
Transportation Research Part C 121 (2020) 102829

Available online 16 November 2020
0968-090X/© 2020 Elsevier Ltd. All rights reserved.

Dynamic pricing and fleet management for electric autonomous
mobility on demand systems☆

Berkay Turan *, Ramtin Pedarsani, Mahnoosh Alizadeh
Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, 93106 USA

A R T I C L E I N F O

Keywords:
Autonomous mobility-on-demand systems
Optimization and optimal control
Reinforcement learning

A B S T R A C T

The proliferation of ride sharing systems is a major drive in the advancement of autonomous and
electric vehicle technologies. This paper considers the joint routing, battery charging, and pricing
problem faced by a profit-maximizing transportation service provider that operates a fleet of
autonomous electric vehicles. We first establish the static planning problem by considering time-
invariant system parameters and determine the optimal static policy. While the static policy
provides stability of customer queues waiting for rides even if consider the system dynamics, we
see that it is inefficient to utilize a static policy as it can lead to long wait times for customers and
low profits. To accommodate for the stochastic nature of trip demands, renewable energy
availability, and electricity prices and to further optimally manage the autonomous fleet given the
need to generate integer allocations, a real-time policy is required. The optimal real-time policy
that executes actions based on full state information of the system is the solution of a complex
dynamic program. However, we argue that it is intractable to exactly solve for the optimal policy
using exact dynamic programming methods and therefore apply deep reinforcement learning to
develop a near-optimal control policy. The two case studies we conducted in Manhattan and San
Francisco demonstrate the efficacy of our real-time policy in terms of network stability and
profits, while keeping the queue lengths up to 200 times less than the static policy.

1. Introduction

The rapid evolution of enabling technologies for autonomous driving coupled with advancements in eco-friendly electric vehicles
(EVs) has facilitated state-of-the-art transportation options for urban mobility. Owing to these developments in automation, it is
possible for an autonomous-mobility-on-demand (AMoD) fleet of autonomous EVs to serve the society’s transportation needs, with
multiple companies now heavily investing in AMoD technology (https://www.cbinsights.com/research/autonomous- driverless-ve
hicles-corporations-list/).

The introduction of autonomous vehicles for mobility on demand services provides an opportunity for better fleet management.
Specifically, idle vehicles can be rebalanced throughout the network in order to prevent accumulating at certain locations and to serve
induced demand at every location. Autonomous vehicles allow rebalancing to be performed centrally by a platform operator who
observes the state of all the vehicles and the demand, rather than locally by individual drivers. Furthermore, EVs provide opportunities
for cheap and environment-friendly energy resources (e.g., solar energy). However, electricity supplies and prices differ among the

☆ This work is supported by the NSF Grant 1847096.
* Corresponding author.

E-mail addresses: bturan@ucsb.edu (B. Turan), ramtin@ucsb.edu (R. Pedarsani), alizadeh@ucsb.edu (M. Alizadeh).

Contents lists available at ScienceDirect

Transportation Research Part C

journal homepage: www.elsevier.com/locate/trc

https://doi.org/10.1016/j.trc.2020.102829
Received 5 May 2020; Received in revised form 30 September 2020; Accepted 5 October 2020

mailto:bturan@ucsb.edu
mailto:ramtin@ucsb.edu
mailto:alizadeh@ucsb.edu
www.sciencedirect.com/science/journal/0968090X
https://www.elsevier.com/locate/trc
https://doi.org/10.1016/j.trc.2020.102829
https://doi.org/10.1016/j.trc.2020.102829
http://crossmark.crossref.org/dialog/?doi=10.1016/j.trc.2020.102829&domain=pdf
https://doi.org/10.1016/j.trc.2020.102829

Transportation Research Part C 121 (2020) 102829

2

network both geographically and temporally. As such, this diversity can be exploited for cheaper energy options when the fleet is
operated by a platform operator that is aware of the electricity prices throughout the whole network. Moreover, a dynamic pricing
scheme for rides is essential to maximize profits earned by serving the customers. Coupling an optimal fleet management policy with a
dynamic pricing scheme allows the revenues to be maximized while reducing the rebalancing cost and the waiting time of the cus
tomers by adjusting the induced demand.

We consider a model that captures the opportunities and challenges of an AMoD fleet of EVs, and consists of complex state and
action spaces. In particular, the platform operator has to consider the number of customers waiting to be served at each location (ride
request queue lengths), the electricity prices, traffic conditions, and the states of the EVs (locations, battery energy levels) in order to
make decisions. These decisions consist of pricing for rides for every origin–destination (OD) pair and routing/charging decision for
every vehicle in the network. Upon taking an action, the state of the network undergoes through a stochastic transition due to the
randomness in customer behaviour, electricity prices, and travel times.

We first adopt the common approach of network flow modeling to develop an optimal static pricing, routing, and charging policy
that we use as a baseline in this paper. However, flow-based solutions generate fractional flows which can not directly be implemented.
Moreover, a static policy executes same actions independent of the network state and is oblivious to the stochastic events that occur in
the real setting. Hence, it is not optimal to utilize the static policy in a real dynamic environment. Therefore, a real-time policy that
generates integer solutions and acknowledges the network state is required, and can be determined by solving the underlying dynamic
program. Due to the continuous and high dimensional state-action spaces however, it is infeasible to develop an optimal real-time
policy using exact dynamic programming algorithms. As such, we utilize deep reinforcement learning (RL) to develop a near-
optimal policy. Specifically, we show that it is possible to learn a policy via Proximal Policy Optimization (PPO) (Schulman et al.,
2017) that increases the total profits generated by jointly managing the fleet of EVs (by making routing and charging decisions) and
pricing for the rides. We demonstrate the performance of our policy by using the total profits generated and the queue lengths as
metrics.

Our contributions can be summarized as follows:

1. We formalize a vehicle and network model that captures the aforementioned characteristics of an AMoD fleet of EVs as well as the
stochasticity in demand and electricity prices.

2. We analyze the static problem, where we consider a time-invariant environment (time-invariant arrivals, electricity prices, etc.) to
characterize the family of policies that guarantee stability of the dynamic system, to gain insight towards the actual dynamic
problem, and to further provide a baseline for comparison.

3. We employ deep RL methods to learn a joint pricing, routing and charging policy that effectively stabilizes the queues and increases
the profits.

We visualize our real-time framework as a schematic diagram in Fig. 1 and preview our results in Fig. 2, showing that a real-time
pricing and routing policy can successfully keep the queue lengths 400 times lower than the static policy. This policy is also able to
decrease the charging costs by 25% by utilizing smart charging strategies (which will be demonstrated in Section 5).

Related work: Comprehensive research perceiving various aspects of AMoD systems is being conducted in the literature. Studies
surrounding fleet management focus on optimal EV charging in order to reduce electricity costs as well as optimal vehicle routing in
order to serve the customers and to rebalance the empty vehicles throughout the network so as to reduce the operational costs and the
customers’ waiting times. Time-invariant control policies adopting queueing theoretical (Zhang et al., 2016), fluidic (Pavone et al.,

Fig. 1. The schematic diagram of our framework. Our deep RL agent processes the state of the vehicles, queues and electricity prices and outputs a
control policy for pricing as well as autonomous EVs’ routing and charging.

B. Turan et al.

Transportation Research Part C 121 (2020) 102829

3

2012), network flow (Rossi et al., 2018), and Markovian (Volkov et al., 2012) models have been developed by using the steady state of
the system. The authors of (Wei et al., 2019) consider ride-sharing systems with mixed autonomy. However, the proposed control
policies in these papers are not adaptive to the time-varying nature of the future demand. As such, there is work on developing time-
varying model predictive control (MPC) algorithms (Zhang et al., 2016; Miao et al., 2016; Iglesias et al., 2017; Miao et al., 2017; Tsao
et al., 2018). The authors of (Iglesias et al., 2017; Miao et al., 2017) propose data-driven algortihms and the authors of (Tsao et al.,
2018) propose a stochastic MPC algorithm focusing on vehicle rebalancing. In (Zhang et al., 2016), the authors also consider a fleet of
EVs and hence propose an MPC approach that optimizes vehicle routing and scheduling subject to energy constraints. Using a fluid-
based optimization framework, the authors of (Spieser et al., 2016) investigate tradeoffs between fleet size, rebalancing cost, and
queueing effects in terms of passenger and vehicle flows under time-varying demand. The authors in (Swaszek and Cassandras, 2019)
develop a parametric controller that approximately solves the intractable dynamic program for rebalancing over an infinite-horizon.
Similar to AMoD, carsharing systems also require rebalancing in order to operate efficiently. By adopting a Markovian model, the
authors of (Repoux et al., 2019) introduce a dynamic proactive rebalancing algorithm for carsharing systems by taking into account an
estimate of the future demand using historical data. In (Boyaci et al., 2017), the authors develop an integrated multi-objective mixed
integer linear programming optimization and discrete event simulation framework to optimize vehicle and personnel rebalancing in an
electric carsharing system. Using a network-flow based model, the authors of (Warrington and Ruchti, 2019) propose a two-stage
approximation scheme to establish a real-time rebalancing algorithm for shared mobility systems that accounts for stochasticity in
customer demand and journey valuations.

Aside from these, there are studies on applications of RL methods in transportation such as adaptive routing (Mao and Shen, 2018),
traffic management (Zhu and Ukkusuri, 2014; Walraven et al., 2016), traffic signal control (Zhu et al., 2015; Li et al., 2016), and
dynamic routing of autonomous vehicles with the goal of reducing congestion in mixed autonomy traffic networks (Lazar et al., 2019).
Relevant studies to our work aim to develop dynamic policies for rebalancing as well as ride request assignment via decentralized
reinforcement learning approaches (Han et al., 2016; Guériau and Dusparic, 2018; Wen et al., 2017; Lin et al., 2018). In these works
however, the policies are developed and applied locally by each autonomous vehicle and this decentralized approach may sacrifice
system level optimality. A centralized deep RL approach tackling the rebalancing problem is proposed in (Mao et al., 2020), which is
closest to the approach we adopt in this paper. Although their study adopts a centralized deep RL approach similar to our paper, they
have a different system model and solely focus on the rebalancing problem and do not consider pricing for rides as a control variable for
the queues nor the charging problem of EVs as reviewed next.

