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Abstract: As one of the most sensitive areas to climate change, drylands cover ~40% of the Earth’s 16 
terrestrial land surface and host more than 38% of the global population. Meanwhile, their 17 
response to climate change and variability carries large uncertainties as induced by background 18 
climate, topography, and land cover composition; but there is a lack of intercomparison of different 19 
dryland ecosystems. In this study, we compare the changing climate and corresponding responses 20 
of major natural vegetation cover types in Xinjiang and Arizona, two typical drylands with similar 21 
landscapes in Asia and North America. Long-term (2002–2019) quasi-8-day datasets of daily 22 
precipitation, daily mean temperature, and Normalized Difference Vegetation Index (NDVI) were 23 
constructed based on station observations and remote sensing products. We found that much of 24 
Xinjiang experienced warming and wetting trends (although not co-located) during the past 18 25 
years. In contrast, Arizona was dominated by warming with insignificant wetting or drying trends. 26 
Significant greening trends were observed in most parts of both study areas, while the increasing 27 
rate of NDVI anomalies was relatively higher in Xinjiang, jointly contributed by its colder and drier 28 
conditions. Significant degradation of vegetation growth (especially for shrubland) was observed 29 
over 18.8% of Arizona due to warming. Our results suggest that responses of similar natural 30 
vegetation types under changing climate can be diversified, as controlled by temperature and 31 
moisture in areas with different aridity. 32 
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 34 

1. Introduction 35 

Drylands, such as deserts, grasslands, and savanna woodlands, are critical environments 36 
usually featuring scarce and unreliable precipitation, very high evaporation rate, and limited water 37 
resources [1]. These areas can be categorized into four subtypes: hyper-arid, arid, semi-arid, and dry 38 
subhumid drylands, all with the long-term ratio of mean annual precipitation to potential 39 
evapotranspiration (aridity index) below 0.65 [2]. Dryland ecosystems cover about 40% of the Earth’s 40 
land surface and account for ~40% of the global net primary productivity, playing a vital role in the 41 
global carbon cycle [3,4]. For instance, Ahlström et al. [5] found that the trend and interannual 42 
variability of the carbon sink (CO2 uptake by ecosystems) are dominated by semi-arid ecosystems. 43 
Via dust–cloud interactions, the large amount of mineral dust aerosols emitted from drylands (e.g., 44 
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deserts) modify energy balance and hydrological cycle, and can therefore either suppress or enhance 45 
precipitation [3,6]. Drylands are also home to some of the most diverse biomes of flora and fauna, 46 
providing an indispensable natural laboratory for studying the evolution and adaptation of species 47 
under extreme conditions and changing climate [7]. Moreover, drylands sustain more than 38% of 48 
the global population, with 90% of these dryland inhabitants living in developing countries [1,8]. 49 
The close interactions between dryland ecosystems and anthropogenic activities make drylands a 50 
critical component in improving human well-being and global sustainability. 51 

Drylands are one of the most sensitive areas in response to climate change and human activities 52 
[9]. In general, the aridity over global drylands has increased since 1950, and this trend is projected 53 
to continue in this century, as shown in observations and numerical simulations [3,10,11]. The 54 
increasing aridity, along with the rapidly expanding dryland development, may result in dryland 55 
expansion and desertification. For example, Huang et al. [9] reported an increase of 11% in dryland 56 
area by the end of this century under RCP 4.5 when compared to 1961–1990. On the other hand, 57 
drylands exhibit strong local and regional variability in their responses to climate change, primarily 58 
due to differences in topography, climate type, soil types, etc. Such spatial variability also emerges in 59 
the phenological dynamics of dryland vegetation (such as growth, mortality, and responses to 60 
disturbances) via the coupled ecological, hydrological, and human systems [12,13]. Furthermore, 61 
even over the same dryland, different spatial and temporal patterns of temperature and 62 
precipitation can lead to diverse responses in dryland ecosystems [14,15]. These uncertainties pose 63 
great challenges to the sustainable planning of dryland development and the prediction of the future 64 
dryland ecosystems, necessitating comparisons of drylands located in different climate regions.  65 

In recent decades, satellite remote sensing techniques have enormously contributed to the 66 
detection of dryland ecosystem changes (especially those with sparse in situ observations) as well as 67 
the comparisons among different drylands across multiple spatial scales. Various vegetation indices 68 
and parameters have been used in existing research to evaluate dryland vegetation dynamics; 69 
examples include simple ratio, normalized difference vegetation index (NDVI), enhanced vegetation 70 
index, leaf area index, and vegetation optical depth [16–21]. As the most widely used vegetation 71 
index, NDVI is sensitive to canopy structure, chemical content (e.g., green biomass and leaf area 72 
index), photosynthetic activities, and vegetation production in areas with sparse canopies (as in 73 
drylands) [17,22–24]. In particular, NDVI products based on the Advanced Very High Resolution 74 
Radiometer (AVHRR) sensor (since 1981) and the Moderate Resolution Imaging Spectroradiometer 75 
(MODIS) sensor (since 2000) have been developed, enabling consistent long-term evaluations over 76 
drylands [25–27]. It should be noted that for interannual or decadal dryland analysis, most existing 77 
studies are based on annual NDVI data (e.g., [15]), and there is a need for finer scale (monthly and 78 
sub-monthly) analysis to examine the intra-annual variability of vegetation dynamics [3]. 79 

In this study, we aim to fill these knowledge gaps by comparing sub-monthly (quasi-8-day 80 
scale) vegetation response to climate over two typical drylands in China and United States (U.S.): 81 
Xinjiang and Arizona. Located in the northwestern China, Xinjiang is one of the driest regions in the 82 
world and has the largest area of dryland ecosystems in China. Arizona is in the southwestern U.S. 83 
with typical hot desert climate in its southern part. Although located in two continents with different 84 
climates (see Section 2.1 for details), these two regions feature very similar natural landscapes 85 
ranging from desert and shrubland to forests and wetlands (Figure 1), and even share some common 86 
species such as saltcedar (Tamarix chinensis). Both regions have also shown significant responses of 87 
vegetation dynamics to the changing climate in the past decades [28,29]. On the other hand, 88 
vegetation over similar landscapes or land cover types may exhibit distinct responses to similar 89 
climate change and variability. A systematic comparison of climate and vegetation growth in these 90 
two regions is therefore needed to reveal these similarities and differences and to inform global 91 
dryland management. 92 
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Figure 1. Typical natural landscapes (desert, forest, shrubland, grassland, and wetland) in Xinjiang 94 
and Arizona. Photo credit: Fang Zhang and Peiyuan Li. 95 

As the first step, we focus on the long-term changes in vegetation growth and climate as well as 96 
the vegetation–climate relationships in this study. Section 3.1 compares the spatial distribution of 97 
land cover types and aridity in Xinjiang and Arizona. Here we select daily mean air temperature and 98 
daily precipitation as the climate indicators, and NDVI as the vegetation indicator. The construction 99 
of long-term (2002–2019) quasi-8-day time series of air temperature, precipitation, and NDVI based 100 
on observations and remote sensing techniques is detailed in Sections 2.4 and 2.5. Sections 3.2–3.4 101 
examine spatial and temporal climate change and variability as well as the response of natural 102 
vegetation based on regression analyses. Note that we limit all analyses to unchanged natural 103 
vegetation, so that the disturbances induced by (for example) land use and wildfires can be largely 104 
reduced. In Section 3.5, we select typical subregions across different climate types to examine 105 
various responses of natural vegetation over five major land cover types. Section 4 concludes the 106 
study with implications and plans for future research. 107 

