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Structured randomness: jamming of soft discs
and pins

Prairie Wentworth-Nice,†a Sean A. Ridout, b Brian Jenike,a Ari Liloiaa and
Amy L. Graves *a

Simulations are used to find the zero temperature jamming threshold, fj, for soft, bidisperse disks in the

presence of small fixed particles, or ‘‘pins’’, arranged in a lattice. The presence of pins leads, as one expects,

to a decrease in fj. Structural properties of the system near the jamming threshold are calculated as a

function of the pin density. While the correlation length exponent remains n = 1/2 at low pin densities, the

system is mechanically stable with more bonds, yet fewer contacts than the Maxwell criterion implies in the

absence of pins. In addition, as pin density increases, novel bond orientational order and long-range spatial

order appear, which are correlated with the square symmetry of the pin lattice.

1 Introduction

Over two decades ago, it was first proposed1–3 that soft and
granular materials can have a jammed, solid phase, which
forms at sufficiently high packing fraction or pressure, and
sufficiently low shear and temperature. Now, much is known
about materials in the vicinity of the zero-temperature jamming
threshold, ‘‘Point J’’; not only for simple models like soft or
hard repulsive, frictionless spheres,4–7 but for particles which
are non-spherical,8–12 have rough and/or frictional surfaces,13,14

are confined within various wall geometries15–17 and even active
matter18–20 (including work on active matter in the presence of
fixed obstacles21). For frictionless soft spheres, a mixed first-
second order phase transition, with upper critical dimension of
d = 2 occurs6,22–24 at a maximally random close packing fraction
(MRP). Near Point J, there are diverging length scales25–29 and
universal critical exponents for quantities like contact number,
static and dynamical length scales, characteristic phonon
frequency, and shear viscosity below the transition6,22,30–33 –
while exponents for elastic moduli depend on microscopic
details like inter-particle potential.4,22 (A scaling relation for
elastic energy has been shown to unify our understanding of
the various critical exponents above the jamming transition.34)
At zero temperature and shear, the critical density fj represents a
state of marginal stability, where according to Maxwell’s counting
argument, the number of inter-particle contacts equals the

number of unconstrained degrees of freedom. For d = 2, this
situation of isostaticity, given translational invariance and a
positive bulk modulus, implies23 that the average number of
contacts experienced by one of N particles is Zc = 4 � 2/N.

How then, will this maximally random, marginally stable
structure be altered if particles are, in part, supported by
elements internal to the system? For the case of quenched
disorder via randomly-placed attractive sites, it was proposed35

that disorder constitutes a fourth axis of the phase diagram. . .

altering the position of fj, as well as introducing a new critical
threshold fp for the pinning of the flow of particles under an
applied force. (Because flow has been shown to be impeded both
by attractive35 and repulsive obstacles,36–38 there is some leeway as
to whether one uses the term ‘‘pinned’’ or ‘‘clogged’’ to describe
the state of arrested particle flow, with its distinctive hetero-
geneous geometry and time lag over which the flow comes to a
halt. For both types of obstacle, the state of arrested flow becomes
a true jammed state in the limit of large packing fractions.37)
Two different protocols for freezing particle positions as the
jammed solid forms have been studied in ref. 39. One protocol
produces over-coordinated systems, a consequence being qualita-
tive changes in the characteristic frequency of soft modes, linked
to the length scale above which a system is hyperstatic.25 Applica-
tions to separation and sorting benefit from understanding flow in
the presence of pinning sites.40 Moreover, periodic arrangements
of pins add an element of symmetry which can lead to predictable
trends in kinematics studies, like the reduction of friction
that accompanies kink propagation in driven colloidal solids41

or directional locking in clogging simulations.36,42 Here, as in
those references, we study periodically placed pins. Our pins are
diminutive and softly repulsive, serving only to exclude volume.

