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Abstract

In order to assess the efficacy of novel HIV-1 treatments leading to a functional cure, the
time to viral rebound is frequently used as a surrogate endpoint. The longer the time to viral
rebound, the more efficacious the therapy. In support of such an approach, mathematical
models serve as a connection between the size of the latent reservoir and the time to HIV-1
rebound after treatment interruption. The simplest of such models assumes that a single
successful latent cell reactivation event leads to observable viremia after a period of expo-
nential viral growth. Here we consider a generalization developed by Pinkevych et al. and
Hill et al. of this simple model in which multiple reactivation events can occur, each contribut-
ing to the exponential growth of the viral load. We formalize and improve the previous deri-
vation of the dynamics predicted by this model, and use the model to estimate relevant
biological parameters from SIV rebound data. We confirm a previously described effect of
very early antiretroviral therapy (ART) initiation on the rate of recrudescence and the viral
load growth rate after treatment interruption. We find that every day ART initiation is delayed
results in a 39% increase in the recrudescence rate (95% credible interval: [18%, 62%]),
and a 11% decrease of the viral growth rate (95% credible interval: [4%, 20%]). We show
that when viral rebound occurs early relative to the viral load doubling time, a model with
multiple successful reactivation events fits the data better than a model with only a single
successful reactivation event.

Author summary

HIV-1 persists during suppressive antiretroviral therapy (ART) due to a reservoir of
latently infected cells. When ART is stopped, HIV generally rebounds within a few weeks.
However, there is a small fraction of patients that do not rebound over a period of months
or years. A variety of treatments are being tested for their ability to reduce the size of the
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latent reservoir, to induce effective immune responses against the virus, or to prevent or
prolong the time to viral rebound after ART interruption. These novel treatments are typi-
cally first tested in SIV infected macaques, and the efficacy of the treatment assessed by
interrupting ART and measuring the time to viral rebound. Here, we develop and test a
mathematical and statistical model that describes the process of viral rebound. The model
can be used for statistical inference of the efficacy of newly developed treatments. Impor-
tantly, the model takes into account that multiple recrudescence events can precede
rebound. We test the model using data from early treated SIV infected macaques.

Introduction

HIV and SIV are able to persist despite antiretroviral therapy (ART) because of a long-lived
reservoir of latently infected CD4" T cells [1]. Recent studies have shown that the latent reser-
voir is established very early after infection [2-4], and that the seeding of the reservoir can
only be prevented when ART starts extremely early [5]. Other studies have focused on the
effect of potentially curative treatment strategies that might extend remission after interrup-
tion of ART [6-8].

In all these studies an important observable is the time between treatment interruption and
viral rebound, i.e. the first time the viral load (VL) becomes observable. Under the common
assumption that rebound results from reactivation of latently infected cells [9-11], and that the
rate at which the latent population reactivates is proportional to the size of the latent reservoir,
the time to viral rebound can be used to gauge the reservoir size. Some curative strategies aim
to reduce the size of the reservoir by administering latency reversing agents such as vorinostat
[12], romidepsin [13], and TLR7 agonists [8], but also gene editing [14], so-called block-and-
lock strategies [15], and anti-proliferative therapy [16, 17] are being considered. The time to
rebound can then be used as an indication of the effectiveness of the treatment, consistent with
the aforementioned assumption [9, 18, 19].

The simplest model of rebound combines an exponentially distributed waiting time for a
recrudescence event with subsequent exponential growth of the VL (henceforth, this is
referred to as the “single-reactivation model”). Such a model has been used to estimate the
reactivation rate of cells from the reservoir in HIV-1 patients undergoing ART interruption
[10]. The main conclusion of this study—reactivation occurs on average every 5-8 days—
resulted in some discussion about the sensitivity of the aforementioned result to inter-patient
variability of the model parameters [20, 21]. From this discussion, an interesting and slightly
more complex model of viral rebound emerged [20, 21] that takes into account the possibility
that multiple latently infected cells reactivate within a short time interval, and that each of
these reactivation events contributes to VL growth (we hereafter refer to this model as the
“multiple-reactivation model”). We refer to a reactivation event that leads to an exponentially
growing and potentially observable lineage of actively infected cells as a “successful reactiva-
tion event” or “recrudescence event”, since reactivation can also lead to extinction of the line-
age by chance [11, 18, 22, 23].

The occurrence of multiple recrudescence events is not merely a theoretical hypothesis, but
has recently been observed in vivo. In one study, phylogenetic analysis has revealed that HIV-1
rebound is seeded from multiple anatomical sites [24]. In another study, treatment interrup-
tion experiments with macaques infected with a genetically barcoded SIV strain showed that
many cells successfully reactivate from the latent reservoir [25]. In the latter study, the multi-
ple-reactivation model was used to analyze the viral rebound data [25, 26], underpinning the

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008241 October 1, 2020 2/25


https://doi.org/10.1371/journal.pcbi.1008241

PLOS COMPUTATIONAL BIOLOGY SIV rebound after treatment interruption

current interest in this model. Moreover, in a recent analysis of potentially curative treatment
effects the multiple-reactivation model was used as a bridge between stochastic and determin-
istic reactivation domains [19]. Here we present an improvement of the multiple-reactivation
model that we derive using a Poisson counting process. Although the average behavior of our
improved model is only marginally different from the previous version, our approach allows
us to not only model the expected viral load rebound curve, but also the deviation from this
expectation. Most importantly, this enables us to derive a parametric expression for the distri-
bution of the time-to-rebound, that can be used for parameter inference from rebound data.

We test the improved model using data from SIV infected macaques that are put on ART at
different times post infection and exhibit varying viral rebound dynamics [2, 5]. We find very
strong statistical evidence in favor of the multiple-reactivation model over the single-reactiva-
tion model. We attribute this superior model performance to the fact that it better explains the
data from macaques that rebound soon after ART cessation and exhibit relatively slow expo-
nential growth of the VL. We argue that whenever such data is used for inference about the
effects of experimental curative treatments in delaying viral rebound, the multiple-reactivation
model should be used to estimate the relevant parameters. Our refined multiple-reactivation
model fits the data only slightly better than the approximation developed earlier by Pinkevych
et al. [21]. However, using an example, we show that our model can be generalized further to
include more complex features of reservoir and rebound dynamics, such as heterogeneity of
the reservoir in terms of clone-specific growth rates.

Results

We start by mathematically defining the multiple-reactivation model and deriving the mean
behavior and deviation from the mean of this model. We then use these quantities to derive an
approximate probability distribution of the time to viral rebound, and assess whether this
approximation is reliable. This time-to-rebound distribution is then used to infer the rate of
recrudescence from a heterogeneous set of SIV rebound data. This inference allows us to quan-
tify the effect of ART initiation time on the recrudescence rate and viral growth rate, and to
compare our multiple-reactivation model with the simpler single-reactivation model. We
identify two mechanisms that make the multiple-reactivation model better suited for modeling
rebound data than the single-reactivation model. Finally, using simulated data sets, we test
how sensitive the model is to parameter and model misspecification.

The multiple- and single-reactivation models

We start by constructing a model that predicts the short-term SIV or HIV viral dynamics fol-
lowing the cessation of ART including viral rebound to detectable viremia and subsequent
exponential growth of the VL. In our modeling we rely on the common, central assumption
that activation of latently infected cells drives viral rebound [9-11]. Specifically, we assume
that the activation of a latently infected cell can be followed by viral production, which in turn
may lead to infection of additional cells. Viral rebound is caused by exponential growth in
resultant viral lineages. We refer to a latent cell reactivation that leads to exponential growth as
a “successful reactivation event” or a “recrudescence event”, to explicitly make the distinction
with reactivation events leading to a viral lineage that by chance goes extinct while the popula-
tion size is still small. We provide an overview of the models we employ in this study with full
details in Materials and methods. A synopsis of the parameters and variables used is given in
Table 1.

Mathematically, the multiple-reactivation model is a combination of a stochastic Poisson
counting process N, with rate or intensity A and deterministic exponential viral growth v, e
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Table 1. An overview of the parameters and variables.

symbol unit description

N; - number of recrudescence events at time ¢ post treatment interruption

V: copies mL™"' | VL at time ¢ post treatment interruption

T; d time of the i-th successful reactivation event.

g d! exponential growth rate of the VL

Vo copies mL™" | average initial viral concentration caused by a single successful reactivation

A d! recrudescence rate, the number of latently infected cells that successfully reactivate per
day.

K(6) - cumulant-generating function of the viral load V.

K1 copies mL™" | first cumulant, equal to the expectation of the VL (E[V]).

K copiessz_2 second cumulant, equal to the variance of the VL (Var[V/]).

v, copies mL ™" | conditionally deterministic approximation of the viral load process V.

14 copies mL™" | limit of detection of the VL assay.

T d viral rebound time, satisfies the equation V, = ¢

S(t) - fraction of subjects in remission at time t post treatment interruption

fbhg vy |d7! approximation of the probability density function of the rebound time 7

19)

T, d first recrudescence time extrapolated from the rebound time using the growth rate and
the initial VL, assuming simple exponential growth.

tART d days post infection that ART was initiated

G; d! random, clone-specific exponential growth rate.

oG d standard deviation of the growth rates G; of the clones comprising the SIV reservoir

See also Table 2 for additional parameters of the Bayesian mixed-effects model.

https://doi.org/10.1371/journal.pchi.1008241.t001

with growth rate g and initial value v,. The Poisson process N, counts the number of latently
infected cells that have been reactivated and successfully establish a lineage of exponentially
growing infected cells at time ¢ after treatment interruption. Under the assumption that such
successful reactivation events start occurring after therapy interruption at time ¢ = 0, we have
N, =0and N, ~ Poisson(At). The exponential curve v,e®* describes the contribution to the
total VL of such a lineage. The total VL at time ¢ is the weighted sum of such exponential func-
tions:

V,= Voz]l[r,‘.oo)(t)eg(tim (1)
=1

Here, the indicator function 1. (t) equals 1 if f > T; and 0 otherwise. The random times T;
are the jump times of the Poisson process, corresponding to the times that different latently
infected cells successfully reactivate. An example realization of the random process V; given by
Eq 1 is shown in Fig 1A. Notice that there might be some delay between the moment of reacti-
vation and successful reactivation. For instance, it might be possible that the reactivation of a
latently infected cell happens before treatment interruption. The times T; correspond to the
moments that lineages initiated by reactivation become large enough, the meaning of which
we explore in the Discussion.

