DIFFERENTIALS ON THE ARC SPACE

TOMMASO DE FERNEX and ROI DOCAMPO

Abstract

We provide a description of the sheaves of Kdhler differentials of the arc space
and jet schemes of an arbitrary scheme where these sheaves are computed directly
from the sheaf of differentials of the given scheme. Several applications on the
structure of arc spaces are presented.

1. Introduction

The works of Greenberg [19], Nash [37], Kolchin[30], and Denef and Loeser [11]
have set the basis for our understanding of the structure of arc spaces and their con-
nections to singularities and birational geometry. In these studies, most of the focus
is on the reduced structure of arc spaces and the underlying topological spaces, and
little is known about their scheme structure. Notable studies in this direction are those
of Reguera [38], [39], which were recently continued in [34], [40].

The present article can be viewed as a continuation of these studies. In the first
part we describe the sheaves of Kihler differentials of the arc space and of the jet
schemes. The second part of the paper is devoted to applications of the resulting for-
mulas. This approach leads to new results as well as simpler and more direct proofs of
some of the theorems in the literature, and it also provides a new way of understanding
some of the fundamental properties of the theory.

In the first part, we work over an arbitrary base scheme S. For simplicity, in the
Introduction we restrict to the case of a scheme X over a field k; the reader will not
loose too much of the spirit of the paper by even assuming that X is a variety. The
arc space of X over S, denoted X, parameterizes formal arcs on X, and it comes
equipped with a universal family known as the universal arc:
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More concretely, if X C A" is an affine scheme defined by polynomial equations
fj =0, then an arc on X is a vector of power series (x1(t),...,x,(¢)) with coeffi-
cients in a field satisfying identically the equations f; = 0. The coefficients of the
power series define coordinates on X . The universal arc is a vector of power series
(x1(#),...,x,(t)) whose coefficients are the coordinate functions on X .

As a word of warning, it should be noted that X, and Uy are typically not
Noetherian even when X is Noetherian. On the other hand, they are affine over X
and this gives us concrete tools to work with. We note that all the theorems in the
following are local in nature, and thus one can restrict without loss of generality to
the case where X is affine.

On Uy, we construct a sheaf P, whose Ox__-dual is O . The sheaf P, plays
the role of “kernel” (as in a sort of Fourier—Mukai transform) in the next formula,
which relates the sheaf of differentials of X, directly to the sheaf of differentials of
X.

THEOREM A (Kihler differentials on arc spaces)
There is a natural isomorphism

Qx> Poox (V:o(QX) ® fPoo)'

We have a similar result for jet schemes. If X,, denotes the nth jet scheme of X,
then we have a universal jet X, & U, Iny X, and we construct a sheaf &, on U,
whose Oy, -dual is Oy, . In this case, it turns out that &, is the Oy, -dual of Oy,
and is trivial as an Oy, -module, and the description of the sheaf of differentials gets
simplified.

THEOREM B (Kihler differentials on jet schemes)
There are natural isomorphisms

Qx, = Pnx (V5 (Rx) ® Pu) = ps (v, (2x)).

These theorems provide an efficient way of computing the Jacobian matrices of
the jet schemes and the arc space. We illustrate this in some details at the end of
Section 5.
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We apply Theorems A and B to study the structure of arc spaces. Our starting
point is the description of the fibers of the sheaf of differentials of the jet schemes X,
at liftable jets. Suppose that X is a scheme of finite type over k, and let « € X be
an arc. For n > 1, let a, € X, be the truncation of o and L, the residue field of «;,.
Using the above theorems, we determine an isomorphism

Qx, ® Ln = (Lalt]/@"1)? & @D Lalt]/ ().

i>d

Here the number d and the sequence {e;} are certain Fitting-theoretic invariants of
the pullback of Qx by o (see Section 6 for the precise definition of these invariants
and Theorem 7.2 for the precise statement). If X is a reduced and equidimensional
scheme of finite type over a field k, and if « is not fully contained in the singular
locus of X, then we have d =dim X and ) ;. ; e; = ordy(Jacy), where Jacy is the
Jacobian ideal of X, and the above isomorphis_m recovers in this case one of the main
results of [5].

These results have several applications. For simplicity, for the remainder of this
Introduction we will assume that X is a variety defined over a perfect field k, although
more general results are obtained below.

A natural way of studying the structure of the arc space of X is to analyze its (not
necessarily closed) points. Given a point @ € X, we are interested in two invariants:
the embedding dimension

emb.dim(Ox, o)
of the local ring at ¢, and the jet codimension of o in X, which is defined by
jet.codim(er, Xoo) 1= lim ((n + 1) dim(X) — dim({w,})).
n—>0o0

These and related invariants have been studied in the literature (e.g., see [8], [9], [14],
[34], [40]). Both numbers provide measures of the “size” of the point. Note, however,
that while the embedding dimension is computed on the arc space (with its scheme
structure), the jet codimension is computed from the truncations of the arc and only
depends on the reduced structure of the jet schemes. Our first application is that these
two invariants measure the same quantity, as follows.

THEOREM C (Embedding dimension as jet codimension)
Given a variety X over a perfect field, we have

emb.dim(Oyx_, o) = jet.codim(x, Xoo)

forevery o € Xeo.
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One of the most important results on arc spaces is the birational transformation
rule due to Denef and Loeser (see [11] and also [31]). This result implies the change-
of-variable formula in motivic integration (see [2], [11], [31], [32]), and it has been
applied to study invariants of singularities in birational geometry (see, e.g., [5], [13],
[15], [17], [25], [271, [28], [35], [36], [44]). Using our description of the sheaf of
differentials, we obtain the following variant.

THEOREM D (Birational transformation rule)
Given a proper birational map f:Y — X between two varieties over a perfect field,
we have

emb.dim(Oy_, g) <emb.dim(Ox_ 1. (8)) < emb.dim(Oy,, g) + ordg(Jacr)

for every B € Yoo, where Jac y is the Jacobian of f. Moreover, if Y is smooth at B(0),
then

emb.dim(Ox_,, .. (g)) = emb.dim(Oy_, g) + ordg(Jacy).

The connection between this theorem and Denef and Loeser’s birational transfor-
mation rule becomes evident once we rewrite the second formula of Theorem D using
Theorem C, which gives the formula

jet.codim( foo (B), Xoo) = jet.codim(B, Yoo) + ordg (Jac f)

for any resolution of singularities f: Y — X. Although it does not retain all the
information provided in [11] that is necessary for the change-of-variable formula in
motivic integration, this formula suffices for all known applications to the study of
singularities in birational geometry.

Our next application regards the stable points of the arc space. These are the
generic points of the irreducible constructible subsets of X, that are not contained
in (Sing X ) (see Section 10). Stable points and their local rings have been exten-
sively studied in [34], [38]-[40]. The following theorem can be viewed as providing
a characterization of stable points.

THEOREM E (Characterization of finite embedding dimension)
Given a variety X over a perfect field and a point & € X, we have

emb.dim(Ox o) < 00

if and only if «a is a stable point.

It follows from general properties of local rings that the embedding dimension at
a point & € X, is finite if and only if the completion of the local ring is Noetherian.
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The fact that the completion of the local ring at a stable point & € X, is Noetherian
is a theorem of Reguera (see [38], [39]), and we get a new proof of this important
result. It is the key ingredient in the proof of the curve selection lemma, which plays
an essential role in the recent progress on the Nash problem (see, e.g., [6], [18]).

There are examples in positive characteristic of varieties X whose arc space X
has irreducible components that are fully contained in (Sing X )0, and Theorem E
implies that X has infinite embedding codimension at the generic points of such
components (see Remark 10.9). One should contrast this with the main theorem in
both [12] and [20], which can be interpreted as saying that the completion of the
local ring of X, at any k-valued point that is not contained in (Sing X ) has finite
embedding codimension.

A special class of stable points is given by what we call the maximal divisorial
arcs. By definition, these are the arcs o € X, whose associated valuation ord,, is a
divisorial valuation and that are maximal (with respect to specialization) among all
arcs defining the same divisorial valuation. Equivalently, they are the generic points
of the maximal divisorial sets defined in [8], [14], [24]. For example, if E is a prime
divisor on a resolution of singularities f: ¥ — X, and C C Y is the set of arcs on
Y with positive order of contact along E, then the closure of foo(C) in X is the
maximal divisorial set associated to the valuation ordg and its generic point is the
maximal divisorial arc corresponding to this valuation. Our final application gives the
following result.

THEOREM F (Embedding dimension at maximal divisorial arcs)

Let X be a variety over a perfect field, let f:Y — X be a proper birational mor-
phism from a normal variety Y, let E be a prime divisor on Y, and let q be a positive
integer. If o € X is the maximal divisorial arc corresponding to the divisorial valu-
ation q ordg, then

emb.dim(Ox_, o) = q(OrdE (Jacr) + 1)-

The quantity ordg (Jac ) is also known as the Mather discrepancy of E over X,
and it is denoted by k, E(X) (see [8]). In view of Theorem C, Theorem F recovers [8,
Theorem 3.8]. The theorem is also closely related to a recent result of Mourtada and
Reguera in [34], [40], which states that, with the same assumptions as in Theorem F,
if the field has characteristic zero, then

emb.dim(@) = emb.dim(Ox,.).q.0) = ¢ (0rdg (Jac ) + 1).

Here, (D/XZI is the completion of Ox_, o With respect to the /-adic topology where
I C Ox_, « is the maximal ideal. It is regarded with the inverse limit topology, which
in general differs from the 7 -topology (a system of the neighborhood of 0 is given by
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the closures of the powers of T, which can be strictly larger than the powers them-
selves). It can be shown using results from [39] that, in characteristic zero, Theorem F
also follows from the above theorem of Mourtada and Reguera (see Remark 11.8).

In a different direction, the isomorphisms given in Theorem B can be used to
study the relationship between the Nash blowup of a variety and the Nash blowup of
its jet schemes (see [7]).