Our goal in this paper is to identify the jamming transition
and explore structural features of the jammed solid as a
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function of the ratio of the number of pins to particles, nf. In
Section 3.1, we find the T = 0 jamming probability, P(f) vs. f,
for various values of nf. From that probability distribution
function, we calculate a jamming threshold, fj(nf), which
is a decreasing function of nf. Once unsupported particles
(‘‘rattlers’’) are removed, fj(nf) decreases even more dramatically.
A comparison with randomly distributed pins, suggests that
having an appreciable ratio of particle size to pin separation is
important in determining whether the geometry of the pin lattice
affects the detailed shape of fj(nf). In Section 3.2 we calculate
structural quantities, beginning with the probability distribution
of bond angles, P(y). There is a transition from a uniform
distribution to one with fourfold symmetry, again occurring when
the ratio of particle size to pin separation is appreciable.
A numerical solution seems a necessary evil, in order to predict
the intricately detailed substructure in P(y) which arises from the
bidispersity of particle sizes, packing amid pins. We then discuss
the pair correlation function g(r) and scattering function S(

-

k) with
k̂ referred to lattice symmetry axes. Both bond angles and pair
correlations reveal how pins impose order, whose character and
magnitude can be tuned via the density of pins. In Section 3.3,
we calculate contact statistics – concluding that pins support a
jammed system with fewer contacts between particles, and fewer
contacts overall. We might think of jamming in the presence of a
square lattice of pins as not only possessing a modicum of
order, but as ‘‘parsimonious’’, requiring fewer particles, each
one requiring fewer contacts, in order to form a rigid solid.

2 Methods

M pins are placed on a square lattice in a 1 � 1 simulation cell
with periodic boundary conditions. N = Nl + Ns large and small
particles are introduced at random locations, using a uniform
random number generator. The initial packing fraction is
thus f = Nsprs

2 + Nlprl
2 with Ns = Nl and rl/rs = 1.4, a fraction

of large-to-small particles and size ratio that previous studies
have found optimal in two dimensions, to inhibit the formation
of a regular, hexagonal lattice.28 Pin radii rpin are much smaller
than those of particles; rpin = rs/1000, and variation around
this value had a negligible effect on results. An alternative
model would feature pins as point, geometric constraints.
Our choice had no discernible drawbacks, and endowed the
code with practical advantages: permitting one to test different
pin–particle interactions, and change the mobile vs. fixed status
of pins at an intermediate point in the simulation, as had been
fruitfully done in previous studies.39,43 All particles in our
system are soft disks, with a short range harmonic interaction
potential given by

V ¼

0 rij 4 dij

1

2
e 1� rij

dij

� �2

otherwise

8>><
>>: ; (1)

where rij is the distance between the centers of particles i and j,
dij is the sum of the radii of the two particles, and e � 1 for this
zero-temperature study. It is known that the probability

distribution of jamming thresholds is protocol-dependent.44,45

Structural and scaling properties may be noticably different if
the protocol yields a jammed configuration which is hyper-
static;46 and even if isostatic, if the starting configuration is a
hard-particle liquid exceeding a certain packing fraction.47 We
adopt a simple, athermal protocol which, in the absence of pins,
is expected to yield a jamming transition at the lowest limit
of any ‘‘line’’ of jamming thresholds,20 with the canonical
structural and scaling properties described in O’Hern et al.4

The energy of a random configuration of soft discs is minimized
via a conjugate gradient algorithm,48 after which configurations
are tested for mechanical stability, and unsupported particles
(‘‘rattlers’’) are removed. 1000 random seeds are used to generate
initial particle configurations for each [M,N] pair. Packing frac-
tions f are chosen to completely span the jamming transition
for a given value of M.

The simulation halts when a chosen tolerance for changes in
the gradient of the energy is reached. Near the jamming
threshold, this energy is typically less than 10�6 of the energy
scale for a single pair interaction. For the data discussed below,
we not only assert that particles in a jammed solid are
mechanically stable, but we ask that the system ‘‘percolates’’,
so that there is a connected path between box top and bottom
sides, and between left and right sides. This criterion is not
needed in the absence of pins, when mechanical stability
occurs only if the system percolates. It is, however, a needed
criterion in systems in which a short-ranged attraction between
jammed particles permits the creation of non-spanning rigid
clusters.49,50 Fig. 1a and b illustrate two final configurations in
a system with M = 144, hence a = 0.0833. This is sufficiently
close to the particle size (rs = 0.0260382) that, at jamming,
equilibration may result in situations like Fig. 1a, where no cluster
of non-rattlers spans the system from left to right. At the highest
pin density discussed below, approximately 1/4 of jammed config-
urations fail to percolate. Non-percolating equilibrated configura-
tions like Fig. 1a were excluded from further analysis.

