in Aminal.’
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The scope of terminal alkynes was then explored. A variety of aryl
acetylenes are well tolerated (Scheme 3). The additional steric bulk
of o-tolylacetylene is accommodated with high yield and ee observed
(10). Functional groups, such as p-bromo, m-chloro, and p-Bpin,
can be incorporated effectively (11, 12, 14), enabling downstream
cross-couplings of the alkynylated products. High enantioselectivi-
ties were observed for other aryl acetylenes with electron-withdraw-
ing substituents such as ether (13), nitrile (15), trifluoromethyl
(16), and ester (17). Heteroaryls, such as thiophene (18) can be in-
corporated as well. However, aryl acetylenes with electron-donating
substituents, such as p-methoxy and p-dimethylamino substituents,



led to diminished enantioselectivity (19, 20). Additionally, the use
of alkenyl and alkyl acetylenes afforded desired products. albeit with
diminished ee and yield (21, 22, 24). Silyl acetylenes were also ex-
amined, among which triphenylsilyl acetylene produced the best re-
sult of 70% yield and 43% ee (23)."”

Scheme 3. Scope in terminal alkynes®.
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With respect to mechanism, we hypothesize that a chiral copper
acetylide is formed in situ, as is the iminium ion. Attack of the copper
acetylide onto the iminium ion then provides the desired product.
We note a Hammett correlation between the aryl acetylene substitu-
tion and the enantiomeric ratio (Fig. 1).” The higher enantioselec-
tivity observed with less electron-rich alkynes is consistent with C—
C bond formation as the enantiodetermining step. Less nucleophilic
acetylenes should have later transition states in the C—C bond for-
mation, resulting in closer proximity of the iminium ion to the chiral
pocket of the chiral copper acetylide, ultimately giving higher enan-
tioselectivity. Ongoing studies are focused on more deeply under-
standing the nature of the active catalyst and developing a detailed
model for enantioinduction.
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Figure 1. Hammett correlation of substitution on aryl acetylene with
enantiomeric ratio.

In summary, a copper-catalyzed enantioselective alkynylation of
unstabilized cyclic iminium ions has been described. The iminium
ions are formed in situ from readily available hemiaminal ethers. This
method delivers 5- and 6-membered nitrogen heterocycles with a.-
stereocenters in good yields and enantiomeric excess under mild re-
action conditions. The reaction features excellent functional group
tolerance, and a variety of aminals and alkynes can be used.
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