Abstract

Cities are the hotspots of global human—environment interactions, and their sustainable
development requires proactive strategies to mitigate and adapt to emergent environmental issues.
Nevertheless, most of the existing studies and strategies are based on specific (and often singular)
environmental processes, and their efficacy is largely undermined by their heavy dependence on
locality. Here we present a novel modeling framework for urban studies to capture spatial
connectivity and teleconnection among cities in response to different environmental stressors. As
an illustration, a generic message-passing-based algorithm is used to identify spatial structures
among U.S. cities. Structures are analyzed under two types of environmental stressors, i.e.,
extreme heat and air pollution, based on remotely sensed land surface temperature data during
short-term heat wave events and a yearlong remotely sensed aerosol optical depth dataset,
respectively. Results show that U.S. cities are clustered as locally and regionally connected
groups, while multiscale structures manifest via environmental similarity and atmospheric
transport under both event-scale meteorological extremes and long-term environmental stressors.
The physics-driven urban agglomeration reveals that cities are multilevel interconnected

complex systems rather than isolated entities. The proposed framework provides a new pathway

to shift goal- or process-based urban studies to system-based global ones.
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1. Introduction

As engines of innovations and economic growth, cities are continuously growing globally
and accommodating more than half the world’s population (UN-Habitat, 2016). The
unprecedented population increase results in substantial land-use and land-cover changes in
urban systems (Grimm et al., 2008; Seto, Giineralp, et al., 2012). Meanwhile, the exchanges of
energy and matters (e.g. carbon dioxide) (Song et al., 2017; Li & Wang, 2020) across urban
system boundaries, as well as the concomitant changes in land—atmosphere interactions (Song &
Wang, 2015, 2016), impose significant impacts and challenges on ecosystems at multiple scales
(Das & Das, 2019; Grimm et al., 2008; C. Wang & Wang, 2017). As open systems, cities
undergo constant transformations of infrastructure and socioeconomic structure, with equilibrium
rarely attained (Ramaswami et al., 2016; UN-Habitat, 2016). Such transformations are driven by
intrinsic stressors such as societal, political, and economic changes, external forcings like climate
change (Romero-Lankao et al., 2018; UN-Habitat, 2016), and the interplay of both types.

As a consequence of global changes, catastrophic climate extremes like Hurricane
Katrina have put the existing urban infrastructure under severe tests (Jaramillo & Nazemi, 2018;
Kates et al., 2006; P. Wang et al., 2020). Furthermore, the frequency and intensity of climate
extremes are projected to continue increasing (Diffenbaugh & Scherer, 2011). Improving disaster
preparedness and management requires not only the already affected cities but also cities alike to
synergistically coordinate multiple drivers of urban transformations in systematic reconstruction,
redesign, and future planning (Yang et al., 2018). More broadly, future urban sustainable
development also calls for proactive strategies to reduce vulnerability when facing various

emerging challenges beyond climate extremes (Romero-Lankao et al., 2018; UN-Habitat, 2016).



More specifically, urban meteorological and climatological studies have been committed
to proposing and evaluating possible mitigation and adaptation strategies in response to the
deteriorated urban environment. For example, urban green infrastructure has been widely
adopted to combat elevated thermal stress and/or degraded air quality (Bowler et al., 2010; Yang
& Wang, 2017; Z.-H. Wang et al., 2016; C. Wang, Li, et al., 2018). However, their efficacy
manifests strong variability among cities as induced (mainly) by differences in geographical
conditions, necessitating judicious adoption of tailored strategies in different urban areas (Akbari
et al., 2001; C. Wang, Wang, Wang, et al., 2019). On the other hand, urban systems are
statistically self-similar in their morphology and hierarchically organized (Batty, 2008; R. Xu et
al., 2020); the dynamics of urban growth are agglomeration-driven, and in many cases, deemed
as governed by certain universal scaling laws (Bettencourt et al., 2007). Furthermore, the
similarity in urban components results in their analogous responses to both short-term and long-
term environmental stressors, especially if their geographical or climatic conditions are alike
(Chan & Yao, 2008; Peng et al., 2012; Zhou et al., 2013). These similarities highlight the
potential of viewing cities as highly connected or teleconnected systems, organized clusters, or
even complex networks at multiple scales (Seto, Reenberg, et al., 2012).

Clustering methods have been used to examine various patterns within and among cities.
For example, Li et al. (2018) identified archetypes representative of the heating and cooling
energy demand in Chongqing, China using k-means and k-medoids techniques. Similar
clustering methods have also been used to divide the study area based on land surface
characteristics such as land-use change (Ke et al., 2016). However, their application in urban
environmental studies (especially for meteorological and climatological stressors using remotely

sensed data products) is relatively rare (D. Xu et al., 2020). The clustering-based spatial structure



among cities under global environmental changes can provide useful information for sustainable
urban planning and urban climate studies, whereas such analysis is heretofore absent.

To bridge this gap, we propose a new modeling framework for future urban studies to
examine the spatial structures among different cities under environmental stressors. For
illustration, we utilize a robust message-passing-based clustering method, i.e., affinity
propagation (Frey & Dueck, 2007), to identify the clustering patterns of cities in the contiguous
United States (CONUS). Remotely sensed land surface temperature and aerosol optical depth are
selected as two representative environmental stressors that are closely related to excessive heat
stress and air pollution in cities. Data processing procedure and clustering analysis are detailed in
Section 2 (and Appendix A). In Section 3 we describe different spatial structures of urban
clustering under event-scale meteorological extreme conditions (a heat wave) and yearlong
seasonal air quality changes using the proposed framework. We further discuss the implications

and applications of the framework in Section 4.

2. Methods

We describe the selection of extreme heat wave events based on remotely sensed land
surface temperature in Section 2.1, and the details of data sources and data processing in Section
2.2. We then introduce the proposed urban framework with a message-passing-based clustering
method in Section 2.3. Section 2.4 presents similarity functions and sensitivity analysis. Note

that the metrics used in clustering evaluation are introduced in Appendix A.



