
 

 

Abstract 

Cities are the hotspots of global human–environment interactions, and their sustainable 

development requires proactive strategies to mitigate and adapt to emergent environmental issues. 

Nevertheless, most of the existing studies and strategies are based on specific (and often singular) 

environmental processes, and their efficacy is largely undermined by their heavy dependence on 

locality. Here we present a novel modeling framework for urban studies to capture spatial 

connectivity and teleconnection among cities in response to different environmental stressors. As 

an illustration, a generic message-passing-based algorithm is used to identify spatial structures 

among U.S. cities. Structures are analyzed under two types of environmental stressors, i.e., 

extreme heat and air pollution, based on remotely sensed land surface temperature data during 

short-term heat wave events and a yearlong remotely sensed aerosol optical depth dataset, 

respectively. Results show that U.S. cities are clustered as locally and regionally connected 

groups, while multiscale structures manifest via environmental similarity and atmospheric 

transport under both event-scale meteorological extremes and long-term environmental stressors. 

The physics-driven urban agglomeration reveals that cities are multilevel interconnected 

complex systems rather than isolated entities. The proposed framework provides a new pathway 

to shift goal- or process-based urban studies to system-based global ones. 
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1. Introduction 

As engines of innovations and economic growth, cities are continuously growing globally 

and accommodating more than half the world’s population (UN-Habitat, 2016). The 

unprecedented population increase results in substantial land-use and land-cover changes in 

urban systems (Grimm et al., 2008; Seto, Güneralp, et al., 2012). Meanwhile, the exchanges of 

energy and matters (e.g. carbon dioxide) (Song et al., 2017; Li & Wang, 2020) across urban 

system boundaries, as well as the concomitant changes in land–atmosphere interactions (Song & 

Wang, 2015, 2016), impose significant impacts and challenges on ecosystems at multiple scales 

(Das & Das, 2019; Grimm et al., 2008; C. Wang & Wang, 2017). As open systems, cities 

undergo constant transformations of infrastructure and socioeconomic structure, with equilibrium 

rarely attained (Ramaswami et al., 2016; UN-Habitat, 2016). Such transformations are driven by 

intrinsic stressors such as societal, political, and economic changes, external forcings like climate 

change (Romero-Lankao et al., 2018; UN-Habitat, 2016), and the interplay of both types.  

As a consequence of global changes, catastrophic climate extremes like Hurricane 

Katrina have put the existing urban infrastructure under severe tests (Jaramillo & Nazemi, 2018; 

Kates et al., 2006; P. Wang et al., 2020). Furthermore, the frequency and intensity of climate 

extremes are projected to continue increasing (Diffenbaugh & Scherer, 2011). Improving disaster 

preparedness and management requires not only the already affected cities but also cities alike to 

synergistically coordinate multiple drivers of urban transformations in systematic reconstruction, 

redesign, and future planning (Yang et al., 2018). More broadly, future urban sustainable 

development also calls for proactive strategies to reduce vulnerability when facing various 

emerging challenges beyond climate extremes (Romero-Lankao et al., 2018; UN-Habitat, 2016). 



 

 

More specifically, urban meteorological and climatological studies have been committed 

to proposing and evaluating possible mitigation and adaptation strategies in response to the 

deteriorated urban environment. For example, urban green infrastructure has been widely 

adopted to combat elevated thermal stress and/or degraded air quality (Bowler et al., 2010; Yang 

& Wang, 2017; Z.-H. Wang et al., 2016; C. Wang, Li, et al., 2018). However, their efficacy 

manifests strong variability among cities as induced (mainly) by differences in geographical 

conditions, necessitating judicious adoption of tailored strategies in different urban areas (Akbari 

et al., 2001; C. Wang, Wang, Wang, et al., 2019). On the other hand, urban systems are 

statistically self-similar in their morphology and hierarchically organized (Batty, 2008; R. Xu et 

al., 2020); the dynamics of urban growth are agglomeration-driven, and in many cases, deemed 

as governed by certain universal scaling laws (Bettencourt et al., 2007). Furthermore, the 

similarity in urban components results in their analogous responses to both short-term and long-

term environmental stressors, especially if their geographical or climatic conditions are alike 

(Chan & Yao, 2008; Peng et al., 2012; Zhou et al., 2013). These similarities highlight the 

potential of viewing cities as highly connected or teleconnected systems, organized clusters, or 

even complex networks at multiple scales (Seto, Reenberg, et al., 2012).  

Clustering methods have been used to examine various patterns within and among cities. 

For example, Li et al. (2018) identified archetypes representative of the heating and cooling 

energy demand in Chongqing, China using k-means and k-medoids techniques. Similar 

clustering methods have also been used to divide the study area based on land surface 

characteristics such as land-use change (Ke et al., 2016). However, their application in urban 

environmental studies (especially for meteorological and climatological stressors using remotely 

sensed data products) is relatively rare (D. Xu et al., 2020). The clustering-based spatial structure 



 

 

among cities under global environmental changes can provide useful information for sustainable 

urban planning and urban climate studies, whereas such analysis is heretofore absent.  

To bridge this gap, we propose a new modeling framework for future urban studies to 

examine the spatial structures among different cities under environmental stressors. For 

illustration, we utilize a robust message-passing-based clustering method, i.e., affinity 

propagation (Frey & Dueck, 2007), to identify the clustering patterns of cities in the contiguous 

United States (CONUS). Remotely sensed land surface temperature and aerosol optical depth are 

selected as two representative environmental stressors that are closely related to excessive heat 

stress and air pollution in cities. Data processing procedure and clustering analysis are detailed in 

Section 2 (and Appendix A). In Section 3 we describe different spatial structures of urban 

clustering under event-scale meteorological extreme conditions (a heat wave) and yearlong 

seasonal air quality changes using the proposed framework. We further discuss the implications 

and applications of the framework in Section 4.  

 

2. Methods 

We describe the selection of extreme heat wave events based on remotely sensed land 

surface temperature in Section 2.1, and the details of data sources and data processing in Section 

2.2. We then introduce the proposed urban framework with a message-passing-based clustering 

method in Section 2.3. Section 2.4 presents similarity functions and sensitivity analysis. Note 

that the metrics used in clustering evaluation are introduced in Appendix A.  

  

  



 

 

2.1 Definition of extreme heat wave events 

To determine extreme heat wave events, we retrieved remotely sensed long-term daytime 

land surface temperature (LST) data (2000–2017) from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) version 6 MOD11B2 product. MOD11B2 is sensed by the MODIS 

sensor aboard the National Aeronautics and Space Administration (NASA)’s Terra satellite. This 

dataset provides 8-day composites of LST at a spatial resolution of 6 km (Wan et al., 2015b). 

The mean 8-day daytime LST values over the CONUS were calculated during the warm season 

(May 1–September 30) (Anderson & Bell, 2011). We define continental-scale extreme heat 

waves using a 99th percentile mean LST threshold (Anderson & Bell, 2011; Smith et al., 2013). 

Three extreme heat wave events are then identified (July 12–19 in 2006, June 25–July 2 in 2012, 

and July 3–10 in 2012), with standard deviations ranging from 7.86 to 8.87 °C across the 

CONUS. The most extreme heat wave event, i.e., July 12–19 in 2006, and the corresponding 

urban clustering pattern are detailed in Section 3.2. We also discuss how the spatial pattern of 

temperature anomalies influences the urban clustering in Section 4 using the other two extreme 

heat waves (June 25–July 2 and July 3–10, both in 2012).  

 

2.2 Urban landscape and environmental data 

The urban areas are defined as areas with densely developed land and 50000 or more 

population according to U.S. Census Bureau’s Topologically Integrated Geographic Encoding 

and Referencing (TIGER) database in 2017 (https://www.census.gov/programs-

surveys/geography.html). We retrieved all 481 urban areas (as boundaries) over the CONUS 

from the TIGER database.  

The daytime LST data during the selected heat waves were retrieved from the MODIS 

version 6 MOD11A2 product. MOD11A2 8-day LST composite product is provided by the same 



 

 

MODIS sensor as MOD11B2 product but with a spatial resolution of 1 km (Wan et al., 2015a). 

Low quality data were filtered using quality control flags to ensure that the average LST and 

emissivity errors are less than 2 K and 0.02, respectively (Wan, 2014).  

