

1 Title: **An Initial Comparative Genomic Autopsy of Wasting Disease in Sea Stars**
2

3 Mobile device title: Genomic autopsy of wasting disease
4

5 Dannise V. Ruiz-Ramos^{a,*},¹ Lauren M. Schiebelhut^{a,*}, Katharina J. Hoff^{b,c}, John P. Wares^d,
6 Michael N Dawson^a
7

8 ^aDepartment of Life and Environmental Sciences, 5200 North Lake Road, University of
9 California, Merced, CA 95616, USA
10

11 ^bUniversity of Greifswald, Institute for Computer Science and Mathematics, Walther-Rathenau-
12 Str. 47, 17487 Greifswald, Germany
13

14 ^cUniversity of Greifswald, Center for Functional Genomics of Microbes, Felix-Hausdorff-Str. 8,
15 17489 Greifswald, Germany
16

17 ^dDepartment of Genetics and the Odum School of Ecology, University of Georgia, Athens, GA,
18 USA
19

20 ¹To whom correspondence should be addressed. Dannise V. Ruiz-Ramos, School of Natural
21 Sciences, University of California, 5200 N. Lake Rd., Merced, CA 95343, Email:
22 dannise.ruiz@gmail.com.
23

24 **Keywords:** disease, gene expression, genome, mass mortality, sea star wasting disease (SSWD),
25 asteroid idiopathic wasting syndrome (AIWS)

26 **Abstract**

27 Beginning in 2013, sea stars throughout the Eastern North Pacific were decimated by wasting
28 disease, also known as ‘asteroid idiopathic wasting syndrome’ (AIWS) due to its elusive etiology.
29 The geographic extent and taxonomic scale of AIWS meant events leading up to the outbreak
30 were heterogeneous, multifaceted, and oftentimes unobserved; progression from morbidity to
31 death was rapid, leaving few tell-tale symptoms. Here we take a forensic genomic approach to
32 discover candidate genes that may help explain sea star wasting syndrome. We report the first
33 genome and annotation for *P. ochraceus*, along with differential gene expression (DGE) analyses
34 in four size classes, three tissue types, and in symptomatic and asymptomatic individuals. We
35 integrate nucleotide polymorphisms associated with survivors of the wasting disease outbreak,
36 DGE associated with temperature treatments in *P. ochraceus*, and DGE associated with wasting
37 in another asteroid *Pycnopodia helianthoides*. In *P. ochraceus*, we find DGE across all tissues,
38 among size classes, and between asymptomatic and symptomatic individuals; the strongest
39 wasting-associated DGE signal is in pyloric caecum. We also find previously identified outlier
40 loci co-occur with differentially expressed genes. In cross-species comparisons of symptomatic
41 and asymptomatic individuals, consistent responses distinguish genes associated with invertebrate
42 innate immunity and chemical defense, consistent with context-dependent stress responses,
43 defensive apoptosis, and tissue degradation. Our analyses thus highlight genomic constituents
44 that may link suspected environmental drivers (elevated temperature) with intrinsic differences
45 among individuals (age/size, alleles associated with susceptibility) that elicit organismal
46 responses (e.g. coelomocyte proliferation) and manifest as sea star wasting mass mortality.

47

48 **Introduction**

49 Wildlife mass mortality events are increasing in frequency, driven in part by human
50 perturbations, emerging viral diseases, intensifying toxic algal blooms, increasing temperatures,
51 or a combination of multiple stressors (Fey et al., 2015). In the marine environment, disease
52 emergence may be accelerated by environmental change, as warming and acidification can
53 suppress the host immune response (Alker, Smith, & Kim, 2001; R. W. Chapman et al., 2011;
54 Harvell, Altizer, Cattadori, Harrington, & Weil, 2009) and favor the growth and spread of
55 pathogens (R. W. Chapman et al., 2011; Harvell et al., 2009). Novel terrestrial microbes may be
56 introduced to coastal waters where they encounter new hosts or change their pathogenicity (Alker
57 et al., 2001; Burge et al., 2014; Harvell et al., 2009). Marine infectious diseases, whether novel or
58 endemic, have caused mass mortality events (MMEs) in diverse taxa, including plants (Burge,
59 Kim, Lyles, & Harvell, 2013; Short, Muehlstein, & Porter, 1987), invertebrates (Burge, Griffin,
60 & Friedman, 2006; Gardner et al., 1995; Lessios, 2016) and vertebrates (Dubey et al., 2003) of
61 commercial and ecological importance.

62 Some events contributed to the collapse of fisheries (Castro, Cobb, Gomez-Chiarri, &
63 Tlusty, 2012) and ecosystems (Lessios, 2016); the MME of the keystone species *Pisaster*
64 *ochraceus* associated with sea star wasting disease (SSWD) caused top-down trophic cascades in
65 subtidal reefs (Schultz, Cloutier, & Côté, 2016) and altered zonation of the rocky intertidal
66 community (Gravem & Morgan, 2017). Most of these MMEs occurred without forewarning;
67 causes, mechanisms, and effects had to be inferred *post hoc* in the absence of information about
68 pre-MME conditions. While our abilities to reconstruct likely factors from genomic signatures
69 (De Wit, Rogers-Bennett, Kudela, & Palumbi, 2014) and infer longer-term decline of vulnerable

70 populations with genomic tools (Bay et al., 2018) are improving, we remain largely ignorant of
71 genomic attributes that may elevate susceptibility or resilience to MMEs.

