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Abstract— We introduce a model for mobile, multi-agent
information transfer that increases the communication covert-
ness through a protocol which also increases the information
transfer delay. Covertness is achieved in the presence of a
warden who has the ability to patrol the communication
channels. Furthermore we show how two forms of redundancy
can be used as an effective tool to control the tradeoff between
the covertness and the delay.

I. Introduction
In numerous circumstances, the very act of commu-

nicating needs to be hidden. In war time, not only
the content of messages, but also the volume of com-
munication to or from suspected parties can alert the
adversary. In everyday life, revealing the identity of
communicating parties, not only the exchanged informa-
tion, affects the increasingly important anonymity and
privacy. An information theoretic approach to achieving
covertness, adopted in several recent papers (see e.g.
[1]–[3] and references therein), roughly speaking, relies
on camouflaging messages as noise. We here propose
covert message passing in a wireless mobile network
environment that is complementary to and can be used
in conjunction with the previously proposed methods.

The last decade has seen a wide variety of novel
networked systems, with a growing trend towards dis-
tributed and multiuser applications. Future 5G systems
are supposed to host hundred times more devices than
current 4G networks, and one can potentially harness
the resources expected to be brought in by smart
(everyday or battlefield) devices in the future Internet
of (Battlefield) Things (IoβT) environments.

The precise mathematical description of our problem
will be presented in the following section; we next give
two high level examples. Consider a scenario where an
agent Alice has a message she wants to covertly send
to her partner Bob who resides in the same (possibly
occupied) city. We represent city streets as a graph.
Information gathering and dissemination on graphs is
a very interesting problem that arises naturally and
has recently seen active research in many different con-
texts. Examples include: border control using UAVs [4],
measuring traffic, reporting road conditions and helping
with emergency response using UAVs [5], monitoring the
ocean [6], measuring air pollution [7], and more recently
for timely exchange of information updates [8].

1The authors are with the Department of Electrical and
Computer Engineering, Rutgers University, the State Univer-
sity of New Jersey, USA {pei.peng,nikolas.melissaris, em-
ina.soljanin}@rutgers.edu

The area over which Alice and Bob plan to com-
municate hosts a multitude of IoT objects capable of
storing, sending and receiving data. Alice can use some
of these smart objects to store her data, and Bob can
subsequently retrieve the stored data. The agents have
one or both of the following concerns: 1) they do not
want to be detected communicating with any of the relay
objects and 2) the system should be trustworthy even if
some of the objects e.g., have lost power, are unwilling
to relay messages, or are otherwise compromised in
an adverse environment. Because of that, Alice decides
to split her data into small chunks which she can
inconspicuously pass, one at the time, to relays (helpers)
that appear in her proximity as she randomly moves
through the area. Bob, who also randomly moves through
the area, can then retrieve the stored data chunks. We
assume that there is a warden Willie patrolling the city.
Because the IoT objects are distributed in a wide area,
Willie can only periodically check if any of these objects
is transmitting or receiving data.

Having to distribute and collect many chunks, as well
as the unpredictability of mobility and availability of
helpers can cause large delays in such mobile information
transfer. To increase persistence of information in the
erratic environment, the agent may decide to make the
data chunks redundant by using erasure correcting codes,
which requires that more data chunks be distributed and
collected. One would expect that that would further in-
crease the delay in mobile information transfer. However,
that is not necessarily the case, and we will see that
coding and some other forms of redundancy can in fact
be used to reduce the delay, as previously shown to be
the case in data download [9].

There is another analogy for our communications
scenario: Alice and Bob are at a party and Alice wants
to send a message to Bob without actually talking to
him. Willie, who is also at the party, wants to detect
whether Alice and Bob are communicating. Willie could
easily detect if Alice talks directly with Bob, so Alice
decides to divide the message into several pieces and
whispers each piece to a different mutual friend she has
with Bob. Bob can then walk around in the party and
collect these message pieces from the friends to retrieve
the message. Since Willie is unable to keep track of all
the participants in the party, Alice may be able send the
message successfully to Bob without being detected.