Proofs of the results stated in the Introduction are located as follows: both state-
ments in Theorems A and B are contained in Theorem 5.3, Theorem C is proved in
Theorem 10.7, Theorem D combines the statements of Theorems 9.2 and 9.3, The-
orem E is proved in Theorem 10.8, and Theorem F follows from Theorem 11.4. We
should also recognize it worth mentioning that most proofs in this paper rely only on
the definition of arc space and on basic facts of commutative algebra.

2. Conventions

Throughout the following, all rings are assumed to be commutative with identity.
Unless otherwise specified, rings are regarded with the discrete topology; however,
power series rings of the form R[[¢]] are considered as complete topological rings.
For topological modules M and N over a topological ring R, we define their com-
pleted tensor product, denoted by M & g N, as the completion of the ordinary tensor
product M ® g N. We will mostly encounter completed tensor products of the form
M &g A[[t]], where R is aring, A is an R-algebra, and M is an R-module, all with
the discrete topology.

We fix a base scheme S and we work on the category of schemes over S. Given an
object X in this category, we do not impose any condition on the morphism X — S.
However, starting with Section 8 we will assume that S = Spec k, where k is a perfect
field, and we will mostly focus on schemes of finite type over k.

We also need to consider formal schemes over S. For our purposes, it will be
enough to consider the notion of formal scheme introduced in [21]. In fact, we will
consider formal schemes only of the form X Xz SpfZ[[t]], where X is an ordinary
scheme. Here and in the rest of this article, we use the symbol X to denote the product
in the category of formal schemes; this emphasizes the fact that it corresponds to the
completed tensor product & at the level of topological rings. In particular,

Spec R Xz SpfZ[[1]] = Spf(R ®z Z[[t]]) = Spf R[t]].

Unless otherwise stated, the letters m and n will be used to denote elements in the set
N U {oo} where N denotes the set of nonnegative integers.
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3. Generalities on arcs and jets
Let X be an arbitrary scheme over a base scheme S. The jet schemes and the arc
space of X over S are defined, in this generality, in [43] (see that article for more
details and proofs; see also [16], [26]).

For every nonnegative integer 7, the n-jet scheme (X/S), of X over S represents
the functor from S-schemes to sets given by

Z > Homg (Z xz SpecZ[t]/(1" ), X).

while the arc space (X/S)so 0of X over S represents the functor from S-schemes to
sets given by

Z + Homg (Z %z SpfZ[[t]]. X).

A point of (X/S), is called an n-jet of X (over §), and a point of (X/S)eo is called
an arc of X (over §).

Note that an arc o € (X/S) can be equivalently thought of as a map
SpfL[[t]] = X or as a map Spec L[[t]] — X, where L is the residue field of «
and the composition of the map with the structure map X — S factors through
Spec L (see Lemma 3.1 below). In particular, if S = Spec R, then we can view « as
an arc with coefficients in R via the map R — L. The advantage of considering « as
a map Spec L[[¢]] — X is that it allows us to talk about the generic point of the arc,
by which we mean the image «(n7) € X of the generic point 1 of Spec L[[¢]]. We will
denote by «(0) the image of the closed point of Spec L[[¢]]. If S = Spec R where R
is a ring, then one can replace Z with R in the above formulas. If S = Speck, where
k is a field, then we will simply denote (X/S), by X, and (X/S)eco by Xeo-

For any n € N U {00}, the scheme (X/S), is equipped with a universal family

Yn
Uy X 3.1)
Pn \L \L

For n finite, the family is given by
U, = (X/S)n xz SpecZ[t]/ ("),
and is called the universal n-jet. For n = oo, it is given by
Uso = (X/S)eo Xz SPIZ[[1]]

and is called the universal arc. Notice that Uy, is a formal scheme. The completed
fiber of poo: Uso — (X/S)oeo Over a point o € (X/S)oo(L) is SpfL[[¢]], and the
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restriction of y, to it agrees with the induced map o: SpfL[[¢]] — X. While the
definition of U may be hard to grasp at first sight, we will show in a moment that,
in the affine case, its structure can be described very explicitly.

We will use the following notation for the natural truncation maps:

T (X/S)oo = (X/S)ns 7mn: (X/S)m = (X/S)n,  Yn: (X/S)n = X.

Note that y,, is different from the composition map ¥, o p,. Furthermore, we observe
that there is no natural map between U, and U,, when m > n. The natural map is

M Un X(X/S)n X/S)m — Un,

where the fiber product is taken with respect to the maps p, and 7, 5.
It will be useful to have notation in place for the affine case. The following basic
properties are proved in [43].

LEMMA 3.1 ([43, Corollary 1.8, Theorem 4.5])

Assume that S = Spec R for a ring R and that X = Spec A for an R-algebra A. Then
(X/8S)y is affine for all n € N U {oo}. If we write (X/S),, = Spec Ay, then for every
R-algebra C, we have

(X/8)n(C) = Hompg.ag(An, C) = Homp.ae (A, C[t]/ ")),
if n is finite, and

(X/S)OO(C) = HomR—alg(Aoo’ C) = HomR-alg (A’ C[[I]])

Moreover, A, is characterized by the above property.

More explicitly, jet schemes and arc spaces can be defined using Hasse—Schmidt
derivations. With the notation of Lemma 3.1, the A-algebra A, can be constructed as
the algebra of Hasse—Schmidt differentials HS'y /R (see [43, Definition 1.3 and The-
orem 4.5]). It comes equipped with the universal Hasse—Schmidt derivation, which
is a sequence (Dg, D1,..., Dy) (by which we mean (Dy, D1,...) if n = 00), where
Do: A— HS’A/R is the natural inclusion and D;: A — HS’A/R, for i > 1, are group
homomorphisms such that D;(r) = 0 for r € R and

Di(xy)= Y D;(x)Di(y)
k=i
forall x,y € A.
Remark 3.2

The definition of Hasse—Schmidt derivations is tailored to work in arbitrary character-
istic. In characteristic zero, Hasse—Schmidt derivations can be computed from usual
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derivations (see [43, Section 1, Example]) but this is no longer true if the characteristic
is positive.

Defining B, := A,[t]/(t"*!) when n is finite and Bo, := Aso[t]] When n = oo,
we have

(X/S8)n = Spec 4, and U, = Spf B,,.

The universal jet (or arc) is given by

i
By <—

M

A, =—

(3.2)

XN

where the map ,o,ﬂ, is the natural inclusion 4, C By, and the map )/,g is defined by

n
Vi) =D Dp(f)?,
p=0
where (D p)",— is the universal Hasse—Schmidt derivation.

We will consider in B,, the A-module structure given by y,'f and the A,-module
structure given by pﬁ. Notice that B, has a second A-module structure (induced from
the inclusion A C A, C B,), but we will have no use for it.

For m > n, the map pm,»: Un X(x/s), (X/S)m — Up, is defined by the natural
projection

Wonn' B = Am[)/ (") — By @4, Am = Anlt]/("*")
when m is finite and by
g — _ n+1
Moon ' Boo = Aoollt]l — Bn @4, Aco = Aool]/(t" )

when m = oo.

Remark 3.3

If X is a quasicompact and quasiseparated scheme over a field k, then it follows from
the results in [1] that the functor of points of the arc space X, can also be described
as

Xoo(C) = Homy (Spec C[[t]], X)
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for any k-algebra C. Notice that this description avoids the use of formal schemes,
and, in particular, it gives a universal arc which is defined as an ordinary scheme. The
category of quasicompact and quasiseparated schemes is probably large enough to
contain all arc spaces of geometric interest, but the theory developed in [1] in very
delicate, and we preferred to avoid relying on it. Our results are local in nature, so it
is enough for us to have an analogue of the above formula in the affine case. This is
precisely the content of Lemma 3.1, which is an elementary fact from commutative
algebra. Our results do not require the quasicompact and quasiseparated conditions.

4. The sheaves &,

The goal of this section is to define the sheaves #, appearing in Theorems A
and B. We start by looking at the affine case. We continue with the notation
introduced in Section 3, so that, given an R-algebra A, we have A, = HS'If1 /R
B, = A,[t]/(t" 1) when n is finite, and Boo = Aoo[[?]].

Definition 4.1
For any n € N U {oc0}, we define P, to be the B,-module given by

Py =t A,[t]/tAnlt]
when 7 is finite and
Poo i= Aco((1))/ 1 Ao [[2]]

when n = oco.

As An-modules, we have B, = [[/_, Axt’ and P, = @'}20 At~/ Tt is con-
venient to view an element b € B, as a power series b = Y 7_, a;t' (a polynomial
if n is finite), and an element p € P, as a polynomial p = Z?:o a’ jt_f . With this
in mind, we can view the B,-module structure as follows: the action of an element
b € B, on an element p € P, is simply given by the product b - p of the two series,
modulo A, [[¢]].

Note that the A,-module Homy, (P, An) has a natural B,-module structure
given by precomposition. That is, given b € B, and ¢: P, — A,, we define b - ¢
to be the homomorphism P, — A, defined by (b-¢)(p) :=¢(b- p).

LEMMA 4.2
For every n € NU {00}, there exists a canonical isomorphism B, >~ Homy, (P, An)
as B, -modules.

Proof
Since B, = [[/_o Ant’ and P, = EB?ZO Ant ™/, there is a canonical isomorphism of
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A,-modules B, >~ Homy, (P, An) given by
n n . n
b= Zait’ — (¢b1 p= Za’_jt_J > Zaia’_i),
i=0 j=0 i=0

and it is immediate to check that this isomorphism is compatible with the respective
B,,-module structures. O

Remark 4.3

Lemma 4.2 generalizes to all A,-modules in the following way. For every A4,,-module
M, the space Homy,, (P,, M) has a natural B,-module structure given by precompo-
sition, and there is a canonical isomorphism

M &4, By ~Homy, (P,, M)

as Bj-modules. The proof follows the same arguments of the proof of Lemma 4.2
once we observe that M ® 4, B, = [[/_, M1'.

Remark 4.4
When 7 is finite, we can view {t~/ };?=0 as the dual basis of {ti}Lo, and we have
P, ~Homy, (B, A,). Note, however, that P is not the Ao-dual of By.

