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NASH BLOW-UPS OF JET SCHEMES

by Tommaso DE FERNEX and Roi DOCAMPO (*)

ABSTRACT. Given an arbitrary projective birational morphism of va-
rieties, we provide a natural and explicit way of constructing relative
compactifications of the maps induced on the main components of
the jet schemes. In the case the morphism is the Nash blow-up of a
variety, such relative compactifications are shown to be given by the
Nash blow-ups of the main components of the jet schemes.

Eclatements de Nash des espaces de jets

RESUME. Etant donné un morphisme birationnel projective de varié-
tés nous fournissons une maniere explicite et naturelle de construire
des compactifications relatives des applications induites sur les com-
posantes principales des espaces de jets. Dans le cas o le morphisme
est ’éclatement de Nash d’une variété, nous montrons que ces com-
pactifications relatives sont données par les éclatements de Nash des
composantes principales des espaces de jets.

1. Introduction

The Nash blow-up of a variety is defined as the universal projective
birational morphism for which the pull-back of the sheaf of differentials
admits a locally free quotient of the same rank. The name comes from
John Nash, who is generally credited for having promoted the question of
whether singularities of algebraic varieties can always be resolved by finitely
many iterations of such blow-ups; before him, the question had already
been considered by Semple [12]. The property is known to hold for curves
of characteristic zero, and to fail in positive characteristics [9]. A variant of
this question, where Nash blow-ups are alternated with normalizations, has
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been settled affirmatively for surfaces of characteristic zero by Spivakovsky
[13], building on [5]. Higher order Nash blow-ups have been defined and
studied by Yasuda [15].

The Nash blow-up can be thought as the universal operation separating
multiple limits of tangent spaces, and hence its construction relates to the
geometry of the main component of the first jet scheme of the variety. It is
however unclear a priori how the Nash blow-up of a variety should relate
to the Nash blow-up of such component. Even less obvious is whether there
should be a relationship with the Nash blow-ups of the main components
of the higher jet schemes of the variety.

The following result shows that these Nash blow-ups are not just related,
but in fact they essentially determine each other.

THEOREM 1.1. — Let X be a variety. For every n, the main component
of the n-th jet scheme of the Nash blow-up of X has an open immersion
into the Nash blow-up of the main component of the n-th jet scheme of X,
and such immersion is compatible with the respective natural map to the
n-th jet scheme of X.

Denoting by N(X) — X the Nash blow-up of a variety and by J/,(X)
the main component of the n-th jet scheme of X, Theorem 1.1 can be
rephrased by saying that the Nash blow-up N(J} (X)) — J,(X) gives a
relative compactification of the map J/ (N (X)) — J/ (X) induced on n-jets
by the Nash blow-up of X. This implies that the Nash blow-up of a variety
X can equivalently be characterized as the universal projective birational
morphism Y — X such that, for every n, the pull-back of € x) via
J(Y) — J,(X) has a locally free quotient of the same rank. The theorem
also implies that the Nash blow-up of J},(X) induces the Nash blow-up of X
under the natural section (the ‘zero section’) of the projection J/ (X) — X.
It was shown by Ishii [6] that if a variety X is singular then all of its jet
schemes are singular, and Theorem 1.1 implies that, if the ground field is
algebraically closed of characteristic zero, then in fact the main components
of the jet schemes are already singular.

The proof of Theorem 1.1 uses the description of the sheaves of differen-
tials on jet schemes given in [3] in combination with Theorem 1.2 (stated
below), which addresses a related question in a more general context.

Suppose that 1: Y — X is an arbitrary projective birational morphism of
varieties. By functoriality, ¢ induces for every n a morphism on jet schemes
tn: Jo(Y) = Jn(X), and hence, by restriction, a birational morphism
s JL(Y) — J(X) between the main components of the jet schemes. In
general, ! is not a projective morphism, and one can ask whether there
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are natural ways of constructing relative compactifications of p/,. The next
theorem provides an answer to this question.