2.1 Definition of extreme heat wave events

To determine extreme heat wave events, we retrieved remotely sensed long-term daytime
land surface temperature (LST) data (2000-2017) from the Moderate Resolution Imaging
Spectroradiometer (MODIS) version 6 MOD11B2 product. MOD11B2 is sensed by the MODIS
sensor aboard the National Aeronautics and Space Administration (NASA)’s Terra satellite. This
dataset provides 8-day composites of LST at a spatial resolution of 6 km (Wan et al., 2015b).
The mean 8-day daytime LST values over the CONUS were calculated during the warm season
(May 1-September 30) (Anderson & Bell, 2011). We define continental-scale extreme heat
waves using a 99th percentile mean LST threshold (Anderson & Bell, 2011; Smith et al., 2013).
Three extreme heat wave events are then identified (July 12—19 in 2006, June 25—July 2 in 2012,
and July 3—10 in 2012), with standard deviations ranging from 7.86 to 8.87 °C across the
CONUS. The most extreme heat wave event, i.e., July 12—19 in 2006, and the corresponding
urban clustering pattern are detailed in Section 3.2. We also discuss how the spatial pattern of
temperature anomalies influences the urban clustering in Section 4 using the other two extreme

heat waves (June 25—July 2 and July 3—-10, both in 2012).

2.2 Urban landscape and environmental data

The urban areas are defined as areas with densely developed land and 50000 or more
population according to U.S. Census Bureau’s Topologically Integrated Geographic Encoding
and Referencing (TIGER) database in 2017 (https://www.census.gov/programs-
surveys/geography.html). We retrieved all 481 urban areas (as boundaries) over the CONUS
from the TIGER database.

The daytime LST data during the selected heat waves were retrieved from the MODIS

version 6 MOD11A2 product. MOD11A2 8-day LST composite product is provided by the same



MODIS sensor as MOD11B2 product but with a spatial resolution of 1 km (Wan et al., 2015a).
Low quality data were filtered using quality control flags to ensure that the average LST and
emissivity errors are less than 2 K and 0.02, respectively (Wan, 2014).

The remotely sensed aerosol optical depth (AOD) dataset in 2017 was retrieved from the
version 6 MCD19A2 product (Lyapustin & Wang, 2018) as a measure of seasonal air quality
changes. MCD19A2 product is processed using the Multi-Angle Implementation of Atmospheric
Correction (MAIAC) algorithm, with improved cloud detection, aerosol retrievals, and
atmospheric correction (Lyapustin et al., 2012; Lyapustin, Martonchik, et al., 2011; Lyapustin,
Wang, et al., 2011). This daily product is generated jointly based on two MODIS sensors (aboard
Terra and Aqua) at a spatial resolution of 1 km (Lyapustin & Wang, 2018). We used blue band
B3 (0.47 um) AOD, because the quality of band 0.55 um AOD is slightly worse than this
original retrieval (Lyapustin & Wang, 2018). We retained AOD values with clear and possibly
cloudy conditions based on quality control flags. AOD retrievals adjacent to clouds or snow, or
with previously detected snow were removed. Pixels affected by sun glint, water sediments, or
located within 2 km from the coastline were also excluded from the analysis to reduce
uncertainties in the dataset. The monthly mean AOD values were then computed by averaging all
available daily retrievals in each month.

In this study, the mean environmental indicator for an urban area (or a city) is either 8-
day mean LST or monthly mean AOD averaged over all available pixels. Note that during the
selected study period, some urban areas in the northern part of U.S. had no AOD data with good
quality owing to extensive snow (e.g., cities in Idaho and Montana) or rainfall (e.g., Seattle in

Washington), and therefore are excluded from the analysis related to AOD.



2.3 Affinity propagation for urban clustering analysis

Affinity propagation is a clustering algorithm based upon the message transmission along
edges (or links) among all nodes within a network (Frey & Dueck, 2007). For the urban
environment, individual cities or metropolitan areas can be viewed as nodes at regional and
continental scales (as in this study), while a collection of point of interest data could become
nodes at neighborhood and city scales. This method can properly determine the function of each
node, either being an exemplar for a group of nodes, or being a member of a group via
recursions. The suitability of one node j being the exemplar for another node i is measured as the

similarity, e.g., for two points i and j

2
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s(i, j) = _Hxi X,
where x; denotes the coordinates of node i. Equation 1 uses the negative squared Euclidean

distance to measure the similarity, while this similarity function can be readily relaxed to a more

general form as

s(i, j)=-DG, j)", )
where D(i, j) 1s the generalized distance (dissimilarity) between two nodes, and the parameter x
depends on the objective of the algorithm. For example, the objective is minimizing the squared
distance when x = 2. Symmetry (undirected graph) is presumed in this study, 1.e., s(i, j) = s(J, ©),
because we are not prescribing any particular or directed connections. Affinity propagation is
superior to other traditional clustering methods such as k-means clustering or k-centers
clustering, as it is less computationally costly with lower numerical errors in various
applications, and there is no need to prescribe exemplars or number of clusters (Frey & Dueck,
2007). However, the clustering is affected by the preference s(j, j), a predefined variable

describing the suitability of the node j being an exemplar. Further assuming that all nodes have



an equal chance to be exemplars necessitates the selection of a shared preference prior to the first
iteration. Two common values, the minimum (A*) and median (B*) values of all similarities,
have been suggested based on the input similarity matrix (Frey & Dueck, 2007). A larger shared
preference signifies a higher probability the node emerges as an exemplar, and therefore leads to
more clusters.