In our work, two protocols were examined, and the second
was adopted for results shown in Fig. 3 and beyond. At issue is
the state space controlled by three parameters: N, f, and M
which cannot be neatly collapsed. Suppose one utilizes a
simulation cell of fixed size, with a fixed number of particles,
N and pins M. In this ‘‘first protocol’’, f is varied by changing rs.
This may be repeated for larger values of N, and finite-size

Fig. 1 Two final configurations, both initialized with N = 249 particles and
M = 144 pins. The pins are enlarged for visibility. (a) Configuration jams, but
does not percolate. (b) Configuration jams and percolates.
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scaling (FSS) arguments applied in order to extrapolate to the
N -N limit. However, the pin lattice introduces an additional

length scale, a ¼ 1
� ffiffiffiffiffi

M
p

. The protocol just described involves
changing the ratio rs/a as one scans through f values in order
to locate fj. If one suspects that the ratio of particle size to pin
separation is a meaningful control parameter, one seeks a
different approach. Thus, we employed a ‘‘second protocol’’:
rs is fixed and N is varied in order to vary f in the neighborhood
of fj. The range of N values does not need to be large (less than
10% for any value of M in the current study) in order to span
the phase transition.

With either protocol (rather than one where the system is
relaxed from an initially overjammed configuration) sometimes
the minimization procedure is not precise enough to identify a
very slightly unstable configuration as such. Thus, we discard
a very small fraction (less than 1%) of configurations with an
insufficient number of bonds, Niso, required to satisfy the
number of degrees of freedom. These must necessarily have
zero vibrational frequency modes, and be unstable. In packings
without pins, we have checked that this criterion perfectly
identifies a group of packings which also have unusually high
energies and zero (or negative) bulk moduli.

3 Results
3.1 Jamming probability

We examine the jamming transition by calculating Pj(f), the
probability of jamming as a function f for different system
sizes N, and different numbers of pins, M. A sigmoidal fitting
form which estimates the center, fj, and width, w is:

PjðfÞ ¼
1

1þ beðfj�fÞ=w
� �1=b: (2)

Eqn (2) is a Richards sigmoid which, for b = 1 is an isotropic,
logistic sigmoid. This 2-parameter logistic sigmoid is used for
M = 0, 36, 64, 81 and 100. For M = 144, 169, the deviation from
b = 1 is significant in order to account for anisotropy about fj;
and thus the 3-parameter form of eqn (2) is utilized.

Fig. 2 and Table 1 illustrate that the two protocols yield
consistent results for Pj in the limit of small M. However, there
is a difference in the two protocols for the densest pin lattices.
As M becomes comparable to N, the second protocol (which
preserves the ratio of a to the particle size) yields a lower fj, and
also yields a transition which becomes steadily wider as M
increases. Unless otherwise noted, data discussed henceforth
were calculated with the second protocol.

As with other phase transitions, FSS allows one to approach
the limit N -N systematically to infer critical properties. Fig. 3a
and b show that for the same value of nf, P(f) for different N can
be collapsed onto one scaling curve, just as would be true without
pins.23,24,51‡ Here, one plots Pj as a function of the rescaled
distance to the critical point: (f � fj(N,nf))N

1/2. (Though N values
vary slightly with this protocol, nf E 0.14 is constant to two
significant figures for the data shown.) The rescaling exponent
1/2 is determined from the width at half maximum of the

Fig. 2 Pj(f) for systems with number of pins, M, given in legend and
N = 256 particles (first protocol, open symbols) and N A [231,261] particles
(second protocol, closed symbols). Dashed lines indicate sigmoidal fits.

Table 1 Calculated critical point fj, and width w of transition, using
sigmoidal fit to 1000 realizations per f value. Systems contained M pins
and N E 256 particles before equilibration

Number of pins Second protocol fj, w First protocol fj, w

M = 0 0.838 � 1, 0.0018 � 2 0.838 � 1, 0.0020 � 2
M = 36 0.828 � 1, 0.0022 � 2 0.828 � 1, 0.0022 � 2
M = 64 0.820 � 1, 0.0022 � 2 0.8208 � 1, 0.0022 � 2
M = 81 0.807 � 1, 0.0027 � 2 0.8078 � 1, 0.0028 � 2
M = 100 0.802 � 1, 0.0028 � 2 0.802 � 1, 0.0028 � 2
M = 144 0.787 � 1, 0.0036 � 3 0.790 � 1, 0.0025 � 3
M = 169 0.766 � 2, 0.0046 � 4 0.773 � 2, 0.0033 � 3