LEMMA 4.5

For n € N, the morphism that sends t=7 to t /%" gives an isomorphism of B,-
modules between P,, and B,,. By contrast, P, and B are not isomorphic, not even
as Aso-modules.

Proof

Multiplication by " clearly gives an isomorphism of A, -modules P, >~ By, and we
can check that this is compatible with the B,-module structures. The last assertion is
also clear since Poo > Aoo[t] (as Aso-module), whereas Boo = Aool[t]]- O

Remark 4.6

For m > n, the homomorphism ,ufn,n : By — B, ®4,, Ap defining the morphism
Mmpn: Un X(x/8), (X/S)m — U corresponds, via the duality given in Lemma 4.2,
to the inclusion

P, ®4, An — Pn

that sends =7 in P, ® A, Am to t~/ in P,,. When m is finite, this inclusion corre-
sponds via the natural isomorphisms P, >~ B, and P,, >~ B,, to the homomorphism
B, ®4,, Am — By, given by multiplication by ™",
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The definition of P, globalizes as follows. Given an arbitrary morphism of
schemes X — S, source and target can be covered by affine charts SpecA C X
and Spec R C S so that the morphism is determined by gluing affine morphisms
Spec A — Spec R. For every n, let U, be the universal family given in (3.1). Then
the sheaves P, constructed above for the corresponding charts Spec B,, C U, glue
together to give a sheaf &, on U,.

For every n € N U {00}, there is a natural isomorphism

pni(Oy,) = Homo, s, (Pns(Pn) Ocx/s),)-

Moreover, the right-hand side has a natural Oy, -module structure given by precom-
posing with the Oy, -module action on #,, and with this structure is isomorphic to
Oy, . Furthermore, if # is finite, then we have &, ~ Oy, . All these statements can be
checked locally on X, and therefore it suffices to consider the case where X = Spec A
and S = Spec R, where they reduce to Lemmas 4.2 and 4.5.

The analysis done in the affine case can be carried out in an identical way in
this more general setting. In particular, for each m > n, we get a natural injective
morphism

”;rkl,n (pn*(ﬂjn)) — Pmx(Pm)-

If m and n are finite, then %, ~ Oy,, and $, >~ Oy, , and the above injection is
conjugate to the morphism 7, , (0nx(Qu,)) = pm+(Ov,,) given by multiplication
by 7",

5. Derivations and differentials

In this section, we prove the description of €2(x/s), stated in Theorems A and B.
We continue with the notation introduced in the preceding section, so that, given
an R-algebra A, we have A, = HS’}UR, B, = An[t]/(t*1) when n is finite, and
B = Axo|[t]]. As before, we regard B, an A,-module via pﬁ and as an A-module
via y,'f, where these maps are defined in (3.2).

LEMMA 5.1

Let m,n € N U {oo}. Let R be a ring, and let A be an R-algebra. Let M be an
Ay, -module, and consider M & A, Bn with the A-module structure induced from the
A-module structure on B, (notice that ®An = ®4,, when n is finite). Then there is a
natural isomorphism

Derg(A,, M) ~ Derg(A, M ®An B,).
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If m >n and M is an Ap-module, then the natural map Derg(Ap,
M) — Dergr(Ay, M) corresponds via the above isomorphism to the map induced by
/‘Lgn,n: B — By ®4,, Am-

Proof
To treat the cases of arcs and jets at the same time, we will identify R[[¢]] with
R[t]/(t"*1) when n = oo.

Fix an A,-module M as in the statement of the lemma, and consider the A,,-
module A4, ® eM with the A,-algebra structure defined by (r ® em) - (r' ® em’) =
(¥’ @ e(rm’ 4+ r'm)). The symbol & should be thought as a variable with &2 = 0.
Since A, ®g R[t]/(t"T') = B,, Lemma 3.1 gives a natural isomorphism

HomR—alg(An, Ay, @ EM) x~ HomR—alg(A, B, ® 8(M ®An Bn))

The two modules of derivations that we are interested in are mapped into each other
via this isomorphism. More precisely, we have

Derg(An, M) > {¢ € Hompg.ag(An, An & €M) | ¢ = id 4, mod &}

~ {¢ € Hompyg (A, By ® (M &4, By)) | ¢ = y# mod &}
~ Derg(A4, M ® 4, By).

For the second statement of the lemma, it suffices to note that the map
Derg(Am,, M) — Derg(Ay,, M) corresponds, via the above isomorphisms, to the
map

HomR—alg (Av By, @ 8(M ®Am Bm)) - HomR—alg(Ay B, & S(M ®An Bn))

induced by the projection R[t]/(t™ 1) — R[t]/(t"*1), and the latter is exactly the
projection that induces an,n. All the isomorphisms in the proof are functorial with

respect to all the data involved, and therefore the resulting isomorphisms are natural.
O

Remark 5.2

Lemma 5.1 is the algebraic incarnation of an intuitive geometric fact about tangent
vectors on arc spaces and jet schemes. For concreteness, we look at the case of arcs
when R =k is a field. Consider a point @ in X, with residue field L, here regarded
as an Ayo-module. Then an element of Dery (A, L) corresponds to a tangent vector
to X at . Using the isomorphism of Lemma 5.1, this tangent vector gets identified
with an element of Derg (A, L[[¢]]), which corresponds to a vector field on X along
the image of the arc . These types of identifications are expected for moduli spaces
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of maps. For example, given two smooth projective varieties X and Y, we can con-
sider the space M = Mor(Y, X) parameterizing morphisms from Y to X. Then, for a
morphism f: Y — X, we have the well-known formula

Ty.r ~HY, f*Tx),

which is analogous to Lemma 5.1.

THEOREM 5.3
Let X — S be a morphism of schemes. For every n € N U {co} we have a natural
isomorphism

Qx/s)n/s = Pnx (Vs (Rx75) ® Pn).

where pp: Uy — (X/S)y and y,: U, — X are defined in (3.1), and these sheaves
are isomorphic to ppx(y,; (2x/s)) whenever n is finite. Moreover, for every m,n €
N U {oco} with m > n, the morphisms

T (2(X/8)0/8) = Q(X/S)m/S

induced by the truncation maps are obtained from the natural inclusion
T (Pnx(Pn)) = pms(Pm) by tensoring with pn« (v, (2x/s)), and correspond
to the maps 1, ,(onx(Ou,)) = pm=(Ouv,,) given by multiplication by t™™" when-
ever m is finite.

Proof

Since these properties are local in X, we can assume that X = Spec 4 and S =
Spec R. Recall that all B,-modules are regarded as A,-modules via pf, and as A-
modules via yﬁ. With the same notation as in Section 4, let M be an arbitrary A,-
module. By Remark 4.3, the natural morphism

M &4, By, —> Homy, (P,, M)

is an isomorphism of B,-modules. Then, by Lemma 5.1, we have a chain of natural
isomorphisms

Homy,, (24,,/r, M) >~ Derg(A,, M)
~ Derg(4, M ® 4, By)
~ Homu(Q4/r, M ® 4, Bn)
~ Homy (24/r, Homy,, (P,. M))
~ Homy, (24/r ®4 Pn. M).
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It follows that there is a natural isomorphism of A,-modules € 4, /r >~ 2 4/r @4 Pa.
Since Q4/r ®4 Py = (24/r ®4 Bn) ®p, Py, this and the fact that, by Lemma 4.5,
P, is isomorphic to B, as a B,,-module if 7 is finite give the first statement. The other
statements follow immediately from the second part of Lemma 5.1 and Remark 4.6.

O

Remark 5.4
Suppose for simplicity that X = Spec 4 is affine over S = Spec R so that the formula
in Theorem 5.3 becomes, for n = oo,

QU /R Ra/R ®4 Poo.
For every Ayo-algebra L (e.g., a field corresponding to a point of (X/S)s0), we have
QAe/R Phoo L = Q4/r ®4 Poo @4, L
~Quqr®a L[]l L[ (Poo @4 L)-

Note that L[[t]] = Boo ®4,, L. In the second step above, we have used the fact that
Poo ®4., L = L((¢))/tL[[t]], and hence it is not just a module over Boo ®4., L
but also over L[[¢]]. The above formula will be useful in order to compute fibers of
Qx../s-

It is worthwhile to work out explicitly what Theorem 5.3 is telling us in the affine
case, when both X and S are affine and X is of finite type over S. We start with the
case when # is finite. If S = Spec R and X = Spec A4, then we can write

Rlx1,...,xr]

A=

Then
_R[xi(p)|i=1,...,r,p=0,...,n]
T @ — —0
;7 1j=1,....5,¢=0,....n)

’

where, for every g and k, we set g®) := D (g). The presentation of A yields the
following presentation for €2 4/g:

J
@Adfj —>@Adx,- — Qu/r —0.
J i

Here J = [df}/0x;] is the Jacobian matrix. Similarly, the presentation of A4,, gives

Tn
P A df P = P AndxP — Qa,r 0,
J»q iL.p
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where J, = [0f ]-(q)/ Bxi(p )]. Theorem 5.3 provides an efficient way of writing down
this matrix. Explicitly, the theorem gives the presentation

J
@Pndfj_g@Pndxi—)QAn/R—)Ov
J i

where J(t) is, entry by entry, the pullback of J via the universal jet. In particular, we
can write

JO)=J +Jt+ "2 4 T,

where J®) = [Dy (3f;/x;)]. Using the decomposition P, = @} _, Ant ~*, we get

Jn -
P Andf; > @D Ant ™" dx; > Q.8 — 0.
J-q

i,p
where
J J ... g
o J ... J&D
J, =
0O 0 --- J

The isomorphism in Lemma 5.1 maps 9/ 8xl.(p ) ps P d/0x;. By duality, we see that
the isomorphism in Theorem 5.3 maps dxi(p) +— t~? dx; and dfj(q) —t~4df;. From

this, we see that

Ty =Jy.