The remotely sensed aerosol optical depth (AOD) dataset in 2017 was retrieved from the 

version 6 MCD19A2 product (Lyapustin & Wang, 2018) as a measure of seasonal air quality 

changes. MCD19A2 product is processed using the Multi-Angle Implementation of Atmospheric 

Correction (MAIAC) algorithm, with improved cloud detection, aerosol retrievals, and 

atmospheric correction (Lyapustin et al., 2012; Lyapustin, Martonchik, et al., 2011; Lyapustin, 

Wang, et al., 2011). This daily product is generated jointly based on two MODIS sensors (aboard 

Terra and Aqua) at a spatial resolution of 1 km (Lyapustin & Wang, 2018). We used blue band 

B3 (0.47 μm) AOD, because the quality of band 0.55 μm AOD is slightly worse than this 

original retrieval (Lyapustin & Wang, 2018). We retained AOD values with clear and possibly 

cloudy conditions based on quality control flags. AOD retrievals adjacent to clouds or snow, or 

with previously detected snow were removed. Pixels affected by sun glint, water sediments, or 

located within 2 km from the coastline were also excluded from the analysis to reduce 

uncertainties in the dataset. The monthly mean AOD values were then computed by averaging all 

available daily retrievals in each month. 

In this study, the mean environmental indicator for an urban area (or a city) is either 8-

day mean LST or monthly mean AOD averaged over all available pixels. Note that during the 

selected study period, some urban areas in the northern part of U.S. had no AOD data with good 

quality owing to extensive snow (e.g., cities in Idaho and Montana) or rainfall (e.g., Seattle in 

Washington), and therefore are excluded from the analysis related to AOD. 

  



 

 

2.3 Affinity propagation for urban clustering analysis 

Affinity propagation is a clustering algorithm based upon the message transmission along 

edges (or links) among all nodes within a network (Frey & Dueck, 2007). For the urban 

environment, individual cities or metropolitan areas can be viewed as nodes at regional and 

continental scales (as in this study), while a collection of point of interest data could become 

nodes at neighborhood and city scales. This method can properly determine the function of each 

node, either being an exemplar for a group of nodes, or being a member of a group via 

recursions. The suitability of one node j being the exemplar for another node i is measured as the 

similarity, e.g., for two points i and j 

2

( , ) i js i j = − −x x ,         (1) 

where xi denotes the coordinates of node i. Equation 1 uses the negative squared Euclidean 

distance to measure the similarity, while this similarity function can be readily relaxed to a more 

general form as 

( , ) ( , )s i j D i j = − ,         (2) 

where D(i, j) is the generalized distance (dissimilarity) between two nodes, and the parameter κ 

depends on the objective of the algorithm. For example, the objective is minimizing the squared 

distance when κ = 2. Symmetry (undirected graph) is presumed in this study, i.e., s(i, j) = s(j, i), 

because we are not prescribing any particular or directed connections. Affinity propagation is 

superior to other traditional clustering methods such as k-means clustering or k-centers 

clustering, as it is less computationally costly with lower numerical errors in various 

applications, and there is no need to prescribe exemplars or number of clusters (Frey & Dueck, 

2007). However, the clustering is affected by the preference s(j, j), a predefined variable 

describing the suitability of the node j being an exemplar. Further assuming that all nodes have 



 

 

an equal chance to be exemplars necessitates the selection of a shared preference prior to the first 

iteration. Two common values, the minimum (A*) and median (B*) values of all similarities, 

have been suggested based on the input similarity matrix (Frey & Dueck, 2007). A larger shared 

preference signifies a higher probability the node emerges as an exemplar, and therefore leads to 

more clusters. 

Affinity propagation recursively determines the function of a node via two measures in 

the two-way message passing process. For nodes i and j, the responsibility matrix r(i, j) (or r) 

shows the cumulative suitability for node j to be the exemplar of node i among all possible 

exemplars. On the other hand, the availability matrix a(i, j) (or a) represents the cumulative 

evidence for node i to be a member of exemplar j when considering the preference of other 

nodes. Both matrices are updated during iterations, while a(i, j) is initialized as a zero matrix 

prior to the first iteration. The responsibility matrix is updated as 

 ( , ) ( , ) max ( , ) ( , )
j j

r i j s i j a i j s i j


 = − + .      (3) 

Once the responsibility matrix has been updated, the availability matrix will retrieve information 

from it, 

 
,

( , ) min 0, ( , ) max 0, ( , )
i i i j

a i j r j j r i j
  

 
= + 

 
 ,     (4) 

with the self-availability a(j, j) being 

 ( , ) max 0, ( , )
i j

a j j r i j


= .        (5) 

A damping factor λ (0 ≤ λ < 1) is applied to messages to avoid potential oscillations induced by 

degenerate situations (Frey & Dueck, 2007), and the final responsibility r and availability a for 

current iteration are calculated as 



 

 

1(1 ) itr itr  −= − +r r r ,         (6) 

1(1 ) itr itr  −= − +a a a ,         (7) 

where responsibility or availability matrices on the right-hand side are derived using Eqs. 3–5, 

and subscript itr and itr–1 denote current and previous iterations, respectively. At the end of each 

iteration, exemplars are decided as those maximizing the combined availabilities and 

responsibilities. These two matrices are updated recursively via message passing and will remain 

intact after convergence. We use 5000 iterations of affinity propagation in the sensitivity 

analysis, and 500 iterations in the following evaluations to ensure the convergence of numerical 

results. The sensitivity analysis shows that clustering results become stable when the damping 

factor λ is greater than 0.5 (see e.g., Section 3.2). Here an intermediate damping factor λ = 0.7 is 

used in all spatial maps. 

In addition, we use five widely-evaluated metrics to assess the cohesion and dispersion of 

the clustering results, and to identify the optimal choices of clustering. They are transformed 

Ball–Hall index (α), Caliński–Harabasz index (β), Davies–Bouldin index (γ), Dunn index (δ), 

and global silhouette index (ε). Details of these five metrics are in Appendix A.  

  

2.4 Similarity functions 

The similarity function defines the connectivity and affinity between each pair of nodes. 

In urban studies, the similarity can be derived using not only socioeconomic indicators 

(Bettencourt et al., 2007) such as infrastructure, energy consumption, and human behavior 

patterns, but also environmental/climatic indicators, for example, temperature and air quality 

herein. The negative similarity function, or the distance function (see Eq. 2), for two nodes with 



 

 

Nind indicators/variables can be expressed using generalized Minkowski distance (Ichino & 

Yaguchi, 1994) when κ = 1, 

ind

1/

, ,

1

( , ) ( , )
N

i n j n

n n

x x
D i j s i j

w



=

  −
  = − =

  
  

 , ζ ≥ 1,     (8) 

where the parameter wn can vary with variables n. This parameter can be a common value for all 

variables if their contributions to the distance are similar (e.g., wn ≡ 1), and Eq. 8 will reduce to 

Manhattan distance (or Euclidean distance) with the order ζ = 1 (or 2). For variables that have 

varied contributions, different wn values should be adopted. Alternatively, one may use a discrete 

weight function, as a substitute for wn, to obtain a weighted average of ||xi,n – xj,n||. In addition, 

the ordinary Euclidean distance of variable n, i.e., ||xi,n – xj,n||, should be properly transformed 

(e.g., scaled) when variables are of different magnitudes.  

In this study, we assume the contributions of geographical distance dgeo and 

environmental distance denv (dissimilarity) are similar that have identical wn values (wn ≡ 1). 

Therefore, for the selected two climatic indicators (AOD and LST), Eq. 8 is simplified as 

( )
1/

2 1/

, , ,1 ,1 ,2 ,2

1

( , ) i n j n i j i j

n

D i j x x x x x x


  

=

 
= − = − + − 
 
  

( ) ( )
1/

, ,

geo env

i j i jd d
  = +

  
, ζ ≥ 1,       (9) 

where the geographical distance dgeo is based on real latitude and longitude information. For a 

pair of cities, the geographical distance is measured as the distance between their centroids. The 

environmental distance denv is evaluated as the difference of the selected environmental/climatic 

indicator (AOD or LST) during the same period. Both distances are then rescaled to the same 

scale (0–1) using their extrema as 



 

 

( ) ( )
1/

, ,

geo, scaled env, scaled( , ) i j i jD i j d d
  = +

  
, ζ ≥ 1,     (10) 

with the scaled distance 

( ) ( ) ( ), , , , , , , ,

scaled min max min min range/ /i j i j i j i j i j i j i j i jd d d d d d d d= − − = − ,    (11) 

where dmax, dmin, and drange are maximum, minimum, and range of d values, respectively. For 

LST during heat waves, the environmental distance is simply the absolute difference of mean 

LST values in two cities, i.e., ,

LST LST LSTi j

i jd = − . For monthly mean AOD data within a year, 

the environmental distance is evaluated between two data sequences 

( )

12

, 1
AOD 12

1

AOD AODm m m m

i j i j
i j m

m m

i j

m

d

 

 

=

=

 −
 

=



,       (12) 

where ξ = 1 when monthly mean AOD ≥ 0, otherwise ξ = 0 (missing data). The mean AOD in 

month m over urban area i is expressed as AODm

i
. The results of AOD clustering shown in this 

study are based on cities with 12 valid monthly mean AOD values, and Eq. 12 reduces to 

12

, 1
AOD

AOD AOD

12

m m

i j
i j md =

−

=


.        (13) 

We further evaluate the sensitivity of clustering results to ζ value in Eq. 8 using the median of 

input similarities as the shared preference. The statistics of the clustering results are shown in 

Fig. 1 and Table 1. Results suggest that changing ζ value can slightly alter the results, while the 

general pattern remains nearly intact. Therefore, ζ = 1 is used in the following sections.  

