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Abstract—Distributed computing enables parallel execution of
tasks that make up a large computing job. Random fluctuations
in service times (inherent to computing environments) often cause
a non-negligible number of straggling tasks with long completion
time. Redundancy, in the form of task replication and erasure
coding, has emerged as a potentially powerful way to curtail
the variability in service time, as it provides diversity that allows
a job to be completed when only a subset of redundant tasks
gets executed. Thus both redundancy and parallelism reduce
the execution time, but compete for resources of the system. In
situations of constrained resources (here fixed number of parallel
servers), increasing redundancy reduces the available level of
parallelism. We characterize the diversity vs. parallelism tradeoff
for three common models of task size dependent execution times.
We find that different models operate optimally at different levels
of redundancy, and thus may require very different code rates.

I. INTRODUCTION

As numerous machine learning and other algorithms in-
crease in complexity and data requirements, distributed, paral-
lel computing becomes necessary, as it provides simultaneous
execution of smaller tasks that make up a large computing
job. However, the large-scale sharing of computing resources
causes random fluctuations in task service times [1]. Therefore,
although executed in parallel, some tasks, known as stragglers,
take much more time to complete, which consequently in-
creases the job service time. Redundancy, in the form of simple
task replication, and more recently, erasure coding, is emerging
as a potentially powerful way to shorten the job execution
time, as it provides diversity that allows a job to be completed
as only a subset of redundant tasks gets executed thus avoiding
stragglers, see e.g. [2]-[7] and references therein.

Both parallelism and diversity are essential in reducing job
service time, but compete for the system’s resources. To un-
derstand that, let us consider two extreme ways to assign a job
to n servers. One is splitting or maximum parallelism with no
redundancy. Here, the job is divided among the n workers, and
thus it gets completed when all workers execute their tasks.
The other extreme way is n-fold replication or maximum
diversity. Here, the entire job is given to each worker, and thus
it gets completed when at least one of the workers executes
its task. Roughly speaking, splitting (maximum parallelism) is
appropriate for large jobs with deterministic service time, and
replication (maximum diversity) is appropriate for small jobs
with highly variable service time.

In general, given a fixed number of workers n, the question

becomes which fraction of servers should EI])Erovide parallelism2
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and which diversity. When jobs are split in £ > 1 tasks and
encoded into n > k tasks s.t. execution of any k is sufficient
for job completion, then tasks whose size is k£ times smaller
than the original job size are executed in parallel. Therefore,
the smaller the k the larger the task each server is given
to execute, but the smaller the k the fewer servers have to
execute tasks for job completion. The choice of £ thus dictates
the tradeoff between the parallelism (increases with k) and
diversity (decreases with k). We are here concerned with char-
acterising the diversity vs. parallelism tradeoff for different
service time and task execution models, and ultimately with
finding an optimal %k for a given n.

There is a large body of literature on replication and erasure
codes for classical machine learning and other algorithms (see
e.g. [8]-[12] and references therein), and thus it is reasonable
to assume that codes exist for many jobs and any n and k
combination. However, very little is known about what exact
n and k combination should be selected in a given scenario in
order to optimize a particular metric or goal of interest. When
the goal is only to have the job complete by a certain time
and it is known that at most ¢ workers will not respond by
that time, then simply setting k = n — ¢ will achieve the goal.

However, service time in computing systems is a random
variable, and one can only talk about the probability of task
completion by a certain time. The question then becomes
which k& minimizes the expected job completion time, or (not-
equivalently) maximizes the probability of job completion
by a certain time. To answer these questions, we need to
know the service time probability distribution (PD) and how
it scales (changes) with the size of the task. Various service
time PD have been assumed in the literature. For theoretical
analysis, Pareto was used in e.g., [13]-[18], Erlang in e.g.
[19]-[24], shifted exponential in e.g., [8], [25]-[27], and
even exponential distribution for sufficiently small computing
units in e.g., [28]-[30]. Some general classes of distributions
(log-concave/convex) were considered in [3]. A model that
decouples the inherent job size from the server side slowdown
was developed in [31]. There is no consensus on how these
PDs scale with the task size either.

In this short paper, we consider Shifted-Exponential service
time and three common assumptions about its scaling with the
size of the task. In Sec. II, we present the system model, and
in Sec. III, IV, V, we characterize diversity vs. parallelism

7tradeoff for three common scaling models. Other service time
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models proposed in the literature are addressed in the long
version of this paper [32], and stated here in Table I. We find
that different models operate optimally at different levels of
redundancy, and thus may require very different code rates.