Regarding charging strategies for large populations of EVs, (Veldman and Verzijlbergh, 2015; Su et al., 2012; Mukherjee and Gupta,
2015) provide in-depth reviews and studies of smart charging technologies. An agent-based model to simulate the operations of an
AMoD fleet of EVs under various vehicle and infrastructure scenarios has been examined in (Chen et al., 2016). By augmenting optimal
battery management of autonomous electric vehicles to the classic dial-a-ride problem (DARP), the authors of (Bongiovanni et al.,
2019) introduce the electric autonomous DARP that aims to minimize the total travel time of all the vehicles and riders. The authors of
(Tucker et al., 2019) propose an online charge scheduling algorithm for EVs providing AMoD services. By adopting a static network
flow model in (Turan et al., 2019), the benefits of smart charging have been investigated and approximate closed form expressions that
highlight the trade-off between operational costs and charging costs have been derived. Furthermore, (Rossi et al., 2018) studies
interactions between AMoD systems and the power grid. In addition, (Chen and Kockelman, 2016) studies the implications of pricing
schemes on an AMoD fleet of EVs. In (Guan et al., 2019), the authors propose a dynamic joint pricing and routing strategy for non-
electric shared mobility on demand services. (Sheppard et al., 2019) studies a quadratic programming problem in order to jointly
optimize vehicle dispatching, charge scheduling, and charging infrastructure, while the demand is defined exogenously.

To the best of our knowledge, there is no existing work on centralized real-time management for electric AMoD systems addressing
the joint optimization scheme of vehicle routing and charging as well as pricing for the rides. In this paper we aim to highlight the
benefits of a real-time controller that jointly: (i) routes the vehicles throughout the network in order to serve the demand for rides as
well as to relocate the empty vehicles for further use, (ii) executes smart charging strategies by exploiting the diversity in the electricity

Fig. 2. (a) The optimal static policy manages to stabilize the queues over a very long time period but is unable to clear them whereas (b) RL control
policy stabilizes the queues and manages to keep them significantly low (note the scales).

B. Turan et al.

Transportation Research Part C 121 (2020) 102829

4

prices (both geographically and temporally) in order to minimize charging costs, and (iii) adjusts the demand for rides by setting prices
in order to stabilize the system (i.e., the queues of customers waiting for rides) while maximizing profits.

Paper Organization: The remainder of the paper is organized as follows. In Section 2, we present the system model and define the
platform operator’s optimization problem. In Section 3, we discuss the static planning problem associated with the system model and
characterize the optimal static policy. In Section 4, we propose a method for developing a near-optimal real-time policy using deep
reinforcement learning. In Section 5, we present the numerical results of the case studies we have conducted in Manhattan and San
Francisco to demonstrate the performance of our real-time control policy. Finally, we conclude the paper in Section 6.

2. System model and problem definition

Network and Demand Models: We consider a fleet of AMoD EVs operating within a transportation network characterized by a
fully connected graph consisting of M = {1,…,m} nodes that can each serve as a trip origin or destination. We study a discrete-time
system with time periods normalized to integral units t ∈ {0,1,2,…}. In this discrete-time system, we model the arrival of the potential
riders with OD pair (i, j) as a Poisson process with an arrival rate of λij(t) in period t, where λii(t) = 0. We adopted a price-responsive
rider model studied in (Bimpikis et al., 2019). We assume that the riders are heterogeneous in terms of their willingness to pay. In
particular, if the price for receiving a ride from node i to node j in period t is set to ℓij(t), the induced arrival rate for rides from i to j is
given by Λij(t) = λij(t)(1 −F(ℓij(t))), where F(⋅) is the cumulative distribution of riders’ willingness to pay with a support of [0,ℓmax] 1.
Thus, the number of new ride requests in time period t is Aij(t)̃Pois(Λij(t)) for OD pair (i, j).

Vehicle Model: To capture the effect of trip demand and the associated charging and routing (routing also implies rebalancing of
the empty vehicles) decisions on the costs associated with operating the fleet (maintenance, mileage, etc.), we assume that each
autonomous vehicle in the fleet has a per period operational cost of β. Furthermore, as the vehicles are electric, they have to sustain
charge in order to operate. Without loss of generality, we assume there is a charging station placed at each node i ∈ M . To charge at
node i during time period t, the operator pays a price of electricity pi(t) per unit of energy. We assume that all EVs in the fleet have a
battery capacity denoted as vmax ∈ Z+; therefore, each EV has a discrete battery energy level v ∈ V , where V = {v ∈ ℕ|0⩽v⩽vmax}. In
our discrete-time model, we assume each vehicle takes one period to charge one unit of energy and τij periods to travel between OD pair
(i, j), while consuming vij units of energy2.

Ride Hailing Model: The platform operator dynamically routes the fleet of EVs in order to serve the demand at each node. Cus
tomers that purchase a ride are not immediately matched with a ride, but enter the queue for OD pair (i,j). After the platform operator
executes routing decisions for the fleet, the customers in the queue for OD pair (i, j) are matched with rides and served in a first-come,
first-served discipline. A measure of the expected wait time is not available to each arriving customer. However, the operator knows
that longer wait times will negatively affect their business and hence seeks to minimize the total wait time experienced by users.
Denote the queue length for OD pair (i, j) by qij(t). If after serving the customers, the queue length qij(t) > 0, the platform operator is
penalized by a fixed cost of w per person at the queue to account for the value of time of the customers.

Platform Operator’s Problem: We consider a profit-maximizing AMoD operator that manages a fleet of EVs that make trips to
provide transportation services to customers. The operator’s goal is to maximize profits by (1) setting prices for rides and hence
managing customer demand at each node; (2) optimally operating the AMoD fleet (i.e., charging and routing) to minimize operational
and charging costs. We will study two types of control policies the platform operator utilizes: (1) a static policy, where the pricing,
routing and charging decisions are time invariant and independent of the state of the system; (2) a real-time policy, where the pricing,
routing and charging decisions are dependent on the system state.

3. Analysis of the static problem

In this section, we establish and discuss the static planning problem to provide a measure for comparison and demonstrate the
efficacy of the real-time policy (which will be discussed in Section 4). To do so, we consider the fluid scaling of the dynamic network
and characterize the static problem via a network flow formulation. Under this setting, we use the expected values of the variables
(arrivals and prices of electricity) and ignore their time dependent dynamics, while allowing the vehicle routing decisions to be flows
(real numbers) rather than integers. The static problem is convenient for determining the optimal static pricing, routing, and charging
policy, under which the queueing network of the dynamic system is stable (Pedarsani et al., 2017)3.

3.1. Static profit maximization problem

We formulate the static optimization problem via a network flow model that aims to maximize the platform operator’s profits. The

1 For brevity of notation, we uniformly set ℓmax to be the maximum willingness to pay for all OD pairs without loss of generality. Our results can
be derived in a similar fashion by replacing ℓmax with ℓij

max, where ℓij
max is the maximum willingness to pay for OD pair (i, j).

2 In this paper, we consider the travel times to be constant and exogenously defined for the time period the policy is developed for. This is because
we assume that the number of AMoD vehicles is much less compared to the rest of the traffic. Also, to consider changing traffic conditions
throughout the day, it is possible to train multiple static and real-time control policies for the different time intervals.

3 The stability condition that we are interested in is rate stability of all queues. A queue for OD pair (i, j) is rate stable if limt→∞qij(t)/t = 0.

B. Turan et al.

Transportation Research Part C 121 (2020) 102829

5

platform operator maximizes its profits by setting prices and making routing and charging decisions such that the system remains
stable.

Let ℓij be the prices for rides for OD pair (i, j), xv
ij be the number of vehicles at node i with energy level v being routed to node j, and

xv
ic be the number of vehicles charging at node i starting with energy level v. We state the platform operator’s profit maximization

problem as follows:

max
xv

ic ,x
v
ij ,ℓij

∑

i∈M

∑

j∈M

λijℓij
(
1 −F

(
ℓij
))

−
∑

i∈M

∑vmax−1

v=0
(β + pi)xv

ic −β
∑

i∈M

∑

j∈M

∑vmax

v=vij

xv
ijτij (1a)

s.t. λij
(
1 −F

(
ℓij
))

⩽
∑vmax

v=vij

xv
ij ∀i, j ∈ M , (1b)

xv
ic +

∑

j∈M

xv
ij = xv−1

ic +
∑

j∈M

xv+vji
ji ∀i ∈ M , ∀v ∈ V , (1c)

xvmax
ic = 0 ∀i ∈ M , (1d)

xv
ij = 0 ∀v < vij, ∀i, j ∈ M , (1e)

xv
ic⩾0, xv

ij⩾0 ∀i, j ∈ M , ∀v ∈ V , (1f)

xv
ic = xv

ij = 0 ∀v ∕∈ V , ∀i, j ∈ M . (1g)

The first term in the objective function in (1a) accounts for the aggregate revenue the platform generates by providing rides for
λij(1 −F(ℓij)) number of riders with a price of ℓij. The second term is the operational and charging costs incurred by the charging
vehicles (assuming that pi(t) = pi ∀t under the static setting), and the last term is the operational costs of the trip-making vehicles
(including rebalancing trips).

The constraint (1b) requires the platform to operate at least as many vehicles to serve all the induced demand between any two
nodes i and j (The rest are the vehicles travelling without passengers, i.e., rebalancing vehicles). We will refer to this as the demand
satisfaction constraint. The constraint (1c) is the flow balance constraint for each node and each battery energy level, which restricts the
number of available vehicles at node i and energy level v to be the sum of arrivals from all nodes (including idle vehicles) and vehicles
that are charging with energy level v −1. The constraint (1d) ensures that the vehicles with full battery do not charge further, and the
constraint (1e) ensures the vehicles sustain enough charge to travel between OD pair (i, j).

The solution to the optimization problem in (1) is the optimal static policy that consists of optimal prices as well as optimal vehicle
routing and charging decisions. This policy can not directly be implemented in a real environment because it does not yield integer
valued solutions. It is possible generate integer-valued solutions to be implemented in a real environment using the fractional flows (e.
g., randomizing the vehicle decisions according to the flows, which we do in Section 5), yet the methodology is not the focus of our
work. Instead, we highlight a sufficient condition for a realizable policy (generating integer valued actions) to provide stability ac
cording to the feasible solutions of (1):

Proposition 1. Let {ℓ̃ij, x̃v
ij, x̃

v
ic} be a feasible solution of (1). Let μ be a policy that generates integer actions and can be implemented in the real

environment. Then, μ guarantees stability of the system if for all OD pairs (i, j):

1. The time average of the induced arrivals equals (1 −F(ℓ̃ij)), and
2. The time average of the routed vehicles equals

∑vmax
v=vij

x̃v
ij.

The proof of Proposition 1 is provided in Appendix A. According to Proposition 1, for a static pricing policy with the optimal prices
ℓ*

ij, there exists an integer-valued routing and charging policy that maintains stability of the system.