In particular, we can immediately recover from this that

(9) (g+1)
e o,
axi(P) axi(IH- 1)

forall p,g <n

and

of @ f;
?i(p) = Dq"’(a_xj) forall p <gq.
These relations are well known and can be viewed as an elementary consequence of
the chain rule. It is a fun exercise to verify them starting from an explicit polynomial.
The above presentation of €2 4,/g is compatible with the differentials Q 4, /r ® 4,
Am — L4,,/r of the truncation maps, and it can be used to compute them. Letting
n — 0o, one gets a similar description of the presentation matrix for €24_ /g, where
now the matrix is infinite-dimensional.
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6. Invariant factors and fitting invariants

In the next section, we will be interested in studying fibers of the sheaves of differ-
entials on jet schemes (X/S),. Using Theorem 5.3, this will involve understanding
the pullback of x5 along a jet. As a preparation, in the present section we include
some remarks on these types of pullbacks.

Let X be an arbitrary scheme over base scheme S. For a given n € N U {oo},
consider a point o, € (X/S), and let L, denote the residue field of «,. We do not
assume that o, is a closed point of (X/S),. By shrinking X around v, (), we
may assume without loss of generality that X = Spec A and S = Spec R are affine.
Let A, and B, be the algebras defined in Section 4, so that (X/S), = Spec A, and
U, = Spec By,.

Algebraically, o, is given by a morphism

af: A—> By ®4, Ln,

where B, ®4, Ly = Lu[t]/("1) if n is finite and Boo ® 4., Loo = Loo[[t]]. For
simplicity, in what follows we will identify Loo[[¢]] with L,[t]/(z"T') when n =
oo, and we will always use the more suggestive notation L,[t]/(¢"*!) instead of
B, ®An Ln .

Consider a finitely generated A-module M. We are interested in understanding
the structure of its pullback along «;,, which is given by

M ®4 La[t]/ (")

Notice that L,[¢t]/(t* 1) is a principal ideal ring (and a domain when n = o). Since
M is finitely generated, the pullback is also finitely generated, and the structure theory
for finitely generated modules over principal ideal rings gives a unique decomposition

M ®4 Lalt]/ ") = (La[1)/ ") & @D Lalt]/ (%),

i>d

where the direct sum in the right-hand side has finitely many nonzero terms and n +
l>e;5>e441>>eq+r. When 0 <i <d,wesete; =n+1 (soe = oo if
n = 00). If the dependency on o, and M needs to be emphasized, we will write
d =d(ay) =d(ay, M) and e; = ¢;(ay) = e;(ay,, M).

Definition 6.1
We call {e;(an, M)}72, the sequence of invariant factors of M with respect to ay,.
The number d(«,, M) is called the Betti number of M with respect to oy,.

The invariant factors of M with respect to o, determine the pullback M ® 4
L[t]/(@"*') up to isomorphism. If a, is the truncation of another jet o, (so
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Tm.n(0tm) = @), the invariant factors with respect to o, and o, are related. We
have:

ei(an) = min{n + 1, e; (ctm)}.

Notice that the Betti numbers with respect to «, and «,,, could be different. We always
have d (o) > d(am).

The invariant factors are related to the Fitting ideals of M, whose definition we
recall briefly. Since M is finitely generated, we can find a presentation

F -2 Fp—s M =0, 6.1)

where Fy and F are free A-modules and Fj is finitely generated. Then Fitt' (M) C A
is the ideal generated by the minors of size rank(Fy) — i of the matrix representing ¢.
Geometrically, a point x € X belongs to the zero locus of Fitt' (M ) if and only if the
dimension of the fiber M ® 4 k(x) is greater than i.

Recall that if J C A is an ideal, then ¢ = ordy, (/) is defined as the number
for which aﬁ(]) = (¢). When n is finite, we pick ¢ € {0, 1,...,n + 1}, and when
n = oo, we have ¢c € {0, 1,...,00} (we use the convention ¢*° = 0).

Definition 6.2
Consider the numbers

¢i(on, M) := ordg,, (Fitt' (M)).

We call {c; (o, M )}72, the sequence of Fitting invariants of M with respect to o, .

The Fitting invariants are determined by the invariant factors. To see this, consider
the pullback via o, of the presentation in (6.1):

Fi -2 Fo— M ®4 La[t]/ (") — 0. (6.2)

The structure theory says that, after picking appropriate bases, @ is represented by a
matrix with entries £90,7¢1,¢¢2, ... along the main diagonal and zeros elsewhere. The
minors of ¢ are the pullbacks of the minors of ¢. This property is expressed by saying
that “the formation of Fitting ideals commutes with base change,” and it gives

Fitt (M ®g La[t]/ (")) = of (Fitt (M)) - Lu[t]/ ") = (1) € L, [t]/ ("),

where ¢; = ordy,, (Fitt' (M)). Here the Fitting ideals of M ® 4 L,[t]/(¢"*') are com-
puted with respect to its structure as a module over L,[t]/(t**!). On the other hand,
we can compute these Fitting ideals directly using the presentation in (6.2). We get:
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¢i=min{n + 1,¢; +ej41 + €42+ }.

If n = oo, we get that ¢c; = e; + e;4+1 + €j4+2 + -+, and we see that in this case
the invariant factors are determined by the Fitting invariants. The Betti number counts
the number of infinite Fitting invariants and can be interpreted geometrically as the
dimension of the fiber M ® 4 k(£), where § = axo (1) is the generic point of the arc
Ooo- In particular, we have that ord,, (Fittd (M)) < o0.

7. The fiber over a jet

In this section, we assume that X is a scheme of finite type over an arbitrary base
scheme §. This condition on X guarantees that the sheaf of differentials Qx/g is a
finitely generated (@ x -module. In particular, we can consider its Fitting ideals and can
apply the results of Section 6.

Remark 7.1

To compute Fitt' (Qx /s), we can work locally on X and S, and we use a relatively
closed embedding of X in some affine space Ag’ over S to get a presentation as in
(6.1), where ¢ is the Jacobian matrix of the embedding. As for any module, a point
x € X belongs to the zero locus of Fitt' (Qx /s) if and only if the dimension of the
fiber Qx/s ®oy k(x) is > i. In particular, if X is a reduced and equidimensional
scheme of finite type over a field k, then Fitt' (Qx /k) is zero when i < dim X and
equals the Jacobian ideal Jacy when i = dim X .

We are interested in studying the fibers of €(x/s),/s, and relating them to the
Fitting invariants of Qx/s.

THEOREM 7.2

Let X be a scheme of finite type over a base scheme S, let n € N, and consider a
jet oy € (X/8)n. We do not assume that oy, is a closed point of (X/S)n, and we let
Ly, be its residue field. Let d,, and {e;} be the Betti number and invariant factors of
Qx/s with respect to o,. Then the isomorphism Q (x/s),/s = Pnx(Vy (2x/5)) given
by Theorem 5.3 induces an isomorphism

Qx/$)0/5 05y, Ln = (Lall/ (") & @ Lalt]/ (1.

i>dy

Proof

After restricting to a suitable open set of X, we can assume that X = Spec A and
S = Spec R. As before, we use the notation from Section 4. From Theorem 5.3, since
n is finite, we see that Q 4, /s >~ Q4/5 ® 4 By, where B, is considered as an A-
module via J/,i1 . This implies that
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Q4,/5 ®ap Ln = Qajs ®a La[t]/ "),

where L,[t]/(t"*1) is considered as an A-module via ocf,. The theorem now follows
from the definition of the invariant factors with respect to the jet oy, . O

We now restrict ourselves to liftable jets. By definition, these are points in a jet
scheme (X/S), that lie in the image of the truncation map 7, : (X/S)oo = (X/S)n.
From the above theorem it is immediate to compute the dimensions of the fibers of
Q(x/5),/s over liftable jets.

COROLLARY 7.3

In addition to the assumptions of Theorem 7.2, assume that o, = 1, () for some arc
o € (X/8)oo. Consider the ideal sheaf §4, = Fitt%" (Rx/s). Then

dian (Q(X/S)n/s ®0(X/S)n Ln) = (n + l)dn + Orda(gdn)-

Proof

Starting at the position i = d,, we have an equality of invariant factors e;(a,) =
ei (o). Since ordy (q,) = ¢4, = eaq, + €4,+1 + -+, the result follows immediately
from Theorem 7.2. O

Remark 7.4

The Betti number d, = d(a,,2x/s) appearing in the two immediately preceding
results is hard to interpret in geometric terms. On the other hand, the Betti number
d = d(a,Qx/s) has a clear meaning: it is the dimension of the fiber Qx5 ®0, k(£),
where £ = a(n) € X is the generic point of «. Recall that when n is large enough
(bigger than all the invariant factors of «), the Betti numbers of 2 x,s with respect to
o and o, = 7, (a) coincide.

The next corollary recovers [5, Proposition 5.1].

COROLLARY 7.5

In addition to the assumptions of Corollary 7.3, assume that S = Speck for a field k,
assume that X is reduced and equidimensional over k, and assume that the arc a is
not completely contained in the singular locus of X . Then, for finite n > ordy (Jacy),
we have

dimgz, (2x,/k ®0y, Ln) = (n +1)dim X + ordy (Jacx).

Proof
With the additional assumptions, we see that the Betti number of €2 x,s with respect
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to @ is d = dim X, and therefore $45 = Fitt* (224/k) = Jacy. The condition n >
ordy (Jacy ) guarantees that the Betti numbers of €2 4, with respect to & and «,, coin-
cide. The result is just a restatement of Corollary 7.3 in this case. O

8. Embedding dimension
We now study embedding dimensions of arcs and jets. Starting with this section and
for the reminder of this article, we assume that X is a scheme of finite type over a
perfect field k. In the following, let @ € X be a point, and denote by L = L the
residue field of «. We do not assume that « is a closed point of X.. For every n € N,
we let «t;, = 7, () be the truncations, and we denote by L,, their residue fields. It will
be convenient to also allow the notation o, for .