If the size of the message that Alice wants to send
to Bob is fixed, then the delay and the covertness of
the message transfer will depend on the number of
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chunks that the message is split into and the amount of
redundancy (code rate) that is introduced. We here de-
rive the expressions that describe this dependence under
certain communication model. The paper is organized
as follows: In Sec. II, we present the system model and
point out multiple tradoffs that exist between the time
to disseminate data, time to collect data, and the proba-
bility of covertness. In Sec. IV, we derive expressions for
the covertness probability and dissemination/collection
delays. In Sec. VI, we present some numerical results
and analyze the maximum covertness probability and
minimum delay by simulation.

II. System Model
A. Communications Protocol & the Mobility Model

There are four (types of) participants in our communi-
cation model: a source (Alice), r relays, a collector (Bob),
and a warden (Willie). Alice and Bob walk randomly on
a complete graph of s vertices. The r relays are placed
on r different vertices of this graph. Alice has a message
of length m which she divides into k ≤ m chunks of
length ℓ = m/k, and then encodes the data chunks into
n ≤ r coded chunks (of length still ℓ). She transfers the
n coded chunks to the first n relays she encounters as
she randomly walks through the graph. The collector
Bob retrieves the message by collecting k chunks from
the first k relays with data chunks he encounters as
he randomly walks through the graph. Note that we
assumed without loss of generality that the encoding
is such that any k out of n chunks are sufficient for
message recovery. We assume a complete graph for our
communication graph because it simplifies the analysis
and drives our point home without getting into messy
calculations. Other communication graphs can be used
as well in future research, especially large regular graphs
or graphs with a few high degree hubs.

Notice how the tradeoff between covertness and delay
becomes apparent here. On one hand, if Alice sets n =
1, meaning that she delivers the entire message in one
chunk, then the probability of detection is small. This
happens because the chance that Willie “sees” her is
inversely proportional to the number of nodes. On the
other hand, delay is increased because Bob will have to
visit many nodes until he meets the relay that holds
Alice’s message.

At the other side of the spectrum if Alice splits the
message in many chunks, then it will take Bob less steps
to retrieve it (since the probability of meeting a relay that
holds a message is high) but the probability that they
are caught increases significantly because of the longer
time that they have to spend walking on the graph.

B. Chunk Transmission
We assume that the transmission time of a chunk

(between Alice and a relay or Bob and a relay) consists
of two additive components. The first is proportional
to the chunk length ℓ, and the other is an independent

random variable that accounts for various disturbances
(noise) in the system. We will assume that this random
variable is exponential with parameter λ, and thus the
transmission time is shifted exponential with the shift
value ℓ and the tail parameter λ.

C. Warden Models
We now introduce our very simple warden model. We

base covertness on the assumption that the warden Willie
is able to monitor part of the vertices for some given
time. A very easy and informal way to visualize this is
to imagine that the warden is stationed somewhere “in
the middle” of the graph1, on top of a lighthouse. This
way, he can only check the parts where the lighthouse
sheds its light and can’t see what is happening behind
him. We assume that no transmission covertness scheme
is implemented, and thus if the warden happens to check
a vertex of the graph while the chunk transmission is
taking place, he will detect it with probability 1. We
further assume that when the transmission starts, the
warden’s (monitoring) time follows a uniform distribu-
tion U(0,W ). The information transfer stays covert iff
the transmission of each chunk stays undetected. There
are multiple warden models that can be considered in
future research. In this work, we observe two simple ones
in order to point out the tradeoff between covertness and
delay that our protocol manages to balance. The main
idea separating the models is whether Willie can learn
something about where meaningful transmission takes
place just by observing how Alice and Bob walk along
the graph. More details are made explicit in sections V-A
and V-B.

III. Performance Metrics
Our performance metrics of interest are covertness

probability, the dissemination time of the n coded chunks
by Alice, the collection time of k coded chunks by Bob,
and the total data transfer time (dissemination plus
collection). We will see, in the following sections, that
each performance metric is optimized by a different set
of system parameter values.