72 The 2013 outbreak of SSWD in the northeastern Pacific Ocean was remarkable for several
73 reasons, including that both ecological and population genetic sampling were underway
74 preceding the outbreak (Harley, Pankey, Wares, Grosberg, & Wonham, 2006; Miner et al., 2018;
75 Schiebelhut, Puritz, & Dawson, 2018). This enabled documentation of the outbreak's greatest
76 geographic extent (Eisenlord et al., 2016), highest mortality rates recorded for a non-commercial
77 marine species—e.g. 67% (Eisenlord et al., 2016), 90% (Menge et al., 2016), 99% (Miner et al.,
78 2018)—and diversity of sea star species affected (Eisenlord et al., 2016; Montecino-Latorre et al.,
79 2016). Over 20 species of subtidal and intertidal asteroids were impacted (Hewson et al., 2014),
80 of which some species, like *Pisaster ochraceus* and *Pycnopodia helianthoides*, are important
81 predators in their communities (Duggins, 1983; Gravem & Morgan, 2017; Paine, 1974). Thus,
82 mass mortality of sea stars precipitated cascading effects through intertidal and subtidal
83 communities (Burt et al., 2018; Menge et al., 2016; Schultz et al., 2016).

84 Given the large geographic extent (Miner et al., 2018) and taxonomic scale (Eisenlord et
85 al., 2016; Montecino-Latorre et al., 2016) of SSWD, events leading up to the outbreak were
86 heterogeneous, multifaceted, and often unrecognized at the time (Miner et al., 2018). Moreover,
87 the disease status of specimens in the field progresses rapidly from apparently healthy through
88 morbid to dead, leaving few opportunities for diagnoses prior to, or in the presence of, visually
89 identifiable symptoms (Miner et al., 2018), so clarifying evidence has been elusive. Proposed
90 causes are diverse, including infection, injury, and environmental shifts (Harvell et al., 2019;
91 Hewson et al., 2018). Differences in susceptibility also have been noted, possibly related to
92 age/size (Eisenlord et al., 2016; Menge et al., 2016), temperature (Eisenlord et al., 2016; Harvell

93 et al., 2019; Kohl, McClure, & Miner, 2016), habitat (Menge et al., 2016), region (Miner et al.,
94 2018), and genotypic variation (Schiebelhut et al., 2018; Wares & Schiebelhut, 2016), or more
95 speculatively salinity (Bates, Hilton, & Harley, 2009). Nonetheless, causes and effects remain
96 obscure, and SSWD has recently been rebranded as asteroid idiopathic wasting syndrome
97 (AIWS) due to its elusive etiology (Hewson et al., 2018).

98 Despite coincidence of the outbreak of wasting (i.e. SSWD/AIWS) with formation of a
99 northeastern Pacific ‘warm blob’ (Bond, Cronin, Freeland, & Mantua, 2015), the role of
100 temperature in disease onset and intensification is ambiguous (Hewson et al., 2018; Miner et al.,
101 2018), suggesting that wasting might be caused by a combination of environmental (Hewson et
102 al., 2018; Miner et al., 2018) and biological factors (Menge et al., 2016). Exploration of
103 differential gene expression in *P. ochraceus* under thermal stress suggested heritable variation in
104 transcriptional response to elevated temperature (Chandler & Wares, 2017). Viral inoculation
105 experiments with a sea star associated densovirus (SSaDV) found symptoms of wasting after
106 exposure and showed wasting to be transmissible in the sunflower star, *Pycnopodia helianthoides*
107 (Hewson et al., 2014). However, SSaDV was also found in asymptomatic individuals (Hewson et
108 al., 2018, 2014), and subsequent inoculation experiments failed to induce wasting symptoms in
109 species other than *P. helianthoides* (Hewson et al., 2018). Analyses of symptomatic and
110 asymptomatic *P. helianthoides* found differential gene expression in genes associated with
111 immune response, nervous system processes (Fuess et al., 2015), tissue disintegration
112 (Gudenkauf & Hewson, 2015), tissue remodeling (Fuess et al., 2015), programmed cell death,
113 and metabolic function (Gudenkauf & Hewson, 2015).

114 In association with the high rates of mortality associated with wasting, analyses of single-
115 nucleotide polymorphism (SNP) data from *P. ochraceus* populations along the north-central coast

116 of California identified consistent genotypic differences between adult *P. ochraceus* before
117 versus after the 2013 wasting outbreak (Schiebelhut et al., 2018). Changes in allele frequency
118 after the mass mortality were largely consistent across locations, and between life stages,
119 suggesting that wasting acted as a strong selective event (Schiebelhut et al., 2018).