Fig. 3 Jamming at a pin density of nf = 0.14 for four systems of different
size regimes, with N E 64, M = 9 (red crosses), N E 256, M = 36 (green
triangles), N E 455, M = 64 (aqua diamonds) and N E 1024, M = 144
(orange squares). (a) Probability of jamming as a function of packing
fraction. Richard’s sigmoid fit: N E 64, logistic sigmoid fit: N E 256,
455, 1024. (b) FSS version of (a), illustrating collapse of Pj data for three
sufficiently large N values.

‡ Scaling behavior with nf has also been proposed in the limit of dilute, fixed
particles.51
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distribution of jamming thresholds.4 At the smallest size N = 64
it is not surprising that this procedure, sans corrections to
scaling, will fail.4,52

Studies of jamming in which a fraction particles are immo-
bilized have been unanimous in observing a reduction in the
jamming threshold. While in previous studies obstacles were
slightly larger38 or on par with the size28,36,37,39 of particles, our
pins make a negligible contribution to the volume fraction.
Perhaps this makes the decrease in fj in Fig. 4 less surprising
than in previous studies, for in the limit of low pin densities,
pins support rigidity without adding volume. Nevertheless, at
higher densities, the geometry of the pin lattice may not only
generate order (see Section 3.2) but adjacent pin proximity may
interfere with the formation of a jammed solid.§

The inset to Fig. 4 provides a comparison between the square pin
lattice and an additional geometry: pins placed at random positions
in the simulation cell, which has appeared in both experimental
work on paramagnetic colloids being driven around silica
obstacles38 and simulations.28,37,39 As one might expect, the inset
shows agreement between the two geometries in the dilute pin limit.

It has been argued35,51 that jamming occurs when the inter-
pin separation is equal to the correlation length, xB (f� fj)

�n.
Thus one would predict that in d dimensions, pins will lower
the jamming threshold by the amount:

Dfj(nf) � fj(nf) � fj(0) p nf
1/dn (3)

Here d = 2, so a linear fit of Dfj(nf) implies that n ¼ 1

2
, the

accepted value for spherical, repulsive particles in the absence
of friction.1,7 Fig. 4 suggests that for nf r 0.25, the data is
approximately linear; a power law fit yields |Dfj(nf)| p na

f with
a = 0.91 and a = 0.95 � 0.10 for N = 256, 1024 respectively. If we

assume that a = 1 (linear fit) the slope is
@fj

@nf
¼ �0:071; �0:072�

0:002 for N = 256, 1024 respectively. The slope value is seen to
depend on the details of the interaction between particles and
obstacles.35,37,51 More importantly, deviation of the data in Fig. 4
from linearity at higher nf suggest that sufficiently dense,
ordered pins do more than single out the correlation length of
a highly random packing.

The thresholds for square and random lattices both deviate
from linearity and begin to disagree with one another occurs at
approximately nf = 0.28. The answer to ‘‘Why this density?’’
seems to incorporate the ratio of pin size to typical inter-pin
spacing, rs/a:

rs=a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
1þ 1:42

2
f nf

s
: (4)

Using eqn (4) and fitting to fj(M) from the square lattice data in
Fig. 4 yields

rs/a = 0.39 n0.46
f . (5)

Values of fj for square and random pin configurations begin to
disagree at approximately rs = 0.22a; when small and large
particles have diameters which are 40% and 60% of the typical
pin separation. That the relevant length scale when lattice identity
affects jamming is a microscopic length scale, on par with particle
size, also applies to the data on bond structure in Section 3.2. It
agrees with the size scale – a couple of particle diameters –
on which confining boundaries produce inefficient packing,
featuring a lower packing fraction and some evidence of square-
like packing, in a study of hard discs confined by walls.53

Since fj is traditionally pitched as a critical initial packing
fraction, one may also ask about the final packing fraction after
removal of particles which do not alter the mechanical stability
(or percolation) of the system. The open circles in Fig. 4 show
the final volume fraction, after one eliminates these rattlers. As
M increases, so does the volume of rattlers at fj, leading to a
dramatically smaller packing fraction of particles needed for
rigidity. A technological benefit of creating a jammed solid
supported by pins would be a less dense material. Below, we
show that there is an onset of both local (bond) and global
(positional) ordering as the pin lattice density increases. This
suggests an additional benefit: the ability of pins to induce elastic
and transport properties which are anisotropic and adjustable.