The morphism p can be described as the blow-up of an ideal sheaf 7 C
Ox, and a way to approach the question is to look for natural ways of
constructing an ideal sheaf a, C O (x) whose blow-up gives a relative
compactification of pu!,. Doing this directly seems hard: while a posteriori
we will provide an explicit formula for computing the local generators of
such an ideal a,, in terms of the generators of Z, the formula will show that
the complexity of a,, grows fast even in simple examples, an indication that
looking at ideals might not be the best approach.

Instead, we view p as the Nash transformation N(F) — X of a coherent
sheaf F, as defined for instance in [10]. In this language, the blow-up of
an ideal Z C Ox is the same as the Nash transformation N(Z) — X
of the ideal, and the Nash blow-up of a variety X is defined to be the
Nash transformation N(2x) — X of the sheaf of differentials of X. In
general, the Nash transformation of a coherent sheaf F of rank r is defined
using the Grassmann bundle of locally free quotients of rank r of F, and
is a projective birational morphism. Conversely, every projective birational
morphism p: Y — X can be realized as a Nash transformation of some
coherent sheaf F on X.

THEOREM 1.2. — Let X be a variety over a field k, and let pi: N(F) —
X be the Nash transformation of a coherent sheaf F on X. For every n, let
J(X) % Ay —2 X

Pr
J5(X)

be the diagram induced by restriction from the universal n-jet of X; here,
we denote A, = Speck[t]/(t"T!). Define

T o= (pn)« (V)" F-
Then the induced map p,: J, (N(F)) — J! (X) factors as

n

1%

Th(N(F)) = N(F,) = T, (X)
where ¢, is an open immersion and v,, is the Nash transformation of F),.

If in this theorem we take F = Z C Ox, an ideal sheaf on X, then
F/ is not an ideal sheaf. However, the sheaf /\(""’1)]:,’“ modulo torsion,
is isomorphic to an ideal sheaf a,, and N(F)) = N(a,). Our approach
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enables us to make explicit computations and hence to provide a formula
for the generators of a,,.

A motivation for Theorem 1.2 comes from the Nash problem on families
of arcs through the singularities of a variety [8] and, more specifically, from
the problem of lifting wedges [7, 11]. In dimension two, the Nash problem
has been settled in characteristic zero in [1] but it remains open in positive
characteristics. The algebraic proof given in [4] may be adaptable to positive
characteristics, provided one can avoid certain wild ramifications that could
occur in the proof. A possible approach is to look for suitable deformations
of wedges, and this requires working with relative compactifications of the
maps Jp(Y) = J,(X) where ¥ — X is the minimal resolution of the
surface. Theorem 1.2 provides a first step in this direction.

1.1. Acknowledgments

We thank Mircea Mustata for pointing out an error in a previous version
of the paper and the referee for a careful reading of the paper and valuable
comments and corrections.

2. Proofs

We work over an arbitrary field k. For every integer n > 0, the n-th
Jjet scheme J,(X) of a scheme X is the scheme representing the functor of
points defined by

J.(X)(Z2)=X(Z x A,)
for any scheme Z, where A,, = Speck[t]/(t"*1). We denote by

Jn(X) x Ay s X

pni

In(X)

the universal n-jet of X. For generalities about jet schemes, we refer to
[14, 2]. If X is a variety, then there exists a unique irreducible component
of J,(X) dominating X, and this component has dimension (n+ 1) dim X.
We shall denote it by J;,(X) and call it the main component of J,,(X).
Given a coherent sheaf F on a scheme X, and a positive integer r, we
denote by Gr(F,r) the Grassmann bundle over X parameterizing locally
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free quotients of F of rank r, where by the term quotient we mean an equiv-
alence class of surjective maps from the same source where two surjections
are identified whenever they have the same kernel. This scheme represents
the functor of points given by

Gr(F,r)(2)={(Z2 5 X, p"F - Q) |
Q locally free sheaf on Z of rank r}
for any scheme Z.

Suppose now that X is a variety, and let F be a coherent sheaf on X
of rank 7. The Nash transformation of F is defined to be the irreducible
component of Gr(F,r) dominating X, and is denoted by N (F). The natural
projection Gr(F,r) — X induces the blow-up map N(F) — X. The Nash

blow-up N(X) — X is, by definition, the Nash transformation of the sheaf
of Kéhler differentials Q2 x.