Affinity propagation recursively determines the function of a node via two measures in
the two-way message passing process. For nodes 7 and j, the responsibility matrix 7(z, j) (or r)
shows the cumulative suitability for node j to be the exemplar of node i among all possible
exemplars. On the other hand, the availability matrix a(i, j) (or a) represents the cumulative
evidence for node i to be a member of exemplar j when considering the preference of other

prior to the first iteration. The responsibility matrix is updated as
r(i. )= 3. /) ~max[aG. /) + 5. ). G

Once the responsibility matrix has been updated, the availability matrix will retrieve information
from it,
a(i, j) = min {O, r(j,/)+ Y, max[0,r(, j)]} : 4)
i'#i,i'# ]

with the self-availability a(j, j) being

a(j,j)=>_ max{0,r(, j)}. %)

i'#j
A damping factor A (0 <A <) is applied to messages to avoid potential oscillations induced by
degenerate situations (Frey & Dueck, 2007), and the final responsibility r and availability a for

current iteration are calculated as



r= (1 - ﬂ’)ritr + ﬂ’ritr—l H (6)

a=(1-A)a, +1a,_, (7

it
where responsibility or availability matrices on the right-hand side are derived using Eqgs. 35,
and subscript itr and itr—1 denote current and previous iterations, respectively. At the end of each
iteration, exemplars are decided as those maximizing the combined availabilities and
responsibilities. These two matrices are updated recursively via message passing and will remain
intact after convergence. We use 5000 iterations of affinity propagation in the sensitivity
analysis, and 500 iterations in the following evaluations to ensure the convergence of numerical
results. The sensitivity analysis shows that clustering results become stable when the damping
factor /A is greater than 0.5 (see e.g., Section 3.2). Here an intermediate damping factor 1 = 0.7 is
used in all spatial maps.

In addition, we use five widely-evaluated metrics to assess the cohesion and dispersion of
the clustering results, and to identify the optimal choices of clustering. They are transformed
Ball-Hall index (a), Calinski—Harabasz index (), Davies—Bouldin index (y), Dunn index (0),

and global silhouette index (¢). Details of these five metrics are in Appendix A.

2.4 Similarity functions

The similarity function defines the connectivity and affinity between each pair of nodes.
In urban studies, the similarity can be derived using not only socioeconomic indicators
(Bettencourt et al., 2007) such as infrastructure, energy consumption, and human behavior
patterns, but also environmental/climatic indicators, for example, temperature and air quality

herein. The negative similarity function, or the distance function (see Eq. 2), for two nodes with



Ning indicators/variables can be expressed using generalized Minkowski distance (Ichino &
Yaguchi, 1994) when k= 1,

/¢
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where the parameter w, can vary with variables n. This parameter can be a common value for all
variables if their contributions to the distance are similar (e.g., w, = 1), and Eq. 8 will reduce to
Manhattan distance (or Euclidean distance) with the order (=1 (or 2). For variables that have
varied contributions, different w, values should be adopted. Alternatively, one may use a discrete
weight function, as a substitute for w,, to obtain a weighted average of ||xi» — x;,4||. In addition,
the ordinary Euclidean distance of variable n, i.e., ||xi» — X; .||, should be properly transformed
(e.g., scaled) when variables are of different magnitudes.

In this study, we assume the contributions of geographical distance dgeo and
environmental distance denv (dissimilarity) are similar that have identical w, values (w, = 1).

Therefore, for the selected two climatic indicators (AOD and LST), Eq. 8 is simplified as

A\ ¢ c\Ve
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where the geographical distance dgeo 1s based on real latitude and longitude information. For a
pair of cities, the geographical distance is measured as the distance between their centroids. The
environmental distance deny 1s evaluated as the difference of the selected environmental/climatic
indicator (AOD or LST) during the same period. Both distances are then rescaled to the same

scale (0—1) using their extrema as



D0.7)=[ (45 ) + (@) | 221 (10)
with the scaled distance

B =@ =i ) (A =) = (@ = dif ) 1 (i
where dmax, dmin, and drange are maximum, minimum, and range of d values, respectively. For
LST during heat waves, the environmental distance is simply the absolute difference of mean

LST values in two cities, i.e., dj{; =|LST, —LST,|. For monthly mean AOD data within a year,

the environmental distance is evaluated between two data sequences

|

B : (12)
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where ¢ =1 when monthly mean AOD > 0, otherwise ¢ = 0 (missing data). The mean AOD in

month m over urban area i is expressed as AOD!". The results of AOD clustering shown in this

study are based on cities with 12 valid monthly mean AOD values, and Eq. 12 reduces to

i\AOD;" — AOD”
m=1

digo = > - (13)

We further evaluate the sensitivity of clustering results to { value in Eq. 8 using the median of
input similarities as the shared preference. The statistics of the clustering results are shown in
Fig. 1 and Table 1. Results suggest that changing { value can slightly alter the results, while the

general pattern remains nearly intact. Therefore, { =1 is used in the following sections.
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Fig. 1. Sensitivity of clustering results to distance function parameter { based on (a) geographical
distance and 8-day composite daytime LST during a heat wave (July 12-19, 2006) and (b)
geographical distance and monthly mean AOD in 2017. The shared preference is the median of
input similarities. The upper and lower whiskers denote 75th percentile + 1.5 interquartile range
and 25th percentile — 1.5 interquartile range, respectively. The upper and lower boundaries of
boxes denote 75th and 25th percentiles, respectively. The black line within each box denotes the
median value. Note that #* is the number of nodes in cluster .

(Figure 1 is a 1.5-column fitting image)

Table 1. Summary of clustering characteristics in the sensitivity analysis shown in Fig. 1

LST AOD
¢ ¥ max ¥ min nFave K ¥ max ¥ min nFave K
1 31 6 15.0 32 24 1 12.1 32
2 28 6 14.6 33 30 1 12.1 32
3 26 6 13.7 35 29 1 11.7 33
4 27 6 14.6 33 27 1 114 34
5 27 6 14.6 33 27 1 114 34
6 27 6 14.6 33 28 1 114 34




Note: 7max is the maximum number of members within a cluster, #“min is the minimum number
of members within a cluster, n*aye is the average number of members within a cluster, and X is

the number of clusters.