3.2 Angular and spatial ordering

Two particles whose radii overlap can be thought of as sharing
a ‘‘bond’’, oriented in the direction between the particle
centers. The geometry of the bond network is central to the
theory of jamming; controlling the fragility of the jammed state,
elastic properties, the phonon spectrum, scaling exponents,

Fig. 4 Deviation of jamming threshold from the zero-pin value, as a function
of pin density nf. Filled circles: threshold in terms of initial volume fraction, for
N E 256; grey diamonds: N = 1024. Open circles: final volume fraction, once
rattlers are removed, for N E 256. Error bars are smaller than data points. Linear
fit with slope �0.071 is shown, as is consistent with data for nf r 0.25. Inset:
Filled circles: jamming threshold as in main figure, for pins configured in square
lattice. Crosses: jamming threshold for random distribution of pins.

§ Preliminary data indicate that, the rule of monotonic decrease seen in Fig. 4
can be violated. These results, which include additional pin geometries, will
appear in a forthcoming publication.
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and evolving in response to compression and shear.2,54,55 The
angle formed by a pair of bonds which carry the largest forces
reveals a distribution which supports the picture of ‘‘force
chains’’.53,56 In the presence of pins, we must first ask a more
basic question about individual bonds: are these isotropically
distributed in angle space? To capitalize on the comparison of
square and random pin lattice, we will answer this question in
terms of the variable rs/a; which can be mapped back to nf at
the jamming threshold via eqn (5). Fig. 5 compares the dis-
tribution of bond angles with N E 256 systems for various pin
densities. One sees the distribution become progressively more
anisotropic as M increases. The distribution of bonds P(y) has
fourfold symmetry as one expects given a square pin lattice.
(Fig. 5 only shows angles in the range y A [0,p/2]; bonds with
y A [p/2,p] are averaged with the data shown.) The reflection
symmetry about y = p/4 is clear.

Fig. 6 shows the order parameter hmi � hei4yi for N E 256
systems. The magnitude of the real part of this order para-
meter, given the choice of axes, is approximately equal to |hmi|.
Apparently, an angular ordering transition occurs somewhere
between rs/a = 0.23 and 0.26; in good agreement with the
density at which the threshold, in the previous section,
shows evidence of being affected by the pin lattice geometry.
While |hmi| continues to increase above the transition, note
the change in sign of Rehmi at the densest lattice studied
(yellow curve in Fig. 5) which correlates with the change in
the most-probable bond angle from y = p/4 for less dense
lattices, to y = 0,p. While it appears that hmi is nonzero for all
values of M 4 0 studied, this may be a finite-size effect having
to do with the square simulation cell with periodic boundary
conditions, which creates a slight amount of ordering even
for M = 0.53 As a check on this, the inset of the figure shows

both N = 256 and 1024 data for rs/a = 0, 0.167. For the larger
system (open symbols) the order parameter is significantly closer
to zero. The T = 0 jamming transition constitutes an out-of-
equilibrium, phase transition. Nevertheless, the abrupt increase
in |hmi| with cubatic ordering from pins is reminiscent of a phase
transition, such as the isotropic to nematic transition in uniaxial
liquid crystals in the presence of an orienting field.57 Statistical
ensemble ideas have successfully described jamming58 and per-
haps will allow one to map out a bond ordering transition using
pin density as a control parameter.