In previous analyses of Eq 1 by Pinkevych et al. [21] and others [19, 25, 26], the dynamics of
the process V; after the initial reactivation event T} = ¢, was simplified using a deterministic
approximation. The subsequent recrudescence times T, T5, . . . were assumed to be exactly 1/A
days apart, which is the average time between two succeeding jumps of the Poisson process.
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Fig 1. Simulations of the multiple-reactivation model. (A) Graphical representation of Eq 1. The gray lines indicate the exponential growth
curves of individual clones that originated from a single successful reactivation from the latent reservoir. The blue curve represents the total VL,
i.e. the sum of the gray lines. (B) Comparison between the expectation of the process V, (in black) and realizations sampled from this process (in
blue). The mean + standard deviation (sd) of V, is shown as a gray band. The dashed thick curve corresponds to the approximation V, with ¢, =
1/Ad. Parameters: g = 0.5d ™", A = 1.0d"", and v, = 0.1 copies mL ™"

https://doi.org/10.1371/journal.pcbi.1008241.g001

With the aid of some further simplifications (see Materials and methods [19, 21, 25]), the fol-
lowing expression was obtained for the total VL at time ¢ > t, after ART suspension:

es(t=to) _ o=8/n

1—es/?

(2)

4

=%
where the tilde over the V'is used to indicate that this is an approximation. In the Materials
and methods section, we use the cuamulant-generating function (CGF), together with some
basic facts about the Poisson process to derive a functional form for the expectation of V,,
which is given by

_ vk

J=—"("=1 (3)

E[V,
8

t

Importantly, we no longer have to constrain recrudescence times to be 1/A days apart. More-
over, the same CGF technique allows us to find all other cumulants (or moments) of the distri-
bution of V;. For instance, we show the variance is given by

2
(e )
28

VarlV,] =
and the third cumulant, which has the same sign as the skewness, equals x,(t) = 2—? (e¥ —1).
The expected trajectory of V, and the standard deviation are shown in Fig 1B. To compare the
difference between Eqs 3 and 2, the graph of V, is shown as a thick dashed curve in Fig 1B.
This example shows that the approximation V, slightly under-estimates the expected VL (the
thick black line in Fig 1B). However, the primary advantage of our improvement comes from
the additional statistical properties of viral rebound dynamics that it allows us to compute,
which is useful for the estimation of parameters such as the recrudescence rate A (see below).
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We term this model the “multiple-reactivation model” since viral load is modeled as the
sum of viral lineages generated by multiple recrudescence events. In the following we contrast
predictions from our refined multiple-reactivation model with the “single-reactivation
model”, in which rebound VL is assumed to be associated with the viral lineage resulting from
a single latent cell activation only [10]. Hence, for this single-reactivation model we consider
only the first recrudescence event at time T; ~ Exp(A), and ignore the effects of any subse-
quent reactivations from the reservoir. Given that T = t,, we therefore get the following simple
expression for t > f:

Ve = g esli—h)

The distribution of time-to-rebound

In treatment-interruption experiments, the main quantity of interest is the time-to-rebound,
which we denote by 7. In order to properly infer the recrudescence rate A—a proxy for the
replication competent reservoir size—from viral rebound data, a statistical model that
expresses the likelihood of the time-to-rebound in terms of the model parameters is desirable.
The predicted distributions of the time-to-rebound under the multiple-reactivation model
and single-reactivation model naturally differ, because multiple reactivation events, early
after treatment interruption, skew the time-to-rebound towards lower values. This means
that because of these multiple recrudescence events prior to viral rebound, each of which
causing a jump in the viral load, the growth of the still unobservable VL is faster than expo-
nential growth at rate g. We refer to this as “early faster-than-exponential growth”. Using an
exponential distribution for the first recrudescence time Ty, and the approximation V, given
in Eq 2, the rate of successful reactivation A [21, 25], and the initial contribution v, of such a
reactivation event [26] have been estimated with likelihood-based methods. However, this
conditionally deterministic approximation does not take the uncertainty due to secondary
recrudescence events occurring at different intervals into account, a shortcoming which we
fix with our fully stochastic model.

Using a diffusion approximation of the process V, allows us to derive a convenient paramet-
ric form of the distribution of the time-to-rebound (given by Eq 6 in Materials and methods).
The time-to-rebound (7) is defined as the first time the virus load crosses a threshold € corre-
sponding to the limit of detection (LoD; typically 50 RNA copies per mL) of the assay used to
measure SIV or HIV RNA. Our parametric distribution depends on ¢ and the parameters vy,
A, and g and can be used to estimate these parameters directly from time-to-rebound data
using methods such as maximum likelihood. In order to test if the diffusion approximation is
justified, we simulated the process V, and compared the empirical distribution of the time to
rebound with the parametric approximation (see Fig 2). When successful reactivation is fast (A
> 1d™"), the simulations and our approximation are in excellent agreement (by visual inspec-
tion; Fig 2 top and middle panels).

However, when the successful-reactivation rate is small (A = 0.2 d™"), the diffusion approxi-
mation breaks down (Fig 2 bottom panels), as the time to rebound is mostly determined by the
first successful reactivation, and hence by the exponentially distributed initial recrudescence
time T. Further, the distribution of the diffusion approximation of V, at time ¢ is a Gaussian
N (k,(t), K,(t)), which is symmetric. As k3(¢) > 0 for t > 0 the exact distribution of V, is in
fact right-skewed. When we fit the multiple-reactivation model to data below, we account for
these discrepancies by explicitly modeling the first reactivation time T} as a so-called latent
variable of the statistical model, which is exponentially distributed with rate A. The diffusion

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008241 October 1, 2020 6/25


https://doi.org/10.1371/journal.pcbi.1008241

PLOS COMPUTATIONAL BIOLOGY SIV rebound after treatment interruption

1.0 A=5.0d"1 107
0 5_ O 5-
0.0 . , . . ) wool__
g 6 7 8 9 10 &
©
2 _ = c 1.0
S 4] A=1.0d 3
lT o)
S g
! L 0.51
20.21 =
£ 2
s 5
o = 4
w 0.0— r y ; . s 0.0,
[a) 7.5 10.0 12.5 15.0 17.5 ©
o fi=t 1.01
A=02d"1 :
0.2
0.51
0.0 = - ; : : 0.01 : : : -
10 20 30 40 50 10 20 30 40 50

time to detection (days)

Fig 2. Comparison between the approximation for the time-to-rebounddistribution and simulated rebound times. The simulated empirical
distributions are shown in color, and our approximation is shown in black. (A) The probability density function (PDF; defined by Eq 6). (B) The
survival function (i.e. the fraction of subjects S(¢) that do not have a detectable VL at time t). For the top, middle, and bottom panels different
values of A areused A =5d™",1d™",and 0.2d™" respectively). Notice the different time scale on the horizontal axes. For the remaining
parameters, we used the values: g = 0.5d™", vy = 0.1 copies mL™", LoD € = 50 copies mL".

https://doi.org/10.1371/journal.pcbi.1008241.9002

approximation for the time-to-rebound distribution (Eq 6) is then used to model the differ-
ence 7 — T, and we set an initial condition V;. = v,. This ensures that the model can be used
for inference irrespective of whether remission is short or long, and even with data sets con-
taining heterogeneous rebound times, as we will demonstrate below.

In the S1 Text we explore two other approximations of the rebound-time distribution that
behave better for small values of A. First, we replaced the Gaussian distribution N (k;,, k,) with
a Gamma distribution, for which we matched the mean and variance with x; and x, respec-
tively. Like the distribution of V,, the Gamma distribution has a positive skewness, which
results in a greater similarity between the approximate rebound-time distribution and simula-
tions when the recrudescence rate is small (S3 Fig). Second, instead of diffusion, we applied
the so-called WKB approximation to the process V;, which gave even better results for small
recrudescence rates than the Gamma-law approximation (54 Fig). Unfortunately, both these
improved approximations are more difficult to implement in standard parameter-inference
frameworks. For this practical reason, we use the more tractable diffusion approximation in
our data analysis below.
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Fig 3. Representative examples of the fits of the mixed-effects modelto the VL rebound time series. (A) The top panels show the VL data (black dots
connected by black lines, with red dots for left-censored observations; the grey dots are ignored) taken from macaques where ART was started at
different days post infection (DPI), and the model prediction (blue lines: posterior mean; dark blue band: 50% credible interval (CrI), light blue band:
50% posterior predictive interval). The estimated time-to-rebound (7) is given by the vertical black line (gray band: 50% CrlI). (B) The bottom panels
show posterior predictive distributions of the time-to-rebound. The green distributions (c) are conditioned on the estimated time of the initial
recrudescence event, the purple distributions (u) are unconditional. Model fits and posterior predictive distributions for all 25 macaques are shown in S1
Fig.

https://doi.org/10.1371/journal.pchi.1008241.9003

Analysis of SIV rebound data

To assess the performance of the multiple-reactivation model and our diffusion approximation
with respect to actual data, we employ the results of treatment interruption experiments with
the macaque SIV model [2, 5]. This data set consists of longitudinal VL measurements from
macaques for whom treatment was initiated early and at varying time points after SIV chal-
lenge in different groups of animals. The time of ART initiation has been shown to be a predic-
tor for the time-to-rebound with early SIV treatment leading to delayed rebound [2].
Moreover, in the same study [2] it was found that the rate of exponential growth of the VL
after viral rebound is decreased when ART is initiated later, perhaps because immune
responses develop due to higher antigen concentrations. Hence, the data set contains SIV
rebound time series with varying exponential growth rates and rebound times.

Of the 36 macaques in the data set, n = 25 showed viral rebound during the 16 week obser-
vation period after treatment interruption. As VL is measured at discrete times, the actual time
of viral rebound (7) has to be interpolated from these VL measurements. In addition, estimat-
ing the recrudescence rate (1) requires that we also estimate the viral growth rate (g), and since
we expect gand A to be correlated, additional data that informs the growth rate helps to esti-
mate both g and A more accurately. In order to infer 7 and estimate g from the VL time series
for each macaque, we fit a logistic growth model [2] to the initial VL data points of the time
series. We manually selected time points that are consistent with logistic growth (the gray data
points in Fig 3A and S1 Fig were excluded). We opted for logistic instead of exponential
growth because fitting an exponential growth model to non-linear rebound data (Fig 3A and
S1 Fig) can result in an under-estimation of the growth rate [19]. Because for many macaques
the number of observations that can inform these estimates is limited, we used a mixed effects
model to estimate the growth rate g, using the time of ART initiation (fart) as a covariate. Sim-
ilarly, tart is used as a covariate for estimating the recrudescence rate A, which again has a
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random effect for each macaque. The statistical model is defined in full detail in the Materials
and methods.

