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NASH BLOW-UPS OF JET SCHEMES

by Tommaso DE FERNEX and Roi DOCAMPO (*)

Abstract. Given an arbitrary projective birational morphism of va-
rieties, we provide a natural and explicit way of constructing relative
compactifications of the maps induced on the main components of
the jet schemes. In the case the morphism is the Nash blow-up of a
variety, such relative compactifications are shown to be given by the
Nash blow-ups of the main components of the jet schemes.

Éclatements de Nash des espaces de jets

Résumé. Étant donné un morphisme birationnel projective de varié-
tés nous fournissons une manière explicite et naturelle de construire
des compactifications relatives des applications induites sur les com-
posantes principales des espaces de jets. Dans le cas o le morphisme
est l’éclatement de Nash d’une variété, nous montrons que ces com-
pactifications relatives sont données par les éclatements de Nash des
composantes principales des espaces de jets.

1. Introduction

The Nash blow-up of a variety is defined as the universal projective

birational morphism for which the pull-back of the sheaf of differentials

admits a locally free quotient of the same rank. The name comes from

John Nash, who is generally credited for having promoted the question of

whether singularities of algebraic varieties can always be resolved by finitely

many iterations of such blow-ups; before him, the question had already

been considered by Semple [12]. The property is known to hold for curves

of characteristic zero, and to fail in positive characteristics [9]. A variant of

this question, where Nash blow-ups are alternated with normalizations, has
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been settled affirmatively for surfaces of characteristic zero by Spivakovsky

[13], building on [5]. Higher order Nash blow-ups have been defined and

studied by Yasuda [15].

The Nash blow-up can be thought as the universal operation separating

multiple limits of tangent spaces, and hence its construction relates to the

geometry of the main component of the first jet scheme of the variety. It is

however unclear a priori how the Nash blow-up of a variety should relate

to the Nash blow-up of such component. Even less obvious is whether there

should be a relationship with the Nash blow-ups of the main components

of the higher jet schemes of the variety.

The following result shows that these Nash blow-ups are not just related,

but in fact they essentially determine each other.

Theorem 1.1. — Let X be a variety. For every n, the main component

of the n-th jet scheme of the Nash blow-up of X has an open immersion

into the Nash blow-up of the main component of the n-th jet scheme of X,

and such immersion is compatible with the respective natural map to the

n-th jet scheme of X.

Denoting by N(X) → X the Nash blow-up of a variety and by J ′n(X)

the main component of the n-th jet scheme of X, Theorem 1.1 can be

rephrased by saying that the Nash blow-up N(J ′n(X)) → J ′n(X) gives a

relative compactification of the map J ′n(N(X))→ J ′n(X) induced on n-jets

by the Nash blow-up of X. This implies that the Nash blow-up of a variety

X can equivalently be characterized as the universal projective birational

morphism Y → X such that, for every n, the pull-back of ΩJ′
n(X) via

J ′n(Y )→ J ′n(X) has a locally free quotient of the same rank. The theorem

also implies that the Nash blow-up of J ′n(X) induces the Nash blow-up of X

under the natural section (the ‘zero section’) of the projection J ′n(X)→ X.

It was shown by Ishii [6] that if a variety X is singular then all of its jet

schemes are singular, and Theorem 1.1 implies that, if the ground field is

algebraically closed of characteristic zero, then in fact the main components

of the jet schemes are already singular.

The proof of Theorem 1.1 uses the description of the sheaves of differen-

tials on jet schemes given in [3] in combination with Theorem 1.2 (stated

below), which addresses a related question in a more general context.

Suppose that µ : Y → X is an arbitrary projective birational morphism of

varieties. By functoriality, µ induces for every n a morphism on jet schemes

µn : Jn(Y ) → Jn(X), and hence, by restriction, a birational morphism

µ′n : J ′n(Y ) → J ′n(X) between the main components of the jet schemes. In

general, µ′n is not a projective morphism, and one can ask whether there
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are natural ways of constructing relative compactifications of µ′n. The next

theorem provides an answer to this question.

The morphism µ can be described as the blow-up of an ideal sheaf I ⊂
OX , and a way to approach the question is to look for natural ways of

constructing an ideal sheaf an ⊂ OJ′
n(X) whose blow-up gives a relative

compactification of µ′n. Doing this directly seems hard: while a posteriori

we will provide an explicit formula for computing the local generators of

such an ideal an in terms of the generators of I, the formula will show that

the complexity of an grows fast even in simple examples, an indication that

looking at ideals might not be the best approach.