A bidisperse distribution results in particle-size-dependent
preferences for certain bond angles. Thus, detailed features of
P(y) in Fig. 5 can be traced to bonds between particles of
specific sizes, as exemplified in Fig. 7. The large–large bonds
tend to be oriented near y = p/4 for M = 81, 100; however a
couple of other favorable orientations appear as side peaks in
Fig. 7a and b. At the highest pin density studied, M = 169 of
Fig. 7c, large–large bond probabilities have a peak at approxi-
mately y = p/6, 2p/3 (also true for M = 100) but the most
probable orientation is horizontal or vertical. In contrast, at
this pin density, the small–small bond angles have a preferred
orientation of y = p/4. Small–small bonds show little

Fig. 5 Histograms proportional to the probability P(y), that a bond makes
angle y with the x-axis. Each data set corresponds to the system para-
meters closest to the fraction at jamming fj from sigmoidal fits, and given
(Table 1). Different numbers of pins M corresponding to different size ratios
at jamming rs/a are shown in black: M = 0, rs/a = 0; dark blue: M = 36,
rs/a = 0.158; purple: M = 81, rs/a = 0.234; light blue: M = 100, rs/a = 0.260;
red: M = 144, rs/a = 0.312; and yellow: M = 169, rs/a = 0.338. Histograms
for successive parameter values are displaced from each other vertically by
0.01 for ease of viewing.

Fig. 6 Order parameter as a function of particle-lattice size ratio. Black
squares: Rehmi, red triangles: Imhmi, and blue circles: |hmi|. Inset: Real and
imaginary parts of hmi showing both N = 256 (solid symbols) and N = 1024
(open symbols) data.

Fig. 7 P(y) for different types of bond. Thick lines: large–large, thin:
small–small, dotted: large–small. Colors indicating M value are as in
previous figures. (a) purple: 81; (b) light blue: 100; (c) yellow: 169.
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orientational structure at M = 81, and at M = 100 are most likely
to be oriented at y = p/12, 5p/12; coinciding with one set
of large–large bond peaks. Large–small bond probabilities
have, for M = 81 a small local maximum at y = p/4. But it is
overshadowed by peaks at other angles, present for all three
M values in Fig. 7. The take home message is that the details of
the bond angle distribution depend in an intricate way on
particle sizes rs, rl and pin separation, a. It is worth noting that
there is only a slight degree of particle size segregation; whether
same-sized or differently-sized particles are more likely to share
a contact varies only slightly with M. Segregation is largest at
M = 169, where differently-sized particle contacts exceed same-
sized ones by 4%.

The pair correlation function between particle centers, g(r)
with rs = 0.0133, and rl = 0.0186 is shown in Fig. 8 for N = 1024
particles – with zero pins (blue) and M = 144 pins (red), so that
a = 0.0833. (As in the inset of Fig. 6, N = 1024 is utilized here to
lessen the finite-size effects on structure, and distinguish them
from the effect of pins.53) At the modest pin density nf = 0.141,
Fig. 8a indicates that pins do not dramatically change g(r) at
distances r which are within the first few ‘‘solvation shells’’ of a
reference particle. Structure related to the bidisperse system is
visible; for example, the first three peaks correspond to r E 2rs,
rs + rl, and 2rl. However, as seen in Fig. 8b, pins are responsible
for the persistence of this order across the simulation cell.
These regular oscillations in g(r) have a spatial period of
0.030 � 0.005, the typical separation between neighboring
particles. These oscillations feature an amplitude modulation,
which can be explained by the superposition of contacts at
large–large, large–small, and small–small contact distances:
0.037, 0.032, 0.027. The width of the ‘‘beat pattern’’ of three
such superposed sinusoids is quite comparable to the value of
0.20, seen in Fig. 8b.

Structure seen in g(r) carries over into its Fourier transform,
S(k). Moreover, S(

-

k) for vector
-

k reveals any long range order in
structurally-relevant directions. For a perfect square lattice,
these directions would simply be all integers [hl]. We define a
normalized scattering intensity as this structure factor:

S ~k
� 	
¼ 1

N

XN
j¼1

XN
k¼1

e�i
~k� ~Rj�~Rkð Þ (6)

where the sums in eqn (6) extend over pairs of particles.
The structure factor S(