3. Results
3.1 Clustering patterns of U.S. cities based on geographical distance

We first perform the affinity propagation (Frey & Dueck, 2007) over 481 CONUS cities
using geographical distance as a similarity measure. The geographical locations of these cities
are shown in Fig. 2a. In affinity propagation, we use the median value of negative geographical
distances as the shared preference with the damping factor of 0.7 (see Section 2.3). The urban

clustering pattern based on pure geographical distance is shown in Fig. 2b.
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Fig. 2. Geographical distribution of (a) 481 CONUS cities with population greater than 50000
and their sizes, and (b) 32 urban clusters using affinity propagation based on geographical
distance. Cities with black edges are centers/exemplars of clusters. In affinity propagation, the
shared preference s(j, ) is the median value of the input similarity matrix, and the damping factor

A1s 0.7. Clusters C1-C8 are examples: C1 and C2 are centered at regional population centers,



C3—C6 are clusters of multiple metropolitans, while C7 and C8 are clusters of isolated remote
cities.

(Figure 2 is a 2-column fitting image)

As shown in Fig. 2b, 481 CONUS cities are grouped into 32 distinct clusters, each
centered on a city that has relatively similar geographical distances from others within the same
group. It is noteworthy that most cluster centers are already existing metropolitans including
their peripheral cities like Phoenix, Minneapolis—St. Paul, Atlanta, and Houston, or regional
population hubs such as Salt Lake City and Albuquerque (see clusters C1 and C2 in Fig. 2b). Ina
dense belt of built-up areas, multiple metropolitans can be merged into one cluster concentrated
around the geographical center, like in Southern and Northern California, Florida, and Northeast
Corridor (clusters C3—C6 in Fig. 2b). Isolated smaller cities distant from megacities are grouped
into separate clusters such as those in Texas Great Plains and Deep South areas (clusters C7 and
C8 in Fig. 2b). The distribution of these clusters and their structures are consistent with the
existing or planning megaregions (Regional Plan Association, 2008), suggesting that the
clustering of urban areas is not arbitrary, but reflecting the complex dynamics of urban evolution
at multiple scales ranging from top-down centralization to bottom-up self-organization (Allen,
1997; Batty, 2008). In practice, the aggregation of cities has far-reaching impact on the
development of regional transportation networks, power grids, and geographical, economic, and
political hubs (Albert et al., 2004; Regional Plan Association, 2008; Seto, Reenberg, et al., 2012).
Such pattern also provides new insight into system-based sustainable planning of complex urban

systems to combat emergent urban environmental challenges, as shown hereafter.



3.2 Urban clustering in a short-term extreme heat wave event

Here we examine the pattern of urban clustering during a continental-scale extreme heat
wave in 2006. This heat wave was the most extreme one in the analyzed 18 years (2000-2017)
based on remotely sensed daytime LST data. The satellite-based 8-day mean daytime LST data
are used to derive differences in thermal responses among cities. We combined both the LST
difference and geographical distance to determine the similarity (see Section 2.4). Frey & Dueck
(2007) suggested in their comparisons that when compared to other clustering methods, the
affinity propagation algorithm is more robust and only requires two prescribed parameters (see
Section 2.3): one is the shared preference s(j, j) for node or city j, initiated with an equal chance
for each city to be a cluster center; and the other is the damping factor A, introduced to reduce
possible numerical oscillations (Frey & Dueck, 2007). We evaluate the sensitivity of five metrics
as functions of cluster number for optimization; results are shown in Fig. 3a—c. The shaded areas
in Fig. 3 denote the range between the recommended s(j, j) values (minimum and median of the
input similarity matrix, i.e., A* and B*, respectively) (Frey & Dueck, 2007).

A damping factor > 0.5 has only marginal impact on the clustering result, as shown in
Fig. 3a. On the other hand, the number of clusters identified by the algorithm increases with the
value of the shared preference. As shown in Fig. 3c, the optimal cluster numbers derived by
different metrics vary, as the optimal solutions vary with the evaluation criteria, but are not too
deviated from the recommended s(j, j) values (A* and B*). For illustration, an intermediate
optimal solution suggested by Davies—Bouldin index y (Davies & Bouldin, 1979) is selected
here, partitioning 481 cities into 26 clusters. Figure 4 shows the urban clustering pattern during

the selected heat wave event based on metric .
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Fig. 3. Sensitivity of cluster number (K) to input parameters, and evaluation of clustering results
with different metrics for (a)—(c) geographical distance and 8-day composite daytime LST during
a heat wave (July 12-19, 2006) and (d)—(f) geographical distance and monthly mean AOD in
2017. (a and d) Sensitivity of cluster number K to damping factor 4 with changing shared
preference s(j, j). Error bars represent standard deviations (1 SD) of cluster numbers with
different damping factors (4 > 0.5). (b and e) Sensitivity of cluster number to shared preference
s(j, /). Black arrows A* and B* denote the minimum and median values of the input similarity
matrix, respectively. (c and f) Evaluation of clustering results using five metrics and the
minimum and median values of the input similarity matrix. Arrows in blue show the

corresponding optimal cluster numbers with five metrics, i.e. transformed Ball-Hall index (),



Calinski— Harabasz index (f), Davies—Bouldin index (y), Dunn index (J), and global silhouette
index (¢). Arrows in black show the corresponding optimal cluster numbers with the minimum
(A*) and median (B*) values of the input similarity matrix. The damping factor 4 used in (b), (c),
(e), and (f) is 0.7, and the numbers of urban areas are 481 and 387 for (a)—(c) and (d)—(f),
respectively.

(Figure 3 is a 1.5-column fitting image)

Cities within the same cluster share similar 8-day mean daytime LST values in a
geographical vicinity (see Eq. 10). Nevertheless, the clustering during heat wave, as shown in
Fig. 4, is distinct from that based on geographical distance only (cf. Fig. 2b). As the temperature-
based affinity weighs in, urban clusters become more intricate in structure. Most clusters in the
West and Midwest U.S. (the Great Lakes) are interlaced, some spanning across multiple states
(Fig. 4). The mixture of local connectivity and teleconnection (possibly via regional atmospheric
gateways and mediators, see e.g., Runge et al., 2015) among cities is mainly a result of the
similarity in their ecosystems and dominant climate types (Peng et al., 2012; Zhou et al., 2013).
This intertwined clustering structure is in general consistent with the mosaic distributions of
climate zones (Peel et al., 2007), especially in the Western U.S. It is noteworthy that cities along
the coast of the Pacific Ocean in California are partitioned into five clusters, although most of
them have the same climate type (Csb; temperate, dry and warm summer) as defined in K&ppen-
Geiger climate classification (Peel et al., 2007). Such disparity apparently suggests the
inadequacy of coarse-scale climate classifications in capturing the pattern of urban organization,

especially under climate extremes.
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Fig. 4. Urban clustering based on geographical distance and 8-day composite daytime LST
during a heat wave in July 12—19, 2006. The shared preference s(j, j)Lst is —0.760, and the
damping factor 4 is 0.7, yielding 26 clusters. Cities with black edges are centers/exemplars of
clusters.