Following Pinkevych et al. [26], we fit the logistic growth model to the VL data in a Bayesian
framework using MCMC (Fig 3A and S1 Fig). This way we are able to naturally factor the
rebound time distribution for the multiple-reactivation model (Eq 6) into the likelihood. We
have to fit the model to the data from all 25 macaques simultaneously, as it contains fixed and
random effects. We write o, (and o) for the fixed effect of tArr on A (and g, respectively; see
Eq 9 in Materials and methods). In accordance with previous analyses [2], we find that the
time of ART initiation is a strong predictor of both the rate of reactivation and the exponential
growth rate after rebound. The posterior probability Pz, < 0] < 10~* strongly suggests that
o, > 0, i.e. that rebound occurs more rapidly when ART is initiated later. For the fixed effect
a, of the time of ART initiation on the growth rate g we find the posterior probability
Plo, > 0] = 0.002, suggesting that it is highly likely that the growth rate after rebound will
slow down with later ART initiation. Here the statistical significance of the effect of treatment
initiation time is much larger than found previously [2]. This increased significance is due the
inclusion of data from additional macaques [5], as exclusion of this data gave a posterior prob-
ability Ple, > 0] = 0.36.

The estimates of A and g for individual macaques are shown in Fig 4A and 4B as a function
of ART initiation time, and also listed in S1 Table. The recrudescence rate is clearly influenced
by the ART initiation time. We predict that each day ART is delayed, the recrudescence rate is
increased by 39%, with a 95% credible interval (CrI) of [18%, 62%]. Even though we find that
the time ART starts is a significant predictor for the growth rate g after rebound, the standard
deviation of the growth rate’s random effects (o) is about 5 times larger than that of the reacti-
vation rate (0y; see S1 Table). Nonetheless, we can estimate that each day ART is delayed, the
growth rate decreases by 11% (95% CrlI: [4%, 20%]).

The latter observation is remarkably consistent with acute VL dynamics. As none of the
macaques that were treated on day 0 (6h post-infection) showed viral rebound after ART ces-
sation [5], we could not directly estimate the viral growth rates for these animals. However, we
could compare the estimated growth rates after viral rebound with growth rates in the acute
phase. Using again a simple random-effects logistic growth model, we were able to estimate
viral growth rates during acute infection for the 13 out of the 25 macaques that showed observ-
able viremia prior to ART initiation. These estimates are added to Fig 4B (cyan markers,
located at “acute”). Our estimates for the acute growth rates are slightly higher than reported
previously [2], possibly due to the use of a logistic growth model (see Materials and methods).
Using our estimates from the rebound data of the population-level growth rate (u,, see
Table 2) and fixed effect of tort (2,), we extrapolated the population-level growth rate for sub-
jects treated at day 0 (using Eq 9). Our estimate of the population-level growth rate for the
acute infection (i, = 0.67log d™'; S1 Table) falls within the 50% CrI of the extrapolated
growth rate ([0.28, 0.76] log d™"). This suggests that viral dynamics after rebound in very early
treated subjects resembles acute infection dynamics.

We then used model selection theory to compare the multiple-reactivation model to the
single-reactivation model (see Methods). Using the Watanabe-Akaike information criterion
(WAIC; see Materials and methods and [27]) for model comparison, we find “very strong evi-
dence” (sec. [28]) in favor of the multiple-reactivation model (AWAIC = 11.5). The superior
performance of the multiple-reactivation model can be explained by two mechanisms that
were mentioned above: (i) the stochasticity of secondary recrudescence events and (ii) early
faster-than-exponential growth. We will now look closer into the effects of these mechanisms
in the context of our SIV data set.
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Fig 4. Estimates of recrudescence and growth rates from the SIV rebound data and the percentage of the variance of the time-to-rebound. (A)
Point estimates (posterior modes; red) and 50% CrIs (black) of A for each macaque as a function of the time ART was initiated. (B) Estimates of g. The
cyan markers denote estimates of the growth rate for acute infections of 13 of the 25 macaques. These acute VL growth rates cluster around 2 d™". (C)
Proportion of the total variance due to secondary reactivation events. The heat map shows Var[r,]/Var[zy] - 100%, where 7; :=inf{t: V; > €, V=i - vy} is
the rebound time (i = 0) or the time between the first successful reactivation and rebound (i = 1). Additional parameters are v, = 0.1 copies mL 'and ¢=
50 copies mL™". The markers indicate the estimates from macaque SIV rebound experiments in which the macaques were treated, starting t,p days after
infection, with t5rT equal to 1 day (@), 2 days (+), 3 days (&), 7 days (%), 10 days (x), or 14 days (#).

https://doi.org/10.1371/journal.pcbi.1008241.9004

Uncertainty due to secondary recrudescence events. According to the multiple-reactiva-
tion model, successful reactivation events that follow the first event lead to faster-than-expo-
nential growth of the VL during the early stages of rebound (Fig 1). However, these secondary
reactivation events can only contribute noticeably to the viral load when the VL is still rela-
tively low and close to the initial value vo. This most likely happens when the reactivation rate
is large or the exponential growth rate is small. In order to quantify these effects, we can

Table 2. Prior distributions of the Bayesian mixed-effects model.

parameter description prior hyper-prior

I VL measurement error |IN(0,0.5)] -

€ random effect VL growth rate (g) Ny, 0,) 1, ~ N0, 1), a, ~ |N(0,1)]
a, fixed effect of tarT on g N(0,1) -

€ random effect recrudescence rate (1) N(w,,0,) w, ~N(0,1), o, ~ |N(0,1)]
o fixed effect of tyr on A N(0,1) -

log;o(K) carrying capacity VL N (ug, o) e ~ N (5,2), o ~ |N(0,2)]
log(v) initial VL equivalent N(-1,1) -

The notation x ~ |D| for probability distribution D means that x is positive and that D is truncated at zero. The normal distribution is parameterized with the mean and

standard deviation. The time gt denotes the number of days post infection at which antiretroviral treatment was initiated.

https://doi.org/10.1371/journal.pcbi.1008241.t1002
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decompose the variance of the time-to-rebound (7) as the sum of the variance of the first reac-
tivation time (T}), and the variance due to all subsequent reactivation events. The proportion
of the total variance that is due to secondary reactivation events is shown in Fig 4C for different
values of the growth rate g and the recrudescence rate A. The dark region in this heat map cor-
responds to a part of the model’s parameter space where it is indistinguishable from the single-
reactivation model. On the contrary, the light region corresponds to parameter combinations
for which most of the variance in the time-to-rebound is due to the secondary successful reac-
tivation events. In this parameter regime the model is most relevant.

The superior performance of the multiple-reactivation model can be explained by having
data from macaques with a high recrudescence rate A and a small exponential growth rate g.
Point estimates (i.e., modes of the marginal posterior distributions) of A and g for each
macaque are projected onto the heat map in Fig 4C. The macaques that were treated starting at
7,10 and 14 days after infection fall into the parameter domain where the multiple-reactiva-
tion model is most relevant.

To further assess the effect of multiple reactivation events for each macaque, we sampled
from the posterior predictive distribution of the time-to-rebound (Fig 3B, purple distribu-
tions). This distribution indicates when viral rebound is most likely to take place, given esti-
mates for the growth rate g, the rate of successful reactivation A and the initial VL v, when
exponential growth begins. The actual estimates for the rebound time 7 (Fig 3A and S1 Fig,
black vertical lines) correspond well with the posterior predictive distributions, as all 25 esti-
mates of 7 fall within the 2.5 and 97.5 percentiles of the posterior predictive distributions and
21 out of 25 estimates fall within the interquartile range. In the model, we explicitly estimate
the first recrudescence time T (see Materials and methods) and hence, we can also sample
from the posterior predictive distribution of 7 conditioned on T; (Fig 3B, green densities).
These second posterior predictive distributions indicate the uncertainty in the rebound time
due to secondary recrudescence events (in addition to uncertainty in the parameter estimates).
Hence, by comparing the conditional (Fig 3B, green) and unconditional (Fig 3B, purple) poste-
rior predictive distributions of 7, we see what effect multiple recrudescence events have on the
uncertainty of the rebound time. For early treated macaques (ART < 3 days post infection),
most uncertainty in the rebound time comes from the first successful reactivation, as illus-
trated by the purple densities being much wider than the green densities. On the other hand,
for the macaques treated later the subsequent reactivation events determine the rebound time
distribution, as illustrated by the purple and green densities overlapping.

Early faster-than-exponential growth. When the recrudescence rate is large, and before
the VL has become detectable, the multiple-reactivation model predicts that the VL grows
faster than exponentially (Fig 1). To demonstrate the effect of this faster-than-exponential
growth, we can use the regular exponential growth model to extrapolate what the first reactiva-
tion time would have been under the single-reactivation model. This time is denoted T, and
can easily be calculated using the model’s parameters as T, = t — %log (¢/v,). The marginal
posterior densities of the first reactivation time T and the extrapolated initial recrudescence

time T are nearly identical for the early treated macaques (S2 Fig). However, for the macaques
that are treated later, the extrapolated recrudescence time becomes negative (i.e. successful
reactivation is predicted to occur before treatment interruption), while, according to our mod-
els, the first recrudescence time T has to be positive. This shows that given the estimates of g,
vo, and 7, faster-than-exponential growth as predicted by the multiple-reactivation model is
required to explain the VL data.

To identify which of the two mechanisms (uncertainty due to secondary recrudescence
events or early faster-than-exponential growth) described above is the most important for

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008241 October 1, 2020 11/25


https://doi.org/10.1371/journal.pcbi.1008241

PLOS COMPUTATIONAL BIOLOGY SIV rebound after treatment interruption

explaining the difference in WAIC between the single and multiple-reactivation model, we
also fit the “conditionally deterministic” multiple-reactivation model (see Materials and meth-
ods and [21]) to our SIV data set. Recall that in this model all secondary recrudescence events
occur at fixed intervals. Again using WAIC, we find that our fully stochastic multiple-reactiva-
tion model fits the data better than the conditionally deterministic version, but only with lim-
ited statistical significance (AWAIC = 2.1 and see S2 Table). As our fully stochastic model
differs from the conditionally deterministic model in that it describes uncertainty in the
rebound time due to secondary recrudescence events, we find that for this data set the ran-
domness of these secondary events may be of limited importance.

Sensitivity to parameter and model misspecification

Next, we investigated the effects of uncertainty in the initial viral load parameter (v,) and het-
erogeneity of the exponential viral growth rate, which can exist when the reservoir is com-
prised of a variety of phenotypically distinct SIV clones, on the estimates of the recrudescence
rate A.