 



 

 

 

Fig. 1. Sensitivity of clustering results to distance function parameter ζ based on (a) geographical 

distance and 8-day composite daytime LST during a heat wave (July 12–19, 2006) and (b) 

geographical distance and monthly mean AOD in 2017. The shared preference is the median of 

input similarities. The upper and lower whiskers denote 75th percentile + 1.5 interquartile range 

and 25th percentile – 1.5 interquartile range, respectively. The upper and lower boundaries of 

boxes denote 75th and 25th percentiles, respectively. The black line within each box denotes the 

median value. Note that nk is the number of nodes in cluster k. 

(Figure 1 is a 1.5-column fitting image) 

 

Table 1. Summary of clustering characteristics in the sensitivity analysis shown in Fig. 1 

ζ 
LST AOD 

nk
max nk

min nk
ave K nk

max nk
min nk

ave K 

1 31 6 15.0 32 24 1 12.1 32 

2 28 6 14.6 33 30 1 12.1 32 

3 26 6 13.7 35 29 1 11.7 33 

4 27 6 14.6 33 27 1 11.4 34 

5 27 6 14.6 33 27 1 11.4 34 

6 27 6 14.6 33 28 1 11.4 34 



 

 

Note: nk
max is the maximum number of members within a cluster, nk

min is the minimum number 

of members within a cluster, nk
ave is the average number of members within a cluster, and K is 

the number of clusters. 

 

3. Results 

3.1 Clustering patterns of U.S. cities based on geographical distance 

We first perform the affinity propagation (Frey & Dueck, 2007) over 481 CONUS cities 

using geographical distance as a similarity measure. The geographical locations of these cities 

are shown in Fig. 2a. In affinity propagation, we use the median value of negative geographical 

distances as the shared preference with the damping factor of 0.7 (see Section 2.3). The urban 

clustering pattern based on pure geographical distance is shown in Fig. 2b. 



 

 

 

Fig. 2. Geographical distribution of (a) 481 CONUS cities with population greater than 50000 

and their sizes, and (b) 32 urban clusters using affinity propagation based on geographical 

distance. Cities with black edges are centers/exemplars of clusters. In affinity propagation, the 

shared preference s(j, j) is the median value of the input similarity matrix, and the damping factor 

λ is 0.7. Clusters C1–C8 are examples: C1 and C2 are centered at regional population centers, 



 

 

C3–C6 are clusters of multiple metropolitans, while C7 and C8 are clusters of isolated remote 

cities. 

(Figure 2 is a 2-column fitting image) 

 

As shown in Fig. 2b, 481 CONUS cities are grouped into 32 distinct clusters, each 

centered on a city that has relatively similar geographical distances from others within the same 

group. It is noteworthy that most cluster centers are already existing metropolitans including 

their peripheral cities like Phoenix, Minneapolis–St. Paul, Atlanta, and Houston, or regional 

population hubs such as Salt Lake City and Albuquerque (see clusters C1 and C2 in Fig. 2b). In a 

dense belt of built-up areas, multiple metropolitans can be merged into one cluster concentrated 

around the geographical center, like in Southern and Northern California, Florida, and Northeast 

Corridor (clusters C3–C6 in Fig. 2b). Isolated smaller cities distant from megacities are grouped 

into separate clusters such as those in Texas Great Plains and Deep South areas (clusters C7 and 

C8 in Fig. 2b). The distribution of these clusters and their structures are consistent with the 

existing or planning megaregions (Regional Plan Association, 2008), suggesting that the 

clustering of urban areas is not arbitrary, but reflecting the complex dynamics of urban evolution 

at multiple scales ranging from top-down centralization to bottom-up self-organization (Allen, 

1997; Batty, 2008). In practice, the aggregation of cities has far-reaching impact on the 

development of regional transportation networks, power grids, and geographical, economic, and 

political hubs (Albert et al., 2004; Regional Plan Association, 2008; Seto, Reenberg, et al., 2012). 

Such pattern also provides new insight into system-based sustainable planning of complex urban 

systems to combat emergent urban environmental challenges, as shown hereafter. 

  



 

 

3.2 Urban clustering in a short-term extreme heat wave event 

Here we examine the pattern of urban clustering during a continental-scale extreme heat 

wave in 2006. This heat wave was the most extreme one in the analyzed 18 years (2000–2017) 

based on remotely sensed daytime LST data. The satellite-based 8-day mean daytime LST data 

are used to derive differences in thermal responses among cities. We combined both the LST 

difference and geographical distance to determine the similarity (see Section 2.4). Frey & Dueck 

(2007) suggested in their comparisons that when compared to other clustering methods, the 

affinity propagation algorithm is more robust and only requires two prescribed parameters (see 

Section 2.3): one is the shared preference s(j, j) for node or city j, initiated with an equal chance 

for each city to be a cluster center; and the other is the damping factor λ, introduced to reduce 

possible numerical oscillations (Frey & Dueck, 2007). We evaluate the sensitivity of five metrics 

as functions of cluster number for optimization; results are shown in Fig. 3a–c. The shaded areas 

in Fig. 3 denote the range between the recommended s(j, j) values (minimum and median of the 

input similarity matrix, i.e., A* and B*, respectively) (Frey & Dueck, 2007).  

A damping factor ≥ 0.5 has only marginal impact on the clustering result, as shown in 

Fig. 3a. On the other hand, the number of clusters identified by the algorithm increases with the 

value of the shared preference. As shown in Fig. 3c, the optimal cluster numbers derived by 

different metrics vary, as the optimal solutions vary with the evaluation criteria, but are not too 

deviated from the recommended s(j, j) values (A* and B*). For illustration, an intermediate 

optimal solution suggested by Davies–Bouldin index γ (Davies & Bouldin, 1979) is selected 

here, partitioning 481 cities into 26 clusters. Figure 4 shows the urban clustering pattern during 

the selected heat wave event based on metric γ. 



 

 

 

Fig. 3. Sensitivity of cluster number (K) to input parameters, and evaluation of clustering results 

with different metrics for (a)–(c) geographical distance and 8-day composite daytime LST during 

a heat wave (July 12–19, 2006) and (d)–(f) geographical distance and monthly mean AOD in 

2017. (a and d) Sensitivity of cluster number K to damping factor λ with changing shared 

preference s(j, j). Error bars represent standard deviations (1 SD) of cluster numbers with 

different damping factors (λ ≥ 0.5). (b and e) Sensitivity of cluster number to shared preference 

s(j, j). Black arrows A* and B* denote the minimum and median values of the input similarity 

matrix, respectively. (c and f) Evaluation of clustering results using five metrics and the 

minimum and median values of the input similarity matrix. Arrows in blue show the 

corresponding optimal cluster numbers with five metrics, i.e. transformed Ball–Hall index (α), 



 

 

Caliński– Harabasz index (β), Davies–Bouldin index (γ), Dunn index (δ), and global silhouette 

index (ε). Arrows in black show the corresponding optimal cluster numbers with the minimum 

(A*) and median (B*) values of the input similarity matrix. The damping factor λ used in (b), (c), 

(e), and (f) is 0.7, and the numbers of urban areas are 481 and 387 for (a)–(c) and (d)–(f), 

respectively.  

(Figure 3 is a 1.5-column fitting image) 

 

Cities within the same cluster share similar 8-day mean daytime LST values in a 

geographical vicinity (see Eq. 10). Nevertheless, the clustering during heat wave, as shown in 

Fig. 4, is distinct from that based on geographical distance only (cf. Fig. 2b). As the temperature-

based affinity weighs in, urban clusters become more intricate in structure. Most clusters in the 

West and Midwest U.S. (the Great Lakes) are interlaced, some spanning across multiple states 

(Fig. 4). The mixture of local connectivity and teleconnection (possibly via regional atmospheric 

gateways and mediators, see e.g., Runge et al., 2015) among cities is mainly a result of the 

similarity in their ecosystems and dominant climate types (Peng et al., 2012; Zhou et al., 2013). 

This intertwined clustering structure is in general consistent with the mosaic distributions of 

climate zones (Peel et al., 2007), especially in the Western U.S. It is noteworthy that cities along 

the coast of the Pacific Ocean in California are partitioned into five clusters, although most of 

them have the same climate type (Csb; temperate, dry and warm summer) as defined in Köppen-

Geiger climate classification (Peel et al., 2007). Such disparity apparently suggests the 

inadequacy of coarse-scale climate classifications in capturing the pattern of urban organization, 

especially under climate extremes. 