(Figure 4 is a 2-column fitting image)

3.3 Urban clustering under yearlong seasonal air quality changes

We then investigate the urban clustering pattern using a yearlong AOD dataset in 2017.
The satellite-based 0.47 um daily AOD data are used to derive monthly mean AOD series for
each city. Here AOD is treated as an indicator of air quality or air pollution level (Lin et al.,
2010; C. Wang et al., 2017). The similarity matrix is based on both the geographical distance and
the difference between AOD time series, as detailed in Section 2.4. Some cities in the northern
part of U.S. are not included owing to missing data in months with heavy cloud or snow cover

that undermines the quality of satellite imagery. In general, the results of sensitivity analysis and



multi-metric evaluation for AOD are similar to those for LST (Fig. 3d—f, cf. Fig. 3a—c). Note that
the optimal values suggested by these five metrics are slightly more dispersed as compared to
those in LST clustering (Fig. 3¢ and f). Similarly, we select an intermediate optimal solution,
suggested by Dunn index ¢ (Dunn, 1974), for subsequent discussion, with 387 CONUS cities

partitioned into 34 clusters. The urban clustering pattern is shown in Fig. 5.
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Fig. 5. Urban clustering based on geographical distance and monthly mean AOD in 2017. The
shared preference s(j, j)aop is —0.525, and the damping factor 4 is 0.7, yielding 34 clusters. Cities
with black edges are centers/exemplars of clusters.

(Figure 5 is a 2-column fitting image)

The clustering pattern for monthly mean AOD data (Fig. 5) is more isolated when
compared to that for LST data (Fig. 4). Cities within the same cluster are close to each other,
subject to similar synoptic systems and constrained by regional topography (Chan & Yao, 2008),

resulting in enhanced affinity in AOD responses. In addition, extensive anthropogenic emissions



of air pollutants strongly contribute to regional air pollution through atmospheric transport and
dispersion pathways (Chan & Yao, 2008; Zhang et al., 2014), leading to changes in remotely
sensed AOD (Voulgarakis et al., 2015; You et al., 2015). The connectivity and clustering among
cities are therefore reinforced by these synergistic interactions. Although the emission source and
pollution dynamics cannot be directly determined using the MODIS AOD product per se, the
clustering pattern shown in Fig. 5 are generally in line with existing observations and model
simulations. For example, cities located within San Joaquin Valley in California are grouped into
one cluster, consistent with the structural patterns found in observations and WRF/Chem model
simulations of pollutant concentrations emitted from various sources (Zhang et al., 2014). Urban
areas in the Sonoran Desert such as Phoenix metropolitan are rather isolated from those in the
northern part of Arizona, owing to the difference in pollution sources (e.g., dust emissions) and

topography (Tao et al., 2013).

4. Discussion

We have shown that the urban clustering of U.S. cities, in the face of degraded thermal
and air quality, is in general modulated by the synergistic interplay of geographical conditions
and land—atmosphere interactions across multiple scales, ranging from atmospheric boundary-
layer processes to synoptic transport. At finer such as regional scales, the framework can be
readily adjusted by restraining maximum link distances to inspect the local structure of
connectivity. Here we examine the impact of distance threshold on urban clustering during the
extreme heat wave episode (July 12—19 in 2006, same as Section 3.2). As shown in Fig. 6,
limiting the maximum distance within each cluster leads to the division of existing clusters and

the emergence of smaller clusters. For instance, in response to the maximum distance threshold



changing from 500 km to 300 km, the number of urban clusters in the Northeast U.S. increases
from three to six (Fig. 6b—d, cf. Fig. 6a). Meanwhile, the division of the originally aggregated
clusters makes individual megapolitans (e.g., Greater Boston) emerge as new centers (Fig. 6d).
Similarly, the interstate California—Arizona connectivity is disentangled by setting the maximum
distance threshold to e.g., 500 km (Fig. 6m—p). Using spatial distance as a controlling parameter,
the emergence of newly clustered urban areas within the regional sub-systems reveals the scaling
law or fractal nature of urban clustering identified in this study (see also Fig. 6e-1). It should be
noted that Fig. 6 only qualitatively exemplifies how the maximum distance threshold can change
the urban clustering pattern. A realistic determination of accurate threshold, on the other hand,
depends on the physical scale of the underlying dynamics of agglomeration. For example,
evaluating the impact of large weather systems (e.g., tropical cyclones) on clustering requires a
typical threshold scale around 10>~10° km, whereas a much smaller threshold is physical for the
airborne pollutants generated in e.g., a nuclear accident.

Similarly, various local optima resulting from metrics analysis (Fig. 3¢ and f) show
significant multilevel connectivity of urban environmental systems. The examples of clustering
patterns determined based on different metrics are shown in Figs. B.1 and B.2, Appendix B.
Compared to the selected intermediate optimal solutions (Figs. 4 and 5), smaller numbers of
clusters render larger affinity groups with more cities, while the opposite holds for greater
numbers of clusters. Corresponding to the emergence of scaling at multiple scales, there also
exist multiple solutions of affinity grouping that can be ordered hierarchically (Batty, 2008). This
is particularly so in the case of urban clustering under the yearlong seasonal air quality changes,
as indicated by the dispersed distribution of optimal solutions in the s(j, j) space (Fig. 3f).