A. Dissemination/Collection Time
We can consider the dissemination/collection time as

a coupon collector’s problem: there are n stores at city
squares, each one selling a different coupon, and there
is a direct road between any two squares. A coupon
collector walks randomly in the city and want to buy
j different coupons. If j = 1, it is obvious the collector
needs to visit only 1 square get a coupon; If j = 2, he
needs to visit on average 1 + n

n−1 squares; If j = 3, the
average visited squares is 1 + n

n−1 + n
n−2 . Following this

pattern, we know that when j = n, the collector needs
to visit on average nHn squares, where Hn =

∑n
i=1 1/i

1This is a very informal statement. There is no need for an exact
“middle”, we just need the warden to be at a place where he can
observe different parts of the network at different times.
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is the n-th harmonic number. During each visiting, if he
spends on average Tave in the store, the total average
time is nTaveHn. The dissemination time and collection
time can be calculated in a similar way.

B. Covertness Probability

The covertness probability is defined as the probability
that Alice transmits a message to Bob without being
detected by Willie. For example, assuming the message
has 2 data chunks, then Alice needs to transmit 2 times
to relays and Bob also needs 2 times to collect the chunks.
If during each time, Willie will detect the transmission
with a probability Pd, then the covertness probability
is Pc = (1 − Pd)

4. Notice that when Willie detects the
transmission, it doesn’t means he will get the content
of the message. The message may be camouflaged as
noise to avoid detection. But this is another covert
communication problem, and won’t be studied in this
paper.

IV. Theoretical Performance Analysis

System Parameters

s - number of graph vertices
r - number of relays
m - length of the message in bits
k - number of message (data) chunks
n - number of encoded chunks
ℓ - length of the chunk in bits

A. Covertness Probability

The detection probability of each single chunk trans-
mission is given by the following theorem:

Theorem 1. If the transmission time between the source
(collector) and a relay follows a shifted exponential
distribution λe−λ(t−ℓ) and the Willie’s monitoring arrival
time at the vertex has a uniform PDF U(0,W ), then the
probability that Willie arrives during the transmission
(i.e., detects the transmission) is

Pd =

{
1

λW + m
kW − e−λ(W−m/k)

λW for W ≥ ℓ

1 for W < ℓ

Proof: If W < ℓ = m/k, then Willie will definitely
arrive before the transmission is complete, and thus the
detection probability is Pd = 1.
If W > ℓ, we calculate the detection probability as

follows:

Pd = P (ttr ≥ tar) =

∫ ∞

0

∫ ∞

tar

ftr(ttr)far(tar) dttr dtar

=

∫ ∞

m
k

∫ ∞

tar

ftr(ttr) dttr far(tar) dtar

+

∫ m
k

0

∫ ∞

m
k

ftr(ttr) dttr far(tar) dtar

=

∫ ∞

m
k

e−λ(t−m/k)far(tar) dtar +
m

kW

=

∫ W

m
k

1

W
e−λ(t−m/k) dtar +

m

kW

=
1

λW
+

m

kW
− e−λ(W−m/k)

λW

The entire message transmission will be undetected if
each chunk transmission is undetected. Recall that Alice
needs to disseminate the n chunks and Bob needs to
collect k chunks. Therefore the total number of chunk
transmissions is n + k, and thus the overall covertness
probability is

Pc = (1− Pd)
n+k (1)

From Theorem 1 and equation (1), we can see that
when n increases, the covertness probability decreases,
which means that coding redundancy hurts the covert-
ness. However, it is less clear how changing the number of
chunks k affects the covertness probability, as we discuss
below.

V. Communication Delay
The message transfer from Alice to Bob consists three

stages: 1. the meeting time steps: the source and collector
need to meet enough relays; 2. The discovering time: the
source and collector need to find out if there is a relay on
the same vertex; 3. The transmission time: the dissemina-
tion/collection time between the source/collector and the
relay. As we know, the transmission time relates to the
size of the data chunks. It’s reasonable to assume that the
larger data chunk needs to spend a longer transmission
time.