Proof of Theorem 1.2. — The sheaf F, is the restriction, under the
inclusion J},(X) C J,(X), of the sheaf
F = (pn)vnF

By construction, J, (N(F)) is an irreducible component of the jet scheme
Jn(Gr(F,r)). Similarly, observing that F,, is a sheaf of rank (n + 1)r and
keeping in mind that J},(X) is an irreducible component of J,,(X), we see
that N(F)) is an irreducible component of Gr(F,, (n+1)r). We claim that
there is a universally injective map

i: Jp(Gr(F,7)) = Gr(Fy, (n+ 1)r),

defined over X, which agrees with the natural identification of these schemes
over the open set where X is smooth and F is locally free, and restricts to
an open immersion from J), (N (X)) to N(J},(X)). Note that the existence
of such a map implies the statement of the theorem.

In order to prove this claim, we compare the functors of points of the
schemes J, (Gr(F,r)) and Gr(F,, (n+ 1)r). For every scheme Z, we have

In(Gr(F,r))(Z) = Gr(F,r)(Z x Aq)
={(ZxA, 5 X,a"F > Q) |
Q locally free sheaf on Z x A,, of rank r}
and
Cr(Fr, (n+1)r)(2) = {(Z2 5 Ju(X), B*Fr — R) |
R locally free sheaf on Z of rank (n + 1)r}.
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By the description of J,(X) via the functor of points, every 8: Z —
Jn(X) corresponds to a unique «: Z x A, — X, and for any such pair of
maps there is a commutative diagram

where 7 is the projection onto the first factor. Note that taking push-
forward along 7 of a sheaf on Z x A,, simply means that we are restricting
scalars to Oz and forgetting the given Ozxa,-module structure of the
sheaf.

By the definition of F,, and base-change, which holds in this setting
because p, and 7 are affine, we have

B*F, = ma* F.

Using the identification J,,(X)(Z) = X(Z x A,,), the above formula yields
the following alternative description of the functor of points:

Gr(Fpn,(n+ 1)r)(2) = {(Z x A, 5 X, moa* F — R) |

R locally free sheaf on Z of rank (n + 1)r}.

For every locally free sheaf Q@ on Z x A, of rank r, the push-forward
. Q is a locally free sheaf on Z of rank (n + 1)r. Taking push-forwards via
7 is exact, and any two quotients of o*F are identified (i.e., they define
the same kernel in a*F) if and only if their push-forwards are identified
as quotients of m.a*F (i.e., they define the same kernel in m,.a*F). This
means that taking push-forwards via 7w defines a natural injection

Jn(Gr(F, ) (Z) = Gr(Fpn, (n+ 1)r)(Z).
As this holds for every scheme Z, we deduce that there is a naturally defined
universally injective morphism
i: Jo(Gr(F, 1)) — Gr(Fy, (n+ 1)r).

It is immediate to see that i is defined over X and therefore it agrees
with the natural identification of these schemes over the open set where
X is smooth and F is locally free. Furthermore, the restriction of i to
JI(N(F)) gives a universally injective map ¢, : J,(N(F)) — N(F}). To
finish the proof, we need to show that ¢, is a local isomorphism, that is, it
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induces isomorphisms on all local rings. To this end, we prove the following
property.

LEMMA 2.1. — Let (A, m) be a Noetherian local domain over k, and set
U = Spec A and P = Spec A/m. Assume that fy and g are morphisms as
in the diagram

P 5 (Gr(F, )

U Gr(Fo, (n+ 1)r)

such that the square sub-diagram commutes and the image of g is a dense
subset of N(F)]). Then there exists a unique morphism f (marked by the
dotted arrow in the diagram) making the whole diagram commute.