Mesoscale atmospheric transport promotes the synchronization of air pollution in cities far apart,



for example, in the Great Lakes area as induced by lake breezes (Fig. B.2a, Appendix B). Urban
connections at relatively limited scales, however, tend to be more localized and isolated; some
clusters have only 1-2 cities due to their geographical characteristics, such as Salt Lake City and

Casper (Fig. B.2b, Appendix B).
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Fig. 6. Regional impact of distance threshold on clustering during a heat wave in July 12-19,
2006, showing the evolution of clusters in (a)—(d) Northeast U.S., (¢)—(h) Great Lakes—Great
Plains, (1)—(1) Southwest U.S., and (m)—(p) California—Arizona. The four columns from left to
right show results with distance threshold values of infinity (no distance threshold), 500 km, 400

km, and 300 km, respectively. Cities with black edges are centers/exemplars of clusters.



(Figure 6 is a 2-column fitting image)

On the other hand, the clustering can be affected by the differences in characteristics even
for the same environmental stressor. To illustrate this, we select two heat wave events during
June 25-July 2 and July 310, both in 2012, in addition to the one analyzed in Section 3.2. The
daytime LST anomalies during the three heat waves, when compared to the normal summer
daytime LST, are shown in Fig. 7. Note that Fig. 7 uses MOD11B2 dataset, and the “normal
summer” is the average condition of 18 warm seasons (May 1-September 30 in 2000-2017, as
mentioned in Section 2.1). Figure 8 shows the urban clustering patterns in the two heat waves in
2012; solutions with 26 clusters are shown to ensure consistency (cf. Fig. 4).

The locations of LST anomalies were slightly different in three heat waves, showing the
sub-seasonal atmospheric variability (Lopez et al., 2018; Teng et al., 2013). During the heat
wave in 2006, the LST anomalies well above 10 °C were centered over South Dakota, Wyoming,
Nebraska, Kansas, and Oklahoma (Fig. 7a). In the heat wave during June 25—July 2, 2012, the
largest positive LST anomalies were distributed over states further south (Fig. 7b). In contrast,
the heat wave during July 3—10 in 2012 had multiple centers of positive LST anomalies (Fig. 7¢).
The difference in geographical locations of anomalies causes discrepancies in the spatial extent
of clusters and even spatial structures over these states. For example, the cluster centered in
Colorado during the heat wave in June 25-July 2, 2012 has fewer cities than in the other two
heat waves (see clusters C9 and C15 in Fig. 8). Likewise, the large area of negative LST
anomalies (lower than —5 °C) in Washington leads to a more densely distributed cluster (cluster
C10 in Fig. 8a, cf. cluster C16 in Fig. 8b). Nevertheless, the similarity in LST distribution in

three heat wave events generates similar structures for some urban clusters. The relatively small



LST anomalies (less than +2.5 or +5 °C) contribute to the persistence of the interlaced clusters in
the coastal areas in California (Figs. 4 and 8). The positive LST anomalies in the two heat waves
in 2012 also share similar geographical distribution in the Northeast U.S., Kentucky, and

Tennessee, leading to nearly identical clustering patterns in these regions (clusters C11-14 and

17-20 in Fig. 8).
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Fig. 7. Daytime LST anomalies during heat waves in (a) July 12—-19, 2006, (b) June 25-July 2,
2012, and (c) July 3—-10, 2012, and (d) normal summer (May 1-September 30) daytime LST in
2000-2017. Note that the data source is MOD11B2 product.

(Figure 7 is a 2-column fitting image)
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Fig. 8. Urban clustering based on geographical distance and 8-day composite daytime LST
during heat waves in (a) June 25-July 2, 2012 and (b) July 3—10, 2012. The values of the shared
preference s(j, j)Lst are —0.700 and —0.775 for (a) and (b), respectively. The damping factor 4 is
0.7, yielding 26 clusters in both cases. Clusters C9-20 are examples. Cities with black edges are

centers/exemplars of clusters.



(Figure 8 is a 2-column fitting image)

The urban clustering patterns of CONUS cities have far-reaching implications beyond the
local geographical or climatic similarity. For instance, cities belonging to the same cluster often
exhibit long-distance connectivity and their responses to environmental stressors resemble one
another. For different environmental indicators, CONUS cities are clustered in different affinity
groups yet with intrinsic similarity inherited from the bioclimate zones to which they belong.
Urban clustering explored in this study is therefore a result of synergistic interplay that shows
how different environmental variables are coordinated in conjunction with local geographical
and climatic conditions via long-range atmospheric gateways. The findings offer a more
fundamental and holistic means in representing the local and long-range connectivity of the built
environment than environmental similarity that based upon background climate regions or
bioclimate zones. In practice, the environmental similarity (in a broader sense) revealed by urban
clustering will be informative to the implementation of urban planning strategies in local cities or
with cross-regional synergy. One may infer that implementing urban green infrastructure in a
like manner would generate similar cooling effect in cities within the same cluster, as observed
in numerical simulations (C. Wang, Wang, et al., 2018; C. Wang, Wang, & Yang, 2019); but its
efficacy may vary significantly for cities belong to different clusters yet geographically close.
This is also applicable to urban groups under seasonal air quality changes.

The existence of structural patterns in urban aggregation goes beyond the present
examples in CONUS cities. For example, similar urban clustering patterns emerge in long-term
precipitation climatology as well (see details in Appendix C). Arguably, multiscale clustering

and the underlying scaling properties are deemed universal in cities that are constantly evolving



(Barabasi & Albert, 1999; Batty, 2008). Within the same city, similar landscapes manifest
aggregated patterns of environmental quality (equivalent to “local” clusters) (Stewart & Oke,
2012; D. Xu et al., 2020). At continental or global scales, cities with similar landscape properties
show synchronous climatic patterns over time (Chan & Yao, 2008; Peng et al., 2012; Zhou et al.,
2013). The presumed symmetry of similarity can be relaxed to extend the application of the
current framework to more complex climate systems with directed and lagged connections. For
instance, the proposed analysis can be extended to include teleconnections bearing memories of
decadal climatic variability, such as the El Nifio-Southern Oscillation (Tsonis & Swanson,
2008), or urban exposure to extreme flood or drought hazards. Not only would such assessments
shed new light on the understanding of underlying physical processes, they can also serve as
valuable reference sources for field experiments and model simulations of urban climates; for
example, cities belonging to the same cluster should be included in the same numerical domain
in simulations.