 

 

 

Fig. 4. Urban clustering based on geographical distance and 8-day composite daytime LST 

during a heat wave in July 12–19, 2006. The shared preference s(j, j)LST is –0.760, and the 

damping factor λ is 0.7, yielding 26 clusters. Cities with black edges are centers/exemplars of 

clusters. 

(Figure 4 is a 2-column fitting image) 

 

3.3 Urban clustering under yearlong seasonal air quality changes 

We then investigate the urban clustering pattern using a yearlong AOD dataset in 2017. 

The satellite-based 0.47 μm daily AOD data are used to derive monthly mean AOD series for 

each city. Here AOD is treated as an indicator of air quality or air pollution level (Lin et al., 

2010; C. Wang et al., 2017). The similarity matrix is based on both the geographical distance and 

the difference between AOD time series, as detailed in Section 2.4. Some cities in the northern 

part of U.S. are not included owing to missing data in months with heavy cloud or snow cover 

that undermines the quality of satellite imagery. In general, the results of sensitivity analysis and 



 

 

multi-metric evaluation for AOD are similar to those for LST (Fig. 3d–f, cf. Fig. 3a–c). Note that 

the optimal values suggested by these five metrics are slightly more dispersed as compared to 

those in LST clustering (Fig. 3c and f). Similarly, we select an intermediate optimal solution, 

suggested by Dunn index δ (Dunn, 1974), for subsequent discussion, with 387 CONUS cities 

partitioned into 34 clusters. The urban clustering pattern is shown in Fig. 5. 

 

Fig. 5. Urban clustering based on geographical distance and monthly mean AOD in 2017. The 

shared preference s(j, j)AOD is –0.525, and the damping factor λ is 0.7, yielding 34 clusters. Cities 

with black edges are centers/exemplars of clusters. 

(Figure 5 is a 2-column fitting image) 

 

The clustering pattern for monthly mean AOD data (Fig. 5) is more isolated when 

compared to that for LST data (Fig. 4). Cities within the same cluster are close to each other, 

subject to similar synoptic systems and constrained by regional topography (Chan & Yao, 2008), 

resulting in enhanced affinity in AOD responses. In addition, extensive anthropogenic emissions 



 

 

of air pollutants strongly contribute to regional air pollution through atmospheric transport and 

dispersion pathways (Chan & Yao, 2008; Zhang et al., 2014), leading to changes in remotely 

sensed AOD (Voulgarakis et al., 2015; You et al., 2015). The connectivity and clustering among 

cities are therefore reinforced by these synergistic interactions. Although the emission source and 

pollution dynamics cannot be directly determined using the MODIS AOD product per se, the 

clustering pattern shown in Fig. 5 are generally in line with existing observations and model 

simulations. For example, cities located within San Joaquin Valley in California are grouped into 

one cluster, consistent with the structural patterns found in observations and WRF/Chem model 

simulations of pollutant concentrations emitted from various sources (Zhang et al., 2014). Urban 

areas in the Sonoran Desert such as Phoenix metropolitan are rather isolated from those in the 

northern part of Arizona, owing to the difference in pollution sources (e.g., dust emissions) and 

topography (Tao et al., 2013). 

 

4. Discussion 

We have shown that the urban clustering of U.S. cities, in the face of degraded thermal 

and air quality, is in general modulated by the synergistic interplay of geographical conditions 

and land–atmosphere interactions across multiple scales, ranging from atmospheric boundary-

layer processes to synoptic transport. At finer such as regional scales, the framework can be 

readily adjusted by restraining maximum link distances to inspect the local structure of 

connectivity. Here we examine the impact of distance threshold on urban clustering during the 

extreme heat wave episode (July 12–19 in 2006, same as Section 3.2). As shown in Fig. 6, 

limiting the maximum distance within each cluster leads to the division of existing clusters and 

the emergence of smaller clusters. For instance, in response to the maximum distance threshold 



 

 

changing from 500 km to 300 km, the number of urban clusters in the Northeast U.S. increases 

from three to six (Fig. 6b–d, cf. Fig. 6a). Meanwhile, the division of the originally aggregated 

clusters makes individual megapolitans (e.g., Greater Boston) emerge as new centers (Fig. 6d). 

Similarly, the interstate California–Arizona connectivity is disentangled by setting the maximum 

distance threshold to e.g., 500 km (Fig. 6m–p). Using spatial distance as a controlling parameter, 

the emergence of newly clustered urban areas within the regional sub-systems reveals the scaling 

law or fractal nature of urban clustering identified in this study (see also Fig. 6e–l). It should be 

noted that Fig. 6 only qualitatively exemplifies how the maximum distance threshold can change 

the urban clustering pattern. A realistic determination of accurate threshold, on the other hand, 

depends on the physical scale of the underlying dynamics of agglomeration. For example, 

evaluating the impact of large weather systems (e.g., tropical cyclones) on clustering requires a 

typical threshold scale around 102–103 km, whereas a much smaller threshold is physical for the 

airborne pollutants generated in e.g., a nuclear accident. 

Similarly, various local optima resulting from metrics analysis (Fig. 3c and f) show 

significant multilevel connectivity of urban environmental systems. The examples of clustering 

patterns determined based on different metrics are shown in Figs. B.1 and B.2, Appendix B. 

Compared to the selected intermediate optimal solutions (Figs. 4 and 5), smaller numbers of 

clusters render larger affinity groups with more cities, while the opposite holds for greater 

numbers of clusters. Corresponding to the emergence of scaling at multiple scales, there also 

exist multiple solutions of affinity grouping that can be ordered hierarchically (Batty, 2008). This 

is particularly so in the case of urban clustering under the yearlong seasonal air quality changes, 

as indicated by the dispersed distribution of optimal solutions in the s(j, j) space (Fig. 3f). 

Mesoscale atmospheric transport promotes the synchronization of air pollution in cities far apart, 



 

 

for example, in the Great Lakes area as induced by lake breezes (Fig. B.2a, Appendix B). Urban 

connections at relatively limited scales, however, tend to be more localized and isolated; some 

clusters have only 1–2 cities due to their geographical characteristics, such as Salt Lake City and 

Casper (Fig. B.2b, Appendix B). 

 

Fig. 6. Regional impact of distance threshold on clustering during a heat wave in July 12–19, 

2006, showing the evolution of clusters in (a)–(d) Northeast U.S., (e)–(h) Great Lakes–Great 

Plains, (i)–(l) Southwest U.S., and (m)–(p) California–Arizona. The four columns from left to 

right show results with distance threshold values of infinity (no distance threshold), 500 km, 400 

km, and 300 km, respectively. Cities with black edges are centers/exemplars of clusters. 



 

 

(Figure 6 is a 2-column fitting image) 

 

On the other hand, the clustering can be affected by the differences in characteristics even 

for the same environmental stressor. To illustrate this, we select two heat wave events during 

June 25–July 2 and July 3–10, both in 2012, in addition to the one analyzed in Section 3.2. The 

daytime LST anomalies during the three heat waves, when compared to the normal summer 

daytime LST, are shown in Fig. 7. Note that Fig. 7 uses MOD11B2 dataset, and the “normal 

summer” is the average condition of 18 warm seasons (May 1–September 30 in 2000–2017, as 

mentioned in Section 2.1). Figure 8 shows the urban clustering patterns in the two heat waves in 

2012; solutions with 26 clusters are shown to ensure consistency (cf. Fig. 4).  

The locations of LST anomalies were slightly different in three heat waves, showing the 

sub-seasonal atmospheric variability (Lopez et al., 2018; Teng et al., 2013). During the heat 

wave in 2006, the LST anomalies well above 10 °C were centered over South Dakota, Wyoming, 

Nebraska, Kansas, and Oklahoma (Fig. 7a). In the heat wave during June 25–July 2, 2012, the 

largest positive LST anomalies were distributed over states further south (Fig. 7b). In contrast, 

the heat wave during July 3–10 in 2012 had multiple centers of positive LST anomalies (Fig. 7c). 

The difference in geographical locations of anomalies causes discrepancies in the spatial extent 

of clusters and even spatial structures over these states. For example, the cluster centered in 

Colorado during the heat wave in June 25–July 2, 2012 has fewer cities than in the other two 

heat waves (see clusters C9 and C15 in Fig. 8). Likewise, the large area of negative LST 

anomalies (lower than –5 °C) in Washington leads to a more densely distributed cluster (cluster 

C10 in Fig. 8a, cf. cluster C16 in Fig. 8b). Nevertheless, the similarity in LST distribution in 

three heat wave events generates similar structures for some urban clusters. The relatively small 



 

 

LST anomalies (less than ±2.5 or ±5 °C) contribute to the persistence of the interlaced clusters in 

the coastal areas in California (Figs. 4 and 8). The positive LST anomalies in the two heat waves 

in 2012 also share similar geographical distribution in the Northeast U.S., Kentucky, and 

Tennessee, leading to nearly identical clustering patterns in these regions (clusters C11–14 and 

17–20 in Fig. 8).  