Proof. — Suppose fy and g are given. Let mp: P x A, = P and 7: U X
A, — U denote the respective projections to the first components. By the
descriptions of the functors of points, we can write

fo=(PxA, 25X, afF - Q),
where Q is a locally free A[t]/(t""1)-module of rank r, and
9= (U X Ap i>X7 W*OZ*F—»R)

where R is a locally free A-module of rank (n + 1)r. The commutativity of
the square sub-diagram in the statement means that «y is the restriction of
aand R®4 A/m = (7). Q. The fact that the image of ¢ is dense in N(F))
implies that « is dominant, and hence 7.a*F is a sheaf of rank (n + 1)r.
Since R is a locally free quotient of the same rank of m,a*F, the kernel
K of mea*F — R is the torsion A-submodule of w,a*F. Every element of
2120 t'IC, viewed as an A-submodule of m,a*F, is torsion, and therefore
we have )7, #/KC = K. This shows that K is an A[t]/(¢"*")-submodule
of m.a*F and hence R is an A[t]/(¢t"*!)-module quotient of m.a*F. This
gives the lift f of g as in the diagram, which is clearly unique and makes
the diagram commute. 0

We apply Lemma 2.1 to the local rings of N(F)) at the points in the
image of ¢,. Using the fact that 7 is injective on the functors of points, we
deduce that ¢ induces isomorphisms on the local rings.

To see this last implication, let O, denote the local ring of J),(N(F))
at a point ¢, and let O, denote the local ring of N(F)) at p = ¢,,(g). Let
g: Spec O, — Gr(F,,(n + 1)r) and h: SpecO, — J,(Gr(F,r)) be the
natural maps, and let j: Spec O, — Spec O, be the map induced by ¢,,.
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We have the following diagram:

Spec (’)qc—h> Jn(Gr(F, 7))

= T

Spec O+ Gr(Fy, (n + 1)r).

Here, the square sub-diagram is commutative, f exists by Lemma 2.1 and
hence satisfies

(2.1) iof =g,

and the universal property of local rings implies that f factors through h,
so that we have a morphism s, as in the diagram, satisfying

(2.2) hos=f.
Using the commutativity of the square sub-diagram and Eq. (2.1), we get
ioh=goj=iofoj.

Then, using the fact that 7 is injective at the level of functors of points and
hence is a monomorphism, we deduce that

(2.3) h=foj.
Now, using Egs. (2.2) and (2.3), we get
h=foj=hosoj,
and since h is a monomorphism, this implies that s o j is the identity of
Spec O,. Using Eqs. (2.2) and (2.3) in a different order, we get
f=hos=fojos.
Since ¢ is a monomorphism, it follows by Eq. (2.1) that f is a monomor-
phism, and this implies that j o s is the identity of Spec O,. This proves
that j is an isomorphism, which completes the proof of the theorem. O
Proof of Theorem 1.1. — By [3, Theorem B|, there is an isomorphism
Q7. x) = (Pn)« 10 x,
and this implies that
N(J;,(X)) = N((pn)s1mQx @0, x, O, 0)) = N () (7)),
where p/, and +,, are the restrictions of p,, and 7, to J/ (X) x A. Therefore

Theorem 1.1 reduces to Theorem 1.2 with F = Qx. O
COROLLARY 2.2. — For any variety X, the following properties are
equivalent:
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(1) the Nash blow-up N(J} (X)) — J,,(X) is an isomorphism for some
n 2= 0;

(2) the Nash blow-up N(J}, (X)) — J,,(X) is an isomorphism for every
n > 0.

Proof. — By Theorem 1.1, both properties are equivalent to the fact that
the Nash blow-up N(X) — X is an isomorphism. O

In positive characteristics, there are examples of singular varieties whose
Nash blow-up is an isomorphism (see [9, Example 1]), and Corollary 2.2
implies that this property, whenever it holds, propagates through all the
jet schemes, and conversely.

By contrast, when the ground field is algebraically closed of characteristic
zero the Nash blow-up is an isomorphism if and only if the variety is smooth
(see [9, Theorem 2]). It is elementary to show that the jet schemes of a
smooth variety are smooth, and conversely it was proved in [6] that if X
is a singular variety then all its jet schemes J,(X) are singular. With the
above assumptions on the ground field, we deduce the following stronger
statement from Corollary 2.2.