II. SYSTEM MODEL

System Architecture: We adopt a system model shown in
Fig. 1, consisting of a single front end master node and
multiple computing servers we refer to as workers. Distributed,
parallel computing system architectures where a single mas-
ter node manages the entire computing cluster of nodes
is commonly implemented in modern frameworks such as
Kubernetes [33] and Apache Mesos [34].
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Fig. 1. A Distributed Computing System: Master node M partitions jobs
J; into tasks, possibly generates redundant tasks, and dispatches them to
workers W1, Wa, W3, Wy. Shaded regions in the pre-processed jobs Ja, J3
indicate redundancy. Here, each job consists of 4 computing units. Job Jy is
executed with maximum parallelism (splitting), Jo with maximum diversity
(replication), and J3 is encoded by a [4, 2] erasure code.

Computing Jobs, Tasks, and Units: We are concerned with
computing jobs that can be split into tasks which can be
executed independently in parallel on different workers. An
example of such a job is vector by matrix multiplication,
a basic operation in e.g. regression analysis and PageRank,
and another is the gradient descent residing at the core of
almost any machine learning algorithm [35]-[38]. We assume
that there is some minimum size task below which distributed
computing would be inefficient because of e.g., the overhead
of communication and data transfer costs. We refer to this
minimum-size task as the computing unit (CU). For example,
if the job is to multiply vector X by matrix A, the CU can be
the scalar product of a row of A and X. We will measure the
size of the job by the number of its computing units.

Master node M partitions jobs into tasks, possibly generates
redundant tasks, and dispatches them to workers. If the number
of workers assigned to a job is smaller than the size of the job
(number of CUs) with added redundancy, then each worker
will be responsible for multiple CUs constituting its task.
Fig. 1 shows some possible ways in which the master server
can pre-process a job, namely, partition a job into CUs, group
the CUs into tasks, and add redundancy. Pre-processing of
jobs Ji, Jo, and J3 results in redundant service demands D1,
D5, and Ds. No redundant tasks are formed for job .J;, and
thus D; and the original job are identical. Job J, is replicated
on 4 workers, and thus the size of Dy is 4 times the size of

Ja. Job J3 is encoded by a systematic [4,2] MDS code that2 5

generated 2 coded tasks of 2 CUs size. Its redundant version
D3 is organized as follows: Workers W; and W, are each
given a task consisting of 2 different CUs of J3. Workers W3
and Wy are each given a coded task of 2 CUs size.

Models for Service Time: We model a computing unit service

time as a random variable (RV) V, and refer to the tasks that
are still running after certain time elapsed as stragglers. In this
short paper, we consider only the Shifted-Exponential service:
V ~ A+ X, where A is a constant modelling the minimum
service time, and X ~ Exp(W) is an exponentially distributed
RV with the expectation W (rate 1/W) modelling straggling.
This simple model will allow us to point out the dependence
of the parallelism/diversity tradeoff on the assumptions made
about the execution time of consecutive CUs. Other service
time models proposed in the literature are addressed in the
long version of this paper [32].

Models for Service Time of Consecutive Computing Unit: A

common assumption is that service time of consecutive CUs
are independent. Some other models have been considered in
literature. For example, if a CUs service time is exponential
with expectation W, then some models assume that the service
time for s computing units will be also exponential with
expectation s-W (i.e., scaled exponential [8], [30]) while other
models assume that it will be Erlang with rate expectation s-W
and shape s (i.e., sum of s independent exponential RVs). If
a computing unit service time is a shifted exponential with
expectation W and shift A, then some models assume that
the service time for s computing units will be also be shifted
exponential with the unchanged rate W and an s times larger
shift s - A [10], [25], [271, [39], [40].

We consider three different, commonly adopted models for
service time of consecutive CUs execution on the same server.
For all three models, we assume independence across the
servers. The models are described next, and their impact on
the diversity vs. parallelism tradeoff is analysed in the next
section. We explain the models by giving the distribution for
execution time Y of s consecutive tasks on a single server
under the assumption that a single task execution time V' is
S-Exp(A, W) distributed as described above.