Corollary 1.1. An example policy that generates integer-valued actions is randomizing according to the flows. Precisely, given a feasible
solution {ℓ̃ij, x̃v

ij, x̃
v
ic} of (1), integer-valued actions can be generated by routing a vehicle at node i with energy level v to node j with probability

ψv
ij =

x̃v
ij

∑m

k=1
x̃v

ik + xv
ic

,

and charging with probability

ψv
ic =

x̃v
ic

∑m

k=1
x̃v

ik + xv
ic

,

B. Turan et al.

Transportation Research Part C 121 (2020) 102829

6

∀i, j ∈ M and ∀v ∈ V . Combining this randomized policy with a static pricing policy of ℓij(t) = ℓ̃ij, ∀t, results in a policy satisfying the
criteria in Proposition 1. The optimization problem in (1) is non-convex for a general F(⋅). Nonetheless, when the platform’s profits
are convex in the induced demand λij(1 −F(⋅)), it can be rewritten as a convex optimization problem and can be solved exactly. Hence,

we assume that the rider’s willingness to pay is uniformly distributed in [0,ℓmax], i.e., F
(

ℓij
)

=
ℓij

ℓmax

4.

Marginal Pricing: The prices for rides are a crucial component of the profits generated. The next proposition highlights how the
optimal prices ℓ*

ij for rides are related to the network parameters, prices of electricity, and the operational costs.

Proposition 2. Let ν*
ij be optimal the dual variable corresponding to the demand satisfaction constraint for OD pair (i,j). The optimal

prices ℓ*
ij are:

ℓ*
ij =

ℓmax + ν*
ij

2
. (2)

These prices can be upper bounded by:

ℓ*
ij⩽

ℓmax + β
(
τij + τji + vij + vji

)
+ vijpj + vjipi

2
(3)

Moreover, with these optimal prices ℓ*
ij, the profits generated per period is:

P =
∑m

i=1

∑m

j=1

λij

ℓmax

(
ℓmax −ℓ*

ij

)2
. (4)

The proof of Proposition 2 is provided in Appendix B. Observe that the profits in Eq. (4) are decreasing as the prices for rides
increase. Thus expensive rides generate less profits compared to the cheaper rides and it is more beneficial if the optimal dual variables
ν*

ij are small and prices are close to ℓmax/2. We can interpret the dual variables ν*
ij as the cost of providing a single ride between i and j to

the platform. In the worst case scenario, every single requested ride from node i requires rebalancing and charging both at the origin
and the destination. Hence the upper bound on (3) includes the operational costs of passenger-carrying, rebalancing and charging
vehicles (both at the origin and the destination); and the energy costs of both passenger-carrying and rebalancing trips multiplied by
the price of electricity at the trip destinations. Similar to the taxes applied on products, whose burden is shared among the supplier and
the customer; the costs associated with rides are shared among the platform operator and the riders (which is why the price paid by the
riders include half of the cost of the ride).

Although the static policy guarantees stability (by appropriate implementation of integer-valued actions as dictated by Proposition
1), it does not perform well in a real dynamic setting because it does not acknowledge the stochastic dynamics of the system. On the
other hand, a real-time policy that executes decisions based on the current state of the environment would likely perform better (e.g., if
the queue length for OD pair (i, j) is very large, then it is probably better for the platform operator to set higher prices to prevent the
queue from growing further). Accordingly, we present a practical way of implementing a real-time policy in the next section.

4. The real-time policy

The static policy established in the previous section has three major issues:

1. Because it is based on a flow model, it generates static fractional flows that are not directly implementable in the real setting.
2. It neglects the stochastic events that occur in the dynamic setting (e.g., the induced arrivals), and assumes everything is deter

ministic. Hence, it does consider the unexpected occurrences (e.g., queues might build in the dynamic setting, whereas the static
model assumes no queues) when executing actions.

3. It assumes perfect knowledge of the network parameters (arrivals, trip durations, energy consumptions of the trips, and prices of
electricity).

Due to the above reasons, it is impractical to implement the static policy in the dynamic environment. A real-time policy that

4 It is also possible to use other distributions that might reflect real willingness-to-pay distributions more accurately (such as pareto distribution,
exponential distribution, triangular distribution, constant elasticity distribution, and normal distribution). Among these, pareto, exponential, and
constant elasticity distributions preserve convexity and therefore the static planning problem can be solved efficiently. Triangular and normal
distributions are not convex in their support and therefore the static planning problem is not a convex optimization problem. Nevertheless, it can
still be solved numerically for the optimal static policy. Using these distributions however we cannot derive the closed-form results that allow us to
interpret the pricing policy of the platform operator. The real-time policy proposed in Section 4 uses model-free Reinforcement Learning and
therefore can be applied using other distributions or any other customer price response model.

B. Turan et al.

Transportation Research Part C 121 (2020) 102829

7

generates integer solutions and takes into account the current state of the network which is essential for decision making is necessary,
and can be determined by solving the dynamic program that describes the system (with full knowledge of the network parameters) for
the optimal policy. Such solutions would address issues 1 and 2 outlined above. Inspired by our theoretical model, the state infor
mation that describes the network fully consists of the vehicle states (locations, energy levels), queue lengths for each OD pair, and
electricity prices at each node. Upon obtaining the full state information, the actions have to be executed for pricing for rides and fleet
management (vehicle routing and charging). Consequent to taking actions, the platform operator observes a reward (consisting of
revenue gained by arrivals, queue costs, and operational and charging costs), and the network transitions into a new state (Although
the transition into the new state is stochastic, the random processes that govern this stochastic transition is known if the network
parameters are known). The solution of this dynamic program is the optimal policy that determines which action to take for each state
the system is in, and can nominally be derived using classical exact dynamic programming algorithms (e.g., value iteration). However,
the complexity and the scale of our dynamic problem presents a difficulty here: Aside from having a large dimensional state space (for
instance, m = 10, vmax = 5, τij = 3 ∀i, j: the state has dimension 1240) and action space, the cardinality of these spaces are not finite
(queues can grow unbounded, prices are continuous). Considering that the computational complexity per iteration for value iteration

is O
(⃒
⃒
⃒A

⃒
⃒
⃒

⃒
⃒
⃒S

⃒
⃒
⃒
2)

and for policy iteration O
(⃒
⃒
⃒A

⃒
⃒
⃒

⃒
⃒
⃒S

⃒
⃒
⃒
2

+

⃒
⃒
⃒S

⃒
⃒
⃒
3)

(Kaelbling et al., 1996), where S and A are the state space and the

action space, respectively, the problem is computationally intractable to solve using classical dynamic programming. Even if we did
make them finite by putting a cap on the queue lengths and discretizing the prices, curse of dimensionality renders the problem
intractable to solve with classical exact dynamic programming algorithms. As such, we resort to approximate dynamic programming
methods. Specifically, we define the policy via a deep neural network that takes the full state information of the network as input and
outputs the best action5. Subsequently, we apply a model-free reinforcement learning algorithm to train the neural network in order to
improve the performance of the policy. Since it is model-free, it does not require a modeling of the network (hence, it does not require
knowledge of the network parameters), which resolves the third issue associated with the static policy.

We adopted a practical policy gradient method, called Proximal Policy Optimization (PPO), developed in (Schulman et al., 2017),
which is effective for optimizing large nonlinear policies such as neural networks. We chose PPO mainly because it supports continuous
state-action spaces and guarantees monotonic improvement.6

We note that it is possible to apply reinforcement learning to learn a policy in any environment, real or artificial, as long as there is
data available. In this work we use our theoretical model described in Section 2 to create the environment and generate data, mainly
because there is no electric AMoD microsimulation environment available and also to verify our findings about the static policy.
Developing a microsimulator for electric AMoD (like SUMO (Lopez et al., 2018)) and integrating it with a deep reinforcement learning
library to create a framework for real traffic experiments remains a future work. To ensure that our numerical experiments are
reproducible, in the next subsection, we describe the Markov Decision Process (MDP) that governs this dynamic environment, which is
a direct extension of our static model. It is also possible to enrich the environment and the MDP to reflect real life constraints more
accurately such as road capacity and charging station constraints. Since the approach we adopt to develop the real-time policy is
model-free, it can be applied identically.

In Section 5 we present numerical results on real-time policies developed through reinforcement learning based on dynamic en
vironments generated through our theoretical model. The goal of the experiments is to primarily answer the following questions:

1. Can we develop a real-time control and pricing policy for AMoD using reinforcement learning and what are its potential benefits
over the static policy?

2. How does the policy trained for a specific network perform, if the network parameters change?
3. Can we develop a global policy that can be utilized in any network with moderate fine tuning?

The reader may skip reading Section 4.1 if they are not interested in the details of the MDP model used in our numerical experiment.

4.1. The Real-Time Problem as MDP

We define the MDP by the tuple (S ,A ,T , r), where S is the state space, A is the action space, T is the state transition operator
and r is the reward function. We describe these elements as follows:

1. S : The state space consists of prices of electricity at each node, the queue lengths for each origin–destination pair, and the number
of vehicles at each node and each energy level. However, since travelling from node i to node j takes τij periods of time, we need to
define intermediate nodes. As such, we define τij −1 number of intermediate nodes between each origin and destination pair, for
each battery energy level v. Hence, the state space consists of sd = m2 +(vmax +1)((

∑m
i=1
∑m

j=1τij) −m2 +2m) dimensional vectors in
R

sd
⩾0 (We include all the non-negative valued vectors, however, only m2 −m entries can grow to infinity because they are queue

5 In general, the policy is a stochastic policy and determines the probabilities of taking the actions rather than deterministically producing an
action.

6 Although the policy outputs a continuous set of actions, integer actions can be generated by randomizing. This is done during both training and
testing, therefore the RL agent observes the integer state transitions and learns as if the policy outputs integer actions. We discuss how to generate
integer actions in more detail in Section 4.1.

B. Turan et al.

Transportation Research Part C 121 (2020) 102829

8

lengths, and the rest are always upper bounded by fleet size or maximum price of electricity). As such, we define the elements of the

state vector at time t as s(t) = [p(t) q(t) sveh(t)], where p(t) = [pi(t)]i∈M is the electricity prices state vector, q(t) =
[
qij(t)

]

i,j∈M ;i∕=j
is

the queue lengths state vector, and sveh(t) = [sv
ijk(t)]∀i,j,k,v is the vehicle state vector, where sv

ijk(t) is the number of vehicles at vehicle
state (i, j,k, v). The vehicle state (i, j, k, v) specifies the location of a vehicle that is travelling between OD pair (i, j) as the k’th in
termediate node between nodes i and j, and specifies the battery energy level of a vehicle as v (The states of the vehicles at the nodes
i ∈ M with energy level v is denoted by (i, i,0,v)).