Instead, we view µ as the Nash transformation N(F)→ X of a coherent

sheaf F , as defined for instance in [10]. In this language, the blow-up of

an ideal I ⊂ OX is the same as the Nash transformation N(I) → X

of the ideal, and the Nash blow-up of a variety X is defined to be the

Nash transformation N(ΩX) → X of the sheaf of differentials of X. In

general, the Nash transformation of a coherent sheaf F of rank r is defined

using the Grassmann bundle of locally free quotients of rank r of F , and

is a projective birational morphism. Conversely, every projective birational

morphism µ : Y → X can be realized as a Nash transformation of some

coherent sheaf F on X.

Theorem 1.2. — Let X be a variety over a field k, and let µ : N(F)→
X be the Nash transformation of a coherent sheaf F on X. For every n, let

J ′n(X)×∆n

ρ′n
��

γ′
n // X

J ′n(X)

be the diagram induced by restriction from the universal n-jet of X; here,

we denote ∆n = Spec k[t]/(tn+1). Define

F ′n := (ρ′n)∗(γ
′
n)∗F .

Then the induced map µ′n : J ′n(N(F))→ J ′n(X) factors as

J ′n(N(F))
� � ιn // N(F ′n)

νn // J ′n(X)

where ιn is an open immersion and νn is the Nash transformation of F ′n.

If in this theorem we take F = I ⊂ OX , an ideal sheaf on X, then

F ′n is not an ideal sheaf. However, the sheaf ∧(n+1)F ′n, modulo torsion,

is isomorphic to an ideal sheaf an, and N(F ′n) = N(an). Our approach
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enables us to make explicit computations and hence to provide a formula

for the generators of an.

A motivation for Theorem 1.2 comes from the Nash problem on families

of arcs through the singularities of a variety [8] and, more specifically, from

the problem of lifting wedges [7, 11]. In dimension two, the Nash problem

has been settled in characteristic zero in [1] but it remains open in positive

characteristics. The algebraic proof given in [4] may be adaptable to positive

characteristics, provided one can avoid certain wild ramifications that could

occur in the proof. A possible approach is to look for suitable deformations

of wedges, and this requires working with relative compactifications of the

maps Jn(Y ) → Jn(X) where Y → X is the minimal resolution of the

surface. Theorem 1.2 provides a first step in this direction.

1.1. Acknowledgments

We thank Mircea Mustaţă for pointing out an error in a previous version

of the paper and the referee for a careful reading of the paper and valuable

comments and corrections.

2. Proofs

We work over an arbitrary field k. For every integer n > 0, the n-th

jet scheme Jn(X) of a scheme X is the scheme representing the functor of

points defined by

Jn(X)(Z) = X(Z ×∆n)

for any scheme Z, where ∆n = Spec k[t]/(tn+1). We denote by

Jn(X)×∆n

ρn

��

γn
// X

Jn(X)

the universal n-jet of X. For generalities about jet schemes, we refer to

[14, 2]. If X is a variety, then there exists a unique irreducible component

of Jn(X) dominating X, and this component has dimension (n+ 1) dimX.

We shall denote it by J ′n(X) and call it the main component of Jn(X).

Given a coherent sheaf F on a scheme X, and a positive integer r, we

denote by Gr(F , r) the Grassmann bundle over X parameterizing locally
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free quotients of F of rank r, where by the term quotient we mean an equiv-

alence class of surjective maps from the same source where two surjections

are identified whenever they have the same kernel. This scheme represents

the functor of points given by

Gr(F , r)(Z) =
{(
Z

p−→ X, p∗F � Q
)
|

Q locally free sheaf on Z of rank r
}

for any scheme Z.

Suppose now that X is a variety, and let F be a coherent sheaf on X

of rank r. The Nash transformation of F is defined to be the irreducible

component of Gr(F , r) dominating X, and is denoted by N(F). The natural

projection Gr(F , r)→ X induces the blow-up map N(F)→ X. The Nash

blow-up N(X)→ X is, by definition, the Nash transformation of the sheaf

of Kähler differentials ΩX .

Proof of Theorem 1.2. — The sheaf F ′n is the restriction, under the

inclusion J ′n(X) ⊂ Jn(X), of the sheaf

Fn := (ρn)∗γ
∗
nF .