Furthermore, ongoing urban transformation requires system-based (instead of objective-
or process-based) sustainable urban development (Ramaswami et al., 2016). The large-scale
implementations of mitigation and adaptation strategies, especially those in top-down blueprint
planning, will need to be informed and advanced by the structure of urban clustering (China
Development Research Foundation, 2013; Seto, Reenberg, et al., 2012). On the other hand, the
implementation of urban planning strategies in different cities can be informed and reinforced
via clustering structure. For example, the change of local environment induced by policy-driven
strategies, such as emission standards of greenhouse gases and pollutants, can directly or
indirectly impact the environmental quality of other cities through within-cluster dispersion. The

long-range effect can be made possible as well via trans-cluster teleconnections through synoptic



circulation (physical) or information sharing (non-physical). In addition, international city
networks (e.g., C40 Cities) targeting information sharing are growing to incorporate an
increasing number of major metropolitans, whereas vast built environment is still left out (Acuto,
2018). It is therefore imperative for urban networks and polities in their holistic designs to

consider the intertwined connectivity and multiscale clustering of cities for future development.

5. Concluding remarks

The clustering patterns of U.S. cities under different environmental stressors are analyzed
in this study using the affinity propagation, a message-passing-based clustering method. The
remotely sensed LST and AOD data are used as the urban environmental indicators under
extreme heat waves and yearlong seasonal air quality changes, respectively. Driven by
environmental similarity and synoptic atmospheric transport, CONUS cities exhibit highly
organized spatial structures, manifesting distinct clustering patterns at multiple scales in response
to these stressors. Clustering based on the proposed generic framework is informative to
implementing urban planning strategies at different spatial scales (e.g., similar efficacy of a heat
mitigation strategy in cities within the same cluster). It can also provide critical information on
the design of urban field experiments and numerical simulations in terms of the study area,
simulation domain, etc. In addition, the implications of clustering for urban system development
are profound but twofold: a catastrophic environmental event (e.g., a severe pollution episode)
can be sealed off within a local cluster, whereas the effectiveness of a local urban mitigation
strategy can also be circumscribed due to the lack of long-range connectivity.

It is noteworthy that the proposed framework of clustering analysis is transferable beyond
applications based on LST and AOD data with the prescribed methods used in this study. Other

remotely sensed, observed, or simulated datasets with different spatial and temporal resolutions



(when available) can be applied as well to address different urban environmental issues at
multiple scales (as shown in Appendix C). Examples include the impact of regional climate on
urban vegetation growth using vegetation and ecological indices, the variability of human
exposure to air pollution in the same city with census-based population data, and the risk
assessment for coastal cities based on hurricane frequency and hurricane-related mortality data.
Ground-based measurements, such as those by weather stations or flux towers, will be valuable
supplementary to remotely sensed data products in depicting the urban clustering structure, as
their data quality is less affected by cloud covers. Furthermore, for multiple environmental
events (e.g., heat waves in CONUS), the proposed method can be applied to determine a master
pattern of urban clustering using a frequency/probability approach. This can be done by first
determining the clustering pattern for each event (e.g., a single heat wave), and then the
connectivity between a pair of urban areas can be calculated as the probability belonging to the
same cluster. The master clustering pattern will resemble a graphic representation of an urban
“network” with manifest topology such as core—periphery structure (Newman, 2018). This way,
the proposed algorithm of urban clustering can be readily connected with more versatile and
powerful techniques of network modeling based on graph theory.

Moreover, the proposed method can be extended to reveal more complex and dynamic
structures of urban clustering, such as the scaling property, core—periphery organization, and
synchronization of critical urban phenomena (such as the synergy of heat waves and urban heat
island, see e.g., C. Wang et al., 2020). The results of such analysis will need to be independently
evaluated with field measurements or more advanced topological analysis like network theory (C.

Wang & Wang, 2020). Nevertheless, the study provides a new framework for future urban



environmental research and sustainable planning, especially for those fueled by remotely sensed

data, in not only U.S. cities but also urban areas in other regions and countries.
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Appendix A. Clustering evaluation metrics
We assume that the affinity propagation algorithm produces K clusters consisting of N
nodes, and each cluster k contains #* nodes (or members, M¥) centered at their centroid G*. Then

the node dispersion within a cluster £ can be expressed as

" 2 1 it 2
WCh, =Y |Mf -G == X |mf-Mmi, (14)
i=1 a1 j=1,i<
and the dispersion among all clusters is calculated based on distances of all centroids,
K 2
BC,, =>.n|¢" =g , (15)
k=1

where G is the centroid of all nodes (Calinski & Harabasz, 1974). Note that M denotes node i

in cluster k. The following metrics are functions of cluster number K, of which the local or global
extrema determine the optimal clustering results.
The Ball-Hall index (Ball & Hall, 1965) is to measure the mean within-cluster

dispersion, defined as

S k
Z WC disp
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Equation 16 follows the formulation in Vendramin et al. (2010), although different formulas for
this index have been used in other literature (e.g., Dimitriadou et al., 2002). The optimal

clustering is determined through the maximum of the transformation function (Milligan &

Cooper, 1985; Vendramin et al., 2010)

() = |G K =D -y (K)|
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The Calinski— Harabasz index (Calinski & Harabasz, 1974) is analogous to the F-test

given as



N-K)BC,
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and the global or local maximum indicates that the clustering result has a high between-cluster
dispersion with a low within-cluster dispersion.