For n € N, we denote dim(w,) := tr.deg(L,/k). Since the ground field k is
assumed to be perfect, we have

dim(e,) = dimz,, (R, /x)-

We start with some preliminary lemmas. For ease of notation, in our discussion
of these preliminary properties we will restrict ourselves to the affine setting and will
assume that X = Spec A, where A is a finitely generated k-algebra. We apply the
notation from Section 4 with R = k.

For each n € N U {0}, we let I,, C A, be the prime ideal defining «,. When
m > n, we have inclusions I, C I,,,. The Zariski tangent space of X,, at «,, is the dual
of the L,-vector space I,/ I,%, and hence the embedding dimension of X,, at o, is
given by

emb.dim(Oy,, o,) = dimg, (I,/17).
Note that there are natural maps I, /1> — I,/ 12 whenever m > n and also that

Ioo/ 12 = injlim(1, /7).
n—->oo
LEMMA 8.1
As above, let X = Spec A, where A is a finitely generated k-algebra, and let & € X 5.
For every n € N, let dy, be the Betti number of 2 4 with respect to the truncation
oy = my (o), and consider the ideal J 4, := Fitt? (24/k)- Then

emb.dim(Ox,, q«,) = (n + 1)d, —dim(a,) + ordy (Jg,,).

Proof
Applying [33, Theorem 25.2] to the sequence k — (A,)1, — Ln, we get an exact
sequence
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2
0—>In/1n —>QA"/k ®4, L, —>QLn/k—>0.

Here we used the assumption that k is perfect. The lemma now follows from Corol-
lary 7.3 and the equality dim(c,) = dimg,, (27, /k)- O

LEMMA 8.2

With the same assumptions as Lemma 8.1, let d and e; be the Betti number and
invariant factors of §2 4/ with respect to the arc a, and let Q 4, 1k @ 4, Am —> 2 4,,/k
be the map induced by the truncation morphism Tty . Xm — Xp. Then, for finite
m >n + ordy (Jg), we have

K := ker(QAn/k Qa, L - QAm/k ®4,, L)~ ((tln’[ﬂ))dn—d o (@ (lt/e[f]))
i >d

1>dn

and hence dimy, (K) = (n 4+ 1)(d, —d) + ordy (Jg,). In particular, for n > ordy (Jg)
andm > n + ordy(J4z), we have

L]

(1)

K:ker(QAn/k ®An L—)QAm/k R4, L)Z@

i>d
and dimy,(K) = ordy (J4).
Proof
Since m > ordy(Jy), we see that the Betti numbers of €2 4, with respect to & and

coincide. By Theorems 7.2 and 5.3 (see also Remark 4.6), we see that K is isomorphic
to the kernel of the map

() o ()" (@ 1)

1=>dn

amen o LI \d 2L [1]
- ((tl:"il)) ® (@ (I;ef)) ® (@ (Ltef))

i=d i>dy

given by multiplication by ¢”*~". Since we have m —n > ordy (J;) > e; foralli > d,
the first assertion follows. Note that } ;. ; e; = ordy(Jg, ). The last assertion follows
from this and from the fact that, if n > ord, (J4), then d,, = d. O

LEMMA 8.3
With the same assumptions as Lemma 8.2, consider the natural morphism

An: In) 1?2 ®4, L — Ioo/12

induced by the truncation map. Then
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dimz (Im(A,)) = (n + 1)d — dim(a).

Proof
Consider m > n + ord, (J4). We have the following commutative diagram with exact
rows and columns:

0 0
| |
0 K’ K K"

i l

0 —— I,,/I,%(X)L —_— QAn/k@L R QLn/k(X)L — 0

[ |

0 — In/ln®L — Qu,k®L — Qp,x®L — 0

Recall that, by Lemmas 8.1 and 8.2, we have
dimy (I,/1? ® L) = (n + 1)d, — dim(a,) + ordg(Jg,),
dimz(K) =+ 1)(dy —d) + ordg (Jg,)-
Then from the first column of the diagram we see that
dimy, (Im(Xym)) = dimy (I, /17 ® L) — dimz (K')
> dimy,(1,/1? ® L) —dimy, (K)
=+ 1)d — dim(ay).
Since Im(4,) = injlim,, Im(A, ), the result follows. O

LEMMA 8.4
With the same assumptions as Lemma 8.2, we have

emb.dim(Ox ) > limsup((n + 1)d — dim(ay,)).
n—o0
Proof

Consider the maps A, of Lemma 8.3. Since Ioo/12 = injlim(I,/1?), it also holds
that /,/12, = injlim(Im(2,)). Therefore the assertion follows from Lemma 8.3. [

We now return to the global case of schemes of finite type over k. Recall that
the dimension of a scheme X of finite type over k at a point &, denoted dimg (X)), is



376 DE FERNEX and DOCAMPO

defined as the infimum of the dimensions (over k) of all open neighborhoods of £ in
X.

THEOREM 8.5
Assume that X is a scheme of finite type over k. Then for any arc o € Xoo, letting
& = a(n) € X denote the generic point of the arc, we have

emb.dim(Ox ) > dimg(X) — dim(ap).

Proof
The proof follows from Lemma 8.4 and the fact that the Betti number of 2y, with
respect to « is bounded below by dimg (X). U

Since the ground field is perfect, a point x on a scheme of finite type X is singular
if and only if dim(Qx ® k(x)) > dim, (X). In particular, nonreduced points of X are
singular. We denote by Sing X the singular locus of X. Without further mention, we
will use the fact that, as the ground field is perfect, if X is a variety, then Sing X is a
proper closed subset of X and hence, in particular, has smaller dimension.

LEMMA 8.6
Let X be a a scheme of finite type over k, let o € X0, and let Z C X be the closure
of the generic point (1) of a. Then for every n € N we have

dim(ay) < (n + 1)dim(Z).

Proof

In characteristic zero, the statement follows easily from Kolchin’s irreducibility theo-
rem [30, Chapter 4, Proposition 10]. Over an arbitrary perfect field, the argument can
be adjusted as follows. Note that & € Z, \ (Sing Z)eo. Then, by [39, Theorem 2.9],
o belongs to the unique irreducible component C of Z, that dominates Z. It follows
that the closure of the projection of C to Z,, has dimension (n 4+ 1) dim(Z), and the
assertion follows. (]

PROPOSITION 8.7

Let X be scheme of finite type, let o € X0, and denote by § = a(n) € X the generic
point of a. Assume that one of the following two conditions holds:

(1)  «a €Yy whereY C X is a closed subscheme with dimg (Y') < dimg(X),

(2) «oe(Sing X)co.

Then

emb.dim(Ox,_ o) = 00.
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Proof

Suppose first that (1) holds. By the geometric interpretation of Betti numbers, we
have d(a,Qx) > dimg(X). Since dim(a,) < (n + 1) dimg(Y') by Lemma 8.6, and
dimg (Y) < dimg (X), Lemma 8.4 implies that

emb.dim(Ox, o) > limsup(n + 1)(d (e, 2x) — dim(Y)) = oo.
n—-oo
Suppose then that (2) holds. If dimg (Sing X )oo < dimg(X), then the assertion fol-
lows from case (1). Otherwise, X is nonreduced at £ and hence d (o, Q2 x) > dimg (X),
and we conclude that emb.dim(O@x_, o) = co by Lemmas 8.4 and 8.6. O

Remark 8.8

The inequalities stated in Lemmas 8.3 and 8.4 are both equalities whenever the map
K’ — K in the proof of Lemma 8.3 is an isomorphism. This is clearly the case if
L., is separable over L,, as in this case K” = 0, and therefore we get equalities in
both formulas if k£ has characteristic zero or « is a k-rational point of Xo,. More
interestingly, we will see later in Section 10 that the condition that L,, is separable
over L, is always guaranteed if X is a variety and « is a stable point of X, and
hence we will deduce that equalities hold in this case, too. It will turn out in the end
(see Lemma 10.6) that in fact the equality holds in general, and the limsup is a limit,
in the formula stated in Lemma 8.4.

9. The birational transformation rule
Here we study how birational morphisms affect the embedding dimension of arcs.
Given two schemes X and Y of finite type over a perfect field k, we say that a mor-
phism f: Y — X is birational over a union of components if there exist a dense open
set V' C Y and a (not necessarily dense) open set U C X such that (V) C U and the
restriction f|y: V — U is an isomorphism. If U is dense in X, or equivalently if f
is dominant, then we say that f is birational.

If f:Y — X is birational over a union of components, then the sheaf of relative
differentials Qy,x is torsion. We consider the Jacobian ideal Jac s := Fitt®(Qy,x)

of f.

LEMMA 9.1

Let X and Y be schemes of finite type over a perfect field, and consider a proper map
f Y — X that is birational over a union of components. Let B € Yo and consider
o= foo(B) € Xoo. If [ is locally an isomorphism at the generic point B(n) of the arc
(that is, one can pick V- C Y as above such that $(n) € V), then the residue fields of
o and B are equal.
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Proof

Let L and K be the residue fields of & and 8, respectively. Since @ = foo(8), we have
L C K. Consider « as map «: Spec L[[t]] = X. The hypothesis on 8 guarantees that
the generic point «(n) of o lies in the locus over which f is an isomorphism, and
therefore it can be lifted. The valuative criterion of properness gives a unique lift of «
to an arc &: Spec L[[¢]] = Y. This corresponds to a morphism Spec L — Y5, whose
image is by construction. This implies that K C L, as required. O

THEOREM 9.2

Let X and Y be schemes of finite type over a perfect field. Consider a proper map
f Y — X that is birational over a union of components. Let B € Yo, and consider
o = foo(B) € Xoo. Assume that Y is smooth at $(0). Then

emb.dim(Ox,_, o) = emb.dim(Oy_, g) + ordg(Jacr).

Note that several of these numbers could be infinite. For example, if 8 has infi-
nite embedding dimension, the theorem implies that « also has infinite embedding
dimension. Conversely, if « has infinite embedding dimension and j is not completely
contained in the vanishing locus of Jac r, then 8 has infinite embedding dimension.