 

Fig. 7. Daytime LST anomalies during heat waves in (a) July 12–19, 2006, (b) June 25–July 2, 

2012, and (c) July 3–10, 2012, and (d) normal summer (May 1–September 30) daytime LST in 

2000–2017. Note that the data source is MOD11B2 product.  

(Figure 7 is a 2-column fitting image) 

 



 

 

 

Fig. 8. Urban clustering based on geographical distance and 8-day composite daytime LST 

during heat waves in (a) June 25–July 2, 2012 and (b) July 3–10, 2012. The values of the shared 

preference s(j, j)LST are –0.700 and –0.775 for (a) and (b), respectively. The damping factor λ is 

0.7, yielding 26 clusters in both cases. Clusters C9–20 are examples. Cities with black edges are 

centers/exemplars of clusters. 



 

 

(Figure 8 is a 2-column fitting image) 

 

The urban clustering patterns of CONUS cities have far-reaching implications beyond the 

local geographical or climatic similarity. For instance, cities belonging to the same cluster often 

exhibit long-distance connectivity and their responses to environmental stressors resemble one 

another. For different environmental indicators, CONUS cities are clustered in different affinity 

groups yet with intrinsic similarity inherited from the bioclimate zones to which they belong. 

Urban clustering explored in this study is therefore a result of synergistic interplay that shows 

how different environmental variables are coordinated in conjunction with local geographical 

and climatic conditions via long-range atmospheric gateways. The findings offer a more 

fundamental and holistic means in representing the local and long-range connectivity of the built 

environment than environmental similarity that based upon background climate regions or 

bioclimate zones. In practice, the environmental similarity (in a broader sense) revealed by urban 

clustering will be informative to the implementation of urban planning strategies in local cities or 

with cross-regional synergy. One may infer that implementing urban green infrastructure in a 

like manner would generate similar cooling effect in cities within the same cluster, as observed 

in numerical simulations (C. Wang, Wang, et al., 2018; C. Wang, Wang, & Yang, 2019); but its 

efficacy may vary significantly for cities belong to different clusters yet geographically close. 

This is also applicable to urban groups under seasonal air quality changes.  

The existence of structural patterns in urban aggregation goes beyond the present 

examples in CONUS cities. For example, similar urban clustering patterns emerge in long-term 

precipitation climatology as well (see details in Appendix C). Arguably, multiscale clustering 

and the underlying scaling properties are deemed universal in cities that are constantly evolving 



 

 

(Barabási & Albert, 1999; Batty, 2008). Within the same city, similar landscapes manifest 

aggregated patterns of environmental quality (equivalent to “local” clusters) (Stewart & Oke, 

2012; D. Xu et al., 2020). At continental or global scales, cities with similar landscape properties 

show synchronous climatic patterns over time (Chan & Yao, 2008; Peng et al., 2012; Zhou et al., 

2013). The presumed symmetry of similarity can be relaxed to extend the application of the 

current framework to more complex climate systems with directed and lagged connections. For 

instance, the proposed analysis can be extended to include teleconnections bearing memories of 

decadal climatic variability, such as the El Niño–Southern Oscillation (Tsonis & Swanson, 

2008), or urban exposure to extreme flood or drought hazards. Not only would such assessments 

shed new light on the understanding of underlying physical processes, they can also serve as 

valuable reference sources for field experiments and model simulations of urban climates; for 

example, cities belonging to the same cluster should be included in the same numerical domain 

in simulations.  

Furthermore, ongoing urban transformation requires system-based (instead of objective- 

or process-based) sustainable urban development (Ramaswami et al., 2016). The large-scale 

implementations of mitigation and adaptation strategies, especially those in top-down blueprint 

planning, will need to be informed and advanced by the structure of urban clustering (China 

Development Research Foundation, 2013; Seto, Reenberg, et al., 2012). On the other hand, the 

implementation of urban planning strategies in different cities can be informed and reinforced 

via clustering structure. For example, the change of local environment induced by policy-driven 

strategies, such as emission standards of greenhouse gases and pollutants, can directly or 

indirectly impact the environmental quality of other cities through within-cluster dispersion. The 

long-range effect can be made possible as well via trans-cluster teleconnections through synoptic 



 

 

circulation (physical) or information sharing (non-physical). In addition, international city 

networks (e.g., C40 Cities) targeting information sharing are growing to incorporate an 

increasing number of major metropolitans, whereas vast built environment is still left out (Acuto, 

2018). It is therefore imperative for urban networks and polities in their holistic designs to 

consider the intertwined connectivity and multiscale clustering of cities for future development. 

 

5. Concluding remarks 

The clustering patterns of U.S. cities under different environmental stressors are analyzed 

in this study using the affinity propagation, a message-passing-based clustering method. The 

remotely sensed LST and AOD data are used as the urban environmental indicators under 

extreme heat waves and yearlong seasonal air quality changes, respectively. Driven by 

environmental similarity and synoptic atmospheric transport, CONUS cities exhibit highly 

organized spatial structures, manifesting distinct clustering patterns at multiple scales in response 

to these stressors. Clustering based on the proposed generic framework is informative to 

implementing urban planning strategies at different spatial scales (e.g., similar efficacy of a heat 

mitigation strategy in cities within the same cluster). It can also provide critical information on 

the design of urban field experiments and numerical simulations in terms of the study area, 

simulation domain, etc. In addition, the implications of clustering for urban system development 

are profound but twofold: a catastrophic environmental event (e.g., a severe pollution episode) 

can be sealed off within a local cluster, whereas the effectiveness of a local urban mitigation 

strategy can also be circumscribed due to the lack of long-range connectivity. 

It is noteworthy that the proposed framework of clustering analysis is transferable beyond 

applications based on LST and AOD data with the prescribed methods used in this study. Other 

remotely sensed, observed, or simulated datasets with different spatial and temporal resolutions 



 

 

(when available) can be applied as well to address different urban environmental issues at 

multiple scales (as shown in Appendix C). Examples include the impact of regional climate on 

urban vegetation growth using vegetation and ecological indices, the variability of human 

exposure to air pollution in the same city with census-based population data, and the risk 

assessment for coastal cities based on hurricane frequency and hurricane-related mortality data. 

Ground-based measurements, such as those by weather stations or flux towers, will be valuable 

supplementary to remotely sensed data products in depicting the urban clustering structure, as 

their data quality is less affected by cloud covers. Furthermore, for multiple environmental 

events (e.g., heat waves in CONUS), the proposed method can be applied to determine a master 

pattern of urban clustering using a frequency/probability approach. This can be done by first 

determining the clustering pattern for each event (e.g., a single heat wave), and then the 

connectivity between a pair of urban areas can be calculated as the probability belonging to the 

same cluster. The master clustering pattern will resemble a graphic representation of an urban 

“network” with manifest topology such as core–periphery structure (Newman, 2018). This way, 

the proposed algorithm of urban clustering can be readily connected with more versatile and 

powerful techniques of network modeling based on graph theory.  

Moreover, the proposed method can be extended to reveal more complex and dynamic 

structures of urban clustering, such as the scaling property, core–periphery organization, and 

synchronization of critical urban phenomena (such as the synergy of heat waves and urban heat 

island, see e.g., C. Wang et al., 2020). The results of such analysis will need to be independently 

evaluated with field measurements or more advanced topological analysis like network theory (C. 

Wang & Wang, 2020). Nevertheless, the study provides a new framework for future urban 



 

 

environmental research and sustainable planning, especially for those fueled by remotely sensed 

data, in not only U.S. cities but also urban areas in other regions and countries. 
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Appendix A. Clustering evaluation metrics 

We assume that the affinity propagation algorithm produces K clusters consisting of N 

nodes, and each cluster k contains nk nodes (or members, Mk) centered at their centroid Gk. Then 

the node dispersion within a cluster k can be expressed as 

2 2

1 1, 1,
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and the dispersion among all clusters is calculated based on distances of all centroids, 
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where G is the centroid of all nodes (Caliński & Harabasz, 1974). Note that 
k

iM  denotes node i 

in cluster k. The following metrics are functions of cluster number K, of which the local or global 

extrema determine the optimal clustering results.  

The Ball–Hall index (Ball & Hall, 1965) is to measure the mean within-cluster 

dispersion, defined as 
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Equation 16 follows the formulation in Vendramin et al. (2010), although different formulas for 

this index have been used in other literature (e.g., Dimitriadou et al., 2002). The optimal 

clustering is determined through the maximum of the transformation function (Milligan & 

Cooper, 1985; Vendramin et al., 2010)  
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The Caliński– Harabasz index (Caliński & Harabasz, 1974) is analogous to the F-test 

given as 
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and the global or local maximum indicates that the clustering result has a high between-cluster 

dispersion with a low within-cluster dispersion.  