By construction, J ′n(N(F)) is an irreducible component of the jet scheme

Jn(Gr(F , r)). Similarly, observing that F ′n is a sheaf of rank (n + 1)r and

keeping in mind that J ′n(X) is an irreducible component of Jn(X), we see

that N(F ′n) is an irreducible component of Gr(Fn, (n+1)r). We claim that

there is a universally injective map

i : Jn(Gr(F , r)) ↪→ Gr(Fn, (n+ 1)r),

defined overX, which agrees with the natural identification of these schemes

over the open set where X is smooth and F is locally free, and restricts to

an open immersion from J ′n(N(X)) to N(J ′n(X)). Note that the existence

of such a map implies the statement of the theorem.

In order to prove this claim, we compare the functors of points of the

schemes Jn(Gr(F , r)) and Gr(Fn, (n+ 1)r). For every scheme Z, we have

Jn(Gr(F , r))(Z) = Gr(F , r)(Z ×∆n)

=
{(
Z ×∆n

α−→ X, α∗F � Q
)
|

Q locally free sheaf on Z ×∆n of rank r
}

and

Gr(Fn, (n+ 1)r)(Z) =
{(
Z

β−→ Jn(X), β∗Fn � R
)
|

R locally free sheaf on Z of rank (n+ 1)r
}
.
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By the description of Jn(X) via the functor of points, every β : Z →
Jn(X) corresponds to a unique α : Z ×∆n → X, and for any such pair of

maps there is a commutative diagram

Z ×∆n

π

��

β×id∆n

//

α

((
Jn(X)×∆n

ρn

��

γn
// X

Z
β

// Jn(X)

where π is the projection onto the first factor. Note that taking push-

forward along π of a sheaf on Z ×∆n simply means that we are restricting

scalars to OZ and forgetting the given OZ×∆n
-module structure of the

sheaf.

By the definition of Fn and base-change, which holds in this setting

because ρn and π are affine, we have

β∗Fn = π∗α
∗F .

Using the identification Jn(X)(Z) = X(Z ×∆n), the above formula yields

the following alternative description of the functor of points:

Gr(Fn, (n+ 1)r)(Z) =
{(
Z ×∆n

α−→ X, π∗α
∗F � R

)
|

R locally free sheaf on Z of rank (n+ 1)r
}
.

For every locally free sheaf Q on Z × ∆n of rank r, the push-forward

π∗Q is a locally free sheaf on Z of rank (n+ 1)r. Taking push-forwards via

π is exact, and any two quotients of α∗F are identified (i.e., they define

the same kernel in α∗F) if and only if their push-forwards are identified

as quotients of π∗α
∗F (i.e., they define the same kernel in π∗α

∗F). This

means that taking push-forwards via π defines a natural injection

Jn(Gr(F , r))(Z) ↪→ Gr(Fn, (n+ 1)r)(Z).

As this holds for every scheme Z, we deduce that there is a naturally defined

universally injective morphism

i : Jn(Gr(F , r)) ↪→ Gr(Fn, (n+ 1)r).

It is immediate to see that i is defined over X and therefore it agrees

with the natural identification of these schemes over the open set where

X is smooth and F is locally free. Furthermore, the restriction of i to

J ′n(N(F)) gives a universally injective map ιn : J ′n(N(F)) → N(F ′n). To

finish the proof, we need to show that ιn is a local isomorphism, that is, it
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induces isomorphisms on all local rings. To this end, we prove the following

property.

Lemma 2.1. — Let (A,m) be a Noetherian local domain over k, and set

U = SpecA and P = SpecA/m. Assume that f0 and g are morphisms as

in the diagram

P
f0

//� _

��

Jn(Gr(F , r))� _

i

��

U
g

//

f

88

Gr(Fn, (n+ 1)r)

such that the square sub-diagram commutes and the image of g is a dense

subset of N(F ′n). Then there exists a unique morphism f (marked by the

dotted arrow in the diagram) making the whole diagram commute.

Proof. — Suppose f0 and g are given. Let π0 : P ×∆n → P and π : U ×
∆n → U denote the respective projections to the first components. By the

descriptions of the functors of points, we can write

f0 =
(
P ×∆n

α0−→ X, α∗0F � Q
)
,

where Q is a locally free A[t]/(tn+1)-module of rank r, and

g =
(
U ×∆n

α−→ X, π∗α
∗F � R

)
where R is a locally free A-module of rank (n+ 1)r. The commutativity of

the square sub-diagram in the statement means that α0 is the restriction of

α and R⊗AA/m = (π0)∗Q. The fact that the image of g is dense in N(F ′n)

implies that α is dominant, and hence π∗α
∗F is a sheaf of rank (n + 1)r.