2. Methods and Data Sources 108 

2.1. Study Areas 109 

Xinjiang is the largest province-level division of China with an area of 1.66 million km2. Much of 110 
this inland region has very limited water resources. The typical geographic characteristic of Xinjiang 111 
is “two basins embedded in three mountain ranges” (see Figure 2a). Altai Mountains, Tian Shan 112 
Mountains, and Kunlun mountains are located from north to south, dividing Xinjiang into two 113 
major basins, i.e., Junggar Basin (in the north) and Tarim Basin (in the south) [30]. Xinjiang can also 114 
be broadly divided by Tian Shan Mountains as northern and southern Xinjiang subregions. Located 115 
in the rain shadow of several high mountain ranges, the center of the Tarim Basin is the Taklimakan 116 
Desert (the second largest shifting-sand desert in the world), and the center of the Junggar Basin is 117 
the Gurbantunggut Desert (the second largest desert in China). The mean temperatures in northern 118 
Xinjiang are –13 °C and 22 °C in winter and summer, respectively, and the mean annual 119 
precipitation is about 210 mm, while in southern Xinjiang, the mean temperatures in winter and 120 
summer are –5.7 °C and 24.4 °C, respectively, with the annual mean precipitation less than 100 mm 121 
[31]. According to the Köppen-Geiger climate classification system (1980–2016), the dominant 122 
climate types of drylands in Xinjiang are BWk (arid, desert, and cold) and BSk (arid, steppe, and 123 
cold) [32].  124 
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Figure 2. Geographical divisions, major rivers, and major lakes in (a) Xinjiang and (b) Arizona, 126 
overlaid on the topographic map (Global Multi-resolution Terrain Elevation Data 2010, 127 
GMTED2010). 128 

Arizona is located in the southwestern U.S. with an area of approximately 0.295 million km2. 129 
Arizona can be roughly divided into three parts based on its terrain (Figure 2b): the northeast is the 130 
high-altitude Colorado Plateau, the southwest is the low-elevation Basin and Range area mainly 131 
covered by Chihuahuan Desert and Sonoran Desert, and in between the Transition Zone as a narrow 132 
SE–NW diagonal band across central Arizona [33]. Note that such physiographic division is very 133 
similar to that of Xinjiang (Figure 2a). The Transition Zone has diverse topography, climate, and 134 
geology, and is characterized by extensive mountain ranges, basins, and steep canyons with 135 
elevations from nearly 2500 m (peaks) to as low as 450 m (valley floors) [34]. Mean annual 136 
precipitation amount in Arizona is 322 mm, and mean annual temperature is ~17 °C [35]. Climate 137 
types BWh (arid, desert, and hot) and BSh (arid, steppe, and hot) prevail the southwestern Arizona, 138 
while in Colorado Plateau the dominant types are BWk (arid, desert, and cold) and BSk [32]. In 139 
contrast, the Transition Zone has multiple climate types such as Csa (temperate, dry and hot 140 
summer), Dsb (cold, dry and warm summer), and BSk.  141 

Despite being on two different continents, Xinjiang and Arizona have similar characteristics of 142 
topography and ecosystems from plains to mountainous areas. Plants adaptive to droughts are 143 
mainly distributed in shrubland and grassland at low altitude, while coniferous forests and mixed 144 
coniferous forests dominate areas at high altitudes. Similar water scarcity issues also exist in both 145 
study areas, in which plant growth over drylands can be largely constrained when precipitation is 146 
limited. Continuous socioeconomic developments with population growth and urban expansion in 147 
these two regions during recent decades have further increased the demand of domestic and 148 
irrigation-fed agricultural water (usually withdrawn from rivers, lakes, and aquifers), worsening the 149 
water scarcity issue [36,37]. On the other hand, locally and regionally varied climate changes and 150 
variability further complicate dryland management (e.g., land use and restoration), calling for a 151 
better understanding of how natural plants respond to these natural and anthropogenic impacts.  152 

2.2. Land Cover Datasets 153 

In this study, we used quinquennial land cover datasets to identify areas with unchanged land 154 
cover types in the past two decades. For Xinjiang, we adopted four products of the 1-km China’s 155 
Multi-Period Land Use Land Cover Remote Sensing Monitoring Dataset (CNLUCC 2000, CNLUCC 156 
2005, CNLUCC 2010, and CNLUCC 2015) downloaded from the Resource and Environment Data 157 
Cloud Platform, which is maintained by the Institute of Geographic Sciences and Natural Resources 158 
Research, Chinese Academy of Sciences (http://www.resdc.cn/Default.aspx). For Arizona, we 159 
retrieved four land cover products from the 30-m National Land Cover Database (NLCD 2001, 160 
NLCD 2006, NLCD 2011, and NLCD 2016) provided by the Multi-Resolution Land Characteristics 161 
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Consortium, U.S. Geological Survey (https://www.mrlc.gov/data). These four NLCD products were 162 
then resampled to 1-km resolution. 163 

Table 1. Land cover reclassification system based on CNLUCC and NLCD classification systems. 164 
Note that the values are class numbers in the original classification systems. 165 

Reclassification CNLUCC NLCD 

Water 41: river and canal  

42: lake 

43: reservoir and pond 

11: open water 

Perennial ice/snow 44: perennial ice/snow 12: perennial ice/snow 

Developed area 51: urban land 

52: rural settlement  

53: other developed lands 

21: developed, open space  

22: developed, low intensity 

23: developed, medium 

intensity 

24: developed, high intensity 

Barren land (rock/sand/clay) 61: sand  

62: Gobi 

63: saline-alkali land 

65: barren land 

66: rock and gravel 

67: other unused lands (e.g., 

alpine desert and tundra) 

31: barren land (rock/sand/clay) 

Forest 21: dense forest 

23: sparse forest 

24: other forests  

41: deciduous forest 

42: evergreen forest 

43: mixed forest 

Shrubland 22: dwarf scrub and shrub 51: dwarf scrub 

52: shrub/scrub 

Grassland (herbaceous) 31: grassland, high coverage 

32: grassland, medium 

coverage 

33: grassland, low coverage 

71: grassland/herbaceous 

72: sedge/herbaceous 

73: lichens 

74: moss 

Cropland 11: paddy field 

12: dry field 

81: pasture/hay 

82: cultivated crops 

Wetland 45: intertidal zone 

46: shoal 

64: swampland 

90: woody wetlands 

95: emergent herbaceous 

wetlands 

We reclassified the land cover types in NLCD and CNLUCC datasets into nine new classes, and 166 
the criteria of the reclassification system are summarized in Table 1. As mentioned, this study 167 
focuses exclusively on natural vegetation covers over five unchanged (across all land cover datasets) 168 
land cover types, i.e., barren land (rock/sand/clay), forest, shrubland, grassland, and wetland, to 169 
minimize the possible disturbance induced by wild fires and anthropogenic activities such as 170 
reclamation, crop rotation, and afforestation during the past two decades. 171 

2.3. Long-term Aridity Index 172 

To compare the aridity in two study areas, we calculated the annual aridity index (AI) as the 173 
ratio of annual precipitation to annual potential evapotranspiration from 2002 to 2018. We retrieved 174 
the monthly precipitation and potential evapotranspiration data from the ~4-km TerraClimate 175 
dataset [38]. TerraClimate is a global high-resolution gridded climate dataset produced based on 176 
multiple existing datasets [38]. It has been validated with observations from several station-based 177 
networks, such as the Global Historical Climatology Network, Snowpack Telemetry network, 178 
Remote Automated Weather Stations, and FLUXNET stations, showing improved accuracy as 179 
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compared to coarser resolution gridded datasets. We aggregated the monthly TerraClimate data to 180 
annual scale and computed annual AI. Further averaging 17 annual AI datasets yields a long-term 181 
(2002–2018) mean AI dataset. Following the dryland subtypes defined by Cherlet et al. [2], drylands 182 
can be classified into four subtypes based on AI: hyper-arid (AI < 0.05), arid (0.05 ≤ AI < 0.20), 183 
semi-arid (0.20 ≤ AI < 0.50), and dry subhumid (0.50 ≤ AI < 0.65). 184 