2. A : The action space consists of prices for rides at each origin–destination pair and routing/charging decisions for vehicles at nodes
i ∈ M at each energy level v. The price actions are continuous in range [0,ℓmax]. Each vehicle at state (i, i,0, v) (∀i ∈ M , ∀v ∈ V) can
either charge, stay idle or travel to one of the remaining m −1 nodes. To allow for different transitions for vehicles at the same state
(some might charge, some might travel to another node), we define the action taken at time t for vehicles at state (i, i,0, v) as an
m +1 dimensional probability vector with entries in [0, 1] that sum up to 1: αv

i (t) = [αv
i1(t)…αv

im(t) αv
ic(t)], where αvmax

ic (t) = 0 and αv
ij(t)

= 0 if v < vij. The action space is then all the vectors a of dimension ad = m2 −m + (vmax + 1)(m2 + m), whose first m2 −m entries
are the prices and the rest are the probability vectors satisfying the aforementioned properties. As such, we define the elements of
the action vector at time t as a(t) = [ℓ(t) α(t)], where ℓ (t) =

[
ℓij
]

i,j∈M ,i∕=j is the vector of prices and α(t) = [αv
i (t)]∀i,v is the vector of

routing/charging actions.
3. T : The transition operator is defined as T ijk = Pr(s(t + 1) = j|s(t) = i, a(t) = k). We can define the transition probabilities for

electricity prices p(t + 1), queue lengths q(t + 1), and vehicle states sveh(t +1) as follows:
Electricity Price Transitions: Since we assume that the dynamics of prices of electricity are exogenous to our AMoD system,

Pr(p(t + 1) = p2|p(t) = p1, a(t)) = Pr(p(t + 1) = p2|p(t) = p1), i.e., the dynamics of the price are independent of the action taken.
Depending on the setting, new prices might either be deterministic or distributed according to some probability density function at
time t : p(t)̃P (t), which is determined by the electricity provider.

Vehicle Transitions: For each vehicle at node i and energy level v, the transition probability is defined by the action probability
vector αv

i (t). Each vehicle transitions into state (i, j,1, v −vij) with probability αv
ij(t), stays idle in state (i, i,0, v) with probability αv

ii(t)
or charges and transitions into state (i, i,0, v +1) with probability αv

ic(t). The vehicles at intermediate states (i, j, k, v) transition into
state (i, j, k +1, v) if k < τij −1 or (j, j,0, v) if k = τij −1 with probability 1. The total transition probability to the vehicle states
sveh(t +1) given sveh(t) and α(t) is the sum of all the probabilities of the feasible transitions from sveh(t) to sveh(t +1) under α(t), where
the probability of a feasible transition is the multiplication of individual vehicle transition probabilities (since the vehicle transition
probabilities are independent). Note that instead of gradually dissipating the energy of the vehicles on their route, we immediately
discharge the required energy for the trip from their batteries and keep them constant during the trip. This ensures that the vehicles
have enough battery to complete the ride and does not violate the model, because the vehicles arrive to their destinations with true
value of energy and a new action will only be taken when they reach the destination.

Queue Transitions: The queue lengths transition according to the prices and the vehicle routing decisions. For prices ℓij(t) and
induced arrival rate Λij(t), the probability that Aij(t) new customers arrive in the queue (i, j) is:

Pr
(

Aij

(

t
))

=
e−Λij(t)Λij(t)Aij(t)

(
Aij
(
t
))
!

Let us denote the total number of vehicles routed from node i to j at time t as xij(t), which is given by:

xij

(

t

)

=
∑vmax

v=vij

xv
ij

(

t

)

=
∑vmax

v=vij

sv−vij
ij1

(

t + 1

)

. (5)

Given sveh(t +1) and xij(t), the probability that the queue length qij(t +1) = q is:

Pr
(
qij
(
t + 1

)
= q|s

(
t
)
, a
(
t
)
, sveh

(
t + 1

))
= Pr

(
Aij
(
t
)

= q −qij
(
t
)

+ xij
(
t
))
,

if q > 0, and Pr(Aij(t)⩽ −qij(t) +xij(t)) if q = 0. Since the arrivals are independent, the total probability that the queue vector
q(t +1) = q is:

Pr(q(t + 1) = q|s(t), a(t), sveh(t + 1)) =
∏

i∈M

∏

j∈M
j∕=i

Pr
(
qij(t + 1)

⃒
⃒s(t), a(t), sveh(t + 1)

)
.

Hence, the transition probability is defined as:

Pr(s(t + 1)|s(t), a(t)) = Pr(p(t + 1)|p(t)) × Pr(sveh(t + 1)|s(t), α(t)) × Pr(q(t + 1)|s(t), α(t), sveh(t + 1)) (6)

We illustrate how the vehicles and queues transition into new states consequent to an action in Fig. 3.
4. r: The reward function r(t) is a function of state-action pairs at time t : r(t) = r(a(t), s(t)). Let xv

ic(t) denote the number of vehicles
charging at node i starting with energy level v at time period t. The reward function r(t) is defined as:

B. Turan et al.

Transportation Research Part C 121 (2020) 102829

9

r(t) =
∑

i∈M

∑

j ∈ M

j ∕= i

ℓij(t)Aij(t) −w
∑

i∈M

∑

j ∈ M

j ∕= i

qij(t) −
∑

i∈M

∑vmax−1

v=0
(β + pi)xv

ic(t)

−β
∑

i∈M

∑

j ∈ M

j ∕= i

xij(t) −β
∑

i∈M

∑

j ∈ M

j ∕= i

∑τij−1

k=1

∑vmax−1

v=0
sv

ijk(t)

(7)

The first term corresponds to the revenue generated by the passengers that request a ride for a price ℓij(t), the second term is the
queue cost of the passengers that have not yet been served, the third term is the charging and operational costs of the charging
vehicles and the last two terms are the operational costs of the vehicles making trips. Note that revenue generated is immediately
added to the reward function when the passengers enter the network instead of after the passengers are served. Since the rein
forcement learning approach is based on maximizing the cumulative reward gained, all the passengers eventually have to be served
in order to prevent queues from blowing up and hence it does not violate the model to add the revenues immediately.

Using the definitions of the tuple (S ,A ,T , r), we model the dynamic problem as an MDP. Given large-dimensional state and
action spaces with infinite cardinality, we can not solve the MDP using exact dynamic programming methods. As a solution, we
characterize the real-time policy via a deep neural network and execute reinforcement learning in order to develop a real-time policy.

4.2. Reinforcement learning method

In this subsection, we go through the preliminaries of reinforcement learning and briefly explain the idea of the algorithm we
adopted.

4.2.1. Preliminaries
The real-time policy associated with the MDP is defined as a function parameterized by θ:

πθ(a|s) = π : S × A → [0, 1],

i.e., a probability distribution in the state-action space. Given a state s, the policy returns the probability for taking the action a (for all
actions), and samples an action according to the probability distribution. The goal is to derive the optimal policy π*, which maximizes
the discounted cumulative expected rewards Jπ:

Jπ* = max
π

Jπ = max
π

Eπ

[
∑∞

t=0
γtr

(

t

)]

,

π* = arg max
π

Eπ

[
∑∞

t=0
γtr

(

t

)]

,

where γ ∈ (0, 1] is the discount factor. The value of taking an action a in state s, and following the policy π afterwards is characterized
by the value function Qπ(s,a):

Qπ

(

s, a

)

= Eπ

[
∑∞

t=0
γtr

(

t

)⃒
⃒
⃒
⃒
⃒
s

(

0

)

= s, a

(

0

)

= a

]

.

Fig. 3. The schematic diagram representing the state transition of our MDP. Upon taking an action, a vehicle at state (i, i,0, v) charges for a price of
pi(t) and transitions into state (i, i,0, v +1) with probability αv

ic(t), stays idle at state (i, i,0, v) with probability αv
ii(t), or starts traveling to another

node j and transitions into state (i, j,1, v −vij) with probability αv
ij(t). Furthermore, Aij(t) new customers arrive to the queue (i, j) depending on the

price ℓij(t). After the routing and charging decisions are executed for all the EVs in the fleet, the queues are modified.

B. Turan et al.

Transportation Research Part C 121 (2020) 102829

10

The value of being in state s is formalized by the value function Vπ(s):

Vπ

(

s

)

= Ea(0),π

[
∑∞

t=0
γtr

(

t

)⃒
⃒
⃒
⃒
⃒
s

(

0

)

= s

]

,

and the advantage of taking the action a in state s and following the policy π thereafter is defined as the advantage function Aπ(s,a):

Aπ(s, a) = Qπ(s, a) −Vπ(s).

The methods used by reinforcement learning algorithms can be divided into three main groups: 1) critic-only methods, 2) actor-only
methods, and 3) actor-critic methods, where the word critic refers to the value function and the word actor refers to the policy
(Grondman et al., 2012). Critic-only (or value-function based) methods (such as Q-learning (Watkins and Dayan, 1992) and SARSA
(Rummery and Niranjan, 1994)) improve a deterministic policy using the value function by iterating:

a* = arg max
a

Qπ

(

s, a
)

, π(a*|s)⟵1.

Actor-only methods (or policy gradient methods), such as Williams’ REINFORCE algorithm (Williams, 1992), improve the policy by
updating the parameter θ by gradient ascent, without using any form of a stored value function:

θ

(

t + 1

)

= θ

(

t

)

+ α∇θEπθ(t)

[
∑

τ
γτr

(

τ
)]

.

The advantage of policy gradient methods is their ability to generate actions from a continuous action space by utilizing a parame
terized policy.

Finally, actor-critic methods (Barto et al., 1983; Witten, 1977) make use of both the value functions and policy gradients:

θ
(
t + 1

)
= θ
(
t
)

+ α∇θEπθ(t)

[
Qπθ(t)

(
s, a
)]
.

Actor-critic methods are able to produce actions in a continuous action space, while reducing the high variance of the policy gradients
by adding a critic (value function).

All of these methods aim to update the parameters θ (or directly update the policy π for critic-only methods) to improve the policy.
In deep reinforcement learning, the policy π is defined by a deep neural network, whose weights constitute the parameter θ. To develop
a real-time policy for our MDP, we adopt a practical policy gradient method called Proximal Policy Optimization (PPO).

4.2.2. Proximal Policy Optimization
PPO is a practical policy gradient method developed in (Schulman et al., 2017), and is effective for optimizing large non-linear

policies such as deep neural networks. It preserves some of the benefits of trust region policy optimization (TRPO) (Schulman
et al., 2015) such as monotonic improvement, but is much simpler to implement because it can be optimized by a first-order optimizer,
and is empirically shown to have better sample complexity.

In TRPO, an objective function (the “surrogate” objective) is maximized subject to a constraint on the size of the policy update so
that the new policy is not too far from the old policy:

maximize
θ

Êt

[
πθ(at|st)

πθold (at|st)
Ât

]

(8a)

subject to Êt
[
KL
[
πθold (⋅ |st), πθ(⋅ |st)

]]
⩽δ, (8b)

where πθ is a stochastic policy and Ât is an estimator of the advantage function at timestep t. The expectation Êt […] indicates the
empirical average over a finite batch of samples and KL

[
πθold (⋅

⃒
⃒st), πθ(⋅

⃒
⃒st)
]

denotes the Kullback–Leibler divergence between πθold and π.
Although TRPO solves the above constrained maximization problem using conjugate gradient, the theory justifying TRPO actually
suggests using a penalty instead of a constraint, i.e., solving the unconstrained optimization problem

maximize
θ

Êt

[
πθ(at|st)

πθold (at|st)
Ât −βKL

[
πθold (⋅ |st), πθ(⋅ |st)

]
]

, (9)

for some penalty coefficient β. TRPO uses a hard constraint rather than a penalty because it is hard to choose a single value of β that
performs well. To overcome this issue and develop a first-order algorithm that emulates the monotonic improvement of TRPO (without
solving the constrained optimization problem), two PPO algorithms are constructed by: 1) clipping the surrogate objective and 2) using
adaptive KL penalty coefficient (Schulman et al., 2017).