COROLLARY 2.3. — If X is a singular variety defined over an alge-
braically closed field of characteristic zero, then the main component of
JI(X) of J,(X) is singular for every n.

3. Computational aspects

After viewing a projective birational morphism p: Y — X as the Nash
transformation of a coherent sheaf F on a variety X, Theorem 1.2 provides a
construction of a relative compactification of the induced map p, : J;,(Y) —
J!(X) by taking the Nash transformation of an explicitly described sheaf
F) on J/(X). Such transformation is a projective birational morphism,
and therefore can also be described as the blow-up of an ideal sheaf a,, on
J}(X). In this section we explain how to compute such ideal.

For simplicity, we assume that X = Spec R is affine. The following dia-
gram provides the algebraic counterpart of the restriction to J),(X) of the
universal n-jet:

, a1y )
Rn[t]/(t ) +——R

T(pil)ﬁ

R/

n
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Here R], is a quotient of R, the algebra of Hasse-Schmidt differentials of
order at most n, (p},)* is the natural inclusion map, and (v/,)? is induced
by the homomorphism
Yhi R— Ru[t]/(t"H),  f=) D)t
i=0

where (Do, D1, ..., D,) is the universal Hasse-Schmidt derivation of order
n. With this notation, we have J,,(X) = Spec R,, and J,,(X) = Spec R},.

If 7(F) denotes the torsion of F, then the two sheaves F,, and (F/7(F)),,
have the same torsion free quotient. We can therefore assume without loss
of generality that F is torsion free. Let F' denote the R-module associated
to F. If r is the rank of F, we can then realize F' as a submodule of
R". Picking a set of generators for F' of cardinality s, we obtain a matrix
M € Mat, «s(R) such that F' = Im M. Notice that, to produce an ideal
whose blow-up gives Y — X, one can take the ideal generated by the r x r
minors of M.
(Y) — J!(X) constructed in The-
orem 1.2 is given by the Nash transformation of the R/,-module

Fy, = () (F) - (R[] (™))",

where the R/,-module structure is defined via (p/,)*. A straightforward com-
putation shows that F, = Im M,, where M,, € Mat (4 1) (nt1)s(F;,) is the
matrix given in block form by

The relative compactification of u!, : J/,

Do (M) 0 o0
o P00 i
Du(M) Du_y(M) - Do(M)

Here D;(M) is the matrix obtained from M by applying D; to each entry.
By construction, we have the following property.

PROPOSITION 3.1. — With the above notation, the morphism N(F}) —
J; (X) is the blow-up of the ideal a,, C R}, generated by the (n+1)r x (n+
1)r minors of M,

The next example shows the computation of the first few ideals a,, in a
simple case.

Example 3.2. — Consider X = A? = Speck[z,y], and let Y — X be
the blow-up of the maximal ideal (z,y). Taking F to be the maximal ideal,
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we have
]\40:[3j y]7
M, = z y 0 0’
1T1 Y1 T Y
[z y 0 0 0 O
Meo=|zy v1n = y 0 0f,
T2 Y2 1 Y1 T Y
[z v 0 0O O 0 0 O
M = g y1 « y 0 0 0 O 7
2 Y2 1 y1 oz y 0 0
LT3 Y3 T2 Y2 T1 Y1 T Y

where x; = D;(z) and y; = D;(y). Letting a,, be the ideal generated by the
(n+1) x (n+ 1) minors of M, we have
ao = (2,9),
a = ag + (zy1 — ya1),
Ay = Ay + (y22” — Yxox — Y1 @ + yat, Ty’ — T1Y1Y — TY2y + 2Y7),
as = apag + a?+
+ (QSxS - 9553552 - -T2y1$2 - $192x2 + 2yx1 227 + x%ylz - yI?,
Y1y21” — yysa® — zyie + yPwsr + yPrixs + yaty,
Loy + 212y’ + 2ysy’ — vty — 2y Y0y + 2y; — yoas,
You® — y1ysar® + Loyt + yrayix — yTayox — T1y1YaT +
+yz1yse + yPas — yiries — yrizey + yriys).
Notice that while the matrices M,, remain simple and have an easily rec-

ognizable structure, the corresponding ideals a,, grow in complexity quite
fast.