Uncertainty in the initial viral load equivalent. The meaning of the parameter v, is bio-
logically ambiguous. Previously, this parameter has been described as the initial “plasma viral
load equivalent” [26] and estimates of v, are at least roughly compatible with the number of
virions produced by one productively infected cell, the clearance rate of virions [29] and the
blood volume of a macaque [26]. Another interpretation is linked to extinction probabilities of
a recently reactivated lineage. In this case vy is the viral load at which extinction of an exponen-
tially growing lineage is extremely unlikely [18, 20]. The actual model is agnostic with respect
to the interpretation of v, which can be thought of as the effect size of the multiple-reactiva-
tion model. This means that v, simply provides a measure of the effect of each independent
recrudescence event, each possibly originating from a separate anatomical site [24], on the VL
dynamics and time-to-rebound. However, as it is difficult to estimate both the recrudescence
rate g and the initial viral load v, simultaneously, we investigated the effect of a misspecified v,
on the estimate of the recrudescence rate A.

To assess the bias due to misspecification of vy, we simulated large data sets (n = 200) with
various ground-truth parameter values and fit our model to the synthetic data. For simplicity,
we used an exponential growth model instead of logistic growth, and removed the random
effects from the statistical model. Hence, all simulated subjects share the same parameter val-
ues. The ground-truth v, was kept constant to 0.1 copies mL ", while in the statistical model,
the assumed constant value of v, was varied from 0.02 to 0.5 copies mL~". Assuming an erro-
neous value of v, resulted in a sizable bias in the estimate of A (Fig 5A). When v, is assumed
smaller than the ground truth value, the model requires a larger recrudescence rate in order to
fit the data, and vice versa. This is especially clear when the ground-truth reactivation rate is
large (A = 5d"). This is as expected, because again, v, can be interpreted as the effect size of
the multiple-reactivation model, and becomes more important when secondary recrudescence
events are more frequent.

Within-host heterogeneity of the exponential growth rate. Throughout the paper, we
have made the strong assumption that within one subject all successfully reactivated lineages
have the same exponential growth rate g. In natural infections, ART is only rarely started dur-
ing hyper-acute infection and this means that the latent reservoir consists of a diverse archive
of proviral sequences [30], probably varying in their growth rate due to intrinsic fitness costs
of mutations or escape mutations from immune responses [31]. To measure the effect of this
potential model misspecification, we performed a sensitivity analysis with simulated data sets
as before. In this case, we had to generalize the multiple-reactivation model (Eq 1) and replace
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https://doi.org/10.1371/journal.pcbi.1008241.9005

the growth rate g with a clone-specific random variable G;, representing the random growth
rate of the i-th clone (see Eq S12 in S1 Text). Example trajectories of this generalized model are
shown in S5 Fig. This generalized multiple-reactivation model requires that we specify a distri-
bution for the random growth rates G;. In the SI Text we developed a simple example provid-
ing a model for an SIV reservoir in which the frequency of a clone is proportional to its fitness
(see the inset of S5 Fig). The most fit and abundant clone has growth rate g and we write o for
the standard deviation of the random growth rate G;.

As in the sensitivity analysis described above, we simulated large data sets (n = 200), varying
the recrudescence rate A and the standard deviation o of the random growth rates. We then
estimated the model parameters g and A with the simplified statistical model (i.e. exponential
growth instead of logistic growth and no random effects). The initial viral load v, was kept
constant to the true value. The estimated reactivation rates are shown in Fig 5B. This shows
that a non-zero standard deviation in the within-host growth rate introduces a bias in the esti-
mate of A. When o is large, the estimate of the recrudescence rate is smaller than the ground-
truth value. We can understand this intuitively, because clones that reactivate early might have
a growth rate that is significantly smaller than the maximum growth rate g, which delays the
time of rebound, while the observed growth rate is dominated by fitter clones that have suc-
cessfully reactivated after the first clone. This effect is most pronounced when the ground-
truth recrudescence rate is intermediate or large (A = 1 or 5 d™"). Again, this is in line with
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expectations, because when the recrudescence rate is small, the growth rate of the total VL is
mostly determined by the clone that successfully reactivates first.

In the case of the STVmac251-infected macaques analyzed here that are treated within 2
weeks of infection, we expect that the phenotypic variation in the reactivating strains is limited
and that using a constant growth rate g is a valid simplification. However, when a data set con-
tains subjects that are put on ART relatively late in the acute infection, or during chronic infec-
tion, recrudescence rates estimated with the multiple-reactivation model will likely be biased
towards lower values, due to longer rebound times. We therefore investigated if our parametric
rebound-time distribution can be adjusted to account for situations when o > 0. In the S1
Text, we derive the CGF for the generalized multiple-reactivation model described above (Eq
S$13). In particular, the first and second cumulants can be used to derive an approximate sur-
vival function for the fraction of subjects in remission, which is in excellent agreement with
simulated rebound times (56 Fig). This shows that our probabilistic methodology can be used
to extend the multiple-reactivation model to account for important biological aspects as het-
erogeneity of the reservoir.

Discussion

We carefully analyzed a model for SIV and HIV rebound after treatment interruption devel-
oped by Pinkevych et al. [21] and Hill et al. [20] that takes into account the potential effect of
the reactivation of multiple latently infected cells on the rebound time. In doing so, we were
able to derive a relatively simple statistical model that can be used for the inference of the rate
of recrudescence after treatment cessation, the viral growth rate after recrudescence, and per-
haps ultimately the efficacy of novel HIV treatments in delaying viral rebound. Moreover,
using our mathematical formulation, the model can be compared to similar models of viral
rebound in a statistically rigorous manner. We were able to find strong statistical evidence
(AWAIC = 11.5) in favor of the multiple-reactivation model over a simple model with only
one reactivation event using previously published data from treatment-interruption experi-
ments performed in SIV-infected macaques [2, 5]. We argued that the multiple-reactivation
model is most relevant for data sets that contain subjects with early viral rebound, as our SIV
data set. This is often the case for human data sets as well. For example in a pooled data set of
six ACTG studies [32], 6-63% of subjects showed detectable viremia within a week, and 21-
74% within 2 weeks of ART cessation [11].

Our method captures the uncertainty in SIV rebound times that is due to the stochastic
nature of any recrudescence events that follow the initial activation of a latently infected cell
that led to remission failure. This feature is not present in the approximation derived by Pinke-
vych et al. [21]. This novel aspect slightly improves the model’s ability to describe experimental
data; when we compared our fully stochastic multiple-reactivation model with the condition-
ally deterministic model in the context of our SIV rebound data set, we found a small AWAIC
of 2.1 in favor of the fully stochastic model. This indicates that the most important advantage
of the multiple-reactivation model is the ability to explain fast rebound due to early faster-
than-exponential viral growth.

Our fully stochastic multiple-reactivation model suffers from some of the same limitations
as previous approximations [19, 25, 26]. The exact biological meaning of the initial viral load
parameter v, is ambiguous, and as we have shown with our sensitivity analysis, the estimate of
the recrudescence rate is biased when the value of v, is misspecified. In our Bayesian data anal-
ysis, we resolved this issue by choosing a broad prior distribution for vy, such that uncertainty
in this parameter is propagated to uncertainty in the recrudescence rate . However, the model
is still sensitive to the exact location and spread of this prior distribution. In addition, we
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found that the multiple-reactivation model is also sensitive to within-host variation in the viral
growth rate. Even though this will likely not affect our estimates, because early treatment limits
the heterogeneity of the reservoir, this bias should be taken into account when the model is
applied to treatment interruption experiments with later-treated subjects, in particular in most
human studies.

By specifying the model in terms of the recrudescence rate A, the recrudescence times T},
the initial viral load equivalent vy, and the exponential growth rate g, we have combined all
complex dynamics of reactivation and the initial stochastic growth into a single abstract recru-
descence event. In vitro experiments have pointed out that this may be an oversimplification
[33]. It is likely that a reduced exponential growth rate, for instance due to a therapeutic vac-
cine, also influences the rate of recrudescence, because the chances of successful reactivation
are dependent on the fitness of the clone, which will be influenced by the immune response.
Therefore our parameters A and g are a priori dependent. A possible solution would be to
parameterize the model in terms of the reactivation rate instead of the recrudescence rate, and
add a parameter that determines the probability of successful reactivation. This parameter is
known as the “establishment probability”, and depends on the viral dynamics in a non-trivial
manner [18]. For the aims of our current analysis, the exact relation between the reactivation
and recrudescence rate are not important. However, when the multiple-reactivation model is
applied to novel HIV therapies that aim to (indefinitely) extend remission, it can be important
to distinguish the effects of therapies that reduce viral fitness, such as therapeutic vaccination
[7] or broadly neutralizing antibodies [8, 34, 35], and therapies that reduce the reactivation
rate, such as latency reversing agents [36].

In the presented model formulation and inference, we have ignored the period of drug
washout after treatment interruption. While pharmacokinetics and dynamics may be impor-
tant for precisely estimating the reactivation rate, and for instance the value of v, [26], taking a
drug washout time of 0 days is a conservative assumption for the purpose of this study. Indeed,
incorporating a drug washout decreases the time available for exponential growth and hence
multiple reactivation events that lead to faster-than-exponential growth become more impor-
tant for rapidly rebounding macaques. We verified this by repeating the analyses with a fixed
drug washout period of 1 day, during which recrudescence is not allowed to occur. Compared
to the single-reactivation model, the evidence in favor of the stochastic multiple-reactivation
model increased (AWAIC = 14.3), and compared to the conditionally deterministic multiple-
reactivation model results were as before (AWAIC = 2.2).

Based on our estimates of the effect of the ART initiation time on the recrudescence rate
(o), we predict that each day that ART initiation is delayed, the recrudescence rate increases
by 36%. Recently, the aforementioned genetically barcoded SIV rebound experiments [25]
have been repeated with ART initiated at day 10 and 27 post infection as opposed to day 4
[37]. These barcoded experiments could in principle give a much better estimate of the recru-
descence rate, because for each macaque multiple successful reactivation events can be
observed by counting the frequencies of different STIVmac239M clonotypes. In the same study,
the size of the reservoir was also estimated more directly by measuring cell-associated (CA)
SIV DNA in peripheral blood mononuclear cells (PBMCs). Surprisingly, while the estimated
size of the reservoir based on SIV CA-DNA at the time of treatment interruption is increased
more than a 100-fold when ART is started at day 10 instead of day 4 post infection, the rate of
successful reactivation (inferred by counting clonotype frequencies) only increases 3.6-fold,
which would amount to a 25% increase per day. This rate falls within the 95% CrI of our esti-
mate (viz. [18%, 62%]). When treatment was initiated even later (day 27), the frequency of
CA-DNA at the time of treatment interruption appeared to plateau at the same level as the
day-10 treated macaques. Surprisingly, the inferred recrudescence rate dropped to only a
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2-fold increase compared to the day-4 treated macaques. This strongly suggests that our result
cannot be extrapolated to ART initiation beyond hyper-early infection, making it difficult to
compare these results to most human studies, because treatment almost never starts this early
for human subjects. For the early treated human cohort studies that do exist (e.g. [4]), the com-
parison between macaque and human data can be aided by the fact that macaques are chal-
lenged with a much higher infectious dose, leading to a shorter eclipse phase compared to
humans.