B. Turan et al.

Transportation Research Part C 121 (2020) 102829

11

1. Clipped Surrogate Objective: Let rt(θ) denote the probability ratio rt
(
θ
)

=
πθ(at |st)

πθold (at|st)
, so r(θold) = 1. TRPO maximizes

L
(

θ
)

= Êt

[
πθ(at|st)

πθold

(
at
⃒
⃒st
)Ât

]

= Êt

[
rt

(
θ
)

Ât

]
. (10)

subject to the KL divergence constraint. Without a constraint however this would lead to a large policy update. To prevent this, PPO
modifies the surrogate objective to penalize changes to the policy that move rt(θ) away from 1:

LCLIP
(

θ
)

= Êt

[
min
(

rt

(
θ
)

Ât, clip
(

rt

(
θ
)
, 1 −∊, 1 + ∊

)
Ât

)]
, (11)

where ∊ is a hyperparameter, usually 0.1 or 0.2. The term clip(rt(θ),1 −∊,1 +∊)Ât) modifies the surrogate objective by clipping the
probability ratio, which removes the incentive for moving rt outside of the interval [1 −∊,1 + ∊]. By taking the minimum of the
clipped and the unclipped objective, the final objective becomes a lower bound on the unclipped objective.

2. Adaptive KL Penalty Coefficient: Another approach is to use a penalty on KL divergence and to adapt the penalty coefficient so that
some target value of the KL divergence dtarg is achieved at each policy update. In each policy update, the following steps are
performed:
• Using several epochs of minibatch SGD, optimize the KL-penalized objective

LKLPEN
(

θ
)

= Êt

[
πθ(at|st)

πθold

(
at
⃒
⃒st
)Ât −βKL

[
πθold

(
⋅
⃒
⃒st
)
, πθ
(

⋅
⃒
⃒st
)]
]

(12)

• Compute d = Êt
[
KL
[
πθold (⋅

⃒
⃒st), πθ(⋅

⃒
⃒st)
]]

– If d < dtarg/1.5,β ← β/2
– If d > dtarg × 1.5,β ← β × 2.

The updated β is then used for the next policy update. This scheme allows β to adjust if KL divergence is significantly different
than dtarg so that the desired KL divergence between the old and the updated policy is attained.

A PPO algorithm using fixed-length trajectory segments is summarized in Algorithm 1. Each iteration, each of N (parallel) actors
collect T timesteps of data. Then the surrogate loss on these NT timesteps of data is constructed and optimized with minibatch SGD for
K epochs.

Algorithm 1. PPO, Actor-Critic Style

In this work, we used the PPO algorithm with the clipped surrogate objective, because experimentally it it shown to have better
performance than the PPO algorithm with adaptive KL penalty coefficient (Schulman et al., 2017). We refer the reader to (Schulman
et al., 2017) for a comprehensive study on PPO algorithms.

In the next section, we present our numerical studies demonstrating the performance of the RL policy.

5. Numerical Study

In this section, we discuss the numerical experiments and results for the performance of reinforcement learning approach to the
dynamic problem and compare with the performance of several static policies, including the optimal static policy outlined in Section 3.
We solved for the optimal static policy using CVX, a package for specifying and solving convex programs (Grant and Boyd, 2014). To
implement the dynamic environment compatible with reinforcement learning algorithms, we used Gym toolkit (Brockman et al.,
2016) developed by OpenAI to create an environment. For the implementation of the PPO algorithm, we used Stable Baselines toolkit
(Hill et al., 2018).

B. Turan et al.

Transportation Research Part C 121 (2020) 102829

12

We chose an operational cost of β = $0.1 (by normalizing the average price of an electric car over 5 years (The average electric car
in the US is getting cheaper)) and maximum willingness to pay ℓmax = $30. For prices of electricity pi(t), we generated random prices
for different locations and different times using the statistics of locational marginal prices in (http://oasis.caiso.com). We chose a
maximum battery capacity of 20kWh. We discretrized the battery energy into 5 units, where one unit of battery energy is 4kWh. The
time it takes to deliver one unit of charge is taken as one time epoch, which is equal to 5 min in our setup. The waiting time cost for one
period is w = $2 (average hourly wage is around $24 in the United States (United States Average Hourly Wages)).

Note that the dimension of the state space grows significantly with battery capacity vmax, because it expands the states each vehicle
can have by vmax. Therefore, for computational purposes, we conducted two case studies: 1) Non-electric AMoD case study with a larger
network in Manhattan, 2) Electric AMoD case study with a smaller network in San Francisco. We picked two different real world
networks in order to demonstrate the universality of reinforcement learning method in establishing a real-time policy. In particular,
our intention is to support the claim that the success of the reinforcement learning method is not restricted to a single network, but
generalizes to multiple real world networks. Both experiments were performed on a laptop computer with Intel® Core™ i7-8750H CPU
(6 × 2.20 GHz) and 16 GB DDR4 2666 MHz RAM.

5.1. Case Study in Manhattan

In a non-electric AMoD network, the energy dimension v vanishes. Because there is no charging action7, we can perform coarser
discretizations of time. Specifically, we can allow each discrete time epoch to cover 5 × mini,j|i∕=jτij minutes, and normalize the travel
times τij and w accordingly (For EV’s, because charging takes a non-negligible but shorter time than travelling, in general we have
τij > 1, and larger number of states). The static profit maximization problem in (1) for AMoD with non-electric vehicles can be
rewritten as:

max
xij ,ℓij

∑

i∈M

∑

j∈M

λijℓij
(
1 −F

(
ℓij
))

−βg

∑

i∈M

∑

j∈M

xijτij

subject to λij
(
1 −F

(
ℓij
))

⩽xij ∀i, j ∈ M ,
∑

j∈M

xij =
∑

j∈M

xji ∀i ∈ M ,

xij⩾0 ∀i, j ∈ M .

(13)

The operational costs βg = $2.5 (per 10 min, (How much does driving your car cost)) are different than those of electric vehicles.
Because there is no “charging” (or refueling action, since it takes negligible time), βg also includes fuel cost. The optimal static policy is
used to compare and highlight the performance of the real-time policy8.

We divided Manhattan into 10 regions as in Fig. 4, and using the yellow taxi data from the New York City Taxi and Limousine
Commission dataset (https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page) for May 04, 2019, Saturday between
18.00–20.00, we extracted the average arrival rates for rides and trip durations between the regions (we exclude the rides occurring in
the same region). We trained our model by creating new induced random arrivals with the same average arrival rate using prices
determined by our policy. For the fleet size, we used a fleet of 1200 autonomous vehicles (according to the optimal fleet size emerging
from the static problem).

For training, we used a neural network with 4 hidden layers and 128 neurons in each hidden layer. The rest of the parameters are
left as default as specified by the Stable Baselines toolkit (Hill et al., 2018). In order to get the best policy, we train 3 different models
using DDPG (Lillicrap et al., 2015), TRPO (Schulman et al., 2015), and PPO. We trained the models for 10 million iterations, and the
performances of the trained models are summarized in Table 1 using average rewards and queue lengths as metrics. Our experiments
indicate that the model trained using PPO is performing the best among the three, hence we use that model as our real-time policy.

We compare different policies’ performance using the rewards and total queue length as metrics. The results are demonstrated in
Fig. 5. In Fig. 5a we compare the rewards generated and the total queue length by applying the static and the real-time policies as
defined in Sections 3 and 4. We can observe that while the optimal static policy provides rate stability in a dynamic setting (since the
queues do not blow up), it fails to generate profits as it is not able to clear the queues. On the other hand, the real-time policy is able to
keep the total length of the queues 100 times shorter than the static policy while generating higher profits.

The optimal static policy fails to generate profits and is not necessarily the best static policy to apply in a dynamic setting. As such,
in Fig. 5b we demonstrate the performance of a sub-optimal static policy, where the prices are 5% higher than the optimal static prices
to reduce the arrival rates and hence reduce the queue lengths. Observe that the profits generated are higher than the profits generated
using optimal static policy for the static planning problem while the total queue length is less. This result indicates that under the
stochasticity of the dynamic setting, a sub-optimal static policy can perform better than the optimal static policy. Furthermore, we
summarize the performances of other static policies with higher static prices, namely with 5%,10%,20%30%, and 40% higher prices
than the optimal static prices in Table 2. Among these, an increase of 10% performs the best in terms of rewards. Nevertheless, this

7 The vehicles still refuel, however this takes negligible time compared to the trip durations.
8 The solution of the static problem yields vehicle flows. In order to make the policy compatible with our environment and to generate integer

actions that can be applied in a dynamic setting, we randomized the actions by dividing each flow for OD pair (i, j) (and energy level v) by the total
number of vehicles in i (and energy level v) and used that fraction as the probability of sending a vehicle from i to j (with energy level v).

B. Turan et al.

Transportation Research Part C 121 (2020) 102829

13

policy does still do worse in terms of rewards and total queue length compared to the real-time policy, which generates around 10%
more rewards and results in 70% less queues. Lastly we note that although a 40% increase in prices results in minimum average queue
length, this is a result of significantly reduced induced demand and therefore it generates very low rewards.

Next, we showcase that even some heuristic modifications which resemble what is done in practice can do better than the optimal
static policy. We utilize the optimal static policy, but additionally utilize a surge-pricing policy. The surge-pricing policy aims to
decrease the arrival rates for longer queues so that the queues will stay shorter and the rewards will increase. At each time period, for
all OD pairs, the policy is to increase the price by 50% if the queue is longer than 100% of the induced arrival rate. The results are
displayed in Fig. 5c. New arrivals bring higher revenue per person and the total queue length is decreased, which stabilizes the network
while generating more profits than the optimal static policy. The surge pricing policy results in stable short queues and higher rewards
compared to the optimal static policy for the static setting, however, both the real-time policy and the static pricing policy with 10%
higher prices are superior. Performances of other surge pricing policies that multiply the prices by 1.25/1.5/2 if the queue is longer
than 50%/100%/200% of the induced arrival rates can be found in Table 3. Accordingly, the best surge pricing policy maximizing the
rewards is to multiply the prices by 1.25 if the queue is longer than 50% of the induced arrival rate. Yet, our real-time policy still
generates around 20% more rewards and results in 32% less queues. We note that a surge pricing policy that multiplies the prices by 2
when the queues are longer than 50% of the induced arrival rates minimizes the queues by decreasing the induced arrival rates
significantly, which results in substantially low rewards.