Proof of Theorem 9.2

Let V C Y be a dense open subset as above, so that f restricts to an isomorphism
from V to an open set U C X. If B is contained in Z :=Y \ V, then « is contained
in the image of Z, and hence both embedding dimensions are infinite by Proposi-
tion 8.7. Thus we assume that 8 is not contained in Z, which means that 8(n) € V.
By Lemma 9.1 both o and 8 have the same residue field, which we call L. Let 1
and J be the ideals defining @ and 8. Since the ground field is perfect, we have the
following diagram:

0 —— ]/12 — QXoo/k®(9XooL — QL/k — 0

| o

0 ——= J/J? ——= Qyo/k ®oy,, L — Qg — 0

9.1)

Therefore, the theorem will follow if we show that
dimy, (ker ¢) — dimy, (coker ¢) = ordg(Jac f).

Recall the universal arc poo: Uso — Xoo and the sheaf P, on Uy, defined in
Section 4. We rely on Remark 5.4 for the computation of the fibers appearing in the
middle column of (9.1). For ease of notation, we denote
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B := L[[t] = poox (Ove) R0, L
and
Pr = L((1)/tL[[1]] = poox (Peo) B0y, L-

We can regard By both as an @Oy -algebra via the arc « and as an @y -algebra via
B. Then Pr, which is naturally a By -module, becomes both an O x-module and an
Oy -module.

The map f induces a natural sequence of sheaves of differentials:

*

Qx/k ®oy Oy — Qyx — Qy/x — 0.

After pulling back to the arcs o and §, we get:

¥
Qx/k ®oy BL — Qy/k ®9y BL —— Qy;x ®0, B — 0.

All of the terms in this sequence are finitely generated modules over By, = L{[¢]],
and therefore they are direct sums of cyclic modules. Since Y is smooth at 8(0), the
middle term Fy := Qy/x ®o, By is free. Write Qx/x ®o, Br = Fx ® Tx, where
Fy is free and T is torsion. Since f is an isomorphism at the generic point of §, the
restriction ¥ = | Fy 1is injective. Consider Qy,;x = coker( ). We have an exact
sequence:
v
0 Fx Fy Oy/x — 0. 9.2)

Note that ¥ (Tx ) = 0, and therefore that Oy, x = Qy,;x ®o, BL.
Theorem 5.3 says that ¢ is obtained from ¥ by tensoring with Py :

(4
0 = K — Qx/k®oxy PL — Qy/r ®0y PL — Qy;x ®0y, PL = 0
Qxoo/k Qo L Qy/k B0y, L
9.3)

Note that Py is a divisible Bz -module, and hence tensoring with Py, kills torsion. We
get the following diagram:
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(2
0> K — FxQ®p, PL — FyQ®p, P — Qy/;x®B, PL =~ 0

0> K — QX/k Koy P; — Qy/k Koy P; — Qy/X Koy P; =0

94)

where @ is induced by V.

Since Qy,;x = Qy,x ®o, B istorsion (because B is not contained in the excep-
tional locus), we see that Qy,x ® g, Pr = 0. Moreover, K = TorfL (Qy/x,PL) =
Oy x - Therefore dimy (K) = dimz (Qy,x) = ordg (Jac s ), and the result follows.

Alternatively, we can check directly that dim (K) = ordg (Jac s ). To do this, note
that, after appropriate choices of bases, the map ¥ can be represented by a matrix with
entries £€0,¢¢1, ... along the main diagonal and zeros elsewhere. In the language of
Section 6, the ¢; can be chosen to be the invariant factors of the module Qy,x with
respect to the arc fB. In particular, we have ordg(Jacs) = ), ,e;. Since B is not
contained in the exceptional locus, we have e; < oo for all i. The map ¢ is repre-
sented by the same matrix as . We get K = ;- Ki, where K; is the kernel of
the map Pr — P, given by multiplication by 7% . An easy computation shows that
dimy, (K;) = e;, and therefore dimy, (K) = Zizo e;j =ordg(Jacy). O

THEOREM 9.3

Let X and Y be schemes of finite type over a perfect field. Consider a proper map
f Y = X that is birational over a union of components. Let B € Yo, and consider
o= foo(B) € Xoo. Then

emb.dim(Oy_, g) < emb.dim(Ox_, o) < emb.dim(Oy_, g) + ordg(Jacy).

Proof
The proof is almost identical to that of Theorem 9.2. Using the notation of that theo-
rem, the main difference is that Qy,x ® @, B is no longer a free By -module. Write
Qy/k ®oy BL = Fy ® Ty, where Fy is a free By-module and Ty is torsion, and
let Y be the composition of 1/|p, with the projection to Fy. Then v is still injec-
tive, and we can consider the module Qy,x given by the sequence in (9.2). The
diagrams in (9.3) and (9.4) remain valid. (Observe that Qy,x ®@, BL is a torsion
By -module, so coker ¢ = 0, and the diagram of (9.1) shows that emb.dim(Oy_, g) <
emb.dim(Ox_, «)-)

The module Qy, x is a quotient of Qy,x ®, B, and therefore it is also torsion.
As in the proof of Theorem 9.2, this implies that:
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ker(¢) = K = Tor; “ (Qy/x. PL) = Qy/x.
Using again that Qy,x is a quotient of Qy,x ®@, Br, we see that

dimy (K) = dimz(Qy,x) <dim (Qy,x ®0, Br) = ordg(Jacy),

and the result follows. |

COROLLARY 9.4
Let f:Y — X be a proper birational morphism between schemes of finite type over
a perfect field. Then the induced map fx: Yoo = Xoo induces a bijection

{,3 € Yoo } emb.dim(Oy,, g) < oo} kA {a € Xoo | emb.dim(Ox_, o) < oo}.

Proof

Theorem 9.3 implies that Y has finite embedding dimension at a point 8 if and only
if Xoo has finite embedding dimension at fo (8). To conclude, it suffices to observe
that if @ € X is not in the image of f, then X has infinite embedding dimension
at . Indeed, by the valuative criterion of properness, o must be fully contained in the
indeterminacy locus of f~': X --» Y. Since f is a birational map, the indetermi-
nacy locus of f~! has dimension strictly smaller than the dimension of X at any of
its points, and therefore we have emb.dim(Ox_, o) = oo by Proposition 8.7. O

Theorem 9.3 also implies the following useful property.

COROLLARY 9.5

Let X be a scheme of finite type over a perfect field k, and let @ € X be an arc such
that a & (Sing X )oo. Let Y C X be the irreducible component of X such that a € Y.
Then

emb.dim(Oy,_ o) = emb.dim(Ox,_, «)-

Proof
The first remark, which is implicit in the statement, is that for every o € X there is
always an irreducible component Y of X such that & € Yo, and if a ¢ (Sing X))o,
then such component is unique.

If f: Y — X is the natural inclusion, then Jac # = Oy and hence the assertion
follows directly from Theorem 9.3. O

Corollary 9.5 would follow immediately if we knew that the local rings Ox_, «
and Oy, ¢ are isomorphic. This is, however, not true in general. While the reductions
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of these rings can be shown to be isomorphic, it is not always the case that the rings
themselves are isomorphic. An example where this fails is given next.

Example 9.6

Let X = {xy =0} C A? be the union of two lines and let Y = {y = 0} C A2 be one
of the components, and consider the arc « = (—#,0) € X. Let ' = Z @ €Z with the
lexicographic order, so that, for instance,

<0< e<2e<r<]l —2e<]l—e<l<l4+e<--,

and let R C k(r,s) be the rank-2 valuation ring with value group I" associated to the
monomial valuation v defined by v(r) = € and v(s) = 1. The map k[x, y]/(xy) —
(R/(rs))[[t]] defined by

s S 5, 85 3
XH—=>r—t, ys+ ol ST A ST A
r r r

does not factor through the quotient k[x, y]/(xy) — k[x], and this shows that the
corresponding map Oy, o — R/(rs) does not factor through the quotient Oy o —
OYoora-

Remark 9.7

If Y is a union of components of a nonreduced scheme X, the inclusion f: Y —
X is not necessarily a birational map over a union of components. In particular,
Theorems 9.2 and 9.3 may not apply. Consider for instance the case where X is
nowhere reduced and ¥ = X,eq. If f is the inclusion, then Jac # = Oy, and hence
ordy(Jac r) = 0 for every o € Y. As we will see in the next section, we can always
find an arc @ € Yo, with emb.dim(Oy,, o) < 00. However, since Sing X =Y, for any
a we have emb.dim(Ox__ o) = 0o by Proposition 8.7.

10. Constructible and stable points

Throughout this section, let k be a perfect field and let X be a scheme of finite type
over k. The goal of this section is to characterize local rings Ox__  of finite embed-
ding dimension. We start by recalling the notion of constructibility.

Let Z be an arbitrary scheme. The definition of constructible subset of Z is here
intended in the sense of [22] (see also [42, Tag 005G]). That is, a subset of Z is
constructible if and only if it is a finite union of finite intersections of retrocompact
open sets and their complements, where a subset W C Z is said to be retrocompact
if, for every quasicompact open set U C Z, the intersection W N U is quasicompact.
A constructible set is irreducible if it contains a unique generic point, namely, a point
whose closure in Z contains the set. With small abuse of terminology, we say that a
point z € Z is constructible if z is the generic point of an irreducible constructible
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subset of Z. Note that the fact that a point z € Z is constructible in this sense does not
mean necessarily that the 1-point subset {z}, or its closure, are constructible subsets
of Z.

The above definition gives a notion of what it means for a point & € X, to be a
constructible point. It is a general fact that a subset of X, is constructible if and only
if it is the (reduced) inverse image of a constructible subset of X, for some finite n
(see [23, Théoreme 8.3.11]).

LEMMA 10.1

Let X be a scheme of finite type and let « € Xoo be an arc such that o ¢ (Sing X)) oo.
Let Y C X be the irreducible component of X such that a € Yoo. Then « is a con-
structible point of X oo if and only if it is a constructible point of Yoo.