The Davies–Bouldin index (Davies & Bouldin, 1979) is defined as 
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while for each cluster k the mean dispersion is 
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The minimum Davies–Bouldin index suggests system-wide low within-cluster dispersions and 

high between-cluster dispersions (Davies & Bouldin, 1979; Milligan & Cooper, 1985). 

The Dunn index (Dunn, 1974) quantifies the extreme distances among nodes within the 

same cluster and those in different clusters using the ratio 
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where ,k kdist   is the distance between the closest nodes of clusters k and k′,  
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and kdiam  is the diameter of cluster k measured by the largest distance between two nodes, 
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The optimal clustering has the maximum Dunn index value. 



 

 

The global silhouette index (Rousseeuw, 1987) is the average silhouette index for all 

clusters, given as 
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while for each cluster k, the silhouette index εk is the average of all nodes within this cluster, 

, ,

1 1 , ,

1 1

max( , )

k k k kn n
b i a ik k

ik k k k
i i a i b i

sil sil

n n sil sil
 

= =

 −
= =  

  
  ,      (25) 

with k

i  being the silhouette index for node i in cluster k. The average distance between node i 

and all other nodes in cluster k is evaluated as 
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The variable 
,

k

b isil  is the minimum of the average distance between node i (in cluster k) and all 

other nodes in other clusters,  
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The maximum value of the global silhouette index implies that the within-cluster dispersion is 

much less than the minimum between-cluster dispersion (Rousseeuw, 1987), and therefore the 

result is the optimal clustering. 

It should be noted that different clustering evaluation metrics might yield different 

number of affinity groups. Nevertheless, the key objectives of an optimal clustering among all 

metrics are similar: maximizing the distinction among clusters (well-separated), meanwhile 

minimizing the dispersion within each cluster (cohesive). 

 

 



 

 

Appendix B. Scaling of urban clusters based on different metrics 

 

Fig. B.1. Scaling of urban clusters based on geographical distance and 8-day composite daytime 

LST during a heat wave in July 12–19, 2006. (a) Clustering pattern with less affinity groups 

when compared to Fig. 4. The shared preference s(j, j)LST is –1.600, and the damping factor λ is 

0.7, yielding 17 clusters. This solution is suggested by transformed Ball–Hall index α, Caliński–



 

 

Harabasz index β, and global silhouette index ε, while using the minimum value of the input 

similarity matrix as the shared preference yields identical results. (b) Clustering pattern with 

more affinity groups when compared to Fig. 4. The shared preference s(j, j)LST is –0.497 (the 

median value of the input similarity matrix), and the damping factor λ is 0.7, yielding 32 clusters. 

Cities with black edges are centers/exemplars of clusters.  

(Figure B.1 is a 2-column fitting image) 

 



 

 

 

Fig. B.2. Scaling of urban clusters based on geographical distance and monthly mean AOD in 

2017. (a) Clustering pattern with less affinity groups scale when compared to Fig. 5. The shared 

preference s(j, j)AOD is –3.270, and the damping factor λ is 0.7, yielding 9 clusters. This solution 

is suggested by Caliński–Harabasz index β and Davies–Bouldin index γ. (b) Clustering pattern 

with more affinity groups when compared to Fig. 5. The shared preference is –0.407, and the 



 

 

damping factor λ is 0.7, yielding 48 clusters. This solution is suggested by global silhouette index 

ε. Cities with black edges are centers/exemplars of clusters. 

(Figure B.2 is a 2-column fitting image) 

  



 

 

Appendix C. Urban clustering under long-term precipitation climatology 

We further explore the urban clustering pattern based upon 30-year (1981–2010) monthly 

precipitation climatology. We retrieved the gridded precipitation climatological data from the 

ClimateNA dataset (T. Wang et al., 2016). ClimateNA historical baseline climate dataset was 

compiled from multiple PRISM (Parameter-elevation Relationships on Independent Slopes 

Model) datasets (Daly et al., 2008) over the CONUS, and British Columbia and Prairie provinces 

in Canada, and was generated based on ANUSLIN method (McKenney et al., 2011) for the rest 

of North America. We used the latest release of the 1 km baseline climate dataset (1981–2010) 

and extracted the 30-year average monthly total precipitation data (hereafter “monthly 

precipitation climatology”). Note that the fine resolution data were downscaled using bilinear 

interpolation and local evaluation adjustment approaches, and the accuracy has been evaluated 

with observations from 4891 weather stations (T. Wang et al., 2016). Similarly, the monthly 

precipitation averaged over each urban area (city) is used in Eq. 8 as the environmental/climatic 

indicator, and the distance function is  
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for 12 monthly precipitation (PPT) values.  

Based on sensitivity test and clustering evaluation metrics, we select an intermediate 

solution using the median value of the input similarities for illustration. With the prescribed 

shared preference, all CONUS cities are partitioned into 33 clusters. It is noteworthy that the 

clustering result using median value is close to the solution suggested by Dunn index (δ) (Dunn, 

1974). Figure C.1 shows the urban clustering pattern based on precipitation climatology.  



 

 

 

Fig. C.1. Urban clustering based on geographical distance and monthly precipitation climatology 

in 1981–2010. The shared preference s(j, j)PPT is –0.646, and the damping factor λ is 0.7, yielding 

33 clusters. Cities with black edges are centers/exemplars of clusters. 

(Figure C.1 is a 2-column fitting image) 

 

The urban clustering pattern for monthly precipitation climatology generally agrees with 

the spatial distribution of both annual precipitation and seasonal climate (Chen et al., 2013; Daly 

et al., 2008). Unlike clustering under heat wave condition or air quality degradation (Figs. 4 and 

5), cities on the northern coast of the Gulf of Mexico in Louisiana, Mississippi, Alabama, and 

North Florida are grouped into one cluster. Urban areas along the coastline of the Pacific Ocean 

in Oregon and Washington within the same cluster share a similar precipitation pattern, i.e., dry 

summers and wet winters (Chen et al., 2013), while during heat wave conditions they belong to 

2–3 clusters. Likewise, the North American Monsoon System brings extensive precipitation to 

the Southwest U.S. during summers, enhancing more cohesive clustering of cities in this area 



 

 

when compared to that based on LST or AOD. Such differences exist in other regions as well 

(e.g., in the Upper Mississippi River Basin) and persist even when the number of clusters varies, 

revealing the consistency of the background long-term precipitation climatology in affecting the 

similarity among cities.  

 

  



 

 

References 

Acuto, M. (2018). Global science for city policy. Science, 359(6372), 165–166. 

https://doi.org/10.1126/science.aao2728 

Akbari, H., Pomerantz, M., & Taha, H. (2001). Cool surfaces and shade trees to reduce energy 

use and improve air quality in urban areas. Solar Energy, 70(3), 295–310. 

https://doi.org/10.1016/S0038-092X(00)00089-X 

Albert, R., Albert, I., & Nakarado, G. L. (2004). Structural vulnerability of the North American 

power grid. Physical Review E, 69, 025103(R). 

https://doi.org/10.1103/PhysRevE.69.025103 

Allen, P. M. (1997). Cities and regions as self-organizing systems: models of complexity. 

Amsterdam: Gordon and Breach Science Publishers. 

Anderson, G. B., & Bell, M. L. (2011). Heat waves in the United States: mortality risk during 

heat waves and effect modification by heat wave characteristics in 43 US communities. 

Environmental Health Perspectives, 119(2), 210–218. 

https://doi.org/10.1289/ehp.1002313 

Ball, G. H., & Hall, D. J. (1965). ISODATA, a novel method of data analysis and pattern 

classification (Technical Report No. AD699616). Menlo Park: Stanford Research 

Institute.  

Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 

286(5439), 509–512. https://doi.org/10.1126/science.286.5439.509 

Batty, M. (2008). The size, scale, and shape of cities. Science, 319(5864), 769–771. 

https://doi.org/10.1126/science.1151419 



 

 

Bettencourt, L. M. A., Lobo, J., Helbing, D., Kühnert, C., & West, G. B. (2007). Growth, 

innovation, scaling, and the pace of life in cities. Proceedings of the National Academy of 

Sciences of the United States of America, 104(17), 7301–7306. 

https://doi.org/10.1073/pnas.0610172104 

Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool 

towns and cities: A systematic review of the empirical evidence. Landscape and Urban 

Planning, 97(3), 147–155. https://doi.org/10.1016/j.landurbplan.2010.05.006 

Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in 

Statistics, 3(1), 1–27. https://doi.org/10.1080/03610927408827101 

Chan, C. K., & Yao, X. (2008). Air pollution in mega cities in China. Atmospheric Environment, 

42(1), 1–42. https://doi.org/10.1016/j.atmosenv.2007.09.003 

Chen, S., Hong, Y., Gourley, J. J., Huffman, G. J., Tian, Y., Cao, Q., Yong, B., Kirstetter, P.-E., 

Hu, J., Hardy, J., Li, Z., Khan, S. I., & Xue, X. (2013). Evaluation of the successive V6 

and V7 TRMM multisatellite precipitation analysis over the Continental United States. 