BIBLIOGRAPHY

[1] J. FERNANDEZ DE BOBADILLA & M. P. PEREIRA, “The Nash problem for surfaces”,
Ann. of Math. (2) 176 (2012), no. 3, p. 2003-2029.

[2] L. EIN & M. MUSTATA, “Jet schemes and singularities”, in Algebraic geometry—
Seattle 2005. Part 2, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., Provi-
dence, RI, 2009, p. 505-546.

[3] T. pE FERNEX & R. Docampo, “Differentials on the arc space”, Preprint,
arXiv:1703.07505.

, “Terminal valuations and the Nash problem”, Invent. Math. 203 (2016),

no. 1, p. 303-331.

[4]

SUBMITTED ARTICLE : JET-NASH-FINAL-AIF-19-0117.TEX


http://arxiv.org/abs/1703.07505

12 TOMMASO DE FERNEX AND ROI DOCAMPO

[5] H. HIRONAKA, “On Nash blowing-up”, in Arithmetic and geometry, Vol. II, Progr.
Math., vol. 36, Birkh&user, Boston, Mass., 1983, p. 103-111.

[6] S. IsHi, “Smoothness and jet schemes”, in Singularities—Niigata—Toyama 2007,
Adv. Stud. Pure Math., vol. 56, Math. Soc. Japan, Tokyo, 2009, p. 187-199.

[7] M. LEJEUNE-JALABERT, “Arcs analytiques et résolution minimale des surfaces quasi-
homogenes”, in Séminaire sur les Singularités des Surfaces, Lecture Notes in Math.,
vol. 777, Springer, Berlin, 1980, Held at the Centre de Mathématiques de I'Ecole
Polytechnique, Palaiseau, 1976-1977, p. 303-332.

[8] J. F. NasH, JRr., “Arc structure of singularities”, Duke Math. J. 81 (1995), no. 1,
p. 31-38 (1996), A celebration of John F. Nash, Jr.

[9] A. NOBILE, “Some properties of the Nash blowing-up”, Pacific J. Math. 60 (1975),
no. 1, p. 297-305.

[10] A. ONETO & E. ZATINI, “Remarks on Nash blowing-up”, Rend. Sem. Mat. Univ.
Politec. Torino 49 (1991), no. 1, p. 71-82 (1993), Commutative algebra and algebraic
geometry, II (Italian) (Turin, 1990).

[11] A. J. REGUERA, “A curve selection lemma in spaces of arcs and the image of the
Nash map”, Compos. Math. 142 (2006), no. 1, p. 119-130.

[12] J. G. SEMPLE, “Some investigations in the geometry of curve and surface elements”,
Proc. London Math. Soc. (3) 4 (1954), p. 24-49.

[13] M. SPIVAKOVSKY, “Sandwiched singularities and desingularization of surfaces by
normalized Nash transformations”, Ann. of Math. (2) 131 (1990), no. 3, p. 411-
491.

[14] P. Vouta, “Jets via Hasse-Schmidt derivations”, in Diophantine geometry, CRM
Series, vol. 4, Ed. Norm., Pisa, 2007, p. 335-361.

[15] T. YasuDa, “Higher Nash blowups”, Compos. Math. 143 (2007), no. 6, p. 1493-
1510.

Tommaso DE FERNEX
Department of Mathematics
University of Utah

155 South 1400 East

Salt Lake City, UT 48112 (USA)
defernex@math.utah.edu

Roi DOCAMPO
Department of Mathematics
University of Oklahoma

601 Elm Avenue, Room 423
Norman, OK 73019 (USA)

roi@ou.edu

ANNALES DE L’INSTITUT FOURIER


mailto:defernex@math.utah.edu
mailto:roi@ou.edu

	1. Introduction
	1.1. Acknowledgments

	2. Proofs
	3. Computational aspects
	BIBLIOGRAPHY