When we consider the 25 macaques used for this study, a large qualitative difference seems
to exist between the animals treated within 3 days and those animals treated after 7 days (S1
Fig). This can potentially be explained by the fact that in the early-treated macaques, no SIV-
specific antibody, CD4", or CD8" T-cell responses could be detected [2], contrary to macaques
treated from day 7 onward. One could even argue that as the time of ART initiation
approaches the time of infection, the viral rebound dynamics after ART interruption starts to
resemble those of an acute infection (Fig 4B). Similar patterns have been found for HIV-1,
where ART initiation during acute HIV infection can lead to an incomplete HIV-specific
humoral immune response, as measured by diagnostic assays [38, 39]. On the other hand,
patients treated during Fiebig stage I or II have been shown to develop detectable HIV-specific
CD8" T-cell responses [40]. Although these responses are lower in magnitude and breadth
than CD8" T-cell responses from untreated individuals, they show enhanced differentiation
into the effector-memory T-cell phenotype, leading to a more functional CD8" memory T-cell
pool compared to patients for whom treatment was initiated later. The effects of early ART on
the formation of immunological memory and the subsequent impact on viral rebound dynam-
ics could be resolved by experimentally filling the gap between macaques treated at day 3 and
day 7, ideally incorporating immunological assays and using a barcoded strain. In order to
extrapolate beyond ART initiation within two weeks, we will likely need models that explicitly
incorporate immune responses and mechanisms like CD8" T-cell exhaustion [41].

Mathematical models are required to bridge the gap between experimental observations
made during treatment interruption experiments and the effect induced by novel curative
treatments. A more accurate mathematical model will therefore increase the precision by
which we can estimate reactivation rates—and importantly the uncertainty of these estimates
—and infer the efficacy of such treatments. Here we showed that with the right mathematical
tools, models of rebound dynamics can easily be refined, and used to measure parameters rele-
vant for recrudescence. As we exemplified by incorporating within-host heterogeneity of the
exponential growth rate, we envisage that our framework can be extended to include many
other biological aspects, such as the pharmacodynamics of antiretrovirals or monoclonal anti-
bodies [34] and detailed reactivation mechanics. Hopefully, this will lead to a more accurate
understanding of SIV and HIV rebound kinetics and the efficacy of novel HIV therapies.

Materials and methods
Data

The collection of the data is described in detail by Whitney et al. [2, 5]. In short, 36 rhesus
macaques were infected with 500 TCIDs, of STVmac251. Combination antiretroviral treat-
ment (a cocktail of tenofovir, emtricitabine, and dolutegravir) was initiated at various times
post infection (6 hours, 1, 2, 3, 7, 10, and 14 days). Treatment continued for 24 weeks, and the
viral load (VL) was monitored for 16 weeks after treatment interruption, while taking weekly
measurements with a limit of detection of 50 RNA copies per mL.
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The cumulants of the process V;

The VL is modeled by the process V; given by Eq 1, where {T;:i =1, 2, ...} are the jump times
of the Poisson process N;, with each jump reflecting a successful reactivation event from the
reservoir. The derivation of the cumulants of the process V, makes use of the fact that condi-
tioned on N, = n, the random times {7}, .. ., T,;} are independent and uniformly distributed on
the interval [0, ] (see e.g. [42]). This simply means that if one knows that t days after treatment
interruption exactly n latently infected cells successfully reactivated, then there was no a priori
preference for when these reactivation events took place within the time window. Or course,
this is only true under the assumption that successful reactivation events can be accurately
modeled by a time-homogeneous Poisson process. An overview of the parameters and vari-
ables used is given in Table 1.

The cumulant-generating function (CGF) of V, is defined as the logarithmic moment-
generating function K(0) = logE[exp (0V,)] = #,0 + 1 x,0° + - - - where the first cumulant
k, = E[V,] and the second cumulant «, = Var[V/,]. First, assume that N; = n so that

Elexp(0V))] =E lexp <9V0ieg(rn)>]

i=1

n

= HE[exp (Oves )] = (1/{; exp (Ov,e®) ds)

where the expectations are conditional on N; = n. In this derivation the second equality follows
from independence, and the third from the identical uniform distributions of the T;. Next, we
drop the condition N; = n, and use instead N; ~ Poisson(Af) and hence

P[N, = n] = e (\t)" /n!. Using the law of total probability, we get

n=0

= 7»/ exp (Ov,e®) ds — At
0

Suppose that m > 0. The m-th cumulant x,, is now given by

dm
=_—_K(0
K = K0

t 7\‘ M
= kv{)”/ e"ds = Mo (e™ —1)
0 mg

= 7»/ (v %) " exp(0v,e*)ds
00 0

" (4)

Notice that we could have used the moment generating function instead of the CGF, although
calculating Eq 4 would have been more involved. A derivation of formulae for the cumulants
of more general Poisson processes can be found in e.g. Privault [43].

Above we have focused on the statistics of the process V, with initial condition V= 0. How-
ever, below we require arbitrary initial conditions V; = v > 0. Fortunately our results easily
generalize to this situation. A VL process that starts at level v at time ¢ = 0 can be written as ve®
+ V, where V, denotes the usual process with initial state V;, = 0. Because ve*' is deterministic,
the cumulant generating function of ve*' + V, is simply given by
logE[exp (Oves + 0V,)] = Ove® + K(0), where K(6) is again the CGF of V,. Therefore, when
the initial condition equals Vj, = v, only the first camulant (the mean) of V, changes from x; to
ve® + k1, and all other cumulants remain unaffected.
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The derivation of the approximation f’t

In the analysis of Pinkevych et al. [21], the Poisson process N, is replaced by a process N, with
jump times T}, T, . .. that is deterministic conditioned on T} = f; the time of the first success-
tul reactivation event. The subsequent recrudescence times T5, T3, . . . are spaced at regular
intervals, with T;,; — T; = 1/A for i > 1. The number of successful reactivation events at time ¢
> tois then given by 1 + |[A(t — t,)| = N, | {T, = t,}, where | x| denotes the largest integer
< x. Eq 2 can now be derived as follows:

(Mt —to)]+1 ‘ 1 — e~e/MMi—1g)]+1)
(-3Y) ) et 2 €
; V€ V€8 T
glt-to) _ g=g/h  _
~ voil e v,

The first step follows from the identity for a geometric progression, and in the second step the
approximation |A(t — ty)| = A(t — £,) is used.

Another way to approximate the stochastic process V, is to assume that A is very large, so
that latently infected cells are continuously reactivated. Each of these reactivations adds vy SIV
RNA copies mL™" to the total VL. In this case it becomes feasible to use an ordinary differential
equation (ODE) to describe the VL dynamics. The initial value problem (IVP) for the large-A
approximation V, of V, is given by

and the solution to this IVP is given by the right-hand-side of Eq 3, which was also noted by
Prague et al. [19]. When A is large, we can approximate 1 — e ¥* with g/A, and e ¥* with 1 in

Eq 2. This implies that V, ~ V, when recrudescence is fast.

The first passage time of the limit of detection

Here, we derive a parametric probability distribution for the time to viral rebound after treat-
ment interruption, which is our main tool for analyzing viral rebound data. Above, we have
seen that the expectation of V, is given by the first cumulant, x, (f) = Av, ; (¢ — 1), and that
the variance equals () = Avj o (¢* — 1). A naive way to derive an approximation for the
time-to-rebound 7 is to approximate the distribution of V, with A/(x, (¢), ,(t)), a normal dis-
tribution with mean «;(#) and variance x,(t), and this is essentially what we will do below.
However, in the S1 Text, we will give a theoretical justification for this naive approach and use
the Kramers-Moyal expansion to replace V, with a transient Ornstein-Uhlenbeck (OU) pro-
cess (see e.g. [44, 45]).

Armed with a Gaussian approximation of the distribution of V,, we can derive an approxi-
mation of the distribution of the viral rebound time. Although numerical methods exist to
compute the density of the true first passage time of the transient OU process V, [46], here we
make the assumption that the LoD ¢ for the VL is much larger than the initial value v,, such
that we can reasonably approximate the survival function S(t) = P[t > t] with the cumulative
density function (CDF) P[V, < £] (cf. [18]). This is a valid approximation, since V; grows
exponentially around the relatively large LoD €. In order to get a probability density function
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for 7, we simply differentiate the approximated survival function S(#) with respect to #:

Ky (1)

where @(y) = = I e dx is the CDF of the standard normal distribution A/(0, 1). By
expanding Eq 5, we get

i, (1) + Vo))’

(0 ) :

l— (Kl(t) + Voegt)
21, (t)

1 1 1(6—(
£k, g, v ) = = X —— -
f(t;h, g, vy, ) Z 2nK2(t)eXP( 5

[(7»1/0 + V.g)e! + kvﬁezgt]

To prove that fis a proper probability distribution, we have to show that fis non-negative, and
we have to find a normalizing constant Z for Eq 6. The reason that the right-hand-side of Eq 5
does not automatically define a proper probability density function (i.e. Z # 1) is because the
diffusion approximation of V; can become negative, and declines exponentially towards — co
with a non-zero probability. We have to condition that this non-biological event does not
occur. The normalizing constant Z is equal to the probability of ever reaching the LoD ¢:

— lim L(l=(r, <>+voegf>>2>dx

H»o/ \/27 "P( 0]

L imf—(()+Vegf 2.V,
- CD(Lw Ve ) ([ D

The fact that f is non-negative follows from a simple calculation, where we have to make the
reasonable assumption the viral load at time ¢ = 0 is below the limit of detection (V,, < €):

(7)

1
fE0,8,v0,6) 20 & (v, + Vig)w,y(t) + (€ — (k,(t) + Voegt))ixvgegt >0

& (y + Vi) (@ — 1) + (fg — hy(e — 1) — Vyge)e' >0

V<i

Ly + Vog) (@ — 1 — (e —1)) > 0

St >1

which is true for all non-negative .