2.4. Quasi-8-day Precipitation and Air Temperature 185 

For the time series of precipitation and air temperature (maximum and minimum), 186 
observations from meteorological stations have been widely used in existing studies [15,39]. But 187 
station-based observations are limited in spatial scale and usually require spatial interpolation with 188 
quality control when used in climate–vegetation assessments. Simple spatial interpolation methods 189 
without proper quality control procedures may induce large errors over areas where meteorological 190 
stations are sparse (e.g., in Tarim Basin). Instead, here we used the gridded Climate Prediction 191 
Center (CPC) Global Unified Gauge-based Analysis of Daily Precipitation and Global Daily 192 
Temperature datasets; both datasets are archived at the Earth System Research Laboratory and CPC, 193 
National Oceanic and Atmospheric Administration (https://www.esrl.noaa.gov/psd/data/gridded/). 194 
These two CPC datasets are observation-based and available since 1979 with a spatial resolution of 195 
0.5°, and have been evaluated and used in various studies [9,40–42]. The CPC daily precipitation 196 
dataset uses the optimal interpolation objective analysis technique, with relatively high accuracy as 197 
suggested in cross-validation tests: for global land areas, the correlation with station measurements 198 
is 0.735 (bias = –0.349%), while for the U.S., the correlation is 0.811 (bias = –0.467%) [43]. The CPC 199 
daily temperature dataset is built upon a gridded climatology with orographic consideration and 200 
uses the Shepard algorithm, which is in general consistent with different observation and reanalysis 201 
datasets as shown in previous studies [41,44]. In this study, the daily (mean air) temperature is 202 
calculated as the arithmetic mean of daily maximum and minimum air temperatures.  203 

Similar to the quasi-8-day NDVI dataset, we reconstructed the quasi-8-day precipitation and 204 
air temperature data products over the past 18 years (June 2002–October 2019; see Section 2.5). 205 
Following the acquisition dates of NDVI products, the 16-day precipitation and temperature 206 
averages (cf. best pixels for NDVI) were calculated 8 days out of phase (e.g., days 1–16 and days 207 
9–24 are two consecutive quasi-8-day cycles). We also retrieved the long-term means of daily 208 
precipitation and air temperature data for years 1981–2010 and constructed the long-term means of 209 
quasi-8-day datasets. Precipitation and temperature anomalies were derived by subtracting the 210 
long-term means from the quasi-8-day time series. The seasonality is therefore removed from the 211 
time series of anomalies. 212 

2.5. Quasi-8-day Vegetation Index 213 

To evaluate the vegetation dynamics and its response to climate, we retrieved 1-km NDVI for 214 
the past 18 years (June 2002–October 2019, or from day 177 in 2002 to day 304 in 2019) from 215 
MOD13A2 and MYD13A2 Version 6 products, derived from two MODIS sensors onboard Terra 216 
and Aqua satellite platforms, respectively [45,46]. These two products are composites of the best 217 
available pixels from each period of 16 consecutive days, and are processed 8 days out of phase, 218 
jointly providing a quasi-8-day time series. Existing research has also confirmed the consistency of 219 
original daily NDVI from Terra and Aqua (R2 = 0.977 for a central U.S. study area from 2003 to 2012) 220 
[47]. We used the quality layers to remove pixels with low reliability (e.g., covered by snow, ice, or 221 
cloud). Pixels with NDVI lower than 0.1 were also excluded following previous dryland studies 222 
[48,49].  223 

We further derived the quasi-8-day times series of NDVI anomalies to remove the seasonal 224 
variability from trend analysis (see Section 3.3). The long-term (arithmetic) means of quasi-8-day 225 
NDVI from June 2002 to October 2019 were subtracted from the NDVI time series to yield the NDVI 226 
anomalies. For comparison, we also averaged available quasi-8-day NDVI data in 16 complete years 227 
(2003–2018) to derive time series of annual NDVI. 228 
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3. Results and Discussion 229 

3.1. Unchanged Land Cover Types and Aridity 230 

The reclassified unchanged land cover in Xinjiang and Arizona is shown in Figure 3a and b. The 231 
five natural land cover types (barren land, forest, shrubland, grassland, and wetland) in the past 18 232 
years (~two decades) accounted for 93.1% and 96.6% of the areas with unchanged land cover in 233 
Xinjiang and Arizona, respectively. Among the unchanged land cover pixels, 60.7% in Xinjiang were 234 
barren land (rock/sand/clay), much higher than that in Arizona (2.7%). It is noteworthy that areas 235 
classified as “barren land” can still be covered by annual and even perennial vegetation, as shown in 236 
Figure 1. Shrubland, grassland, forest, and wetland accounted for 0.6%, 29.5%, 1.9%, and 0.5%, 237 
respectively, in Xinjiang, and 72.4%, 6.9%, 14.1%, and 0.4%, respectively, in Arizona. It is clear that 238 
except for barren land, the dominant land cover type with natural vegetation in Xinjiang is 239 
grassland, and in Arizona shrubland. Forests in both study areas are mainly distributed in 240 
mountains.  241 

 242 

Figure 3. Unchanged land cover in (a) Xinjiang and (b) Arizona, and long term (2002–2018) aridity 243 
index in (c) Xinjiang and (d) Arizona. 244 

The spatial distribution of long-term AI is shown in Figure 3c and d. The majority of northern 245 
Xinjiang was covered by arid and semi-arid drylands, while much of southern Xinjiang was much 246 
drier than its northern counterpart (arid and hyper-arid types). Semi-arid drylands were mainly 247 
distributed in the Ili River Valley and mountainous areas, mixed with few dry subhumid areas and 248 
even some non-drylands at high altitudes. In particular, hyper-arid areas almost spanned across the 249 
entire Taklimakan Desert, with the driest parts being the Kumtag Desert (in the eastern Tarim Basin) 250 
and a portion of the Turpan–Hami Depression (in the southern foothills of the East Tian Shan). In 251 
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Arizona, the Colorado Plateau was dominated by arid and semi-arid drylands, while the Basin and 252 
Range mainly had arid and hyper-arid drylands. The driest part was in the southwestern Arizona 253 
along the state border. In contrast, Transition Zone and Chihuahuan Desert in the southeast corner 254 
were dominated by semi-arid drylands. Hyper-arid drylands only accounted for 3.9% of Arizona, 255 
while in Xinjiang they covered a much greater portion of land (37.3%). Arid drylands covered 256 
similar portions in both study areas (72.1% in Xinjiang and 61.5% in Arizona). Semi-arid drylands 257 
represented 37.8% of Arizona, much higher than in Xinjiang (16.9%). In general, most parts of 258 
Arizona had lower level of aridity index than Xinjiang during the past two decades. 259 

3.2. Climate Change and Variability 260 

In this section, we use linear regression to estimate the trend of daily precipitation and 261 
temperature anomalies (based on quasi-8-day time series with seasonality removed, see Section 2.4) 262 
in the study areas. The coefficient of determination (R2) measures the fit of the regression model, 263 
and the p-value is calculated in the two-tailed test of significance for the slope in the model. The 264 
change and variability of precipitation and temperature in Xinjiang from June 2002 to October 2019 265 
are shown in Figure 4, while the results for Arizona are shown in Figure 5. Despite their similarity 266 
in landscape, Xinjiang and Arizona have different climatology: Xinjiang, with a mean daily 267 
precipitation of 0.32 mm during the past two decades, is on average drier than Arizona, whereas 268 
Arizona is much hotter. The mean daily temperature was 16.50 °C in Arizona during 2002–2019, 269 
~10 °C higher than in Xinjiang (6.97 °C). These contrasts can also manifest in climate change and 270 
variability, as well as the associated vegetation responses.  271 

 272 

Figure 4. Statistics of daily precipitation and mean temperature in Xinjiang (2002–2019) based on 273 
quasi-8-day averages: (a) mean daily precipitation (mm), (b) standard deviation of daily 274 
precipitation (mm), (c) trend of daily precipitation anomalies (mm year–1, p-value < 0.05), (d) mean 275 
daily temperature (°C), (e) standard deviation of daily temperature (°C), and (f) trend of daily 276 
temperature anomalies (°C year–1, p-value < 0.05). 277 