-

k) � S(k) for zero pins is shown
with + symbols in Fig. 9, while circles in Fig. 9a and b depict
S(k10) where kx = k, ky = 0 and crosses depict S(k11), where

ky ¼ kx ¼
ffiffiffi
2
p

k. Colors indicate M values. Discretization due to

the periodic boundaries of the 1 � 1 simulation cell restricts the
resolution in k space to Dk = 2p. The horizontal scale is chosen to
focus on the region relevant to the first couple of ‘‘solvation
shells’’. A peak from particles separated by precisely 2rs, rs + rl or
2rl along each lattice direction would fall roughly at k = 121, 101 or
86. The main message of Fig. 9 is the existence of lattice-induced
peaks which are correlated with the positions of pins. Were it
simply the case that particles took on the crystalline symmetry of a
perfect square, peaks would fall at the reciprocal lattice vectors
kx = nDk, ky = mDk with n,m integers. Small amounts of positional
disorder and finite size effects from simulation would result in
recognizable modulation of peak heights and widths.59 For our
finite system the peaks for n = m = 1 and n = 1, m = 0 would be

equal in height. With pins, S(
-

k) is neither that of an isotropic
system, nor a square crystal with positional disorder. In Fig. 9,
discrete peaks rise from the isotropic background. The height of
the tallest peak increases as the pin density increases.

All of the peaks in Fig. 9a have this in common: they signify

particles whose separation, projected onto the direction of
-

k, is
half of the inter-pin spacing. This reflects the compromise
which particles make to close-pack while avoiding pins with
the chosen separation. For M = 81, a = 0.111: the large peak
(circle) at k = 113, has 2p/k = a/2. The much smaller peak (cross)

at k = 80 implies 2p=k ¼
ffiffiffi
2
p

a
�
2. For M = 100, a = 0.1: again one

sees two per unit cell in both horizontally and diagonally. For
M = 169, a = 0.0769: the dominant peak (cross) at k = 115.5
indicates two particles per lattice unit cell projected diagonally.

At the pin densities shown in Fig. 9a, a pair of bidisperse
particles, in contact but non-overlapping, do not in general
‘‘fit’’ within an a � a square region with pins at its four vertices.
Analyzing these data presents an enormously complicated
packing problem, even if only particle pairs are considered.
One speculates that such packing constraints drive the
qualitative shift from ordering in the horizontal or vertical
directions, to ordering along a diagonal in the lattice. On the
other hand, the trend shown in Fig. 7 for bond angles is
opposite, with a bond probability density maximum at y = 451
at lower pin densities, which has shifted to y = 0 at higher
densities. Local bond and long-range positional order are,
broadly speaking, two distinct results of the pin lattice.

Fig. 8 Pair correlation function, g(r) for N = 1024 particles at the jamming
threshold. Blue symbols: M = 0. Red symbols: M = 144, nf = 0.141.

Fig. 9 Particle scattering function S(k
-

) vs. wave number k, in units where
the box is of linear size 1. Colors indicating M value are: black: 0, dark
blue: 36, green: 64, purple: 81, light blue: 100, yellow: 169. The + symbols
signify M = 0 data. For other M values, crosses signify k̂ oriented at 451
with respect to the row direction of the pin lattice; circles signify k̂
oriented at 01.
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Supporting this notion is the fact that the more dilute pin
lattices are also able to promote long-range positional order.
This is seen both in Fig. 8 and in Fig. 9b, which depicts the two
lowest pin-densities studied. These have no significant bond
order according to Fig. 6. In Fig. 9b for M = 36, a = 0.167: the
peak (circles) at k = 113.09 gives 2p/k = 0.0556 = a/3. The naı̈ve
picture is one of three particles spanning a lattice unit cell
horizontally (or vertically). The peak (crosses) at k = 106.6292

implies 2p=k ¼ 0:0589 ¼ a
ffiffiffi
2
p �

4, leading to a naı̈ve picture of
four particles spanning the diagonal of the lattice unit cell.
For M = 64, a = 0.125: there is no evidence of lattice-induced
structure (crosses) in the 451 direction. However, a large peak
(circle) at k = 100.5 implies structure in the horizontal (or
vertical) direction with period 2p/k = 0.0625 = a/2.

The take-away is that the order produced by the pins stems from
the intricate details of packing of bidisperse particles among them.
There is every reason to assume S(

-

k) in lattice directions other than
01 or 451 will yield additional structural features, arising from the
detailed way that particles pack among the pins. For the two lattice
directions studied above, local bond order and global spatial order
don’t transparently reinforce each other. For example, no type of
M = 81 bond pair shows a preference for y = 0, while Fig. 9a shows
its most dramatic peak in that lattice direction.