Finally, we test how the static and the real-time policies are robust to variations in input statistics. We compare the rewards
generated and the total queue length applying the static and the real-time policies for the arrival rates of May 11, 2019, Saturday
between 18.00–20.00. The results are displayed in Fig. 5d. Even though the arrival rates between May 11 and May 4 do not differ
much, the static policy is not resilient and fails to stabilize when there is a slight change in the network. The real-time policy, on the
other hand, is still able to stabilize the network and generate profits. The neural-network based policy is able to determine the correct
pricing and routing decisions by considering the current state of the network, even under different arrival rates.

These experiments show us that we can indeed develop a real-time policy using deep reinforcement learning and this policy is
resilient to small changes in the network parameters. The next study investigates the idea of generality, i.e., whether we can develop a
global real-time policy and fine-tune it to a specific environment with few-shots of training, rather than developing a new policy from
scratch.

Few-shot Learning: A common problem with reinforcement learning approaches is that because the agent is trained for a specific
environment, it fails to respond to a slightly changed environment. Hence, one would need to train a different model for different
environments (different network configurations, different arrival rates). However, this is not a feasible solution considering that
training one model takes millions of iterations. As a more tractable solution, one could train a global model using different envi
ronments, and then calibrate it to the desired environment with fewer iterations rather than training a new model from scratch. We
tested this phenomenon by training a global model for Manhattan using various arrival rates and network configurations that we
extracted from different 2-h intervals (We trained the global model for 10 million iterations). We then trained this model for the
network configuration and arrival rates on May 6, 2019, Monday between 15.00–17.00. The results are displayed in Fig. 6. Even with
no additional training, the global model performs better than the specific model trained from scratch for 2 million iterations.
Furthermore, with only few iterations, it is possible to improve the performance of the global model significantly. This is an anticipated

Fig. 4. Manhattan divided into m = 10 regions.

Table 1
Performances of RL policies trained with different algorithms.

Algorithms

Metrics DDPG TRPO PPO

Average Rewards 9825.69 13142.47 15527.34
Average Queue Length 431.76 87.96 68.11

B. Turan et al.

Transportation Research Part C 121 (2020) 102829

14

result, because although the network configurations and arrival rates for different 2-h intervals are different, the environments are not
fundamentally different (the state transitions are governed by similar random processes) and hence it is possible to generalize a global
policy and fine-tune it to the desired environment with fewer number of iterations.

Fig. 5. Comparison of different policies for Manhattan case study. The legends for all figures are the same as the top left figure, where red lines
correspond to the real-time policy and blue lines correspond to the static policies (We excluded the running averages for (d), because the static
policy diverges). In all scenarios, we use the rewards generated and the total queue length as metrics. In (a), we demonstrate the results from
applying the real-time policy and the optimal static policy. In (b), we compare the real-time policy with the static policy that utilizes 5% higher
prices than the optimal static policy. In (c), we utilize a surge pricing policy along with the optimal static policy and compare with the real-time
policy. In (d), we employ the real-time policy and static policy developed for May 4, 2019, Saturday for the arrivals on May 11, 2019, Saturday.

Table 2
Performances of static pricing policies for Manhattan case study.

% of opt. static prices

Metrics 105% 110% 120% 130% 140%

Average Rewards 12234.13 14112.77 13739.35 12046.91 9625.82
Average Queue Length 584.05 231.93 74.64 30.88 14.20

B. Turan et al.

Transportation Research Part C 121 (2020) 102829

15

5.2. Case Study in San Francisco

We conducted the case study in San Francisco by utilizing an EV fleet of 420 vehicles. We divided San Francisco into 7 regions as in
Fig. 7, and using the traceset of mobility of taxi cabs data from CRAWDAD (Piorkowski et al., 2009), we obtained the average arrival
rates and travel times between regions (we exclude the rides occurring in the same region).

In Fig. 8, we compare the charging costs paid under the real-time policy and the static policy. The static policy is generated by using

Table 3
Performances of surge pricing policies for Manhattan case study.

Queue Threshold

Surge Multiplier 50% 100% 200%

Queue Rewards Queue Rewards Queue Rewards

1.25 101.25 13022.83 186.56 12897.30 380.34 12357.33
1.5 91.89 12602.90 178.22 12589.71 370.18 12233.95
2 83.15 5272.04 162.99 6224.69 337.01 7485.75

Table 4
Performances of surge pricing policies for San Francisco case study.

Queue Threshold

Surge Multiplier 50% 100% 200%

Queue Rewards Queue Rewards Queue Rewards

1.25 67.62 718.66 75.92 715.02 99.56 687.45
1.5 25.16 650.90 34.32 687.71 49.94 708.38
2 14.06 331.21 20.55 455.25 44.44 611.23

Fig. 6. Performances of the specific model that is trained from scratch and fine-tuned global model (for different amounts of fine-tuning as specified
in the legend): rewards (left) and queue lengths (right).

Fig. 7. San Francisco divided into m = 7 regions. Map obtained from the San Francisco County Transportation Authority (http://tncstoday.sfcta.
org/).

B. Turan et al.

Transportation Research Part C 121 (2020) 102829

16

the average value of the electricity prices, whereas the real-time policy takes into account the current electricity prices before
executing an action. Therefore, the real-time policy provides cheaper charging options by utilizing smart charging strategies,
decreasing the average charging costs by 25%.

In Fig. 9a, we compare the rewards and the total queue length resulting from the real-time policy and the static policy. In Fig. 9b, we
compare the RL policy to the static policy with 5% higher prices than the optimal static policy, and summarize performances of several
other static pricing policies in Table 5. In Fig. 9c, we use the static policy but also utilize a surge pricing policy that multiplies the prices
by 1.5 if the queues are longer than 100% of the induced arrival rates. The performances of other surge pricing policies are also
displayed in Table 4. Similar to the case study in Manhattan, the results demonstrate that the performance of the trained real-time
policy is superior to the other policies. In particular, the RL policy is able to generate around 24% more rewards and result in
around 75% less queues than the best heuristic policy, which utilizes 30% higher static prices than the optimal static policy.

Fig. 8. Charging costs for the optimal static policy and the real-time policy in San Francisco case study.

Fig. 9. Comparison of different policies for San Francisco case study. The legends for all figures are the same as the top left figure, where red lines
correspond to the real-time policy and blue lines correspond to the static policies. In all scenarios, we use the rewards generated and the total queue
length as metrics. In (a), we demonstrate the results from applying the real-time policy and the optimal static policy. In (b), we compare the real-
time policy with a sub-optimal static policy, where the prices are 5% higher than the optimal static policy. In (c), we utilize a surge pricing policy
along with the optimal static policy and compare with the real-time policy.

Table 5
Performances of static pricing policies for San Francisco case study.

% of opt. static prices

Metrics 105% 110% 120% 130% 140%

Average Rewards 4.98 485.65 696.38 721.89 682.76
Average Queue Length 456.83 211.04 87.15 45.28 25.66

B. Turan et al.

Transportation Research Part C 121 (2020) 102829

17

6. Conclusion

In this paper, we developed a real-time control policy based on deep reinforcement learning for operating an AMoD fleet of EVs as
well as pricing for rides. Our real-time control policy jointly makes decisions for: (1) vehicle routing in order to serve passenger de
mand and to rebalance the empty vehicles, (2) vehicle charging in order to sustain energy for rides while exploiting geographical and
temporal diversity in electricity prices for cheaper charging options, and (3) pricing for rides in order to adjust the potential demand so
that the network is stable and the profits are maximized. Furthermore, we formulated the static planning problem associated with the
dynamic problem in order to define the optimal static policy for the static planning problem. When implemented correctly, the static
policy provides stability of the queues in the dynamic setting, yet it is not optimal regarding the profits and keeping the queues
sufficiently low. Finally, we conducted case studies in Manhattan and San Francisco that demonstrate the performance of our
developed policy. The two case studies on different networks indicate that reinforcement learning can be a universal method for
establishing well performing real-time policies that can be applied to many real world networks. Lastly, by doing the Manhattan study
with non-electric vehicles and San Francisco study with electric vehicles, we have also demonstrated that a real-time policy using
reinforcement learning can be established for both electric and non-electric AMoD systems.

Appendix A. Proof of Proposition 1

To prove Proposition 1, we first formulate the static optimization problem via a network flow model that characterizes the capacity
region of the network for a given set of prices ℓij(t) = ℓij ∀t (Hence, Λij(t) = Λij ∀t). The capacity region is defined as the set of all arrival
rates

[
Λij
]

i,j∈M
, where there exists a charging and routing policy under which the queueing network of the system is stable. Let xv

i be the
number of vehicles available at node i, αv

ij be the fraction of vehicles at node i with energy level v being routed to node j, and αv
ic be the

fraction of vehicles charging at node i starting with energy level v. We say the static vehicle allocation for node i and energy level v is
feasible if αv

ic +
∑

j∈M
j∕=i

αv
ij⩽1.

The optimization problem that characterizes the capacity region of the network ensures that the total number of vehicles routed
from i to j is at least as large as the nominal arrival rate to the queue (i,j). Namely, the vehicle allocation problem can be formulated as
follows:

min
xv

i ,α
v
ij ,α

v
ic

ρ (14a)

s.t. Λij⩽
∑vmax

v=vij

xv
i αv

ij ∀i, j ∈ M , (14b)

ρ⩾αv
ic +

∑

j∈M
j∕=i

αv
ij ∀i ∈ M , ∀v ∈ V , (14c)

xv
i = xv−1

i αv−1
ic +

∑

j∈M

xv+vji
i αv+vji

ji ∀i ∈ M , ∀v ∈ V , (14d)

αvmax
ic = 0 ∀i ∈ M , (14e)

αv
ij = 0 ∀v < vij, ∀i, j ∈ M , (14f)

xv
i ⩾0, αv

ij⩾0 αv
ic⩾0, ∀i, j ∈ M , ∀v ∈ V , (14g)

xv
i = αv

ic = αv
ij = 0 ∀v ∕∈ V , ∀i, j ∈ M . (14h)

The constraint (14c) upper bounds the allocation of vehicles for each node i and energy level v. The constraints (14d)–(14f) are similar
to those of optimization problem (1) with xv

i = xv
ic +

∑
j∈M xv

ij,αv
ic = xv

ic/xv
i , and αv

ij = xv
ij/xv

i .

Lemma 1. Let the optimal value of (14) be ρ*. Then, ρ*⩽1 is a necessary and sufficient condition of rate stability of the system under some
routing and charging policy.