To calculate the communication delay in covert com-
munication, we also need to consider the Willie. Based
on different Willies’s detection patterns, we provide two
communication delay models.

For the first model, if Willie can’t observe the move-
ments of Alice and Bob, then he can not simply de-
tect the transmission by comparing the time Alice/Bob
spends on each vertex. Therefore, we assume that during
the source’s random walk we can have two cases: Either
the source does not meet a relay and the discovering time
is 1 or the source meets a relay on a vertex and we have
a transmission time 1+ttr. As described in Sec. IV-A, we
model the transmission time ttr as a shifted exponential
random variable with the tail parameter λ and the shift
parameter m/k.
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For the second model, if Willie can observe the
movements of Alice and Bob, he may learn which nodes
they are stopping for longer times at, and conclude that
they hold valuable information. To prevent this, one
idea is to spend an equal length of time at each visited
node, and even transmitting an empty signal with no
valuable information on non-relay vertices. This way,
even if Willie can track Alice’s and Bob’s movements,
he does not gain any additional information about their
communication. Now, every node visited by Alice or Bob
takes 1 +m/k units of time.

A. Model 1

1) Dissemination Time: In the dissemination stage,
the source Alice needs to disseminate n chunks to r
relays. When Alice randomly walks on a complete graph
with s vertices, the probability that she meets a relay
is r/s. After Alice deposits the first data chunk in one
of the r relays, the second chunk can only be stored
in one of the remaining r − 1 relays. The probability
of meeting an occupied relay decreases as the number of
occupied relays grows. Therefore, in order to get the total
dissemination time Tdis, we need to find dissemination
time Ti where i = {1, 2, . . . , n} for each encoded chunk
of the message.

Lemma 1. The dissemination time Ti to transmit the ith

data chunk to any one of r − i+ 1 relays is

Ti = ttr + 1 + a for a probability (1− pr−i+1)
apr−i+1

(2)
Where a ∈ {0, 1, 2, ...} is the number of steps the source
spent to meet a relay, pr−i+1 = r−i+1

s .
And then the expectation of Ti is

E [Ti] =
1

λ
+

m

k
+

1

pr−i+1
(3)

Proof: Since for time Ti, the value of pr−i+1 is a constant.
Let’s assume p = pr−i+1.

E [Ti] =

∞∑
a=0

E [ttr + 1 + a] (1− p)ap

= p(E [ttr] + 1)

∞∑
a=0

(1− p)a + p(1− p)

∞∑
a=1

a(1− p)a−1

= E [ttr] +
1

p
=

1

λ
+

m

k
+

1

pr−i+1

Lemma 2. The total dissemination time Tdis is that the
source transmits all n chunks to any n out of r relays.
Then the expectation of time Tdis is

E [Tdis] =
n

λ
+

nm

k
+ s(Hr −Hr−n) (4)

Proof:

E [Tdis] =

n∑
i=1

Ti = nE [ttr] +

n∑
i=1

1

pr−i+1

= nE [ttr] +

n∑
i=1

s

r − i+ 1

=
n

λ
+

nm

k
+ s(Hr −Hr−n)

It’s easy to see that n reaches optimal at n = k, which
means the less redundancy, the lower dissemination
delay.

2) Collection Time: During the collection step, the
collector needs to collect any k out of n data chunks to
recover the message. Since the transmission time between
the collector and relay follows the same distribution as
the time in dissemination step. Then as in Lemma 2, we
can find the total expectation of collection time Tcol in
Lemma 3.

Lemma 3. The total collection time Tcol is the time spent
by the collector to retrieve any k chunks from n relays.
Then the expectation of time Tcol is

E [Tcol] =
k

λ
+m+ s(Hn −Hn−k)

From Lemma 3, E [Tcol] is decreasing when n is
increasing.

3) Joint time: After getting the dissemination time
and collection time, the joint time is just the sum of
these two times.