 278 
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 279 

Figure 5. Same as Figure 4 but for Arizona. 280 

The presence of Tian Shan Mountains engenders relatively higher daily precipitation in 281 
northern Xinjiang than in southern Xinjiang (Figure 4a). Mean daily precipitation in most parts of 282 
southern Xinjiang was below 0.30 mm, lower than in most parts of northern Xinjiang (0.52 mm). 283 
The central part of Tian Shan Mountains received on average the highest mean daily precipitation 284 
(over 0.84 mm) with the strongest temporal variability, as suggested by standard deviations (Figure 285 
4b). Approximately 24.2% of the entire Xinjiang showed statistically significant (p-value < 0.05; for 286 
simplicity hereafter referred to as “significant”) increase in daily precipitation anomalies (average 287 
rate: 0.008 mm year–1). These wetting areas were mainly distributed in the middle part of the Tian 288 
Shan Mountains and oases in the northern Tarim Basin (Figure 4c). Significantly decreasing trends 289 
of daily precipitation anomalies (average rate: –0.005 mm year–1) were observed in the Cheerchen 290 
River Basin near the northern foothills of Kunlun Mountains, although these drying pixels only 291 
accounted for about 5.8% of Xinjiang. 292 

Mean daily temperature during the past 18 years in Junggar Basin was 7.94 °C, relatively lower 293 
than that in Tarim Basin (12.38 °C) (Figure 4d). A mean daily temperature of ~4.47 °C was observed 294 
in Tian Shan Mountains, while the central part of Tian Shan Mountains had mean daily 295 
temperature below 0 °C. The temporal variability of daily temperature in Xinjiang was generally 296 
weaker in the south and stronger in the north, while the strongest temporal variability was 297 
observed in Junggar Basin and Turpan–Hami Depression (Figure 4e). Significant increase in daily 298 
temperature anomalies (0.05 °C year–1) occurred in eastern Xinjiang. A warming stripe was 299 
observed running across the Tarim Basin in a north–south direction, with a significant increase rate 300 
of 0.03 °C year–1, relatively lower than that in eastern Xinjiang or the average rate in all warming 301 
areas (0.05 °C year–1). In contrast, daily temperature anomalies significantly decreased over the 302 
central part of the Tian Shan Mountains with an average rate of –0.06 °C year–1. Significant warming 303 
areas and cooling areas accounted for 41.5% and 13.5% of Xinjiang, respectively. In particular, major 304 
warming areas were not co-located with major wetting areas during the past two decades (Figure 4c 305 
and f). 306 
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It should be noted that the observed trends may inherit potential errors from the CPC datasets 307 
and can be limited by the original resolution (0.5° × 0.5°). Nevertheless, the warming and wetting 308 
trends in the quasi-8-day analysis herein are in general consistent with most existing studies based 309 
on annual or monthly datasets [31,50,51]. For example, Li et al. [31] estimated a rate of 0.03 °C year–1 310 
for mean annual temperature increase in Xinjiang from 1961 to 2005, while Xu et al. [49] found that 311 
mean annual temperature increased by 0.04 °C year–1 and 0.05 °C year–1 in northern and southern 312 
Xinjiang, respectively. The magnitude of daily precipitation based on the quasi-8-day time series is 313 
smaller than those observed in annual datasets. Discrepancies in space also exist between our 314 
results (Figure 4) and previous ones. For instance, the cooling areas and drying parts observed here 315 
have not been well documented in station-based studies. Such discrepancies are due primarily to 316 
the mismatch in temporal and spatial resolutions as well as the selection of the study periods. The 317 
quasi-8-day time series constructed here have a much finer temporal resolution than existing 318 
annual and monthly time series, which bear stronger temporal variability, contributing to the 319 
observed differences in magnitude. In addition, the observed cooling and drying trends in Tarim 320 
Basin, where meteorological stations are very sparse, may not be well captured by existing studies 321 
based on station observations with relatively simple spatial interpolation techniques [31,50]. The 322 
trends of climate indicators depend on the length of study periods as well. As pointed out by 323 
Zhuang et al. [52], annual precipitation decreased during 1981–1997 but increased during 1998–2018, 324 
although the overall trend was wetting for the entire period (1981–2018).  325 

Similar to Tian Shan Mountains in Xinjiang, the Transition Zone in Arizona featured on 326 
average the highest daily precipitation (1.10 mm) with the strongest temporal variability, while the 327 
areas in southern and northern parts of Arizona received less precipitation (Figure 5a and b). 328 
Sonoran Desert received very low mean daily precipitation (~0.50 mm), and the southwest corner of 329 
the state (Yuma County) had the least mean daily precipitation (cf. Tarim Basin in Xinjiang, see 330 
Figure 4). Located in the southeastern Arizona, Chihuahuan Desert had relatively higher mean 331 
daily precipitation (0.98 mm) than Sonoran Desert in the past 18 years. No significant changes in 332 
precipitation anomalies were observed in more than 87% of Arizona (Figure 5c). Areas with 333 
significant increases in daily precipitation anomalies (5.9% of Arizona) were mainly located in 334 
northeast and southeast corners. A small portion of the northeastern Arizona saw significant 335 
decreases in daily precipitation anomalies, together with other drying portions along the Colorado 336 
River, accounted for 6.5% of the entire state. 337 

Unlike high heterogeneity in Xinjiang (Figure 4d), a spatial transition from high temperatures 338 
in the southwest to low temperatures in the northeast was observed in Arizona, with a quite 339 
uniform distribution of temporal variability (Figure 5d and e). The highest mean daily temperature 340 
of over 22 °C was in southwestern Arizona (such as Yuma, Pima, Maricopa, and La Paz counties). 341 
In contrast, Colorado Plateau in the northeast on average featured low mean daily temperature 342 
(11.91 °C), and the mountainous areas had the lowest mean daily temperature of 8.15 °C across the 343 
entire Arizona. Much of Arizona (63.1%) was dominated by significant warming signals (Figure 4f). 344 
Daily temperature anomalies in northern Arizona increased relatively more rapidly (0.070 °C year–1) 345 
than in southern Arizona (0.037 °C year–1). The strongest warming trend (0.235 °C year–1) was 346 
observed near the central part of the Transition Zone and the southwestern edge of the Colorado 347 
Plateau (the Mogollon Rim). In contrast, a cooling area spanning across several counties (Graham, 348 
Greenlee, Gila, and southern parts of Navajo and Apache counties) was observed in the eastern part 349 
of the state (11.5% of Arizona), with temperature anomalies decreasing at a rate of 0.051 °C year–1. 350 

In general, Arizona was dominated by warming trends with insignificant changes in daily 351 
precipitation anomalies during the past two decades. Despite the paucity of (historical) climate 352 
change studies focusing exclusively on the entire Arizona, the observed patterns are found in 353 
generally good agreement with many regional studies [53–56]. For example, Garfin et al. [54] 354 
pointed out that there was only little change in mean annual precipitation from 1901 to 2010; this 355 
was later confirmed by Chylek et al. [53], in which no statistically significant trend was observed in 356 
the western part of U.S.  357 

 358 
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3.3. Vegetation Change and Variability 359 

Here again the linear regression is used to estimate the trend of NDVI anomalies (based on 360 
quasi-8-day time series with seasonality removed, see Section 2.5) and annual NDVI in two study 361 
areas. A threshold of 20% for each pixel was selected to avoid possible bias or error induced by 362 
small sample size [57]. For a complete quasi-8-day time series from June 2002 to October 2019 (n = 363 
797), the threshold is 159.4, while for a complete annual NDVI time series from 2003 to 2018 (n = 16), 364 
it is 3.2. Pixels with sample size lower than these two thresholds were removed from following 365 
analyses. We further removed pixels with unchanged cropland, developed area, perennial 366 
ice/snow, and water to limit our analyses to five unchanged natural land cover types (see Section 367 
2.2).  368 