Since R is a locally free quotient of the same rank of π∗α
∗F , the kernel

K of π∗α
∗F → R is the torsion A-submodule of π∗α

∗F . Every element of∑
i>0 t

iK, viewed as an A-submodule of π∗α
∗F , is torsion, and therefore

we have
∑
i>0 t

iK = K. This shows that K is an A[t]/(tn+1)-submodule

of π∗α
∗F and hence R is an A[t]/(tn+1)-module quotient of π∗α

∗F . This

gives the lift f of g as in the diagram, which is clearly unique and makes

the diagram commute. �

We apply Lemma 2.1 to the local rings of N(F ′n) at the points in the

image of ιn. Using the fact that i is injective on the functors of points, we

deduce that i induces isomorphisms on the local rings.

To see this last implication, let Oq denote the local ring of J ′n(N(F))

at a point q, and let Op denote the local ring of N(F ′n) at p = ιn(q). Let

g : SpecOp → Gr(Fn, (n + 1)r) and h : SpecOq → Jn(Gr(F , r)) be the

natural maps, and let j : SpecOq → SpecOp be the map induced by ιn.
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We have the following diagram:

SpecOq � � h //

j

��

Jn(Gr(F , r))

i

��

SpecOp � �

g
//

s

AA

f

77

Gr(Fn, (n+ 1)r).

Here, the square sub-diagram is commutative, f exists by Lemma 2.1 and

hence satisfies

(2.1) i ◦ f = g,

and the universal property of local rings implies that f factors through h,

so that we have a morphism s, as in the diagram, satisfying

(2.2) h ◦ s = f.

Using the commutativity of the square sub-diagram and Eq. (2.1), we get

i ◦ h = g ◦ j = i ◦ f ◦ j.

Then, using the fact that i is injective at the level of functors of points and

hence is a monomorphism, we deduce that

(2.3) h = f ◦ j.

Now, using Eqs. (2.2) and (2.3), we get

h = f ◦ j = h ◦ s ◦ j,

and since h is a monomorphism, this implies that s ◦ j is the identity of

SpecOq. Using Eqs. (2.2) and (2.3) in a different order, we get

f = h ◦ s = f ◦ j ◦ s.

Since g is a monomorphism, it follows by Eq. (2.1) that f is a monomor-

phism, and this implies that j ◦ s is the identity of SpecOp. This proves

that j is an isomorphism, which completes the proof of the theorem. �

Proof of Theorem 1.1. — By [3, Theorem B], there is an isomorphism

ΩJn(X)
∼= (ρn)∗γ

∗
nΩX ,

and this implies that

N(J ′n(X)) = N
(
(ρn)∗γ

∗
nΩX ⊗OJn(X)

OJ′
n(X)

)
= N

(
(ρ′n)∗(γ

′
n)∗ΩX

)
,

where ρ′n and γ′n are the restrictions of ρn and γn to J ′n(X)×∆. Therefore

Theorem 1.1 reduces to Theorem 1.2 with F = ΩX . �

Corollary 2.2. — For any variety X, the following properties are

equivalent:
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(1) the Nash blow-up N(J ′n(X))→ J ′n(X) is an isomorphism for some

n > 0;

(2) the Nash blow-up N(J ′n(X))→ J ′n(X) is an isomorphism for every

n > 0.

Proof. — By Theorem 1.1, both properties are equivalent to the fact that

the Nash blow-up N(X)→ X is an isomorphism. �

In positive characteristics, there are examples of singular varieties whose

Nash blow-up is an isomorphism (see [9, Example 1]), and Corollary 2.2

implies that this property, whenever it holds, propagates through all the

jet schemes, and conversely.

By contrast, when the ground field is algebraically closed of characteristic

zero the Nash blow-up is an isomorphism if and only if the variety is smooth

(see [9, Theorem 2]). It is elementary to show that the jet schemes of a

smooth variety are smooth, and conversely it was proved in [6] that if X

is a singular variety then all its jet schemes Jn(X) are singular. With the

above assumptions on the ground field, we deduce the following stronger

statement from Corollary 2.2.

Corollary 2.3. — If X is a singular variety defined over an alge-

braically closed field of characteristic zero, then the main component of

J ′n(X) of Jn(X) is singular for every n.