Theorem 2. Now we can easily calculate the expectation
of the joint time:

E [Ttot] =
n+ k

λ
+
(n
k
+ 1

)
m+s(Hr+Hn−Hr−n−Hn−k)

From the conclusions in dissemination and collection
steps, we can see that there must be an optimal n
which minimize the E [Ttot]. To calculate the optimal
n is complicated, so we will show result by simulation
in next section.
B. Model 2

1) Dissemination time:

Lemma 4. The total dissemination time Tdis is the time
needed to transmit n code blocks to any n out of r relays.
Then the expected value of Tdis is:

E[Tdis] =
(
1

λ
+

m

k
+ 1

)
s (Hr −Hr−n) (5)

Proof: We follow the same reasoning as for the original
model. The expected number of nodes visited can be
computed by modeling the relay traversal as coupon-
collecting: vising n out of a given r nodes out of s total
nodes. The expected number of visits needed is s(Hr −
Hr−n). At every node visited, 1 unit of time is needed to
check if the node is a relay, and the transmission takes
an expected time of 1/λ+m/k.
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2) Collection time:

Lemma 5. The total collection time Tcol is the time
needed to collect k code blocks from any k out of n
relays. Then the expected value of Tcol is:

E[Tcol] =
(
1

λ
+

m

k
+ 1

)
s (Hn −Hn−k) (6)

This result is obtained in the same manner as the
dissemination time, except that Bob needs to visit any
k out of n with data on a graph with s nodes.

3) Joint Time:

Theorem 3. The expected value of the total time needed
for dissemination and collection is

E[Ttol] =

(
1

λ
+

m

k
+ 1

)
s (Hr +Hn −Hr−n −Hn−k)

For this model, we next derive an expression for the
optimal value of n that minimizes the total transmission
time, and omit the simulations.

For given k, λ, m, s and r, we denote An = Hn −
Hr−n − Hn−k. Then we have An − An+1 = − 1

n+1 −
1

r−n + 1
n+1−k .

If An −An+1 < 0, we have

− 1

n+ 1
− 1

r − n
+

1

n+ 1− k
< 0

⇔ n2 + 2n+ 1− rk − k > 0

⇔ n >
√
rk + k − 1

Similarly, if An − An+1 > 0, then n <
√
rk + k − 1.

Thus we can optimize the total delay by producing⌈√
rk + k − 1

⌉
or

⌊√
rk + k − 1

⌋
code blocks.

VI. Numerical and Simulation Analysis
A. Numerical Covertness Probability Analysis

Since it is easy to see that the covertness probability
increases with the redundancy n, we only discuss how
the covertness probability changes with k. We consider
an example where the distribution of transmission time
is shifted exponential with the tail parameter 1 and shift
parameter 10/k. The Willie’s arrival time follows uniform
distribution U(0, 50).

Figure 1 plots the covertness probability vs. k for 5
different values of n for this example. We see from the
figure that, when n is small (e.g. n = 3), the covertness
probability rapidly increases with k, and it is better to
select k as large as possible. As n is increasing (cf.
n = 10), the covertness probability essentially stops
increasing with k after some point (around k = 6).
At that point, there is no need to increase k. When
n is large (e.g. n = 15), the covertness probability
decreases with k after some point (k = 12 in the figure).
Thus there is an optimal k. Also we can see when
n = 1, which means no redundancy is introduced, the
covertness probability reaches the maximum. However
when n = 2 or n = 3 Since the redundancy may provide
may reduce the communication delay between the source

Fig. 1. The covertness probability vs. k for 5 different values of n.
The covertness probability increases rapidly with k when k is small.
Then the benefits of increasing k get smaller and even negative.

and collector, it is worth to select a lower covertness
probability scenario.

We also notice that the covertness probability in
the figure is very low. It is because of the simulation
parameters’ values we selected. If we change the values,
e.g. the Willies’s arrival time follows uniform distribu-
tion U(0, 100), the covertness probability will increase
significantly. Since our covert communication model is a
new model, we don’t know the exact parameters’ values
in practice. Besides, in this simulation, we want to study
how covertness probability changes with the number of
message chunks. Therefore the changing of covertness
probability is more important than its values.