The change and variability of quasi-8-day (June 2002–October 2019) and annual NDVI 369 
(2003–2018) in Xinjiang and Arizona are shown in Figures 6 and 7, respectively. Note that the 370 
arithmetic averages are based on available data only. For the spatial coverage of available NDVI 371 
pixels, slight differences were observed between quasi-8-day and annual NDVI time series (Figures 372 
6 and 7), owing to the use of sample size threshold (20%). Despite small spatial discrepancies, the 373 
results of mean quasi-8-day NDVI and mean annual NDVI are nearly identical (Figure 6a and d for 374 
Xinjiang; Figure 7a and b for Arizona). But the standard deviation of quasi-8-day NDVI during 375 
2002–2019 was in general much higher than that of annual NDVI, suggesting stronger intra-annual 376 
variability than interannual variability (Figure 6b and e for Xinjiang; Figure 7b and e for Arizona). 377 

 378 

Figure 6. Statistics of quasi-8-day and annual NDVI in Xinjiang: (a) mean quasi-8-day NDVI, (b) 379 
standard deviation of quasi-8-day NDVI, (c) trend of quasi-8-day NDVI anomalies (year–1, p-value < 380 
0.05), (d) mean annual NDVI, (e) standard deviation of annual NDVI, and (f) trend of annual NDVI 381 
(year–1, p-value < 0.05). 382 
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 383 

Figure 7. Same as Figure 6 but for Arizona. 384 

For Xinjiang, places with the highest NDVI levels (> 0.5) were distributed over Tian Shan 385 
Mountains and Altai Mountains, mainly covered by forest (Figure 3a). These areas also had the 386 
strongest temporal variability in the quasi-8-day time series (Figure 6b). Major part of Tarim Basin 387 
had NDVI consistently below 0.10 during the past two decades. In contrast, NDVI in most areas of 388 
northern Xinjiang was greater than 0.10. It is noteworthy that although classified as barren land, 389 
much of Junggar Basin (including Gurbantunggut Desert, see Figure 1) had low but still detectable 390 
vegetation cover, as suggested by a mean quasi-8-day NDVI of 0.16 (mean annual NDVI was 0.15). 391 
Places with relatively low NDVI levels (0.20–0.40) were mainly distributed in mountainous areas as 392 
well as the oases next to or within Taklimakan Desert and Gurbantunggut Desert.  393 

The spatial coverage of the areas with significant trend of quasi-8-day NDVI anomalies is 394 
relatively larger than that for annual NDVI (Figure 6c and f), but the spatial distributions of 395 
greening (increasing trend of NDVI) and browning (decreasing trend of NDVI) are consistent. Such 396 
comparison suggests potential limitations of using annual NDVI time series, for example, large 397 
areas with insignificant changes due to small sample size. During the past 18 years, 26.3% of the 398 
entire Xinjiang saw statistically significant increase in NDVI anomalies (Figure 6c), with a rate of 399 
0.0021 year–1 on average. This rate is close to the one estimated based on mean annual NDVI times 400 
series (0.0033 year–1) for a shorter time period (2010–2018) in Zhuang et al. [52]. Significant decrease 401 
of NDVI (–0.0016 year–1 on average) was observed only in a small portion of Xinjiang (1.7%). These 402 
browning areas were mainly distributed in northern Xinjiang (e.g., in Ili River Valley) and a few 403 
oases along the northern edge of the Tarim Basin. The spatial distribution of NDVI and its trends 404 
observed here is generally in line with existing studies [28,58,59], with minor discrepancies 405 
attributable to the aforementioned scale mismatch and the selected study period.  406 

Compared to that in Xinjiang, the proportion of areas in Arizona with mean NDVI higher than 407 
0.1 was much greater (e.g., Figure 6a vs. Figure 7a). The mean NDVI in Arizona (0.232 for annual 408 
series) was also higher than in Xinjiang (0.201). The contrast is stronger over drylands, as drylands 409 
in Xinjiang are in general drier than in Arizona (see Figure 3c and d), leading to relatively lower 410 
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level of aboveground biomass even for the same type of plant (e.g., [60]). For example, we found 411 
saltcedar, one of the most widely distributed species in Xinjiang, can grow over 5 m in Arizona, 412 
with crown width and height way higher than its common size in Xinjiang.  413 

Areas with NDVI > 0.5 were mainly concentrated in the Transition Zone along the edge of the 414 
Colorado Plateau, with relatively higher temporal variability than the rest of Arizona (Figure 7a 415 
and b). In contrast, Sonoran Desert and the southern part of Colorado Plateau (to the north of the 416 
Transition Zone) featured low NDVI levels. The minimum NDVI levels across the entire state was 417 
present over the Colorado Plateau (0.10 for both quasi-8-day and annual NDVI). The mean levels of 418 
NDVI over different land cover types show general agreement when compared to results in local 419 
scale and regional scale studies [29,61].  420 

Consistent with Xinjiang, Arizona was dominated by greening in the past two decades (Figure 421 
7c). On quasi-8-day scale, 48.0% of the state observed significant increases in NDVI anomalies 422 
(average rate: 0.0014 year–1), while 18.8% of the state saw significantly decreasing NDVI anomalies 423 
with an average rate of –0.0014 year–1. Similarly, relatively smaller spatial extent of significant 424 
greening and browning was observed when using annual NDVI time series (Figure 7f). Greening 425 
areas were mainly distributed in Transition Zone, Colorado Plateau, and Chihuahuan Desert, 426 
although the latter two were dominated by arid and semi-arid drylands. Browning areas were 427 
found in Sonoran Desert, Lower Colorado River Valley, and some areas scattered over the Colorado 428 
Plateau (Figure 7c), with relatively low NDVI (limited vegetation cover). The contrast is attributed 429 
in part to the differences in climate types, as observed across the aridity gradient of the southwest 430 
United States [62]. 431 

3.4. Response of Vegetation to Climate in Study Areas 432 

In this section, we estimate the response of quasi-8-day NDVI to daily precipitation and 433 
temperature (from quasi-8-day time series) in Xinjiang and Arizona using simple linear regression 434 
model. Following Section 3.3, we filtered out pixels with small sample size using a threshold of 20%, 435 
and retained pixels with land cover among the five unchanged natural types (see Section 2.2). The 436 
sample size for each pixel and the results of regression analyses (slope and R2) are shown in Figures 437 
8 and 9 for Xinjiang and Arizona, respectively. Note that the mean sample sizes in the significant 438 
precipitation–NDVI and temperature–NDVI regression models (p-value < 0.05) for Xinjiang are 439 
481.7 and 466.5, respectively (Figure 8c and f), while those for Arizona are 772.6 and 772.8, 440 
respectively (Figure 9c and f), primarily due to predominant clear sky conditions in Arizona. Pixels 441 
with relatively small sample size were mainly in mountainous areas due to snow or cloud cover, as 442 
well as areas covered by desert landscape with very low or even no vegetation during some seasons 443 
(NDVI < 0.10). 444 

For pixels with significant precipitation–NDVI relationships in Xinjiang, the majority (99.6%) 445 
exhibited positive relationships during the past two decades, i.e., NDVI significantly improved with 446 
increasing daily precipitation (Figure 8a). On average, quasi-8-day NDVI increased by 0.0373 for 447 
every 1 mm increase in daily precipitation (slope or rate of 0.0373 mm–1). Areas with high rate of 448 
increase (0.2 mm–1 and beyond) were mainly covered by natural vegetation (such as forest and 449 
grassland) located along the Tian Shan Mountains, Saur Mountains (to the west of Junggar Bain), 450 
and some oases in Tarim Basin. Most of these areas also had relatively high values of R2 (> 0.3) in 451 
the regression model (Figure 8b). In particular, the central part of the Tian Shan Mountains had the 452 
strongest (positive) precipitation–NDVI relationships across the entire Xinjiang, suggested by the 453 
highest values of R2 (> 0.5). The consistency of trends in NDVI and precipitation can be attributable 454 
to daily precipitation increase coinciding with vegetation growing seasons [28].  455 