3. Computational aspects

After viewing a projective birational morphism µ : Y → X as the Nash

transformation of a coherent sheaf F on a varietyX, Theorem 1.2 provides a

construction of a relative compactification of the induced map µ′n : J ′n(Y )→
J ′n(X) by taking the Nash transformation of an explicitly described sheaf

F ′n on J ′n(X). Such transformation is a projective birational morphism,

and therefore can also be described as the blow-up of an ideal sheaf an on

J ′n(X). In this section we explain how to compute such ideal.

For simplicity, we assume that X = SpecR is affine. The following dia-

gram provides the algebraic counterpart of the restriction to J ′n(X) of the

universal n-jet:

R′n[t]/(tn+1) R
(γ′

n)]
oo

R′n

(ρ′n)]

OO
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Here R′n is a quotient of Rn, the algebra of Hasse–Schmidt differentials of

order at most n, (ρ′n)] is the natural inclusion map, and (γ′n)] is induced

by the homomorphism

γ]n : R→ Rn[t]/(tn+1), f 7→
n∑
i=0

Di(f) ti,

where (D0, D1, . . . , Dn) is the universal Hasse–Schmidt derivation of order

n. With this notation, we have Jn(X) = SpecRn and J ′n(X) = SpecR′n.

If τ(F) denotes the torsion of F , then the two sheaves F ′n and (F/τ(F))′n
have the same torsion free quotient. We can therefore assume without loss

of generality that F is torsion free. Let F denote the R-module associated

to F . If r is the rank of F , we can then realize F as a submodule of

Rr. Picking a set of generators for F of cardinality s, we obtain a matrix

M ∈ Matr×s(R) such that F = ImM . Notice that, to produce an ideal

whose blow-up gives Y → X, one can take the ideal generated by the r× r
minors of M .

The relative compactification of µ′n : J ′n(Y )→ J ′n(X) constructed in The-

orem 1.2 is given by the Nash transformation of the R′n-module

F ′n := (γ′n)](F ) · (R′n[t]/(tn+1))r,

where the R′n-module structure is defined via (ρ′n)]. A straightforward com-

putation shows that Fn = ImMn where Mn ∈ Mat(n+1)r×(n+1)s(R
′
n) is the

matrix given in block form by

Mn =


D0(M) 0 · · · 0

D1(M) D0(M) · · · 0
...

...
. . .

...

Dn(M) Dn−1(M) · · · D0(M)

 .
Here Di(M) is the matrix obtained from M by applying Di to each entry.

By construction, we have the following property.

Proposition 3.1. — With the above notation, the morphism N(F ′n)→
J ′n(X) is the blow-up of the ideal an ⊂ R′n generated by the (n+1)r× (n+

1)r minors of Mn.

The next example shows the computation of the first few ideals an in a

simple case.

Example 3.2. — Consider X = A2 = Spec k[x, y], and let Y → X be

the blow-up of the maximal ideal (x, y). Taking F to be the maximal ideal,

ANNALES DE L’INSTITUT FOURIER
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we have

M0 =
[
x y

]
,

M1 =

[
x y 0 0

x1 y1 x y

]
,

M2 =

 x y 0 0 0 0

x1 y1 x y 0 0

x2 y2 x1 y1 x y

 ,

M3 =


x y 0 0 0 0 0 0

x1 y1 x y 0 0 0 0

x2 y2 x1 y1 x y 0 0

x3 y3 x2 y2 x1 y1 x y

 ,
where xi = Di(x) and yi = Di(y). Letting an be the ideal generated by the

(n+ 1)× (n+ 1) minors of Mn, we have

a0 = (x, y),

a1 = a2
0 + (xy1 − yx1),

a2 = a0a1 + (y2x
2 − yx2x− x1y1x+ yx2

1, x2y
2 − x1y1y − xy2y + xy2

1),

a3 = a0a2 + a2
1+

+ (y3x
3 − yx3x

2 − x2y1x
2 − x1y2x

2 + 2yx1x2x+ x2
1y1x− yx3

1,

y1y2x
2 − yy3x

2 − x1y
2
1x+ y2x3x+ y2x1x2 + yx2

1y1,

x2y1y
2 + x1y2y

2 + xy3y
2 − x1y

2
1y − 2xy1y2y + xy3

1 − y3x3,

y2
2x

2 − y1y3x
2 + x2y

2
1x+ yx3y1x− 2yx2y2x− x1y1y2x+

+ yx1y3x+ y2x2
2 − y2x1x3 − yx1x2y1 + yx2

1y2).

Notice that while the matrices Mn remain simple and have an easily rec-

ognizable structure, the corresponding ideals an grow in complexity quite

fast.
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