Model 1 — Server-Dependent Execution Time: The assumption

here is that the straggling effect depends on the server and is
identical for each CU executed on that server. Namely, there is
some initial handshake time A after which server ¢ completes
its first and each subsequent CU in time X; ~ Exp(W).
Therefore, Y = A + s - X, that is, Y ~ S-Exp(A, s - W).

Model 2 — Data-Dependent Execution Time: The assumptions

here are that 1) each CU in a task of s CUs takes A time units

to complete and 2) there are some inherent additive system
randomness at each server which does not depend on the task
size s that determines the straggling effect X; ~ Exp(W).
Therefore, Y = s - A + X;, that is Y ~ S-Exp(s - A, W).

Model 3 — Additive Execution Time: The assumption here is

that the execution times of CUs are independent and identi-
8cally distributed. Therefore, ¥ = V4 + --- + V, where V; ~
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S-Exp(A, W) are independent. and thus Y ~ Erlang(s-W, s).

Mathematical Tools: In executing jobs with redundant tasks,
the notion of order statistics plays a central role. We here state
the results we rely on in the rest of the paper. More information
can be found in, e.g., [41]-[44].

Let X1, Xo,..., X, be n samples of some RV X. Then the
k-th smallest is an RV denoted by X§.,, and known as the k-th
order statistics of X1,...X,. If X is Exp(W), then Xy., is
Exp(W/n), and

Xk:n - Xl:n + Xl:(n—l) + -+ X1:2 + Xl:(n—k+1)~ (1)

The expectation of Xy, is given by
o
E[Xg.n] =W — =W(H, — H,_ 2
[Xn] ;n_kﬂ ( D@

where H, is (generalized) harmonic numbers defined as H,, =
> % We often use the approximation H,, = logn + v +
O(n~1), where v = 0.5772156649 is the Euler’s constant.

If X is Erlang(s, W), then, according to the formula of

gamma order statistics in [45], we have

Xim :% <Z> ]:Zl(—l)i<kz_' )

=0
(s—1)(n—k+1)

Z a;(s,n—k+1)

Jj=0

(s +9)!
(n—k+it1)titt

where «a,(x,y) is the coefficient of ¢* in the expansion of
(X725 #1/11)". This complex formula does not provide any
insight into the diversity vs. parallelism tradeoff, and we will
only use it for the numerical analysis.

Parameters and Notation:

n — number of workers (number of CUs in a job)
k - number of workers that have to execute their
tasks for job completion
s — number of CUs per task, s = n/k
Y,r — job completion time when each worker’s task
sizeis ¥ = s

III. SERVER-DEPENDENT EXECUTION TIME

Theorem 1. The expected job completion time for the server-
dependent execution model is given by

E[Y, 1] = A+ sW(H, — Ho_y)

:A+W%(Hn—Hn_k)] >A+W

which is minimized by replication (maximal diversity).

Proof. The equality above follows from the observation that

Yo =A+ Xp.p, where X ~ Exp(s-W)
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Fig. 2. Diversity vs. parallelism for server-dependent execution time model.
Number of workers n = 12 is fixed. Replication or maximum diversity always
gives the best results.

and (2). The inequality above follows from the definition of
H,, and is saturated when k£ = 1. We can also show that
E[Y,, x] is an increasing function of k for a given n, as follows:

n
E[Yn,k’—&-l} =A+ Wi(Hn - Hn—k—l)

k+1
n 1

—A4W (Hn —H,_ 7)

T F Tk

Wn 1 1

= ElYa ] + o | — 7 (o — Ho)]

Yol + 7 [ ~ 5 — oot

where the term in square brackets is positive. O

Numerical Analysis: We numerically evaluate the expression
of Thm. 1 to see how the expected job completion time E[Y, j]
changes with the value of k. We consider a system with n = 12
workers for five different values of W/A: 1. W = 0 (A = 10);
2W/A=01W=1,A=10;3. W/A=1(W =5 A=
5); 4 W/A =10 (W =10, A =1); 5. A =0 (W = 10).
Note that different values of W and A with the equal W/A
give different values of E[Y}, ;]. Therefore the results plotted
in the figures throughout the paper should not be compared
only on the basis of W/A.