3.3 Contact statistics

How do pins affect a particle’s average contact number, Z? In what
follows, the subscript ‘‘pp’’ denotes a contact between particles and
‘‘pf’’ denotes contact between a particle and a fixed pin. It is
obvious that Zpp is reduced by pins for a given value of f. A particle
stabilized by a pin might touch as few as two other particles and
contribute to the rigid solid. It is not as obvious how Z should vary
with M. Fig. 10 shows the probability P for a particle to have z
contacts, evaluated at the configuration-averaged jamming threshold
fj(M). Increasing M at the jamming threshold will shift both
distributions to the left, toward smaller number of contacts.
As Fig. 11 below shows, both Z and Zpp decrease as pin density
increases. These results have technological consequences: a conduc-
tive jammed solid stabilized by pins may be expected to have a lower
conductivity, higher individual bond strengths, lower yield strength,
and different elastic moduli from its pin-free counterpart.

The traditional Maxwell counting argument23 asserts
that frictionless, spherical particles require a minimum of
NB iso = dN � qd + 1 bonds. The second term in this definition

arises from d zero modes associated with global translations,
while the third term ensures a positive bulk modulus. Here,
q = 1 without pins, but q = 0 if even one pin is present, as our
equilibration protocol breaks translational symmetry.51 Say
that the total number of bonds is NB = Npp + Npf. The number
of excess bonds between particles is found via a generalized
isostaticity criterion:39

NB excess � NB � NB iso = Npp + Npf � dN + qd � 1. (7)

Without pins, Ziso = 2d � (2/N) = 2NB iso. In the presence of pins
it is no longer true that one can write Ziso p NB iso, as Npp bonds
stabilize two particles, and Npf bonds stabilize only one.

Hyperstaticity, by which one means NB 4 Niso, is expected
in certain cases, such as frictional particles,13 or those with
attractive interactions.49,50 We see increasing hyperstaticity with
nf, reminiscent of previous work with frozen particles39 as well as
in bidisperse mixtures in which the ratio of small to large radii is
varied.60 Unfortunately, even at nf = 0, the number of excess bonds
NB excess,0 is greater than zero. This is a consequence of fixing rs/a
for a set of initial conditions, thus averaging over configurations
at various distances from their individual jamming points. (As one
might hope, this fraction of excess bonds is independent of the
system size, N.) Squares in Fig. 11 shows the difference between
the number of excess bonds at finite nf and at nf = 0.

Though NB excess increases with nf, the number of excess
bonds per pin is found to decrease:

NB excess � NB excess,0 B nb
f ; b = 0.61 � 0.07 (8)

Eqn (8) shows an approximate square root dependence on pin
number, which is reminiscent of a surface term. Since both Z
and Zpp decrease with increasing pin density, it is the number
of bonds between particles and pins, Npf, which increases in the
viscinity of fj. The number of excess bonds reflect the interplay
between the contact statistics (rising numbers of contacts
between particles and pins) and the falling number of non-
rattler particles at fj.

Fig. 10 Probability that particle has z contacts at f = fj(M) (see Table 1).
Colors correspond to M as in earlier figures. (a) All contacts; (b) only
particle–particle contacts.

Fig. 11 Typical number of contacts per particle. Black circles: all types of
contacts, Z, grey circles: particle–particle contacts, Zpp, grey squares:
NB excess � NB excess,0.
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4 Conclusions

Introducing a square lattice of pin-like obstacles to systems of
bidisperse particles provide a parsimonious route to jamming.
The threshold fj decreases and fewer contacts are needed for
stability as the density of pins increases. fj decreases linearly at
low pin densities, and more steeply at higher densities. This
change in behavior occurs in a regime where the volume
per particle is comparable to the volume per pin. There are
additional, detailed changes in the structure of the jammed
system as pin density increases. The distribution of bond
angles becomes increasingly anisotropic and we see a transi-
tion in a cubatic order parameter. The bond angle distribution
exhibits fourfold symmetry, consistent with the presence of
pins in a square lattice, but with details that depend sensitively
on the packing of bidisperse particles among pins of a given
density. The presence of oscillations in the pair correlation
function suggests long-range spatial ordering in the system.
Peaks in the structure factor arise, locked to the spatial fre-
quency of the pin lattice. In general, the axes along which there
is long-range spatial order need not correspond to directions of
preferred bond angles. This supports the notion that long-
range, spatial ordering can be considered separately from local,
bond ordering. Both are consequential when the pin separation
is on the order of the particle size.
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