Proof
Suppose first that « is a constructible point of X,. Then « is the generic point of an
irreducible constructible subset C C X . Note that C N Y, is a constructible subset
of Yoo, and since o € Yo and Yo is closed in X, we actually have C C Y. It
follows that « is a constructible point of Y.

Conversely, suppose that o is a constructible point of Y, and let D C Y, be
an irreducible constructible subset with generic point «. We can find an integer n
such that D = (ﬂn|yoo)_1(Dn), where D, is a constructible subset of Y,,. Since X,
is a scheme of finite type and Y, is a closed subscheme of X, the set D, is also
constructible in X;,. Since o ¢ (Sing X )oo, we can find a closed subscheme Z C X
such that X =Y U Z and o ¢ Zo. This means that @ has finite order of contact
with Z. If m is an integer larger than this order, then & ¢ 7,1 (Z,,). Then 7, 1(Dy) \
7, (Zm) is a constructible subset of Xo with generic point @, and hence « is a
constructible point of X . O

When X is a variety, constructible subsets of X, are called weakly stable semial-
gebraic sets in [11] and cylinders in [8], [14], [16], [24], among other places. Related
notions are those of generically stable set introduced in [38] and quasicylinder intro-
duced in [8]. The more restrictive notion of stable semialgebraic set was introduced
in [11]. We recall this notion next.

Following the terminology of [11] (see also [16]), a morphism g: V' — V of
schemes of finite type is said to induce a piecewise trivial fibration W — W with
fiber F, where W/ C V/ and W C V are constructible subsets and F is a reduced
scheme, if there is a decomposition W = T U --- U T}, with all 7; locally closed sub-
sets of W such that each W’ N g~!(T;) is locally closed in V' and, with the reduced
scheme structure, it is isomorphic to 7; x F.
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Let X be a variety. A subset W C X is said to be a stable semialgebraic subset
if, for all n >> 1, the truncation 7, +1(Xso) = 7, (Xoo) induces a piecewise trivial
fibration over 7, (W) with fiber A%™X)_ The term stable point was coined in [39]
to denote the generic point of an irreducible stable semialgebraic subset of X,. As
explained in [11, (2.7)], a simple consequence of [11, Lemma 4.1] is that a point
o € X is stable if and only if it is constructible and is not contained in (Sing X )oo.
Note that [11, Lemma 4.1] is stated in characteristic zero, but the proof works over
an arbitrary perfect field (see [16, Proposition 4.1] where the property is proved over
algebraically closed fields of arbitrary characteristic).

Remark 10.2

The formulation of [39, 3.1(i)(c)] is equivalent to asking that the point is the generic
point of a generically stable subset of X, as defined in [38]. It seems that the condi-
tion that the generic point of a generically stable subset be not contained in (Sing X )oo
was overlooked in [38], [39]. An easy and well-known computation of the fiber over
the 1-jet (¢,0,0) in the arc space of the Whitney umbrella X = {xy? = z2} C A3
shows that such condition is necessary.

Remark 10.3

Let X be a variety and let « € X, be a stable point. For every n € N, let o, = 7, (0)
be the truncation of o and L, its residue field. Then it follows immediately from the
definition that, for all n > 1, the field extension L, C L, is purely transcendental
of degree dim(X) (cf. [39, Section 3.1(1)(b)]).

Remark 10.4

The reason for introducing the term constructible point in the context of arc spaces
is that it is not completely clear what the definition of stable point of X, should
be if X is a nonreduced scheme. The point is that the difference between weakly
stable and stable when X is a variety can be characterized in two equivalent ways:
either by imposing the condition that « is not contained in (Sing X ) Or by requiring
the piecewise trivial fibration condition with fiber A%™X) If X is not generically
reduced, these two conditions are no longer equivalent.

Implicit in the works on motivic integration is the definition of codimension of
a constructible subset of the arc space of a smooth variety. This was formalized and
extended to singular varieties in [8], [9], [14]. Let X be a variety and let o« € X, and
for any n € N let o, = 7, (). The jet codimension of @ in X is defined to be

jet.codim(er, Xoo) := lim ((n + 1) dim(X) — dim(etp)).
n—oo
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The fact that the limit exists is an easy application of [11, Lemma 4.1] (e.g., see
[9, Lemma 4.13]). Note also that jet.codim(o, Xoo) > O for every o € Xoo (cf.
Lemma 8.6).

The next property, which is well-known to experts, formalizes the relationship
between stable points and jet codimension.

PROPOSITION 10.5
Let X be a variety and let @ € Xoo. Then o is a stable point if and only if
jet.codim(e, Xoo) < 00.

Proof

If o ¢ (Sing X )oo then this follows easily from [11, Lemma 4.1]. If « € (Sing X) o,
then, since the ground field is perfect, the closure Z C X of the generic point (1) of
« has dimension dim(Z) < dim(X) and the same argument applied to Z implies that
jet.codim(a, Xop) = 00. O

The following more precise version of Lemma 8.4 holds on varieties.

LEMMA 10.6
Let X be a variety, let o € Xoo be any point, and let d be the Betti number of Qx
with respect to a. Then

emb.dim(Ox., o) = lim ((n + 1)d — dim(ay)).
n—>oo

Proof

Since the right-hand side of the equation is bounded below by the jet codimension, it
follows by Lemmas 8.4, 8.6 and Proposition 10.5 that both terms of the equation are
infinite unless « is a stable point. If « is a stable point, then Remark 10.3 implies that,
for m > n > 1, the field extensions L, C L,, are separable, and therefore equality
holds by Remark 8.8. O

THEOREM 10.7
Let X be a variety over a perfect field k. Then for every o € Xoo we have

emb.dim(Ox, «) = jet.codim(c, Xo).

Proof

If o € (Sing X)oo, then both sides of the equation are infinite by Propositions 8.7
and 10.5. Assume then that o ¢ (Sing X)s. By Lemma 8.4 and the fact that
d(a, Qx/r) = dim(X), we have
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emb.dim(Ox,,.¢) = lim ((n + 1) dim(X) — dim(ay))
n—o00
= jet.codim(o, Xoo).

If « is stable then the inequality in the first step of this formula is an equality by
Lemma 10.6, and hence, combining the formula with Proposition 10.5, we get

emb.dim(Ox, «) = jet.codim(c, Xo) < 00.

If « is not stable, then we have jet.codim(e, Xoo) = 00 by Proposition 10.5, and we
conclude that emb.dim(Ox_, o) = jet.codim(¢, Xoo) = 00. O

We obtain the following characterization of local rings of finite embedding
dimension.

THEOREM 10.8
Let X be a scheme of finite type over a perfect field. For every a € X, we have

emb.dim(Ox_, o) <00

if and only if o is a constructible point and is not contained in (Sing X )co.

Proof
If o € (Sing X))o, then emb.dim(Ox_, o) = 0o by Proposition 8.7.

Assume then that @ ¢ (Sing X )eo. This implies that X is reduced and irreducible
at the generic point £ = (7). By Corollary 9.5 and Lemma 10.1, we can replace X
with its irreducible component containing £ and thus assume that it is a variety. Then
Theorem 10.7 gives us emb.dim(Ox_, ) = jet.codim(c), and we can conclude from
the fact that jet.codim(«) < oo if and only if « is stable by Proposition 10.5. O

Remark 10.9

By [39, Theorem 2.9], if X is a variety defined over a perfect field of positive char-
acteristic, then X has finitely many irreducible components only one of which is
not contained in (Sing X )so. For an example where X, has more than one compo-
nent given by the p-fold Whitney umbrella X = {xy? = z?} C A? in characteristic
p, see [4, Example 8.1]. Theorem 10.8 implies that, if « is the generic point of an
irreducible component of X, that is contained in (Sing X )oo, then Ox__ o, Which is
a 0-dimensional ring, has infinite embedding dimension.

COROLLARY 10.10
Let X be a variety over a perfect field. For any a € Xoo and n € N, let o, = 7, ()
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be the truncation of a. If emb.dim(Ox_, o) = 00, then emb.dim(Oy,, 4, ) becomes
arbitrarily large as n increases. Otherwise, we have

emb.dim(Ox_, «) = emb.dim(Ox,, 4, ) — ordy(Jacy)

for all sufficiently large integers n.

Proof

For short, let d, := d(an, Q2 x/) be the Betti number. If emb.dim(Ox o) = oo, then
jet.codim(e, Xoo) = 00 by Theorem 10.7, and hence, since d,, > dim(X) for all n and
the sequence of numbers ordy (Jy4,,) stabilizes for n large enough, emb.dim(Oyx,, «, )
goes to 0o as n — oo by Lemma 8.1. Otherwise, « is a stable point and d;,, = dim(X)
for n > 1 by Theorem 10.8, and hence the corollary follows by Lemmas 8.1 and
10.6. O

COROLLARY 10.11
Let X be avariety over a perfect field and let f: Y — X be a resolution of singular-
ities. Then for every B € Yoo, letting @ = foo(B), we have

jet.codim(o, Xo0) = jet.codim(B, Yoo) + ordg (Jac r).

Proof
The proof follows from Theorem 9.2 and 10.7. O

One of the nice features of local rings of finite embedding dimension comes from
the following elementary fact.

LEMMA 10.12 o
For any scheme Z over a field, the completion Oz ; of the local ring of Z at a point
z is Noetherian if and only if emb.dim(Qz ;) < oo.

Proof

This is in fact a general result about completions of local rings. Let (I/Q\ ,m) be the
m-adic completion of a local ring (R, m). If m/m? is finite-dimensional, then @ is
finitely generated by [42, Tag 0315], and this implies that R is Noetherian. The con-
verse follows by the fact that since m? C m2, there is always a surjection m/m? —
m/m?. O

The following property is an immediate consequence of Theorem 10.8.
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COROLLARY 10.13

Let X be a reduced scheme of finite type over a perfect field. The completion (9/X;1
of the local ring at a point o € X is Noetherian if and only if a is a constructible
point and is not contained in (Sing X )oo.