B. Minimum Delay Analysis by Simulation
We simulated our message passing protocol on a

complete graph with 50 vertices. Again, the transmission
time follows shifted exponential distribution with scale
parameter 1 and shift parameter 10/k. We are interested
in seeing how the redundancy parameter n affects the
average message transfer time for 1) different values of r
and 2) different values of k. We obtained the results
by simulation and also computed the corresponding
theoretical results by using Theorem 2.

1) Delay vs. n for Different Values of r: Figure 2
shows both the simulated and the theoretical results,
which closely match each other. From the figure, we can
draw several conclusions. First, when we consider each
curve in the figure, we can see that introducing proper
redundancy can significantly reduce the average time,
but too much redundancy can hurt the performance.
The optimal redundancy is reached at n = 5. Second,
when we compare all the simulation results or theoretical
results, increasing the number of relays r can reduce the
average time. This conclusion is not hard to understand.
As we know the optimal redundancy is the trade-off
between the dissemination time and collection time.
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Fig. 2. The average time changes with redundancy n under
different r. The number of message chunks k = 3. Both simulation
and theoretical results are provided.

Fig. 3. The average time changes with redundancy n under
different k. The number of relays r = 10. Both simulation and
theoretical results are provided.

When we have more relays, the dissemination time will
get reduced and the collection time will not be affected.
Then we may increase dissemination time to reduce the
collection time. This can be easily derived from the
equation in Theorem 2.

2) Delay vs. n for Different Values of k: Figure 3 shows
both the simulated and the theoretical results, which
closely match each other. From Fig. 3, we can draw
similar conclusions as from Fig. 2. Note that k = 1,
n = 2 result in the minimum average time. Therefore,
splitting the message introduces delay.

Figure 4 shows the results of the second commu-
nication delay model. Comparing with figure 3, more
redundancy should be introduced to get a lower average
time, and when k = 3 and n = 5 the average time reaches
the minimum.

Now we can compare the figures from both covertness

Fig. 4. The average time changes with redundancy n under
different k. The number of relays is r = 10. Both simulation and
theoretical results are provided.

probability and minimum delay. If we compare figure
1 and 3, we can find that when n = 1 and k =
1, which means the message is not divided and no
redundancy is introduced, the covertness communication
can get the maximum covertness probability and a small
enough average time. However it doesn’t mean that the
redundancy and chunk transmission are useless. In fact,
in the covertness probability simulation, we assume the
warden’s arrival time follows U(0, 50) and the message
length is m = 10, which shows W = 50 is always larger
than l. However if the warden arrives more frequently, for
example the arrival time follows U(0, 8), then W = 8 is
smaller than l when k = 1. In this case, when n = 1 and
k = 1, the covertness probability is 0. To get the overall
optimal values of covertness probability and delay, we
must introduce some redundancy and divide the message
into more data chunks.

If we simultaneously consider both Fig. 1 and Fig. 4,
we see that for n = 1 and k = 1 the probability of
covertness is high, but so is the expected delay. On the
other hand, when n = 5 and k = 5, the average time
is low, but there is a price to pay in the covertness
probability.

VII. Conclusions and Future Work
We introduced a model for covert message exchange

in mobile multi-agent environments. There are four
(types of) participants in our communication model: a
source (Alice), r relays, a collector (Bob), and a warden
(Willie). The model stipulates the participants’ mobility
patterns and the communications protocols, and defines
performance metrics to be the probability of maintaining
covertness and the total message transfer time. We
obtained expressions for these performance metrics by
theoretical derivations and/or simulation, and showed
the tradeoff between them as a function of the system
parameters.
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Many more models for such systems seem reasonable,
but have not been studied yet. Future directions could
include the exploration of many different ways that the
warden can operate but also many different mobility
patterns. For example, Willie might need to spend a
certain amount of time before being able to detect a
transmission at a node, or he could also be adaptive,
meaning that he can over time learn which nodes do
not have relays and systematically avoid checking them.
Regarding, the mobility patterns, random walks on
regular graphs or some other area traversal models may
be more practical.
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