Proof. Consider the fluid scaling of the queueing network, Qrt
ij =

qij(⌊rt⌋)

r (see (Dai, 1995) for more discussion on the stability of fluid
models), and let Qt

ij be the corresponding fluid limit. The fluid model dynamics is as follows:

Qt
ij = Q0

ij + At
ij −Xt

ij,

where At
ij is the total number of riders from node i to node j that have arrived to the network until time t and Xt

ij is the total number of
vehicles routed from node i to j up to time t. Suppose that ρ* > 1 and there exists a policy under which for all t⩾0 and for all ori
gin–destination pairs (i,j),Qt

ij = 0. Pick a point t1, where Qt1
ij is differentiable for all (i,j). Then, for all (i,j),Q̇t1

ij = 0. Since Ȧt1
ij = Λij, this

B. Turan et al.

Transportation Research Part C 121 (2020) 102829

18

implies Ẋt1
ij = Λij. On the other hand, Ẋt1

ij is the total number of vehicles routed from i to j at t1. This implies Λij =
∑vmax

v=vij
xv

i αv
ij for all (i, j)

and there exists αv
ij and αv

ic at time t1 such that the flow balance constraints hold and the allocation vector [αv
ij αv

ic] is feasible, i.e. αv
ic +

∑m
j=1
j∕=i

αv
ij⩽1. This contradicts ρ* > 1.

Now suppose ρ*⩽1 and α* = [αv∗
ij αv∗

ic] is an allocation vector that solves the static problem. The cumulative number of vehicles
routed from node i to j up to time t is St

ij =
∑vmax

v=vij
xv

i αv
ijt =

∑vmax
v=0 xv

i αv
ijt⩾Λijt. Suppose that for some origin–destination pair (i,j), the queue

Qt1
ij ⩾∊ > 0 for some positive t1 and ∊. By continuity of the fluid limit, there exists t0 ∈ (0, t1) such that Qt0

ij = ∊/2 and Qt
ij > 0 for t ∈ [t0,

t1]. Then, Q̇t
ij > 0 implies Λij >

∑vmax
v=vij

xv
i αv

ij, which is a contradiction. □

By Lemma 1, the capacity region CΛ of the network is the set of all Λij ∈ R+ for which the corresponding optimal solution to the
optimization problem (14) satisfies ρ*⩽1. As long as ρ*⩽1, there exists a routing and charging policy such that the queues will be
bounded away from infinity.

The platform operator’s goal is to maximize its profits by setting prices and making routing and charging decisions such that the
system remains stable. In its most general form, the problem can be formulated as follows:

max
ℓij ,xv

i ,α
v
ij ,α

v
ic

U
(

Λij
(
ℓij
)
, xv

i , αv
ij,αv

ic

)

subject to
[
Λij
(
ℓij
)]

i,j∈M
∈ CΛ,

(14i)

where U(⋅) is the utility function that depends on the prices, demand for rides and the vehicle decisions.
Recall that xv

ic = xv
i αv

ic and xv
ij = xv

i αv
ij. Using these variables and noting that αv

ic +
∑

j∈M αv
ij = 1 when ρ*⩽1, the platform operator’s

profit maximization problem can be stated as (1). A feasible solution of (1) guarantees rate stability of the system, since the corre
sponding vehicle allocation problem (14) has solution ρ*⩽1.

Appendix B. Proof of Proposition 2

For brevity of notation, let β + pi = Pi. Let νij be the dual variables corresponding to the demand satisfaction constraints and μv
i be

the dual variables corresponding to the flow balance constraints. Since the optimization problem (1) is a convex quadratic maximi
zation problem (given a with uniform F(⋅)) and Slater’s condition is satisfied, strong duality holds. We can write the dual problem as:

min
νij ,μv

i

max
ℓij

∑m

i=1

∑m

j=1

(

λij

(

1 −
ℓij

ℓmax

)
(
ℓi −νij

)
)

(16a)

s.t. νij⩾0, (16b)

νij + μv
i −μv−vij −βτij⩽0, (16c)

μv
i −μv+1

i −Pi⩽0 ∀i, j, v. (16d)

For fixed νij and μv
i , the inner maximization results in the optimal prices:

ℓ*
ij =

ℓmax + νij

2
. (17)

By strong duality, the optimal primal solution satisfies the dual solution with optimal dual variables ν*
ij and μv

i
*, which completes the

first part of the proposition. The dual problem with optimal prices in (17) can be written as:

min
νij ,μv

i

∑m

i=1

∑m

j=1

λij

ℓmax

(ℓmax −νij

2

)2
(18a)

subjecttoνij⩾0, (18b)

νij + μv
i −μv−vij

j −βτij⩽0, (18c)

μv
i −μv+1

i −Pi⩽0 ∀i, j, v. (18d)

The objective function in (18a) with optimal dual variables, along with (17) suggests:

P =
∑m

i=1

∑m

j=1

λij

ℓmax

(
ℓmax −ℓ*

ij

)2
,

B. Turan et al.

Transportation Research Part C 121 (2020) 102829

19

where profits P is the value of the objective function of both optimal and dual problems. To get the upper bound on prices, we go
through the following algebraic calculations using the constraints. The inequality (18d) gives:

μv−vji
i ⩽vjiPi + μv

i , (19)

and equivalently:

μv−vij
j ⩽vijPj + μv

j . (20)

The inequalities (18c) and (18b) yield:

μv
i −μv−vij

j −βτij⩽0,

and equivalently:

μv
j −μv−vji

i −βτji⩽0, (21)

Inequalities (19) and (21):

μv
j ⩽μv

i + βτji + vjiPi. (22)

And finally, the constraint (18c):

νij⩽βτij + μv−vij
j −μv

i ⩽
20

(20)βτij + vijPj + μv
j −μv

i ⩽
22

(22)βτij + vijPj + βτji + vjiPi.

Replacing Pi = pi +β and rearranging the terms:

νij⩽β
(
τij + τji + vij + vji

)
+ vijpj + vjipi. (23)

Using the upper bound on the dual variables νij and (17), we can upper bound the optimal prices.

References

Barto, A.G., Sutton, R.S., Anderson, C.W., 1983. Neuronlike adaptive elements that can solve difficult learning control problems. IEEE Trans Syst., Man, Cybernet., vol.
SMC-13, no. 5, pp. 834–846, Sep. 1983.

Bimpikis, K., Candogan, O., Sabán, D., 2019. Spatial pricing in ride-sharing networks. Oper. Res. 67, 744–769.
Bongiovanni, C., Kaspi, M., Geroliminis, N., 2019. ”The electric autonomous dial-a-ride problem.” Transport. Res. Part B: Methodol., vol. 122, pp. 436–456. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S0191261517309669.
Boyaci, B., Zografos, K.G., Geroliminis, N., 2017. ”An integrated optimization-simulation framework for vehicle and personnel relocations of electric carsharing

systems with reservations.” Transport. Res. Part B: Methodol., vol. 95, pp. 214–237, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0191261515301119.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W., 2016. Openai gym.
Chen, T.D., Kockelman, K.M., 2016. Management of a shared autonomous electric vehicle fleet: Implications of pricing schemes. Transp. Res. Rec. 2572 (1), 37–46.
Chen, T.D., Kockelman, K.M., Hanna, J.P., 2016. Operations of a Shared, Autonomous, Electric Vehicle Fleet: Implications of Vehicle & Charging Infrastructure

Decisions. Transport. Res. Part A: Policy Pract. 94, 243–254.
Dai, J.G., 1995. On positive harris recurrence of multiclass queueing networks: A unified approach via fluid limit models. Annals Appl. Probab. 5, 49–77.
Grant, M., Boyd, S., 2014. ”CVX: Matlab software for disciplined convex programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.
Grondman, I., Busoniu, L., Lopes, G.A.D., Babuska, R., Nov 2012. A survey of actor-critic reinforcement learning: Standard and natural policy gradients. IEEE Trans.

Syst., Man, Cybernet. Part C (Appl. Rev.) 42 (6), 1291–1307.
Guan, Y., Annaswamy, A.M., Tseng, H.E., 2019. ”Cumulative prospect theory based dynamic pricing for shared mobility on demand services.” CoRR, vol. abs/

1904.04824, 2019. [Online]. Available: http://arxiv.org/abs/1904.04824.
Guériau, M., Dusparic, I., 2018. ”Samod: Shared autonomous mobility-on-demand using decentralized reinforcement learning.” In: 2018 21st International

Conference on Intelligent Transportation Systems (ITSC), Nov 2018, pp. 1558–1563.
Han, M., Senellart, P., Bressan, S., Wu, H., 2016. Routing an autonomous taxi with reinforcement learning. In: CIKM.
Hill, A., Raffin, A., Ernestus, M., Gleave, A., Traore, R., Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A., Schulman, J., Sidor, S., Wu, Y., 2018.

”Stable baselines,” https://github.com/hill-a/stable-baselines, 2018.
How much does driving your car cost, per minute? [Online]. Available: https://www.bostonglobe.com/ideas/2014/08/08/how-much-driving-really-costs-per-

minute/BqnNd2q7jETedLhxxzY2CI/story.html.
[Online]. Available: http://oasis.caiso.com.
[Online]. Available: http://tncstoday.sfcta.org/.
[Online]. Available: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.
[Online]. Available: https://www.cbinsights.com/research/autonomous- driverless-vehicles-corporations-list/.
Iglesias, R., Rossi, F., Wang, K., Hallac, D., Leskovec, J., . Pavone, J., 2017. ”Data-driven model predictive control of autonomous mobility-on-demand systems.” CoRR,

vol. abs/1709.07032, 2017. [Online]. Available: http://arxiv.org/abs/1709.07032.
Kaelbling, L.P., Littman, M.L., Moore, A.W., 1996. Reinforcement learning: A survey. J. Artif. Intell. Res. 4, 237–285.
Lazar, D.A., Bıyık, E., Sadigh, D., Pedarsani, R., 2019. ”Learning how to dynamically route autonomous vehicles on shared roads,” arXiv preprint arXiv:1909.03664,

2019.
Li, L., Lv, Y., Wang, F., 2016. Traffic signal timing via deep reinforcement learning. IEEE/CAA J. Autom. Sin. 3 (3), 247–254.
Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T.,Tassa, Y., Silver, D., . Wierstra, D., 2015. ”Continuous control with deep reinforcement learning,” arXiv

preprint arXiv:1509.02971, 2015.

B. Turan et al.

http://refhub.elsevier.com/S0968-090X(20)30733-6/h0010
http://refhub.elsevier.com/S0968-090X(20)30733-6/h0025
http://refhub.elsevier.com/S0968-090X(20)30733-6/h0030
http://refhub.elsevier.com/S0968-090X(20)30733-6/h0035
http://refhub.elsevier.com/S0968-090X(20)30733-6/h0035
http://refhub.elsevier.com/S0968-090X(20)30733-6/h0040
http://refhub.elsevier.com/S0968-090X(20)30733-6/h0050
http://refhub.elsevier.com/S0968-090X(20)30733-6/h0050
http://refhub.elsevier.com/S0968-090X(20)30733-6/h0065
http://refhub.elsevier.com/S0968-090X(20)30733-6/h0105
http://refhub.elsevier.com/S0968-090X(20)30733-6/h0115

Transportation Research Part C 121 (2020) 102829

20

Lin, K., Zhao, R., Xu, Z., Zhou, J., 2018. ”Efficient large-scale fleet management via multi-agent deep reinforcement learning.” In: Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, ser. KDD ’18. New York, NY, USA: Association for Computing Machinery, 2018, p.
1774–1783. [Online]. Available: doi: 10.1145/3219819.3219993.