Water Resources Research, 49(12), 8174–8186. https://doi.org/10.1002/2012WR012795 

China Development Research Foundation. (2013). China’s new urbanization strategy (1st ed.). 

Abingdon: Routledge. 

Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., Curtis, J., & 

Pasteris, P. P. (2008). Physiographically sensitive mapping of climatological temperature 

and precipitation across the conterminous United States. International Journal of 

Climatology, 28(15), 2031–2064. https://doi.org/10.1002/joc.1688 

Das, M., & Das, A. (2019). Estimation of Ecosystem Services (EESs) loss due to transformation 

of Local Climatic Zones (LCZs) in Sriniketan-Santiniketan Planning Area (SSPA) West 



 

 

Bengal, India. Sustainable Cities and Society, 47, 101474. 

https://doi.org/10.1016/j.scs.2019.101474 

Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, PAMI-1(2), 224–227. 

https://doi.org/10.1109/TPAMI.1979.4766909 

Diffenbaugh, N. S., & Scherer, M. (2011). Observational and model evidence of global 

emergence of permanent, unprecedented heat in the 20th and 21st centuries. Climatic 

Change, 107(3), 615–624. https://doi.org/10.1007/s10584-011-0112-y 

Dimitriadou, E., Dolničar, S., & Weingessel, A. (2002). An examination of indexes for 

determining the number of clusters in binary data sets. Psychometrika, 67(1), 137–159. 

https://doi.org/10.1007/BF02294713 

Dunn, J. C. (1974). Well-separated clusters and optimal fuzzy partitions. Journal of Cybernetics, 

4(1), 95–104. https://doi.org/10.1080/01969727408546059 

Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points. Science, 

315(5814), 972–976. https://doi.org/10.1126/science.1136800 

Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M. 

(2008). Global Change and the Ecology of Cities. Science, 319(5864), 756–760. 

https://doi.org/10.1126/science.1150195 

Ichino, M., & Yaguchi, H. (1994). Generalized Minkowski metrics for mixed feature-type data 

analysis. IEEE Transactions on Systems, Man, and Cybernetics, 24(4), 698–708. 

https://doi.org/10.1109/21.286391 



 

 

Jaramillo, P., & Nazemi, A. (2018). Assessing urban water security under changing climate: 

Challenges and ways forward. Sustainable Cities and Society, 41, 907–918. 

https://doi.org/10.1016/j.scs.2017.04.005 

Kates, R. W., Colten, C. E., Laska, S., & Leatherman, S. P. (2006). Reconstruction of New 

Orleans after Hurricane Katrina: A research perspective. Proceedings of the National 

Academy of Sciences of the United States of America, 103(40), 14653–14660. 

https://doi.org/10.1073/pnas.0605726103 

Ke, X., Qi, L., & Zeng, C. (2016). A partitioned and asynchronous cellular automata model for 

urban growth simulation. International Journal of Geographical Information Science, 

30(4), 637–659. https://doi.org/10.1080/13658816.2015.1084510 

Li, P., & Wang, Z.-H. (2020). Modeling carbon dioxide exchange in a single-layer urban canopy 

model, Building and Environment, 184, 107243. 

https://doi.org/10.1016/j.buildenv.2020.107243 

Li, X., Yao, R., Liu, M., Costanzo, V., Yu, W., Wang, W., Short, A., & Li, B. (2018). 

Developing urban residential reference buildings using clustering analysis of satellite 

images. Energy and Buildings, 169, 417–429. 

https://doi.org/10.1016/j.enbuild.2018.03.064 

Lin, J., Nielsen, C. P., Zhao, Y., Lei, Y., Liu, Y., & McElroy, M. B. (2010). Recent changes in 

particulate air pollution over China observed from space and the ground: effectiveness of 

emission control. Environmental Science & Technology, 44(20), 7771–7776. 

https://doi.org/10.1021/es101094t 

Lopez, H., West, R., Dong, S., Goni, G., Kirtman, B., Lee, S.-K., & Atlas, R. (2018). Early 

emergence of anthropogenically forced heat waves in the western United States and Great 



 

 

Lakes. Nature Climate Change, 8(5), 414–420. https://doi.org/10.1038/s41558-018-0116-

y 

Lyapustin, A., Martonchik, J., Wang, Y., Laszlo, I., & Korkin, S. (2011). Multiangle 

implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and 

look-up tables. Journal of Geophysical Research: Atmospheres, 116, D03210. 

https://doi.org/10.1029/2010JD014985 

[dataset] Lyapustin, A., & Wang, Y. (2018). MCD19A2 MODIS/Terra+Aqua Land Aerosol 

Optical Depth Daily L2G Global 1km SIN Grid V006. NASA EOSDIS Land Processes 

DAAC. https://doi.org/10.5067/MODIS/MCD19A2.006 

Lyapustin, A., Wang, Y., Laszlo, I., Hilker, T., G.Hall, F., Sellers, P. J., Tucker, C. J., & Korkin, 

S. V. (2012). Multi-angle implementation of atmospheric correction for MODIS 

(MAIAC): 3. Atmospheric correction. Remote Sensing of Environment, 127, 385–393. 

https://doi.org/10.1016/j.rse.2012.09.002 

Lyapustin, A., Wang, Y., Laszlo, I., Kahn, R., Korkin, S., Remer, L., Levy, R., & Reid, J. S. 

(2011). Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol 

algorithm. Journal of Geophysical Research: Atmospheres, 116, D03211. 

https://doi.org/10.1029/2010JD014986 

McKenney, D. W., Hutchinson, M. F., Papadopol, P., Lawrence, K., Pedlar, J., Campbell, K., 

Milewska, E., Hopkinson, R. F., Price, D., & Owen, T. (2011). Customized spatial 

climate models for North America. Bulletin of the American Meteorological Society, 

92(12), 1611–1622. https://doi.org/10.1175/2011BAMS3132.1 



 

 

Milligan, G. W., & Cooper, M. C. (1985). An examination of procedures for determining the 

number of clusters in a data set. Psychometrika, 50(2), 159–179. 

https://doi.org/10.1007/BF02294245 

Newman, M. E. J. (2018). Networks (2nd ed.). Oxford: Oxford University Press. 

Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-

Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644. 

https://doi.org/10.5194/hess-11-1633-2007 

Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Bréon, F.-M., Nan, H., Zhou, L., & 

Myneni, R. B. (2012). Surface urban heat island across 419 global big cities. 

Environmental Science & Technology, 46(2), 696–703. 

https://doi.org/10.1021/es2030438 

Ramaswami, A., Russell, A. G., Culligan, P. J., Sharma, K. R., & Kumar, E. (2016). Meta-

principles for developing smart, sustainable, and healthy cities. Science, 352(6288), 940–

943. https://doi.org/10.1126/science.aaf7160 

Regional Plan Association. (2008). America 2050: an infrastructure vision for 21st century 

America. New York: Regional Plan Association.  

Romero-Lankao, P., Bulkeley, H., Pelling, M., Burch, S., Gordon, D. J., Gupta, J., Johnson, C., 

Kurian, P., Lecavalier, E., Simon, D., Tozer, L., Ziervogel, G., & Munshi, D. (2018). 

Urban transformative potential in a changing climate. Nature Climate Change, 8(9), 754–

756. https://doi.org/10.1038/s41558-018-0264-0 

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of 

cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65. 

https://doi.org/10.1016/0377-0427(87)90125-7 



 

 

Runge, J., Petoukhov, V., Donges, J. F., Hlinka, J., Jajcay, N., Vejmelka, M., Hartman, D., 

Marwan, N., Paluš, M., & Kurths, J. (2015). Identifying causal gateways and mediators in 

complex spatio-temporal systems. Nature Communications, 6, 8502. 

https://doi.org/10.1038/ncomms9502 

Seto, K. C., Güneralp, B., & Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 

and direct impacts on biodiversity and carbon pools. Proceedings of the National 

Academy of Sciences of the United States of America, 109(40), 16083–16088. 

https://doi.org/10.1073/pnas.1211658109 

Seto, K. C., Reenberg, A., Boone, C. G., Fragkias, M., Haase, D., Langanke, T., Marcotullio, P., 

Munroe, D. K., Olah, B., & Simon, D. (2012). Urban land teleconnections and 

sustainability. Proceedings of the National Academy of Sciences of the United States of 

America, 109(20), 7687–7692. https://doi.org/10.1073/pnas.1117622109 

Smith, T. T., Zaitchik, B. F., & Gohlke, J. M. (2013). Heat waves in the United States: 

definitions, patterns and trends. Climatic Change, 118(3), 811–825. 

https://doi.org/10.1007/s10584-012-0659-2 

Song, J., & Wang, Z.-H. (2015). Interfacing urban land-atmosphere through coupled urban 

canopy and atmospheric models, Boundary-Layer Meteorology, 154(3), 427-448. 

https://doi.org/10.1007/s10546-014-9980-9 

Song, J., & Wang, Z.-H. (2016). Diurnal changes in urban boundary layer environment induced 

by urban greening, Environmental Research Letters, 11, 114018. 

https://doi.org/10.1088/1748-9326/11/11/114018 

Song, J., Wang, Z.-H., & Wang, C. (2017), Biospheric and anthropogenic contributors to 

atmospheric CO2 variability in a residential neighborhood of Phoenix, Arizona, Journal 



 

 

of Geophysical Research: Atmospheres, 122, 3317-3329. 

https://doi.org/doi:10.1002/2016JD026267 

Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin 

of the American Meteorological Society, 93(12), 1879–1900. 

https://doi.org/10.1175/BAMS-D-11-00019.1 

Tao, Z., Santanello, J. A., Chin, M., Zhou, S., Tan, Q., Kemp, E. M., & Peters-Lidard, C. D. 