The expression for the rebound-time distribution f, given ¢, allows for estimation of the
parameters A, v, and g by maximization of the likelihood or other inference methods. Notice
that Eqs 6 and 7 somewhat simplify when we take the initial condition to be V; = 0.

However, to justify that we can replace V; with a recurrent OU process, and hence approxi-
mate its distribution with a Gaussian, we have to assume that v, is relatively small compared to
Vi (see SI Text). This means that taking the initial condition V, = 0 might be problematic. In
Fig 2 we compare simulated rebound times with the approximated rebound-time distribution
f(t; A, g vo, £) where we have taken V,, = 0. For large A the approximation and simulations are
in good correspondence, but when A is small we find a discrepancy. Below we solve this by tak-
ing an initial value V, > 0.
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A mixed effects model for treatment-interruption data

Above, we derived our main tool for analyzing viral rebound data: a probability distribution
for the time to viral rebound. However, in order to apply this to our SIV rebound data, we
need additional statistical methodology, which we develop here. As the VL can only be
observed periodically, in any treatment-interruption study the time of viral rebound 7 is
doomed to be interval-censored or right-censored. The viral dynamics after an interval-cen-
sored rebound event can be used to narrow the window in which this event occurred [19]. As
the VL reaches its peak, the growth rate slows down. Therefore, using a model of pure expo-
nential growth could easily underestimate the initial growth rate. To avoid this we use a logistic
growth model with carrying capacity K to infer the exponential growth rate g and the time-to-
rebound 7 from the VL time series. Hence, at t days after treatment interruption, the model
predicts a VL equal to

: ‘
Y = R (= gR)ee ®)

such that V(t) = £. To model a proportional measurement error [47], we assume that the
observed VL has a log-normal distribution around the predicted value:
log V(t) ~ N'(log V(t), 6%). The likelihood of a left-censored observation (i.e. the VL is below
the LoD) is replaced by the cumulative density of the normal distribution.

To account for the limited number of observations, we use random and mixed effects for
the parameters K, g and A. Since we know that the time of treatment initiation (¢srr) is a pre-
dictor for both A and g, we define

logg = O(gtj\RT + € lOg)» = Uy tppr T € (9)

where €, and ¢, are normally-distributed random effects (a standard assumption), the variable
t\xr is the standardized treatment initiation time, and &, and @, are fixed effects.

All we have to do now is describe a model for the parameter 7—the rebound time. For this
we consider three different scenarios.

The multiple-reactivation model. In order to split the effect of the first reactivation event
from subsequent events, we explicitly model the first reactivation time T; ~ Exp()). The likeli-
hood of the difference 7 — T is then given by Eq 6, with initial condition Vj = v,. The parame-
ter v, is modeled as a fixed effect, and we chose a prior distribution around the estimates for
macaques reported previously [26]. The prior distributions and hyper-parameters for all the
model’s parameters are listed in Table 2. We chose broad prior distributions for all the (hyper)
parameters; notice that the prior distributions are defined on a logarithmic scale.

The single-reactivation model. Egs 8 and 9 remain valid for the single-reactivation
model and the reactivation time T} is again assumed to be exponentially distributed with rate
L. However, the difference 7 — T; now has a Dirac-delta distribution, as it is completely deter-
mined by g, vo and €:

4
0

To account for this, the rebound time 7 is no longer a free parameter in the single-reactivation
model, but instead defined by Eq 10.

The conditionally-deterministic multiple-reactivation model. The approximation for
the multiple-reactivation model that was developed by Pinkevych et al. [21] is deterministic
after the first recrudescence event. The time between this first event and rebound can be
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derived using Eq 2 from solving 7 — t, from V_ = £, which leads to

_y =1 AV 4 —8/%
T—1, = log (L—e®")+e
As in the case of the single-reactivation model, we let t, = T; ~ Exp(1).
Model comparison. In order to statistically compare the three different models, we calcu-
lated the Watanabe—Akaike information criterion (WAIC; [27]) as

WAIC = =23 (log (£(D,|p,). — Var,[log £(D,|p,)) )

where the index i runs though the observations (i.e. VL measurements), and s runs though the
Monte-Carlo samples from the posterior distribution. The function £(D,|p,) denotes the likeli-
hood of observation D; given parameters p,. Moreover, we write (x,) for the sample mean of x
and Var,[x,] for the sample variance. The results of the model comparisons are listed in S2
Table.

The mixed-effects model is implemented in the probabilistic programming language Stan
[48]. For each model, we ran 4 independent chains of length 5000 and 1 : 20 thinning, resulting
in a 1000 samples from the posterior distribution. The Gelman-Rubin statistic R was close to 1
for all parameters, indicating good convergence of the chains. The scripts and data used for the
analyses can be downloaded from https://github.com/lanl/multiple-reactivation-model.

Supporting information

S1 Fig. Model fits, used data points and posterior predicted rebound time distributions for
all macaques. The panels (DPI: days post infection) show the VL data (black dots connected
by black lines, with red dots for left-censored observations; the grey dots are ignored) taken
from all 25 macaques for whom rebound was observed, and the stochastic multiple-reactiva-
tion model prediction (blue lines: posterior mean; dark blue band: 50% credible interval (CrI),
light blue band: 50% posterior predictive interval). The estimated time-to-rebound () is given
by the vertical black line. The density plots in the background indicate the posterior predictive
distribution of 7. The green distributions are conditioned on the estimated time of the initial
recrudescence event, the purple distributions are unconditional.

(PDF)

S2 Fig. Marginal posterior densities of the first recrudescence times. Marginal densities of
T, (blue) and the extrapolated f‘l (red) for each macaque are estimated with our multiple-reac-

tivation model. The numbers on top indicate the time of ART initiation.
(PDF)

S3 Fig. Comparison between simulated rebound times and an alternative approximation
for the time-to-rebound distribution. In this case, the law of V, is approximated with a
Gamma distribution with mean x(f) and variance i,(f). The simulated empirical distributions
are shown in color, and our approximation is shown in black. The predicted PDF (A) is calcu-
lated with numerical differentiation. (B) The survival function (i.e. the fraction of subjects S(¢)
that do not have a detectable VL at time ¢) is defined by Eq S5 in S1 Text. For the top, middle,
and bottom panels different values of A are used (A =5d ™", 1d™", and 0.2 d~' respectively).
Notice the different time scale on the horizontal axes. For the remaining parameters, we used
the values: g = 0.5d ™", vy = 0.1 copies mL~", LoD £ = 50 copies mL .

(PDF)
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$4 Fig. Comparison between simulated rebound times and an alternative approximation
for the time-to-rebound distribution. In this case, the master equation is approximated using
the WKB ansatz. The simulated empirical distributions are shown in color, and our approxi-
mation is shown in black. (A) The probability density function (PDF; defined by Eq S11 and
Eq S10 in S1 Text). (B) The survival function (i.e. the fraction of subjects S(t) that do not have
a detectable VL at time ¢) is calculated with numerical integration. For the top, middle, and
bottom panels different values of A are used (A =5d™", 1d™", and 0.2 d™" respectively). Notice
the different time scale on the horizontal axes. For the remaining parameters, we used the val-
ues: g=0.5 d™!, vy = 0.1 copies mL ™", LoD £ = 50 copies mL™".

(PDF)

S5 Fig. Example realizations (in blue) of the generalized viral load process V; with clone-
specific growth rates given by Eq S12 in S1 Text. The black curve shows the expected value
E[V,] = k, (Eq S15). The inset shows the probability density function of the random growth
rate G;. The used parameter values are g= 0.5 d,05=005d7"! (corresponding to u ~ 0.175),
vo=0.1 copiesmL ™, andA=1d".

(PDF)

S6 Fig. Comparison between simulated rebound times and an approximation for the time-
to-rebound distribution. This model allows for variation in the exponential growth rate. The
law of V, is approximated with a Gamma distribution with mean x; (Eq S15in S1 Text) and
variance k, (Eq S16). The simulated empirical distributions are shown in color, and our
approximation is shown in black. The predicted PDF (A) is calculated with numerical differen-
tiation. (B) The survival function (i.e. the fraction of subjects S() that do not have a detectable
VL at time ) is defined as S(¢) = y(k, €/n) with y the regularized incomplete Gamma function
with parameters 7 = k,/k, and k = k? /k,. For the top, middle, and bottom panels different val-
ues of Lareused (A\=5d™", 1d™", and 0.2 d™" respectively). Notice the different time scale on
the horizontal axes. For the remaining parameters, we used the values: g= 0.5 d ™", g5 = 0.05
d™! (corresponding to u & 0.175), v, = 0.1 copies mL™", LoD € = 50 copies mL". The gray
curves correspond to the approximate rebound time distribution with a constant growth rate
(G = g) and are identical to the black curves in S3 Fig.

(PDF)

S1 Text. Approximations of the process V. Here we derive the diffusion approximation of V,
by applying the Kramers-Moyal expansion to the master equation of the stochastic process V.
Further, we explore two other approximations of V. First, we substitute the Gaussian distribu-
tion of V, at time ¢ with a Gamma distribution. Second, we replace the Kramers-Moyal expan-
sion with the Wentzel-Kramers-Brillouin ansatz. Finally, we consider a generalization of the
stochastic multiple-reactivation model that takes into account within-host variation in the
exponential growth rate. We first derive the CGF, and then use the Gamma-distribution
method to again derive an approximate rebound-time distribution for this generalized model.
(PDF)

S1 Table. Parameter estimates and credible intervals. Parameter estimates from the fully sto-
chastic multi-reactivation model (“rebound” columns). and the acute infection (“acute” col-
umns). The point estimates correspond to the mode of the marginal posterior distributions.
(PDF)

S2 Table. Watanabe-Akaike information criterion for the three models. The Watanabe-
Akaike information criterion (WAIC) is averaged over 10 MCMC runs to account for
Monte-Carlo error, which is indicated by the standard error of the mean (SEM). The variance
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k= Var [log £L(D,|p,)] in Eq 11 can be interpreted as the effective number of parameters.
(PDF)

Acknowledgments
We gratefully acknowledge Garrett T. Nieddu for his technical support.

Author Contributions

Conceptualization: Christiaan H. van Dorp, Jessica M. Conway.

Data curation: Dan H. Barouch, James B. Whitney.

Formal analysis: Christiaan H. van Dorp.

Funding acquisition: James B. Whitney, Alan S. Perelson.

Investigation: Christiaan H. van Dorp, Jessica M. Conway, Alan S. Perelson.
Methodology: Christiaan H. van Dorp, Jessica M. Conway, Alan S. Perelson.
Project administration: Alan S. Perelson.

Resources: Dan H. Barouch, James B. Whitney.