Lopez, P.A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y.-P., Hilbrich, R., Lücken, L., Rummel, J., Wagner, P., Wießner, E., 2018. ”Microscopic traffic
simulation using sumo.” In: The 21st IEEE International Conference on Intelligent Transportation Systems. IEEE, 2018. [Online]. Available: <https://elib.dlr.de/
124092/.

Mao, C., Shen, C., 2018. ”A reinforcement learning framework for the adaptive routing problem in stochastic time-dependent network.” Transport. Res. Part C: Emerg.
Technol., vol. 93, pp. 179–197, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0968090X18307617.

Mao, C., Liu, Y., Shen, Z.-J.M., 2020. ”Dispatch of autonomous vehicles for taxi services: A deep reinforcement learning approach.” Transport. Res. Part C: Emerg.
Technol., vol. 115, p. 102626, 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0968090X19312227.

Miao, F., Han, S., Lin, S., Stankovic, J.A., Huang, H., Zhang, D., Munir, S., He, T., Pappas, G.J., 2016. ”Taxi dispatch with real-time sensing data in metropolitan areas:
A receding horizon control approach.” CoRR, vol. abs/1603.04418, 2016. [Online]. Available: http://arxiv.org/abs/1603.04418.

Miao, F., Han, S., Hendawi, A.M., Khalefa, M.E., Stankovic, J.A., Pappas, G.J., 2017. ”Data-driven distributionally robust vehicle balancing using dynamic region
partitions.” In: 2017 ACM/IEEE 8th International Conference on Cyber-Physical Systems (ICCPS), April 2017, pp. 261–272.

Mukherjee, J.C., Gupta, A., Dec 2015. A review of charge scheduling of electric vehicles in smart grid. IEEE Syst. J. 9 (4), 1541–1553.
Pavone, M., Smith, S.L., Frazzoli, E., Rus, D., 2012. Robotic load balancing for Mobility-on-Demand systems. Int. J. Robot. Res. 31 (7), 839–854.
Pedarsani, R., Walrand, J., Zhong, Y., 2017. Robust scheduling for flexible processing networks. Adv. Appl. Probab. 49 (2), 603–628.
Piorkowski, M., Sarafijanovic-Djukic, N., Grossglauser, M., 2009. ”CRAWDAD dataset epfl/mobility (v. 2009–02-24),” Downloaded from https://crawdad.org/epfl/

mobility/20090224, Feb. 2009.
Repoux, M., Kaspi, M., Boyaci, B., Geroliminis, N., 2019. ”Dynamic prediction-based relocation policies in one-way station-based carsharing systems with complete

journey reservations.” Transport. Res. Part B: Methodol., vol. 130, pp. 82–104, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S019126151930102X.

Rossi, F., Iglesias, R., Alizadeh, M., Pavone, M., 2018. ”On the interaction between autonomous mobility-on-demand systems and the power network: models and
coordination algorithms.” Robotics: Science and Systems XIV, Jun 2018.

Rossi, F., Zhang, R., Hindy, Y., Pavone, M., 2018. Routing autonomous vehicles in congested transportation networks: Structural properties and coordination
algorithms. Auton. Robots 42 (7), 1427–1442.

Rummery, G., Niranjan, M., 1994. “On-line q-learning using connectionist systems,” Technical Report CUED/F-INFENG/TR 166, 11 1994.
Schulman, J., Levine, S., Moritz, P., Jordan, M.I., Abbeel, P., 2015. ”Trust region policy optimization,” CoRR, vol. abs/1502.05477, 2015. [Online]. Available: http://

arxiv.org/abs/1502.05477.
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O., 2017. ”Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.
Sheppard, C.J.R., Bauer, G.S., Gerke, B.F., Greenblatt, J.B., Jenn, A.T., Gopal, A.R., 2019. ”Joint optimization scheme for the planning and operations of shared

autonomous electric vehicle fleets serving mobility on demand.” Transport. Res. Rec., vol. 2673, no. 6, pp. 579–597, 2019. [Online]. Available: doi: 10.1177/
0361198119838270.

Spieser, K., Samaranayake, S., Frazzoli, E., 2016. ”Vehicle routing for shared-mobility systems with time-varying demand.” In: 2016 American Control Conference
(ACC), July 2016, pp. 796–802.

Su, W., Eichi, H., Zeng, W., Chow, M., 2012. A survey on the electrification of transportation in a smart grid environment. IEEE Trans. Industr. Inf. 8 (1), 1–10.
Swaszek, R.M.A., Cassandras, C., 2019. Load balancing in mobility-on-demand systems: Reallocation via parametric control using concurrent estimation. In: 2019

IEEE Intelligent Transportation Systems Conference (ITSC), pp. 2148–2153.
The average electric car in the US is getting cheaper. [Online]. Available: https://qz.com/1695602/the-average-electric-vehicle-is-getting-cheaper-in-the-us/.
Tsao, M., Iglesias, R., Pavone, M., 2018. ”Stochastic model predictive control for autonomous mobility on demand,” CoRR, vol. abs/1804.11074, 2018. [Online].

Available: http://arxiv.org/abs/1804.11074.
Tucker, N., Turan, B., Alizadeh, M., 2019. Online Charge Scheduling for Electric Vehicles in Autonomous Mobility on Demand Fleets. In: Proc. IEEE Int. Conf. on

Intelligent Transportation Systems.
Turan, B., Tucker, N., Alizadeh, N., 2019. ”Smart Charging Benefits in Autonomous Mobility on Demand Systems,” In Proc. IEEE Int. Conf. on Intelligent

Transportation Systems, 2019. [Online]. Available: https://arxiv.org/abs/1907.00106.
United States Average Hourly Wages. [Online]. Available: https://tradingeconomics.com/united-states/wages.
Veldman, E., Verzijlbergh, R.A., Jan 2015. Distribution grid impacts of smart electric vehicle charging from different perspectives. IEEE Trans. Smart Grid 6 (1),

333–342.
Volkov, M., Aslam, J., Rus, D., 2012. ”Markov-based redistribution policy model for future urban mobility networks.” In: Conference Record - IEEE Conference on

Intelligent Transportation Systems, pp. 1906–1911, 09 2012.
Walraven, E., Spaan, M.T., Bakker, B., 2016. ”Traffic flow optimization: A reinforcement learning approach.” Engineering Applications of Artificial Intelligence, vol.

52, pp. 203–212, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0952197616000038.
Warrington, J., Ruchti, D., 2019. ”Two-stage stochastic approximation for dynamic rebalancing of shared mobility systems,” Transport. Res. Part C: Emerg. Technol.,

vol. 104, pp. 110–134, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0968090X18314104.
Watkins, C.J.C.H., Dayan, P., 1992. ”Q-learning,” Machine Learning, vol. 8, no. 3, pp. 279–292, May 1992. [Online]. Available: doi: 10.1007/BF00992698.
Wei, Q., Rodriguez, J.A., Pedarsani, R., Coogan, S., 2019. ”Ride-sharing networks with mixed autonomy,” arXiv preprint arXiv:1903.07707, 2019.
Wen, J., Zhao, J., Jaillet, P., 2017. ”Rebalancing shared mobility-on-demand systems: A reinforcement learning approach.” In: 2017 IEEE 20th International

Conference on Intelligent Transportation Systems (ITSC), Oct 2017, pp. 220–225.
Williams, R.J., 1992. ”Simple statistical gradient-following algorithms for connectionist reinforcement learning.” Mach. Learn., vol. 8, no. 3, pp. 229–256, May 1992.

[Online]. Available: doi: 10.1007/BF00992696.
Witten, I.H., 1977. An adaptive optimal controller for discrete-time markov environments. Inf. Control 34, 286–295.
Zhang, R., Pavone, M., 2016. Control of robotic Mobility-on-Demand systems: A queueing-theoretical perspective. Int. J. Robot. Res. 35 (1–3), 186–203.
Zhang, R., Rossi, F., Pavone, M., 2016. ”Model predictive control of autonomous mobility-on-demand systems.” In: 2016 IEEE International Conference on Robotics

and Automation (ICRA), May 2016.
Zhu, F., Ukkusuri, S.V., 2014. ”Accounting for dynamic speed limit control in a stochastic traffic environment: A reinforcement learning approach,” Transportation

Research Part C: Emerging Technologies, vol. 41, pp. 30–47, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0968090X1400028X.

Zhu, F., Aziz, H.A., Qian, X., Ukkusuri, S.V., 2015. ”A junction-tree based learning algorithm to optimize network wide traffic control: A coordinated multi-agent
framework.” Transport. Res. Part C: Emerg. Technol., vol. 58, pp. 487–501, 2015, special Issue: Advanced Road Traffic Control. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0968090X14003593.

B. Turan et al.

http://refhub.elsevier.com/S0968-090X(20)30733-6/h0155
http://refhub.elsevier.com/S0968-090X(20)30733-6/h0160
http://refhub.elsevier.com/S0968-090X(20)30733-6/h0165
http://refhub.elsevier.com/S0968-090X(20)30733-6/h0185
http://refhub.elsevier.com/S0968-090X(20)30733-6/h0185
http://refhub.elsevier.com/S0968-090X(20)30733-6/h0215
http://refhub.elsevier.com/S0968-090X(20)30733-6/h0220
http://refhub.elsevier.com/S0968-090X(20)30733-6/h0220
http://refhub.elsevier.com/S0968-090X(20)30733-6/h0235
http://refhub.elsevier.com/S0968-090X(20)30733-6/h0235
http://refhub.elsevier.com/S0968-090X(20)30733-6/h0250
http://refhub.elsevier.com/S0968-090X(20)30733-6/h0250
http://refhub.elsevier.com/S0968-090X(20)30733-6/h0290
http://refhub.elsevier.com/S0968-090X(20)30733-6/h0295

	Dynamic pricing and fleet management for electric autonomous mobility on demand systems
	1 Introduction
	2 System model and problem definition
	3 Analysis of the static problem
	3.1 Static profit maximization problem

	4 The real-time policy
	4.1 The Real-Time Problem as MDP
	4.2 Reinforcement learning method
	4.2.1 Preliminaries
	4.2.2 Proximal Policy Optimization

	5 Numerical Study
	5.1 Case Study in Manhattan
	5.2 Case Study in San Francisco

	6 Conclusion
	Appendix A Proof of Proposition 1
	Appendix B Proof of Proposition 2
	References