In general, the dependence of NDVI on temperature change was stronger than that on 456 
precipitation in Xinjiang (Figure 8b and e), although the regression-based dependence can be 457 
suppressed by the inherent lag between temperature changes and ecosystem responses (see Section 458 
3.5). Vegetation growth significantly improved with rising temperature in Xinjiang in the period 459 
2002–2019, during which 98.7% of the significant pixels (in terms of temperature–NDVI 460 
relationships) showed positive relationships (Figure 8d). An increase of 0.0064 in NDVI was 461 
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observed for every 1 °C rise in daily temperature on average (slope or rate of 0.0064 °C–1). Areas 462 
with the most significant improvement in NDVI as temperature rises (rate ≥ 0.03 °C–1) were in Tian 463 
Shan Mountains and Altai Mountains, indicating more sensitive responses of forests to warming as 464 
compared to other vegetation types. In contrast, a large part of Gurbantunggut Desert within 465 
Junggar Basin had relatively weak dependence of NDVI on temperature (R2 < 0.1).  466 

 467 

Figure 8. Response of quasi-8-day NDVI to (a–c) daily precipitation and (d–f) daily temperature in 468 
Xinjiang using simple linear regression model: (a) slope (mm–1, p-value < 0.05), (b) R2, and (c) sample 469 
size of the precipitation–NDVI regression; (d) slope (°C–1, p-value < 0.05), (e) R2, and (f) sample size 470 
of the temperature–NDVI regression model. Note that both daily precipitation and temperature are 471 
from the quasi-8-day time series. 472 

Like in Xinjiang, almost all pixels in Arizona with significant precipitation–NDVI relationships 473 
(99.8%) had increasing trend of NDVI with enhanced precipitation (Figure 9a). On average, NDVI 474 
increased by 0.0086 for each 1 mm increase in daily precipitation in Arizona. The eastern part of 475 
Transition Zone (areas at high altitudes), Chihuahuan Desert, and the northeast corner of the state 476 
next to New Mexico experienced the highest rates of NDVI increase with daily precipitation rise (≥ 477 
0.04 mm–1). The strongest (positive) precipitation–NDVI relationships were observed over eastern 478 
Transition Zone and Chihuahuan Desert (R2 > 0.25, see Figure 9b). On the other hand, relatively 479 
weak precipitation–NDVI relationships were observed over the rest of Arizona, especially in areas 480 
affected by the North American monsoon system, mainly induced by the inconsistency between 481 
phenological cycles of dryland vegetation and variability of climate variables [61].  482 

The dependence of NDVI on daily temperature exhibited strong spatial bimodality in Arizona 483 
(Figure 9d). As shown in Figure 9d and e, major parts of Colorado Plateau, eastern Transition Zone, 484 
Chihuahuan Desert, and areas along the rivers and wetlands in Basin and Range were dominated 485 
by greening trend with rising temperature (mean rate of increasing NDVI: 0.0019 °C–1; mean R2 = 486 
0.10). In contrast, much of Basin and Range, western Arizona, and a few areas scattered over 487 
Colorado Plateau (including Grand Canyon) saw browning trend with warming (NDVI decreasing 488 
at a mean rate of 0.0016 °C–1; mean R2 = 0.12). Areas with the highest R2 values were in wetlands 489 
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along the rivers and the northeastern edge of Basin and Range surrounding the Phoenix 490 
Metropolitan Area.  491 

 492 

Figure 9. Same as Figure 8 but for Arizona. 493 

Increases in the daily precipitation benefited vegetation growth in both Xinjiang and Arizona 494 
during the past two decades, while a higher rate of NDVI increase under wetting conditions was 495 
observed in Xinjiang. This suggests that the control of daily precipitation on vegetation also 496 
depends on the aridity: severer aridity (Xinjiang) may lead to more sensitive response of vegetation 497 
to precipitation. Rising temperature contributed to improved NDVI in Xinjiang but limited 498 
vegetation growth in much of Arizona (46.1%). During the relatively short time period (2002–2019), 499 
changing climate (precipitation and temperature) has been more beneficial to enhance vegetation 500 
growth in Xinjiang (Figures 4, 6, and 8), while exacerbated warming with highly variable 501 
precipitation had led to potential ecosystem degradation in Arizona, as suggested by decrease in 502 
NDVI (Figures 5, 7, and 9). 503 

3.5. Response of Vegetation to Climate in Typical Subregions 504 

We further examine the change of vegetation (quasi-8-day NDVI anomalies) over time and the 505 
response of five types of natural vegetation covers to climate change and variability (NDVI, daily 506 
precipitation, and daily temperature, all at quasi-8-day scale) in detail by selecting three typical 507 
subregions (A, B, and C) in each study areas. We used five criteria for the selection: (1) the selected 508 
subregion should represent major geographical divisions (Figure 2); (2) the selected subregion 509 
should include all five types of natural vegetation covers (see Section 3.1), with composition similar 510 
to that of the entire study area; (3) the selected subregion should be dominated by unchanged 511 
natural vegetation covers to minimize possible disturbance; (4) within the selected subregion, each 512 
type of natural vegetation cover should represent a relatively large area (i.e., large number of pixels, 513 
see Table 2), with a sufficiently large sample size (number of available images, n in Tables 3 and 4) 514 
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in regression analyses; and (5) the select subregion should have relatively significant NDVI change 515 
in response to climate (see Sections 3.3 and 3.4). 516 

The selected three subregions in Xinjiang cover the foothills of Altai Mountains and the 517 
northern part of Junggar Basin (subregion A), the central part of Tian Shan Mountains (subregion 518 
B), and the oases in the northern part of Taklimakan Desert (C). For Arizona, the selected three 519 
subregions cover a part of Colorado Plateau in northern Arizona (subregion A), the central part of 520 
Transition Zone (subregion B), and the transition area from Sonoran Desert to Chihuahuan Desert 521 
in the Basin and Range (subregion C). The selected subregions as well as their vegetation cover 522 
types are shown in Figure 10, and the land cover compositions are summarized in Table 2.  523 

 524 

Figure 10. Geographical locations of the selected subregions in (a) Xinjiang and (b) Arizona, 525 
overlaid on the World Imagery by Environmental Systems Research Institute, Inc. (Esri): (c) Xinjiang 526 
subregion A, (d) Xinjiang subregion B, (e) Xinjiang subregion C, (f) Arizona subregion A, (g) 527 
Arizona subregion B, and (h) Arizona subregion C, with five natural vegetation land cover types. 528 

Different from in Sections 3.3 and 3.4, NDVI (anomalies), daily precipitation, and daily 529 
temperature values of each quasi-8-day cycle are arithmetic averages of all available data over pixels 530 
with the same land cover type. Three sets of simple linear regression analyses performed in this 531 
section are time–NDVI anomaly, precipitation–NDVI, and temperature–NDVI. The first set shows 532 
the change of vegetation over time, while the other two measure the dependence of NDVI on climate 533 
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change and variability. Figure 11 and Table 3 show the results of regression analyses for Xinjiang, 534 
while Figure 12 and Table 4 are for Arizona. 535 

Table 2. The composition of five natural vegetation land cover types in the selected subregions 536 
(number of pixels). 537 

 Subregions in Xinjiang Subregions in Arizona 

Subregion A B C A B C 

Barren land 21650 4906 22159 71 10 174 

Forest 1701 3316 354 2356 4745 303 

Shrubland 530 344 1366 15426 12584 15312 

Grassland 10505 24985 6978 1906 699 1094 

Wetland 466 1197 762 49 40 95 

Total (five land cover types) 34852 34748 31619 19808 18078 16978 

Fraction of subregion (%) 86.3 86.0 78.3 99.6 90.9 85.4 

 538 
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 539 

Figure 11. Change of NDVI anomalies over time and the response of NDVI to daily precipitation 540 
and daily temperature (quasi-8-day scale) for five natural vegetation cover types in three subregions 541 
in Xinjiang (2002–2019). 542 