The Davies—Bouldin index (Davies & Bouldin, 1979) is defined as

@ +(0
o S 2 "

while for each cluster k& the mean dispersion is
1 &
S -a )
i=1

The minimum Davies—Bouldin index suggests system-wide low within-cluster dispersions and
high between-cluster dispersions (Davies & Bouldin, 1979; Milligan & Cooper, 1985).
The Dunn index (Dunn, 1974) quantifies the extreme distances among nodes within the

same cluster and those in different clusters using the ratio

min dist, ;.
O(K) = & , (21)
max diam,
where dist, . is the distance between the closest nodes of clusters & and &',
dist,,, = min M} —M;" , (22)
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and diam, is the diameter of cluster k£ measured by the largest distance between two nodes,

diam, = max

i#j,ien" ,jen

M -M. (23)

k

The optimal clustering has the maximum Dunn index value.



The global silhouette index (Rousseeuw, 1987) is the average silhouette index for all

clusters, given as
K
Ky == 3", (24)
K k=1

while for each cluster , the silhouette index & is the average of all nodes within this cluster,
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with ¢ being the silhouette index for node 7 in cluster k. The average distance between node i

and all other nodes in cluster & is evaluated as

nk
k
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The variable sil; , 1s the minimum of the average distance between node i (in cluster k) and all

other nodes in other clusters,
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The maximum value of the global silhouette index implies that the within-cluster dispersion is
much less than the minimum between-cluster dispersion (Rousseeuw, 1987), and therefore the
result is the optimal clustering.

It should be noted that different clustering evaluation metrics might yield different
number of affinity groups. Nevertheless, the key objectives of an optimal clustering among all

metrics are similar: maximizing the distinction among clusters (well-separated), meanwhile

minimizing the dispersion within each cluster (cohesive).



Appendix B. Scaling of urban clusters based on different metrics
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Fig. B.1. Scaling of urban clusters based on geographical distance and 8-day composite daytime
LST during a heat wave in July 12-19, 2006. (a) Clustering pattern with less affinity groups
when compared to Fig. 4. The shared preference s(j, j)Lst is —1.600, and the damping factor 4 is

0.7, yielding 17 clusters. This solution is suggested by transformed Ball-Hall index «, Calinski—



Harabasz index £, and global silhouette index ¢, while using the minimum value of the input
similarity matrix as the shared preference yields identical results. (b) Clustering pattern with
more affinity groups when compared to Fig. 4. The shared preference s(j, j)Lst is —0.497 (the
median value of the input similarity matrix), and the damping factor 4 is 0.7, yielding 32 clusters.
Cities with black edges are centers/exemplars of clusters.

(Figure B.1 is a 2-column fitting image)
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Fig. B.2. Scaling of urban clusters based on geographical distance and monthly mean AOD in
2017. (a) Clustering pattern with less affinity groups scale when compared to Fig. 5. The shared
preference s(j, j)aop is —3.270, and the damping factor 4 is 0.7, yielding 9 clusters. This solution
is suggested by Calinski—-Harabasz index  and Davies—Bouldin index y. (b) Clustering pattern

with more affinity groups when compared to Fig. 5. The shared preference is —0.407, and the



damping factor 4 is 0.7, yielding 48 clusters. This solution is suggested by global silhouette index
e. Cities with black edges are centers/exemplars of clusters.

(Figure B.2 is a 2-column fitting image)



Appendix C. Urban clustering under long-term precipitation climatology

We further explore the urban clustering pattern based upon 30-year (1981-2010) monthly
precipitation climatology. We retrieved the gridded precipitation climatological data from the
ClimateNA dataset (T. Wang et al., 2016). ClimateNA historical baseline climate dataset was
compiled from multiple PRISM (Parameter-elevation Relationships on Independent Slopes
Model) datasets (Daly et al., 2008) over the CONUS, and British Columbia and Prairie provinces
in Canada, and was generated based on ANUSLIN method (McKenney et al., 2011) for the rest
of North America. We used the latest release of the 1 km baseline climate dataset (1981-2010)
and extracted the 30-year average monthly total precipitation data (hereafter “monthly
precipitation climatology”). Note that the fine resolution data were downscaled using bilinear
interpolation and local evaluation adjustment approaches, and the accuracy has been evaluated
with observations from 4891 weather stations (T. Wang et al., 2016). Similarly, the monthly
precipitation averaged over each urban area (city) is used in Eq. 8 as the environmental/climatic

indicator, and the distance function is

> [prT —PP1]

dify = . @8)

for 12 monthly precipitation (PPT) values.

Based on sensitivity test and clustering evaluation metrics, we select an intermediate
solution using the median value of the input similarities for illustration. With the prescribed
shared preference, all CONUS cities are partitioned into 33 clusters. It is noteworthy that the
clustering result using median value is close to the solution suggested by Dunn index (J) (Dunn,

1974). Figure C.1 shows the urban clustering pattern based on precipitation climatology.
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Fig. C.1. Urban clustering based on geographical distance and monthly precipitation climatology
in 1981-2010. The shared preference s(j, j)ppr is —0.646, and the damping factor 4 is 0.7, yielding
33 clusters. Cities with black edges are centers/exemplars of clusters.

(Figure C.1 is a 2-column fitting image)

The urban clustering pattern for monthly precipitation climatology generally agrees with
the spatial distribution of both annual precipitation and seasonal climate (Chen et al., 2013; Daly
et al., 2008). Unlike clustering under heat wave condition or air quality degradation (Figs. 4 and
5), cities on the northern coast of the Gulf of Mexico in Louisiana, Mississippi, Alabama, and
North Florida are grouped into one cluster. Urban areas along the coastline of the Pacific Ocean
in Oregon and Washington within the same cluster share a similar precipitation pattern, i.e., dry
summers and wet winters (Chen et al., 2013), while during heat wave conditions they belong to
2-3 clusters. Likewise, the North American Monsoon System brings extensive precipitation to

the Southwest U.S. during summers, enhancing more cohesive clustering of cities in this area



when compared to that based on LST or AOD. Such differences exist in other regions as well
(e.g., in the Upper Mississippi River Basin) and persist even when the number of clusters varies,
revealing the consistency of the background long-term precipitation climatology in affecting the

similarity among cities.
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