The numerical evaluation results are plotted in Fig. 2. When
W/A — 0, the value of A dominates the expected job
completion time E[Y), ], which thus changes little with k.
When W/A > 0, we see that E[Y;, ;] always reaches the
minimum at k£ = 1, which means replication or maximum
diversity is optimal. As W/A increases, the slope of the
corresponding curves also increases. Although it is always
optimal, maximal diversity is much more effective when W/A
is large, and has less payoff when W/A is small.

IV. DATA-DEPENDENT EXECUTION TIME

Theorem 2. The expected job completion time for the data-
dependent execution model is given by

n A
]E[Yn,k] = 5A+W(Hn7Hn—k) =W EW‘F(Hn*HT,_k)}
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Fig. 3. Diversity vs. parallelism for data-dependent execution time model.
Number of workers n = 12 is fixed. In low W/A scenarios, parallelism is
more expected; In high W/A scenarios, diversity is more expected.

The result follows from (2) and the observation that
Yor=s5 A+ Xp,, where X ~ Exp(W)

By taking the log approximation of the harmonic numbers, we
find £* which minimizes the above expression as follows:

E*=n(=r/24+\/r+712/4), r=A/W

Note that this expression depends only on the ratio r = A/W,
which is intuitively expected. For A > W, (large r) the
execution is essentially deterministic. It is optimal to use
maximum parallelism, that is, splitting (K = n) is optimal.
On the other hand, when W > A,(small r) execution time is
much more variable and it is optimal to operate with maximum
diversity, that is, replication (k = 1) is optimal (cf. [25]).

Numerical Analysis: We numerically evaluate the expression
in Thm 1 for E[Y}, x] vs. k. We again consider a system with
n = 12 workers and the same values of W/A, W and A
as in Sec. III. The numerical evaluation results are plotted in
Fig. 3. By comparing different W/A scenarios, we can easily
conclude that when W/A (e.g. 0, 0.1) is small, the expected
job completion time E[Y], ;] always decreases with k, which
means splitting is optimal. When W/A is large (e.g. 1, 10), we
find that E[Y,, ;] reaches the minimum for k£ = 3 or 6, which
means coding at a certain non-trivial rate is optimal. When
W/A (e.g. A = 0) is very large, E[Y,, 5] always increases
with k, which means replication is optimal.

V. ADDITIVE EXECUTION TIME

The job completion time for the additive model is
Yor =5 A+ Xp,, where X ~ Erlang(s, W)

The expectation of the k-th order statistics of Erlang distri-
bution is given by the formula stated in Sec. II, which is not
helpful in analysing the diversity/parallelism tradeoff. We here
find an analytic expressions for the expected job completion

time under splitting and replication, and show that splitting26

outperforms replication for sufficiently large n. We then show
that rate 1/2 coding outperforms splitting when A = 0.
Splitting, s = 1, and Replication, s =n

Under splitting, the job completion time is given by

Yn,n = A"‘V_)(l:n'i_)(lz(nfl) +"'+X1:2+X1:1 (3)
(see (1)), and therefore,
E[Y,.] = A+ WH, @

Under replication, we have

n

E[Y, ] = nA + W% /Oooe—t EX f ] "t

A .
2 (n—1)!

This result is a corollary of the following theorem:

where R, (z) =

Theorem 3. Let service times of tasks be independent and
exponential with rate 1. If a job with k tasks is replicated
over m workers, then the expected completion time is

1 [, r. (t\"
R O ®
T $2 $k71

Proof. Let t1,ts,... be time epochs at which a task gets
completed on any of the n servers. Because all %k tasks of
the job are replicated on each of the n servers, the job is
completed when k tasks get completed on any single server,
which happens at some time ?;, . Note that £y ,, is a random
variable. We represent fy, , as a sum of the task inter-
completion times.

ek.n

o, = Z(tj —tj—1), where t; is set to 0.
j=1

(6)

Note that 1) ¢t; — ¢;_; are independent and exponentially
distributed with rate n (the minimum of n independent ex-
ponentials with rate 1), and 2) t; —¢;_; are independent from
), Observe next that Wald’s identity can be applied to (6).
Therefore,

1
Bfte,,.] = - - Eltk

Now observe that E[¢y,,] corresponds to the expected number
of draws from n coupons until a coupon shows up k times.
The claim follows from the result for E[¢}, ,,] in [46]. O

Paper [46] also gives a useful approximation of (5) when n
goes infinity, which further simplifies the expression E[Y}, 1]:

E[Y,, 1] NnA+KWF(1+1/n)n1*%, as n— oo (7)
n

Lemma 1. For large enough n, splitting (maximal paral-

Olelism) outperforms replication (maximal diversity).
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TABLE I
OPTIMAL STRATEGY DEPENDENCE ON THE SERVICE TIME PD AND SCALING

Service time PD .
Service time scaling (Shifted-)Exp

Pareto Bi-Modal

Server-Dependent replication

splitting—scoding” splitting—scoding——ssplitting

Data-Dependent

splitting—>replication

splitting—>replication | splitting—>coding——>splitting

Additive

splitting—>coding

splitting—>coding splitting—>coding——>splitting

* — indicates how the optimal strategy changes as the straggling probability increases (the PD tail becomes heavier).

n

Proof. By using Stirling’s formula for /n! in (7), we have

(7) > nA + w VV2rnntie=nT(1 4 1/n)n' ==
n

w w
>nA+ — Q{L/ﬂnl*'%nl_% > nA + Zoplta
en e
> A + WHn - E[KL,N}

Observe that by choosing large enough n, we can make E[Y}, 1]
arbitrarily close to (7). Recall that H,, = O(logn). Note that
the theorem holds even for A = 0. O

Rate 1/2 Coding, s = 2: We consider the special case when
A =0, nis even, and s = n/k = 2. Therefore, k = n/2
workers have to complete their two tasks in order for the job
itself to be complete.

Let Y,, , be the time to complete the job under splitting,
as given by (3) for A = 0, and Y}, ,,/ the random time to
complete the job under coding with s = 2. Thm 4 below
shows that P{Y}, /o > 2} < P{Y,,,, > a}. It follows that

]E[Yn,n/Q} S E[}/’n,n}

since for any non-negative random variable X, we have
E[X] = [;7P(X > z)dx.
It is, therefore, better to use a rate half code than splitting.

Theorem 4. Suppose that n = 2k > 4 is even. Then Y, ;, /2
stochastically dominates Y, ,,, that is,

P{Yn,n/2 > x} < P{Yn,n > .’L‘} (8)

Proof. Consider the s = 2 system where scheduling is done as
follows. The system runs until one server completes the first
of its 2 CUs, at which point it gets halted. This happens at a
random time distributed as X7.,,. The system of the remaining
n — 1 servers runs until one server completes the first of its
2 CUs, at which point it gets halted. This happens at a time
distributed as Xy.(,—1) measured from the moment the first
server was halted. The process continues in the same manner
until & = n/2 servers have completed the first of their 2 CUs,
at which point all remaining servers get halted. This happens
at a random time 77 given as

Ty = X1+ Xi:(no1) + Xi:(neir1) 9)

At this point, the n — k = k servers with one completed CU
get restarted. The job is complete when each server completes
its other CU, which happens at a random time 75 given as

Ty = Xl:(nfk) + Xl:(nfkfl) + X1

W=0
W/A=0.1
W/A=1
W/A=10
A=0

120

v
A
X
+

100

80

60

40

Expected job completion time (E[Yn, k1)

20

diversity «— k — parallelism

Fig. 4. Diversity vs. parallelism for additive execution time model. Number
of workers n = 12 is fixed. Parallelism is always expected. In low W/A
scenarios, splitting or maximum parallelism is the best; In high W/A
scenarios, there is a balance between diversity and parallelism.

Because some servers get halted, this system cannot perform
better the original s = 2 system. On the other hand, it performs
as as well as the s = 1 system since Y, ,, = T + T5. O

Numerical Analysis: We numerically evaluated the the derived
expressions for E[Y,, x]; the results are shown in Fig.4. We see
that when W/A is small (e.g., 0, 0.1), splitting (maximum
parallelism) gives the best performance. On the other hand,
when W/A is larger (e.g., 1, 10, o0), we need to find the
optimal balance between the diversity and parallelism. The
figure also supports Lemma 1 and Thm 4 that say that splitting
is always better than replication and the rate half code is better
than splitting when A = 0.

VI. CONCLUSIONS

We addressed the question concerning the code rate that
minimizes the expected computing time for a given the service
time probability distribution and its scaling with the task size.
Results for the shifted-exponential service are derived in this
paper. Table I summarises more general results reported in
[32]. We found that different models operate optimally at
different levels of redundancy, and thus may require very
different code rates and even no coding at all.
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