Software: Christiaan H. van Dorp.

Supervision: Jessica M. Conway, Alan S. Perelson.

Validation: Christiaan H. van Dorp, Jessica M. Conway, Alan S. Perelson.
Visualization: Christiaan H. van Dorp.

Writing - original draft: Christiaan H. van Dorp, Jessica M. Conway.

Writing - review & editing: Christiaan H. van Dorp, Jessica M. Conway, Alan S. Perelson.

References

1. Murray AJ, Kwon KJ, Farber DL, Siliciano RF. The latent reservoir for HIV-1: How immunologic memory
and clonal expansion contribute to HIV-1 persistence. J Immunol. 2016; 197(2):407—-417. https://doi.
org/10.4049/jimmunol.1600343 PMID: 27382129

2.  Whitney JB, Hill AL, Sanisetty S, Penaloza-MacMaster P, Liu J, Shetty M, et al. Rapid seeding of the
viral reservoir prior to SIV viraemia in rhesus monkeys. Nature. 2014; 512(7512):74—77. https://doi.org/
10.1038/nature 13594 PMID: 25042999

3. Okoye AA, Hansen SG, Vaidya M, Fukazawa Y, Park H, Duell DM, et al. Early antiretroviral therapy lim-
its SIV reservoir establishment to delay or prevent post-treatment viral rebound. Nat Med. 2018; 24
(9):1430-1440. https://doi.org/10.1038/s41591-018-0130-7 PMID: 30082858

4. Colby DJ, Trautmann L, Pinyakorn S, Leyre L, Pagliuzza A, Kroon E, et al. Rapid HIV RNA rebound
after antiretroviral treatment interruption in persons durably suppressed in Fiebig | acute HIV infection.
Nat Med. 2018; 24(7):923-926. https://doi.org/10.1038/s41591-018-0026-6 PMID: 29892063

5. Whitney JB, Lim SY, Osuna CE, Kublin JL, Chen E, Yoon G, et al. Prevention of SIVmac251 reservoir
seeding in rhesus monkeys by early antiretroviral therapy. Nat Commun. 2018; 9(1):5429. https://doi.
org/10.1038/s41467-018-07881-9 PMID: 30575753

6. Byrareddy SN, Arthos J, Cicala C, Villinger F, Ortiz KT, Little D, et al. Sustained virologic control in SIV+
macaques after antiretroviral and a,4 37 antibody therapy. Science. 2016; 354(6309):197—-202. https://
doi.org/10.1126/science.aag1276 PMID: 27738167

7. Borducchi EN, Cabral C, Stephenson KE, Liu J, Abbink P, Ng’ang’a D, et al. Ad26/MVA therapeutic vac-
cination with TLR7 stimulation in SIV-infected rhesus monkeys. Nature. 2016; 540(7632):284—287.
https://doi.org/10.1038/nature20583 PMID: 27841870

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008241 October 1, 2020 23/25


https://doi.org/10.4049/jimmunol.1600343
https://doi.org/10.4049/jimmunol.1600343
http://www.ncbi.nlm.nih.gov/pubmed/27382129
https://doi.org/10.1038/nature13594
https://doi.org/10.1038/nature13594
http://www.ncbi.nlm.nih.gov/pubmed/25042999
https://doi.org/10.1038/s41591-018-0130-7
http://www.ncbi.nlm.nih.gov/pubmed/30082858
https://doi.org/10.1038/s41591-018-0026-6
http://www.ncbi.nlm.nih.gov/pubmed/29892063
https://doi.org/10.1038/s41467-018-07881-9
https://doi.org/10.1038/s41467-018-07881-9
http://www.ncbi.nlm.nih.gov/pubmed/30575753
https://doi.org/10.1126/science.aag1276
https://doi.org/10.1126/science.aag1276
http://www.ncbi.nlm.nih.gov/pubmed/27738167
https://doi.org/10.1038/nature20583
http://www.ncbi.nlm.nih.gov/pubmed/27841870
https://doi.org/10.1371/journal.pcbi.1008241

PLOS COMPUTATIONAL BIOLOGY SIV rebound after treatment interruption

8. Borducchi EN, Liu J, Nkolola JP, Cadena AM, Yu WH, Fischinger S, et al. Antibody and TLR7 agonist
delay viral rebound in SHIV-infected monkeys. Nature. 2018; 563(7731):360—364. https://doi.org/10.
1038/541586-018-0600-6 PMID: 30283138

9. Hill AL, Rosenbloom DI, Goldstein E, Hanhauser E, Kuritzkes DR, Siliciano RF, et al. Real-time predic-
tions of reservoir size and rebound time during antiretroviral therapy interruption trials for HIV. PLoS
Pathog. 2016; 12(4):e1005535. https://doi.org/10.1371/journal.ppat.1005535 PMID: 27119536

10. Pinkevych M, Cromer D, Tolstrup M, Grimm AJ, Cooper DA, Lewin SR, et al. HIV reactivation from
latency after treatment interruption occurs on average every 5-8 days—implications for HIV remission.
PLoS Pathog. 2015; 11(7):€1005000. https://doi.org/10.1371/journal.ppat. 1005000 PMID: 26133551

11.  Conway JM, Perelson AS, Li JZ. Predictions of time to HIV viral rebound following ART suspension that
incorporate personal biomarkers. PLoS Comput Biol. 2019; 15(7):1-26. https://doi.org/10.1371/journal.
pcbi. 1007229 PMID: 31339888

12.  Archin NM, Kirchherr JL, Sung JAM, Clutton G, Sholtis K, Xu Y, et al. Interval dosing with the HDAC
inhibitor vorinostat effectively reverses HIV latency. J Clin Invest. 2017; 127(8):3126—3135. https://doi.
org/10.1172/JC192684 PMID: 28714868

13. Sggaard OS, Graversen ME, Leth S, Olesen R, Brinkmann CR, Nissen SK, et al. The depsipeptide
romidepsin reverses HIV-1 latency in vivo. PLoS Pathog. 2015; 11(9):1-22. https://doi.org/10.1371/
journal.ppat.1005142 PMID: 26379282

14. Peterson CW, Wang J, Deleage C, Reddy S, Kaur J, Polacino P, et al. Differential impact of transplanta-
tion on peripheral and tissue-associated viral reservoirs: Implications for HIV gene therapy. PLoS
Pathog. 2018; 14(4):1-22. https://doi.org/10.1371/journal.ppat. 1006956 PMID: 29672640

15. Vansant G, Bruggemans A, Janssens J, Debyser Z. Block-and-lock strategies to cure HIV infection.
Viruses. 2020; 12(1). https://doi.org/10.3390/v12010084 PMID: 31936859

16. Reeves DB, Duke ER, Hughes SM, Prlic M, Hladik F, Schiffer JT. Anti-proliferative therapy for HIV cure:
a compound interest approach. Sci Rep. 2017; 7(1):4011. https://doi.org/10.1038/s41598-017-04160-3
PMID: 28638104

17. Reeves DB, Duke ER, Wagner TA, Palmer SE, Spivak AM, Schiffer JT. A majority of HIV persistence
during antiretroviral therapy is due to infected cell proliferation. Nat Commun. 2018; 9(1):4811. https://
doi.org/10.1038/s41467-018-06843-5 PMID: 30446650

18. Hill AL, Rosenbloom DI, Fu F, Nowak MA, Siliciano RF. Predicting the outcomes of treatment to eradi-
cate the latent reservoir for HIV-1. Proc Natl Acad Sci USA. 2014; 111(37):13475-13480. https://doi.
org/10.1073/pnas.1406663111 PMID: 25097264

19. Prague M, Gerold JM, Balelli I, Pasin C, Li JZ, Barouch DH, et al. Viral rebound kinetics following single
and combination immunotherapy for HIV/SIV. bioRxiv. 2019;.

20. Hill AL, Rosenbloom DI, Siliciano JD, Siliciano RF. Insufficient evidence for rare activation of latent HIV
in the absence of reservoir-reducing interventions. PLoS Pathog. 2016; 12(8):e1005679. https://doi.org/
10.1371/journal.ppat.1005679 PMID: 27560936

21. Pinkevych M, Kent SJ, Tolstrup M, Lewin SR, Cooper DA, Sggaard OS, et al. Modeling of experimental
data supports HIV reactivation from latency after treatment interruption on average once every 5-8
days. PLoS Pathog. 2016; 12(8):e1005740. https://doi.org/10.1371/journal.ppat.1005740 PMID:
27560972

22. Pearson JE, Krapivsky P, Perelson AS. Stochastic theory of early viral infection: continuous versus
burst production of virions. PLoS Comput Biol. 2011; 7(2):1-17. https://doi.org/10.1371/journal.pcbi.
1001058 PMID: 21304934

23. Conway JM, Konrad BP, Coombs D. Stochastic analysis of pre- and postexposure prophylaxis against
HIV infection. SIAM J Appl Math. 2013; 73(2):904—928. https://doi.org/10.1137/120876800

24. De Scheerder MA, Vrancken B, Dellicour S, Schlub T, Lee E, Shao W, et al. HIV rebound is predomi-
nantly fueled by genetically identical viral expansions from diverse reservoirs. Cell Host Microbe. 2019;
26(3):347-358. https://doi.org/10.1016/j.chom.2019.08.003 PMID: 31471273

25. Fennessey CM, Pinkevych M, Immonen TT, Reynaldi A, Venturi V, Nadella P, et al. Genetically-bar-
coded SV facilitates enumeration of rebound variants and estimation of reactivation rates in nonhuman
primates following interruption of suppressive antiretroviral therapy. PLoS Pathog. 2017; 13(5):
€1006359. https://doi.org/10.1371/journal.ppat.1006359 PMID: 28472156

26. Pinkevych M, Fennessey CM, Cromer D, Tolstrup M, S@gaard OS, Rasmussen TA, et al. Estimating ini-
tial viral levels during Simian Immunodeficiency Virus/Human Immunodeficiency Virus reactivation from
latency. J Virol. 2018; 92(2):e01667—-17. https://doi.org/10.1128/JVI.01667-17 PMID: 29118123