543 
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Table 3. The dependence of quasi 8-day NDVI on time, quasi 8-day precipitation, and quasi 544 
8-day temperature in three subregions in Xinjiang. Note that n is sample size. 545 

  Barren 

land 

Forest Shrubland Grassland Wetland 

Xinjiang subregion A 

Time–NDVI 

anomaly 

Slope (year–1) 1.13 × 10–3 1.54 × 10–3 1.50 × 10–3 1.64 × 10–3 1.51 × 10–3 

R2 0.17 0.04 0.09 0.09 0.13 

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

Precipitation

–NDVI 

Slope (mm–1) 0.0092 0.0524 0.0326 0.0177 0.0396 

R2 0.05 0.03 0.03 0.02 0.03 

p-value < 0.0001 < 0.0001 0.0001 0.0003 0.0001 

Temperature

–NDVI 

Slope (°C–1) 0.0009 0.0104 0.0088 0.0042 0.0075 

R2 0.27 0.63 0.77 0.56 0.57 

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

n 625 619 598 626 606 

Xinjiang subregion B 

Time–NDVI 

anomaly 

Slope (year–1) 0.82 × 10–3 0.98 × 10–3 –0.30 × 10–3 1.13 × 10–3 1.31 × 10–3 

R2 0.03 0.01 0.00 0.03 0.06 

p-value < 0.0001 0.0006 0.4090 < 0.0001 < 0.0001 

Precipitation

–NDVI 

Slope (mm–1) 0.0720 0.1544 0.1584 0.1526 0.1320 

R2 0.57 0.57 0.51 0.62 0.55 

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

Temperature

–NDVI 

Slope (°C–1) 0.0047 0.0128 0.0134 0.0112 0.0116 

R2 0.44 0.76 0.72 0.75 0.60 

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

n 792 797 691 797 714 

Xinjiang subregion C 

Time–NDVI 

anomaly 

Slope (year–1) 1.49 × 10–3 2.07 × 10–3 4.09 × 10–3 1.91 × 10–3 1.75 × 10–3 

R2 0.41 0.31 0.49 0.45 0.37 

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

Precipitation

–NDVI 

Slope (mm–1) 0.0512 0.1242 0.0851 0.0770 0.0749 

R2 0.19 0.26 0.22 0.21 0.22 

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

Temperature

–NDVI 

Slope (°C–1) 0.0023 0.0052 0.0033 0.0033 0.0033 

R2 0.45 0.53 0.39 0.48 0.50 

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

n 797 794 795 797 791 

 546 
547 
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 548 

Figure 12. Same as Figure 11 but for Arizona. 549 

550 
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Table 4. Same as Table 3 but for Arizona. 551 

  Barren 

land 

Forest Shrubland Grassland Wetland 

Arizona subregion A 

Time–NDVI 

anomaly 

Slope (year–1) 0.31 × 10–3 0.57 × 10–3 0.32 × 10–3 0.37 × 10–3 0.15 × 10–3 

R2 0.03 0.01 0.01 0.01 < 0.01 

p-value < 0.0001 0.0014 0.0031 0.0017 0.2078 

Precipitation

–NDVI 

Slope (mm–1) 0.0028 0.0080 0.0054 0.0055 0.0076 

R2 0.04 0.05 0.05 0.04 0.05 

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

Temperature

–NDVI 

Slope (°C–1) 0.0004 0.0003 0.0007 0.0008 0.0018 

R2 0.13 0.01 0.11 0.14 0.40 

p-value < 0.0001 0.0275 < 0.0001 < 0.0001 < 0.0001 

n 795 795 796 796 796 

Arizona subregion B 

Time–NDVI 

anomaly 

Slope (year–1) 2.26 × 10–3 2.06 × 10–3 0.91 × 10–3 0.04 × 10–3 1.03 × 10–3 

R2 0.14 0.17 0.02 <0.01 0.03 

p-value < 0.0001 < 0.0001 < 0.0001 0.8827 < 0.0001 

Precipitation

–NDVI 

Slope (mm–1) 0.0041 0.0055 0.0049 0.0063 0.0043 

R2 0.02 0.04 0.04 0.03 0.02 

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

Temperature

–NDVI 

Slope (°C–1) 0.0013 0.0002 -0.0005 0.0001 0.0025 

R2 0.07 <0.01 0.01 <0.01 0.21 

p-value < 0.0001 0.3024 0.0010 0.5033 < 0.0001 

n 797 797 797 797 797 

Arizona subregion C 

Time–NDVI 

anomaly 

Slope (year–1) 0.88 × 10–3 4.62 × 10–3 0.90 × 10–3 0.23 × 10–3 1.78 × 10–3 

R2 0.09 0.41 0.03 <0.01 0.07 

p-value < 0.0001 < 0.0001 < 0.0001 0.2350 < 0.0001 

Precipitation

–NDVI 

Slope (mm–1) 0.0043 0.0126 0.0057 0.0064 0.0052 

R2 0.06 0.08 0.03 0.03 0.01 

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0006 

Temperature

–NDVI 

Slope (°C–1) 0.0001 0.0014 –0.0008 –0.0007 0.0015 

R2 <0.01 0.04 0.04 0.03 0.07 

p-value 0.2320 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

n 797 797 797 797 797 

Significant positive dependence (p-value < 0.001) of NDVI on precipitation and temperature 552 
during the past two decades was found for all five natural vegetation cover types of three 553 
subregions in Xinjiang (Figure 11 and Table 3). The strongest precipitation–NDVI relationships 554 
were observed in Xinjiang subregion B (Figure 11 and Table 3), consistent with Figure 8a and b. 555 
Different from subregions A and C, precipitation and temperatures were almost equally important 556 
to vegetation growth in subregion B. Precipitation–NDVI relationships in subregion A had the 557 
lowest R2 values, much lower than in temperature–NDVI relationships, suggesting that plants in 558 
this subregion were less affected by precipitation than by temperature. One possible reason is that 559 
this subregion is frequently governed by cold waves induced by the Siberian High during spring 560 
and fall seasons, and vegetation growth is more constrained by temperature. Similar weak 561 
precipitation–NDVI relationships also existed in Xinjiang subregion C (weaker than B but stronger 562 
than A), primarily due to the inherent lag among growing seasons, precipitation, and temperature. 563 
The linear dependence of NDVI on temperature was consistently stronger than on precipitation 564 
(Table 3). The strongest and weakest temperature–NDVI relationships were found in the coldest 565 
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and warmest subregions (B and C), respectively, echoing the nonlinear response of vegetation 566 
dynamics (e.g., net CO2 assimilation) to temperature observed in previous studies [63].  567 

The trend of NDVI anomalies over time was significant (p-value < 0.001) for most land cover 568 
types in three subregions in Xinjiang, except for shrubland in subregion B, in which slightly 569 
decreasing, although insignificant, was observed (Table 3). As the driest subregion, C saw the 570 
strongest greening trend when compared to A and B, likely because it experienced both 571 
significantly increasing precipitation and temperature during the past 18 years (Figure 4c and f). 572 
The enhanced vegetation growth driven by higher precipitation was even clearer for shrubland 573 
grown in subregion C, with the highest increasing rate and R2 among five land cover types. In 574 
contrast, greening in subregion A was mainly controlled by warming (Figure 4f), leading to higher 575 
rate of greening than in subregion B, but still lower than in subregion C. The weakest greening 576 
trend in Tianshan Mountains (subregion B) resulted from the interplay of wetting and cooling 577 
(Figure 4c and f). Plant enhancements brought by increasing precipitation can be partially 578 
counterbalanced by rising stress due to decreasing temperature; such interplay even led to 579 
browning over shrubland in subregion B (Table 3).  580 