(2013). Effect of land cover on atmospheric processes and air quality over the continental 

United States – a NASA Unified WRF (NU-WRF) model study. Atmospheric Chemistry 

and Physics, 13, 6207–6226. https://doi.org/10.5194/acp-13-6207-2013 

Teng, H., Branstator, G., Wang, H., Meehl, G. A., & Washington, W. M. (2013). Probability of 

US heat waves affected by a subseasonal planetary wave pattern. Nature Geoscience, 

6(12), 1056–1061. https://doi.org/10.1038/ngeo1988 

Tsonis, A. A., & Swanson, K. L. (2008). Topology and predictability of El Niño and La Niña 

networks. Physical Review Letters, 100(22), 228502. 

https://doi.org/10.1103/PhysRevLett.100.228502 

UN-Habitat. (2016). Urbanization and development: emerging futures. Nairobi: United Nations 

Human Settlements Programme. 

Vendramin, L., Campello, R. J. G. B., & Hruschka, E. R. (2010). Relative clustering validity 

criteria: A comparative overview. Statistical Analysis and Data Mining, 3, 209–235. 

https://doi.org/10.1002/sam.10080 

Voulgarakis, A., Marlier, M. E., Faluvegi, G., Shindell, D. T., Tsigaridis, K., & Mangeon, S. 

(2015). Interannual variability of tropospheric trace gases and aerosols: The role of 



 

 

biomass burning emissions. Journal of Geophysical Research: Atmospheres, 120(14), 

7157–7173. https://doi.org/10.1002/2014JD022926 

Wan, Z. (2014). New refinements and validation of the collection-6 MODIS land-surface 

temperature/emissivity product. Remote Sensing of Environment, 140, 36–45. 

https://doi.org/10.1016/j.rse.2013.08.027 

[dataset] Wan, Z., Hook, S., & Hulley, G. (2015a). MOD11A2 MODIS/Terra Land Surface 

Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006. NASA EOSDIS Land 

Processes DAAC. https://doi.org/10.5067/MODIS/MOD11A2.006 

[dataset] Wan, Z., Hook, S., & Hulley, G. (2015b). MOD11B2 MODIS/Terra Land Surface 

Temperature/Emissivity 8-Day L3 Global 6km SIN Grid V006. NASA EOSDIS Land 

Processes DAAC. https://doi.org/10.5067/MODIS/MOD11B2.006 

Wang, C., Li, Q., & Wang, Z.-H. (2018). Quantifying the impact of urban trees on passive 

pollutant dispersion using a coupled large-eddy simulation–Lagrangian stochastic model. 

Building and Environment, 145, 33–49. https://doi.org/10.1016/j.buildenv.2018.09.014 

Wang, C., Wang, C. Y., Myint, S. W., & Wang, Z.-H. (2017). Landscape determinants of spatio-

temporal patterns of aerosol optical depth in the two most polluted metropolitans in the 

United States. Science of The Total Environment, 609, 1556–1565. 

https://doi.org/10.1016/j.scitotenv.2017.07.273 

Wang, C., & Wang, Z.-H. (2017). Projecting population growth as a dynamic measure of 

regional urban warming. Sustainable Cities and Society, 32, 357–365. 

https://doi.org/10.1016/j.scs.2017.04.010 



 

 

Wang, C., & Wang, Z.-H. (2020). A network-based toolkit for evaluation and intercomparison of 

weather prediction and climate modeling. Journal of Environmental Management, 268, 

110709. https://doi.org/10.1016/j.jenvman.2020.110709 

Wang, C., Wang, Z.-H., & Sun, L. (2020). Early-warning signals for critical temperature 

transitions. Geophysical Research Letters, 47(14), e2020GL088503. 

https://doi.org/10.1029/2020GL088503 

Wang, C., Wang, Z.-H., Wang, C. Y., & Myint, S. W. (2019). Environmental cooling provided 

by urban trees under extreme heat and cold waves in U.S. cities. Remote Sensing of 

Environment, 227, 28–43. https://doi.org/10.1016/j.rse.2019.03.024 

Wang, C., Wang, Z.-H., & Yang, J. (2018). Cooling effect of urban trees on the built 

environment of contiguous United States. Earth’s Future, 6(8), 1066–1081. 

https://doi.org/10.1029/2018EF000891 

Wang, C., Wang, Z.-H., & Yang, J. (2019). Urban water capacity: Irrigation for heat mitigation. 

Computers, Environment and Urban Systems, 78, 101397. 

https://doi.org/10.1016/j.compenvurbsys.2019.101397 

Wang, P., Qiao, W., Wang, Y., Cao, S., & Zhang, Y. (2020). Urban drought vulnerability 

assessment – A framework to integrate socio-economic, physical, and policy index in a 

vulnerability contribution analysis. Sustainable Cities and Society, 54, 102004. 

https://doi.org/10.1016/j.scs.2019.102004 

Wang, T., Hamann, A., Spittlehouse, D., & Carroll, C. (2016). Locally downscaled and spatially 

customizable climate data for historical and future periods for North America. PLoS One, 

11(6), e0156720. https://doi.org/10.1371/journal.pone.0156720 



 

 

Wang, Z.-H., Zhao, X., Yang, J., & Song J. (2016). Cooling and energy saving potentials of 

shade trees and urban lawns in a desert city, Applied Energy, 161(3), 437-444. 

https://doi.org/10.1016/j.apenergy.2015.10.047 

Xu, D., Zhou, D., Wang, Y., Meng, X., Chen, W., & Yang, Y. (2020). Temporal and spatial 

variations of urban climate and derivation of an urban climate map for Xi’an, China. 

Sustainable Cities and Society, 52, 101850. https://doi.org/10.1016/j.scs.2019.101850 

Xu, R., Yang, G., Qu, Z., Chen, Y., Liu, J., Shang, L., Liu, S., Ge, Y., & Chang, J. (2020). City 

components–area relationship and diversity pattern: towards a better understanding of 

urban structure. Sustainable Cities and Society, 60, 102272. 

https://doi.org/10.1016/j.scs.2020.102272 

Yang, J., & Wang, Z.-H. (2017). Planning for a sustainable desert city: The potential water 

buffering capacity of urban green infrastructure, Landscape and Urban Planning, 167, 

339-347. https://doi.org/10.1016/j.landurbplan.2017.07.014 

Yang, Y., Ng, S. T., Xu, F. J., & Skitmore, M. (2018). Towards sustainable and resilient high 

density cities through better integration of infrastructure networks. Sustainable Cities and 

Society, 42, 407–422. https://doi.org/10.1016/j.scs.2018.07.013 

You, W., Zang, Z., Zhang, L., Li, Z., Chen, D., & Zhang, G. (2015). Estimating ground-level 

PM10 concentration in northwestern China using geographically weighted regression 

based on satellite AOD combined with CALIPSO and MODIS fire count. Remote 

Sensing of Environment, 168, 276–285. https://doi.org/10.1016/j.rse.2015.07.020 

Zhang, H., DeNero, S. P., Joe, D. K., Lee, H.-H., Chen, S.-H., Michalakes, J., & Kleeman, M. J. 

(2014). Development of a source oriented version of the WRF/Chem model and its 



 

 

application to the California regional PM10 / PM2.5 air quality study. Atmospheric 

Chemistry and Physics, 14(1), 485–503. https://doi.org/10.5194/acp-14-485-2014 

Zhou, B., Rybski, D., & Kropp, J. P. (2013). On the statistics of urban heat island intensity. 

Geophysical Research Letters, 40(20), 5486–5491. 

https://doi.org/10.1002/2013GL057320 

 