Proof
The proof follows from Theorem 10.8 and Lemma 10.12. O

When X is a variety, the fact that the completion of the local ring at a stable point
o € X is Noetherian is a result of Reguera. It follows from [38, Corollary 4.6],
which proves that (9@,& is Noetherian (cf. [34, Section 2.3, (vii)]), and [39, The-
orem 3.13], which proves that there is an isomorphism m ~ (9(;(/00;1,0[. Notice
that this last result of Reguera is stated in characteristic zero, but the proof extends to
all perfect fields using Hasse—Schmidt derivations.

The curve selection lemma [38, Corollary 4.8] easily follows from Cohen’s struc-
ture theorem once one knows that these rings are Noetherian. It is a powerful state-
ment that allows the study of certain containments among sets in the arc space via
the use of arcs in the arc space. All the current proofs solving the Nash problem in
dimension 2 (see [6], [18]) use the curve selection lemma in an essential way.

We conclude with the following property which was obtained by different meth-
ods in [39, Proposition 4.1]. A more general statement in characteristic zero which
applies to maps that are not necessarily birational is given in [39, Proposition 4.5].

COROLLARY 10.14

Let f: Y — X be a proper birational morphism between schemes of finite type over
a perfect field. Then the induced map foo: Yoo — Xoo induces a bijection from the
set of constructible points of Y that are not contained in (SingY ) and the set of
constructible points of Xoo that are not contained in (Sing X )oo. In particular, if X
and Y are varieties, then fo induces a bijection

{stable points B € Yoo} = {stable points o € Xo}.

Proof
The proof follows from Corollary 9.4 and 10.8. O

Notice, by contrast, that the image f-o(C) of a constructible set C C Yo, needs
not be constructible in X .. This is shown in the next example.

Example 10.15
Let f: Y — X be the blowup of a smooth closed point x € X of a variety of dimen-
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sion at least 2, let E C Y be the exceptional divisor, and let y € E be a closed point.
The set C C Yoo of arcs with positive order of contact with E at points in E \ {y}
is constructible, but its image foo(C) C X is not constructible, since it is equal to
W\ U;>1 Zi, where W is the set of arcs through x and Z; is the set of arcs with
order i at x and where the principal tangent direction is equal to y.

11. Maximal divisorial arcs
In this section, we study arcs that are naturally associated with divisorial valuations.
Let X be a reduced scheme of finite type over a perfect field k.

Definition 11.1

A valuation on X is intended to be a k-trivial valuation of the function field of one
of the irreducible components of X with center in X. A divisorial valuation on X is
a valuation v of the form v = g ordg where ¢ is a positive integer and E is a prime
divisor on a normal scheme Y with a morphism f: ¥ — X that is birational over
a union of irreducible components of X. For a divisorial valuation v, the number
ky (X) :=v(Jac y) depends only on v (not on the particular map /), and is called the
Mather discrepancy of v over X. When v = ordg (so ¢ = 1), we write l/c\E (X).

If we denote by Ky the sheaf of rational functions of X in the sense of [29]
(ie., Ky = @n Ox,,, where n ranges among the generic points of the irreducible
components of X), then a valuation of X can be thought of as a function v: Ky —
(—00, 0o] which restricts to a Krull valuation on one of the summands Oy ; and is
constant equal to co on the other summands. If v = g ordg is a divisorial valuation on
X, then F is a divisor on one of the irreducible components of Y, and the component
of X dominated by it corresponds to the summand of Kx where the valuation is
nontrivial.

Definition 11.2

A point @ € X is a maximal divisorial arc if ord, extends to a divisorial valuation
on X and « is maximal among all points y € X, with ord, = ord, (that is, « is not
the specialization of any other such point y).

In general, for an arc o € X, the function ord, is only defined on Oy 4(g). If
o is a maximal divisorial arc, then we write ordy, = g ordg and we think of it as a
function on K x. Note that for other arcs 8 (for instance, if § is contained in Y, for
a smaller dimensional scheme Y C X)) there may not be a natural way to extend ordg
to Kyx.
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Let f: Y — X be a proper morphism from a normal scheme Y that is birational
over a union of components. Let £ C Y be a prime divisor, and let £° C E be the
open set where both Y and E are smooth and none of the other components of the
exceptional locus of f intersect E. For any positive integer ¢, consider the contact
locus

Cont=?(E°,Y) C Yoo,

which is defined to be the set of arcs in Y with order of contact at least ¢ with E at a
point in E£°. Since Y is smooth along E°, the truncations Y,, — Y, are affine bundles
over an open set containing E°, and this implies that Cont=? (E°,Y) is irreducible.

The following property is well known to experts; we include a proof for the con-
venience of the reader.

LEMMA 11.3
With the above notation, the image under fs: Yoo — Xoo Of the generic point of
Cont=?(E®,Y) is a maximal divisorial arc on X, and any such arc arises in this way.

Proof

Let B be the generic point of Cont=?(E°,Y) and & = fo(B). It is elementary to see
that ordg = g ordg. By the definition of f.,, we have ord, = ordg, and therefore
ordy = gordg.

We may assume without loss of generality that f is dominant (this is not essen-
tial, but it makes the wording of the proof more clear). If y € X is any arc with
ord, = ordy, then y cannot be fully contained in the indeterminacy locus of f -1
and therefore it lifts to an arc 7 on Y by the valuative criterion of properness. Since
ordy = g ordg, we see that  must dominate the generic point of E and hence lie in
Cont=4(E°,Y). It follows that y is a specialization of «, and therefore « is a maximal
divisorial arc. This argument also shows that any maximal divisorial arc arises in this
way. O

THEOREM 11.4

Let X be a reduced scheme of finite type over a perfect field. For every divisorial
valuation qordg on X there exists a unique maximal divisorial arc o € Xoo With
ordy = g ordg. Moreover,

emb.dim(Ox_ o) = q(EE (X)+1).
Proof

The first assertion is well known and can be viewed as a direct consequence of Theo-
rem 11.3. The formula for the embedding dimension follows from Theorem 9.2 after
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we notice that, if B is the generic point of Cont=?(E°,Y), then emb.dim(Oy__ g) =
g, which is an easy computation, given that ¥ is smooth. O

From Theorem 10.8 we recover the following fact about maximal divisorial arcs
(due to [14] when X is a smooth variety, and due to [8], [39] for arbitrary varieties).

COROLLARY 11.5
Let X be a reduced scheme of finite type. Then every maximal divisorial arc a € X
is a constructible point and is not contained in (Sing X ) o.

Proof
By Theorem 11.4, the local ring Ox_, « has finite embedding dimension, and hence
« is a constructible point not contained in (Sing X )oo by Theorem 10.8. O

Since by Theorem 10.7, if X is a variety then we have jet.codim(x) =
emb.dim(Ox_, ), we obtain the next corollary, which recovers the formula in
[8, Theorem 3.8].

COROLLARY 11.6
With the same assumptions as in Theorem 11.4, if X is a variety, then we have

jet.codim(a, Xoo) = q(l/c\E(X) +1).

The following related result has been recently proved, by different methods, by
Mourtada and by Reguera.

THEOREM 11.7 ([34, Theorem 3.4], see also [40])
Let X be a variety defined over a field of characteristic zero and let @ € Xoo be a
maximal divisorial point corresponding to a valuation q ordg. Then

emb.dim(m) =emb.dim(O x ), 0.x) = q(l’c\E (X)+1).

Remark 11.8

The proof of Theorem 11.4 does not use the fact that maximal divisorial arcs are stable
points, which is here deduced as a corollary (see Corollary 11.5). Granting this well-
known fact from the start, if X is a variety over a field of characteristic zero, then one
can also deduce Theorem 11.4 from Theorem 11.7. Indeed, under these assumptions,
if @ € Xo is a stable point and we denote by I C Ox,__ o and I C Ox,),...a the
respective maximal ideals, then using the isomorphism (ﬂ; i~ (Q(X/O.;a,a proved
in [39, Theorem 3.13] and the fact that the 7 -adic topology of O(x..)....« is Separated
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by [39, Corollary 4.3], one deduces that the natural surjection 1/I1% — I/I? is an
isomorphism and hence

emb.dim(Ox_ ) = emb.dim(O(x__).q.0)-

Theorem 11.4 can be used to control Mather discrepancies. For example, the
following result is an immediate consequence of Theorem 8.5.

COROLLARY 11.9
Let X be a reduced and equidimensional scheme of finite type over a perfect field,
and consider a prime divisor E over X whose center in X is a closed point. Then

kg(X) + 1> dim(X).

In fact, using Lemma 8.3 (with n = 0 and n = 1) and Remark 8.8, it is not hard
to see that, if equality holds in this formula, then the valuation ordg has center of
codimension 1 in the normalized blowup of the maximal ideal m C Oy x at x, and
ordg (m) = 1.

These facts should be compared with the following result of Ishii. In the statement
of the theorem, Elﬁx (X) denotes the minimal Mather log discrepancy of X at the
point x, which is defined as the infimum of the Mather log discrepancies k, E(X)+1
as F ranges among all divisors £ over X with center x.

THEOREM 11.10 ([25, Theorem 1.1])
Let X be a variety over a perfect field, and let x € X be a closed point. Then

mld, (X) > dim(X)

and equality holds if and only if the normalized blowup of the maximal ideal m C
Ox x at x extracts a divisor E over X such that ordg (m) = 1.

Mather log discrepancies are closely related to the usual log discrepancies, which
are defined on Q-Gorenstein varieties. Minimal log discrepancies are conjectured to
be bounded above by the dimension of the variety and to characterize smooth points
(see [41]). The preceding result of Ishii shows the different behavior of minimal
Mather log discrepancies, and it has useful applications in connection to Shokurov’s
conjecture and the study of isolated singularities with simple links (see [10]).

Corollary 11.9 immediately implies the first statement of Theorem 11.10. Alter-
natively, the full result can also be obtained by analyzing the behavior of Mather
discrepancies under general linear projections, in the spirit of [9, Proposition 2.4]; the
argument is essentially contained in the proof of [3, Proposition 4.6].
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