The dependence of NDVI on precipitation was very weak (R2 < 0.1) in all three subregions in 581 
Arizona (Figure 12 and Table 4). This weak relationship was mainly due to the delayed response of 582 
vegetation growth to precipitation and the bimodality of rainfall within a year (summers and 583 
winters) [61]. For example, vegetation growth can be largely limited by excessive heat during 584 
summers, although with high precipitation brought by monsoons. Temperature–NDVI 585 
relationships in Arizona were much more complicated than in Xinjiang. Significant positive 586 
dependence of NDVI on temperature (p-value < 0.0001) was observed in all land cover types except 587 
forests in Arizona subregion A. Wetlands with relatively sufficient water supply in subregion A 588 
showed the strongest dependence on temperature (R2 = 0.40) among five land cover types, 589 
suggesting vegetation in this region was controlled by both available water and temperature 590 
(Figure 3d). Similar trends were also observed in wetlands located in subregions B and C (Table 4). 591 
No significant relationship between temperature and NDVI was observed over forest and grassland 592 
in subregion B and barren land in C. Vegetation grown in barren land is already well adaptive to 593 
high temperature, possibly leading to the observed insensitivity to temperature in subregion C. We 594 
found negative temperature–NDVI relationships for shrubland and grassland in subregion C, 595 
consistent with results shown in Figure 9d.  596 

In general, increasing NDVI anomalies were found for all five land cover types in three 597 
subregions of Arizona, although some are statistically insignificant (p-value > 0.001). Vegetation 598 
grown in subregion A on average showed no significant greening or browning trend during the 599 
past two decades, suggesting the high uncertainties induced by climate change and variability. In 600 
contrast, clear greening was observed in subregions B and C, especially for barren land and forest in 601 
B and forest in C (Figure 12 and Table 4). In particular, forest grown in subregion C was enhanced 602 
by both wetting and warming trends, while other vegetation types in the same subregion 603 
responded differently to such trends. It is noteworthy that much of Arizona was governed by 604 
warming trend (Figure 5f). The spatial discrepancies in NDVI trends highlight the important role 605 
water plays in vegetation dynamics.  606 

The colder and drier conditions in Xinjiang, as compared to Arizona, jointly contribute to more 607 
sensitive response of vegetation growth under changing climate. As a result, every 1 mm increase in 608 
daily precipitation or 1 °C increase in daily temperature led to a much greater increase in NDVI 609 
anomalies in Xinjiang than in Arizona (Table 3). This is particularly true for barren land in the driest 610 
subregions (C) in both study areas: warming contributed to enhanced barren land vegetation in 611 
subregion C of Xinjiang but had only marginal impacts in subregion C of Arizona. Temperature is 612 
particularly important for vegetation at high altitudes. For example, plants grown in barren land, 613 
forest, and shrubland showed enhanced NDVI in subregion B of Arizona but not in subregion B of 614 
Xinjiang. This is because subregion B in Arizona experienced warming while the latter one went 615 
through cooling process during the past 18 years (Tables 3 and 4).  616 
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It should be noted that relationships between climate variables and NDVI cannot be fully 617 
described by simple linear regression models used here. For areas at high altitudes (subregion B in 618 
both study areas), vegetation growth enhanced by increasing precipitation can be limited when 619 
temperature is low. Such phenomenon did manifest in Xinjiang subregion B: strong positive 620 
relationship between precipitation and NDVI only existed when daily precipitation was below ~1.3 621 
mm, but such relationship disappeared with further increase in precipitation, leading to plateaued 622 
NDVI in the high precipitation regime (Figure 11, cf. Figure 12). The response of NDVI to 623 
temperature can also be nonlinear in some subregions. Vegetation growth can be significantly 624 
suppressed at very low temperature. For subregions A and B in Xinjiang, the positive influence of 625 
precipitation on NDVI substantially diminished when daily precipitation was below ~0–5 °C 626 
(Figure 11). This is also the case for forest in subregion A of Arizona (Figure 12). The temperature 627 
threshold was relatively higher in subregion C of Xinjiang (~15 °C), in which we observed strong 628 
hysteresis of NDVI cycle in response to temperature change for all five vegetation types. NDVI 629 
stayed very low (~0.1) during the warming period in springs and increased with rising temperature 630 
only when temperature was above 15 °C. During the cooling period in falls, NDVI linearly 631 
decreased along a path above the original on in the warming period, with a relatively lower slope 632 
(Figure 11). These nonlinear processes are co-determined by the intricate interplay of several factors, 633 
including not only the inconsistency between climate and growing season (e.g., the onset of 634 
greening), but soil nutrient availability and composition of plants as well [64]. Nevertheless, as the 635 
first step for the comparison of these two dryland ecosystems, nonlinear analyses are beyond the 636 
scope of this study.  637 

4. Concluding Remarks 638 

Drylands are one of the most sensitive areas under global climate change. Numerous 639 
uncertainties such as inherent variability in climate change, background climate conditions, 640 
topography, and land cover composition further complicate how natural vegetation in drylands 641 
changes under climate change and variability. In this study, we intercompare the response of natural 642 
vegetation to climate change and variability in two typical and similar dryland environments in Asia 643 
and North America, i.e., Xinjiang and Arizona. Both study areas were covered by five major natural 644 
(unchanged) land cover types (barren land, forest, shrubland, grassland, and wetland) and 645 
dominated by drylands during the past two decades. We constructed quasi-8-day datasets of daily 646 
precipitation, daily mean temperature, and NDVI based on observations and remote sensing 647 
products for the period from June 2000 to October 2019. Areas with statistically significant change in 648 
climate and vegetation were classified using linear regression. Large fraction of Xinjiang experienced 649 
warming and wetting, although warming and wetting parts were not co-located. In contrast, 650 
Arizona was governed by warming trends with insignificant changes in daily precipitation 651 
anomalies.  652 

For areas with natural vegetation, much of both study areas saw significant greening trends, 653 
while the increasing rate of NDVI anomalies was relatively higher in Xinjiang. In particular, 654 
warming and wetting climate enhanced vegetation growth in Xinjiang, but rising temperature 655 
significantly threatened dryland ecosystems in southwestern Arizona. On average, every 1 mm 656 
increase in daily precipitation or 1 °C increase in daily temperature resulted in greater increase in 657 
NDVI anomalies in Xinjiang than in Arizona. Such more sensitive response of vegetation growth 658 
was jointly contributed by colder and drier conditions in Xinjiang. Three typical subregions were 659 
further identified in each study area based on geographical division, natural vegetation types, and 660 
vegetation changes in response to climate. Subregional analyses reveal diverse responses of similar 661 
natural vegetation under climate change, highlighting that moisture plays a pivotal role in 662 
regulating dryland vegetation dynamics. In contrast, temperature is of critical importance for 663 
vegetation growth at high altitudes.  664 

It should be caveated that the results in this study are by no means fully descriptive of the 665 
dynamic responses of vegetation to precipitation and temperature. Based on the constructed 666 
long-term quasi-8-day datasets and the identified typical subregions, our next steps will disentangle 667 
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how seasonal precipitation with different intensity, duration, and frequency, seasonal temperature, 668 
and change of climate extremes have affected dryland vegetation phenology. Instead of using the 669 
entire 8-day series, we will examine the growing season with a focus on the onset and end of the 670 
greening period, peak of NDVI, and lagging responses to precipitation and temperature. Beyond the 671 
single vegetation index used here, we will also leverage several newly released datasets (e.g., 672 
evapotranspiration, net primary productivity, and gross primary productivity) to better identify the 673 
growing seasons of different plants. More complex models such as multiple linear regression models 674 
and generalized additive models will then be used to include additional variables such as elevation 675 
and aridity index. Nevertheless, this work provides a solid ground for the following study. The 676 
comparison of two drylands sheds new light on how similar dryland ecosystems with different 677 
climate conditions, topography, etc., can lead to distinct trends of plant growth. The observed 678 
patterns and contrasts are informative for understanding the potential evolution of dryland 679 
ecosystems in Xinjiang and Arizona. Furthermore, such comparisons can also foster locally adaptive 680 
policy making processes targeting at better dryland ecosystem management to enhance food 681 
security, biodiversity, and sustainability under changing climate conditions. 682 
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