27. Watanabe S. Asymptotic equivalence of Bayes cross validation and widely applicable information crite-
rion in singular learning theory. J Mach Learn Res. 2010; 11:3571-3594.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008241 October 1, 2020 24/25


https://doi.org/10.1038/s41586-018-0600-6
https://doi.org/10.1038/s41586-018-0600-6
http://www.ncbi.nlm.nih.gov/pubmed/30283138
https://doi.org/10.1371/journal.ppat.1005535
http://www.ncbi.nlm.nih.gov/pubmed/27119536
https://doi.org/10.1371/journal.ppat.1005000
http://www.ncbi.nlm.nih.gov/pubmed/26133551
https://doi.org/10.1371/journal.pcbi.1007229
https://doi.org/10.1371/journal.pcbi.1007229
http://www.ncbi.nlm.nih.gov/pubmed/31339888
https://doi.org/10.1172/JCI92684
https://doi.org/10.1172/JCI92684
http://www.ncbi.nlm.nih.gov/pubmed/28714868
https://doi.org/10.1371/journal.ppat.1005142
https://doi.org/10.1371/journal.ppat.1005142
http://www.ncbi.nlm.nih.gov/pubmed/26379282
https://doi.org/10.1371/journal.ppat.1006956
http://www.ncbi.nlm.nih.gov/pubmed/29672640
https://doi.org/10.3390/v12010084
http://www.ncbi.nlm.nih.gov/pubmed/31936859
https://doi.org/10.1038/s41598-017-04160-3
http://www.ncbi.nlm.nih.gov/pubmed/28638104
https://doi.org/10.1038/s41467-018-06843-5
https://doi.org/10.1038/s41467-018-06843-5
http://www.ncbi.nlm.nih.gov/pubmed/30446650
https://doi.org/10.1073/pnas.1406663111
https://doi.org/10.1073/pnas.1406663111
http://www.ncbi.nlm.nih.gov/pubmed/25097264
https://doi.org/10.1371/journal.ppat.1005679
https://doi.org/10.1371/journal.ppat.1005679
http://www.ncbi.nlm.nih.gov/pubmed/27560936
https://doi.org/10.1371/journal.ppat.1005740
http://www.ncbi.nlm.nih.gov/pubmed/27560972
https://doi.org/10.1371/journal.pcbi.1001058
https://doi.org/10.1371/journal.pcbi.1001058
http://www.ncbi.nlm.nih.gov/pubmed/21304934
https://doi.org/10.1137/120876800
https://doi.org/10.1016/j.chom.2019.08.003
http://www.ncbi.nlm.nih.gov/pubmed/31471273
https://doi.org/10.1371/journal.ppat.1006359
http://www.ncbi.nlm.nih.gov/pubmed/28472156
https://doi.org/10.1128/JVI.01667-17
http://www.ncbi.nlm.nih.gov/pubmed/29118123
https://doi.org/10.1371/journal.pcbi.1008241

PLOS COMPUTATIONAL BIOLOGY SIV rebound after treatment interruption

28. Kass RE, Raftery AE. Bayes factors. J Am Stat Assoc. 1995; 90(430):773-795. https://doi.org/10.1080/
01621459.1995.10476572

29. Ramratnam B, Bonhoeffer S, Binley J, Hurley A, Zhang L, Mittler JE, et al. Rapid production and clear-
ance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. The Lancet. 1999;
354(9192):1782-1785. https://doi.org/10.1016/S0140-6736(99)02035-8 PMID: 10577640

30. Jones BR, Kinloch NN, Horacsek J, Ganase B, Harris M, Harrigan PR, et al. Phylogenetic approach to
recover integration dates of latent HIV sequences within-host. Proc Natl Acad Sci USA. 2018; 115(38):
E8958-E8967. hitps://doi.org/10.1073/pnas.1802028115 PMID: 30185556

31. Queen SE, Mears BM, Kelly KM, Dorsey JL, Liao Z, Dinoso JB, et al. Replication-competent simian
immunodeficiency virus (SIV) Gag escape mutations archived in latent reservoirs during antiretroviral
treatment of SIV-infected macaques. J Virol. 2011; 85(17):9167-9175. https://doi.org/10.1128/JVI.
00366-11 PMID: 21715484

32. LiJZ, Etemad B, Ahmed H, Aga E, Bosch RJ, Mellors JW, et al. The size of the expressed HIV reservoir
predicts timing of viral rebound after treatment interruption. AIDS. 2016; 30(3):343-353. https://doi.org/
10.1097/QAD.0000000000000953 PMID: 26588174

33. Hataye JM, Casazza JP, Best K, Liang CJ, Immonen TT, Ambrozak DR, et al. Principles governing
establishment versus collapse of HIV-1 cellular spread. Cell Host Microbe. 2019; 26(6):748—763.
https://doi.org/10.1016/j.chom.2019.10.006 PMID: 31761718

34. Mendoza P, Gruell H, Nogueira L, Pai JA, Butler AL, Millard K, et al. Combination therapy with anti-HIV-
1 antibodies maintains viral suppression. Nature. 2018; 561(7724):479—484. hitps://doi.org/10.1038/
s41586-018-0531-2 PMID: 30258136

35. Crowell TA, Colby DJ, Pinyakorn S, Sacdalan C, Pagliuzza A, Intasan J, et al. Safety and efficacy of
VRCO1 broadly neutralising antibodies in adults with acutely treated HIV (RV397): a phase 2, rando-
mised, double-blind, placebo-controlled trial. Lancet HIV. 2019; 6(5):e297—e306. https://doi.org/10.
1016/S2352-3018(19)30053-0 PMID: 31000477

36. Lim SY, Osuna CE, Hraber PT, Hesselgesser J, Gerold JM, Barnes TL, et al. TLR7 agonists induce

transient viremia and reduce the viral reservoir in SIV-infected rhesus macaques on antiretroviral ther-
apy. Sci Transl Med. 2018; 10(439). https://doi.org/10.1126/scitransimed.aao4521 PMID: 29720451

37. Pinkevych M, Fennessey CM, Cromer D, Reid C, Trubey CM, Lifson JD, et al. Predictors of SIV recru-
descence following antiretroviral treatment interruption. eLife. 2019; 8:e49022. https://doi.org/10.7554/
eLife.49022 PMID: 31650954

38. de Souza MS, Pinyakorn S, Akapirat S, Pattanachaiwit S, Fletcher JL, Chomchey N, et al. Initiation of
antiretroviral therapy during acute HIV-1 infection leads to a high rate of nonreactive HIV serology. Clin
Infect Dis. 2016; 63(4):555-561. https://doi.org/10.1093/cid/ciw365 PMID: 27317797

39. Manak MM, Jagodzinski LL, Shutt A, Malia JA, Leos M, Ouellette J, et al. Decreased seroreactivity in
individuals initiating antiretroviral therapy during acute HIV infection. J Clin Microbiol. 2019; 57(10).
https://doi.org/10.1128/JCM.00757-19 PMID: 31217270

40. Ndhlovu ZM, Kazer SW, Nkosi T, Ogunshola F, Muema DM, Anmole G, et al. Augmentation of HIV-spe-
cific T cell function by immediate treatment of hyperacute HIV-1 infection. Sci Transl Med. 2019; 11
(493). https://doi.org/10.1126/scitranslmed.aau0528 PMID: 31118290

41. CaoY, Cartwright EK, Silvestri G, Perelson AS. CD8+ lymphocyte control of SIV infection during antire-
troviral therapy. PLoS Pathog. 2018; 14(10):e1007350. https://doi.org/10.1371/journal.ppat.1007350
PMID: 30308068

42. Norris JR. Continuous-time Markov chains I. In: Markov Chains. Cambridge: Cambridge University
Press; 1997. p. 60-107.

43. Privault N. Understanding Markov chains. 2nd ed. Singapore: Springer; 2018.
44. van Kampen NG. Stochastic processes in physics and chemistry. 3rd ed. Amsterdam: Elsevier; 2007.
45. Steele JM. Stochastic calculus and financial applications. New York: Springer; 2001.

46. AliliL, Patie P, Pedersen JL. Representations of the first hitting time density of an Ornstein-Uhlenbeck
process. Stochastic Models. 2005; 21(4):967-980. https://doi.org/10.1080/15326340500294702

47. LimaVD, WangL, Brumme C, Wu L, Montaner JS, Harrigan PR. Estimation of measurement error in
plasma HIV-1 RNA assays near their limit of quantification. PLoS One. 2017; 12(2):e0171155. https://
doi.org/10.1371/journal.pone.0171155 PMID: 28152073

48. Carpenter B, Gelman A, Hoffman M, Lee D, Goodrich B, Betancourt M, et al. Stan: A probabilistic pro-
gramming language. J Stat Softw. 2017; 76(1):1-32. https://doi.org/10.18637/jss.v076.i01

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008241 October 1, 2020 25/25


https://doi.org/10.1080/01621459.1995.10476572
https://doi.org/10.1080/01621459.1995.10476572
https://doi.org/10.1016/S0140-6736(99)02035-8
http://www.ncbi.nlm.nih.gov/pubmed/10577640
https://doi.org/10.1073/pnas.1802028115
http://www.ncbi.nlm.nih.gov/pubmed/30185556
https://doi.org/10.1128/JVI.00366-11
https://doi.org/10.1128/JVI.00366-11
http://www.ncbi.nlm.nih.gov/pubmed/21715484
https://doi.org/10.1097/QAD.0000000000000953
https://doi.org/10.1097/QAD.0000000000000953
http://www.ncbi.nlm.nih.gov/pubmed/26588174
https://doi.org/10.1016/j.chom.2019.10.006
http://www.ncbi.nlm.nih.gov/pubmed/31761718
https://doi.org/10.1038/s41586-018-0531-2
https://doi.org/10.1038/s41586-018-0531-2
http://www.ncbi.nlm.nih.gov/pubmed/30258136
https://doi.org/10.1016/S2352-3018(19)30053-0
https://doi.org/10.1016/S2352-3018(19)30053-0
http://www.ncbi.nlm.nih.gov/pubmed/31000477
https://doi.org/10.1126/scitranslmed.aao4521
http://www.ncbi.nlm.nih.gov/pubmed/29720451
https://doi.org/10.7554/eLife.49022
https://doi.org/10.7554/eLife.49022
http://www.ncbi.nlm.nih.gov/pubmed/31650954
https://doi.org/10.1093/cid/ciw365
http://www.ncbi.nlm.nih.gov/pubmed/27317797
https://doi.org/10.1128/JCM.00757-19
http://www.ncbi.nlm.nih.gov/pubmed/31217270
https://doi.org/10.1126/scitranslmed.aau0528
http://www.ncbi.nlm.nih.gov/pubmed/31118290
https://doi.org/10.1371/journal.ppat.1007350
http://www.ncbi.nlm.nih.gov/pubmed/30308068
https://doi.org/10.1080/15326340500294702
https://doi.org/10.1371/journal.pone.0171155
https://doi.org/10.1371/journal.pone.0171155
http://www.ncbi.nlm.nih.gov/pubmed/28152073
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1371/journal.pcbi.1008241