120 To address some of the remaining knowledge gaps between observations of mortality and
121 genomic responses, we here present (i) a high-quality reference genome and (ii) new gene
122 expression data from multiple life stages, tissue types, and disease statuses of the ochre sea star
123 *Pisaster ochraceus*. We then (iii) compare these data to other published gene expression studies,
124 including a second sea star *P. helianthoides*, and interrogate the genome for clues on the etiology
125 of wasting. Our goal is to discover genomic signals that could tie-together the somewhat eclectic
126 ecological and experimental results available in the literature. Particularly, we follow four lines of
127 enquiry to attempt to reconstruct plausible scenarios leading to wasting. We first narrow down
128 how gene expression differs between tissue types, ages (i.e. sizes), and disease status. Second, we
129 explore the extent to which expression responses to disease overlap with expression responses to
130 one proposed cause: temperature. We then ask whether expression differences implicate specific
131 immune pathways or are concordant with responses to wasting across species. Finally, we ask
132 which, if any, of the implicated gene regions also showed allele frequency shifts in wasting-
133 survivors, possibly indicating a link between mutations in coding/noncoding sequence and gene
134 expression. Identification of genomic elements that respond in common across species or
135 conditions should provide clues to the causes and conditions that increase the risk of wasting
136 (SSWD/AIWS).

137

138 **Materials and Methods**

139 *Genome sample collection, sequencing, and assembly*

140 An asymptomatic *Pisaster ochraceus* of 49 mm radius (arm-tip to disc-center; sample ID:
141 M0D055189C) was collected from the intertidal zone at Hopkins Marine Station on 12 November
142 2016, and taken alive to Dovetail Genomics (Santa Cruz, CA, USA) where tube feet were
143 amputated and frozen immediately in liquid nitrogen. DNA extraction, library construction
144 (paired-end, Chicago, HiC), Illumina sequencing, and *de novo* assembly followed Dovetail
145 Genomics standard approaches (J. A. Chapman et al., 2011; Lieberman-Aiden et al., 2009;
146 Putnam et al., 2016). Sequences were deposited in the Genome database of the National Center
147 for Biotechnology Information (NCBI; BioProject PRJNA532896, SUB5448653). See SI
148 Appendix for details. To assess completeness of the assembly, we conducted a BUSCO v. 2.0.1
149 search against the set of metazoan orthologous genes (Simão, Waterhouse, Ioannidis,
150 Kriventseva, & Zdobnov, 2015).

151 *Transcriptome sequencing*

152 Tissue biopsies—of tube feet, pyloric caecum, and dermis—were taken from 17
153 individuals: 15 collected at McClures Beach and two from Lifeboat House in Point Reyes
154 National Seashore (SI Appendix, Table S1) on the 19th and 21st August 2017, respectively, and
155 preserved in RNAlater® in the field, refrigerated overnight, and stored at -20°C until extraction.
156 RNA was extracted with the Qiagen RNeasy Mini Kit. A Retsch mixer mill (MM 301) was used
157 for 30 seconds for tissue disruption and homogenization. Fifty RNA libraries were generated (SI
158 Appendix, Table S1) with Illumina TruSeq RNA Library Prep Kit v2 and sequenced 2 x 150
159 paired-end on one lane of an Illumina HiSeq4000 with 2% Phi X at the Vincent J. Coates
160 Genomics Sequencing Laboratory at the University of California, Berkeley. Raw sequences were

161 deposited in the Sequence Read Archive (SRA) of the National Center for Biotechnology
162 Information (NCBI; add SRA accession number).

163

164

165 *Genome annotation*

166 Repetitive regions of the genome assembly were identified and softmasked using
167 RepeatMasker (<http://www.repeatmasker.org>) to align the genome to the RepBase repository
168 (RepeatMasker Edition 20170127; <https://www.girinst.org/server/RepBase>) (Bao, Kojima, &
169 Kohany, 2015) using *Drosophila* and *Strongylocentrotus purpuratus* as the species options. As an
170 alternative, the genome was also soft-masked using NCBI WindowMasker (Morgulis, Gertz,
171 Schäffer, & Agarwala, 2005). The RepeatMasker masking with *S. purpuratus* was used to aid
172 annotation of protein coding genes.

173 Gene models were generated with BRAKER v 2.1.0 (Hoff, Lange, Lomsadze,
174 Borodovsky, & Stanke, 2015; Hoff, Lomsadze, Borodovsky, & Stanke, 2019), a pipeline that
175 combines the gene prediction tools GeneMark-ET v. 4.3.2 (Lomsadze, Burns, & Borodovsky,
176 2014) and AUGUSTUS v. 3.3 (Stanke, Diekhans, Baertsch, & Haussler, 2008) for predicting
177 genes in novel genomes with alignments of RNA-Seq reads as extrinsic evidence. The 50 RNA
178 libraries were supplemented with paired-end RNA libraries from Chandler and Wares (Chandler
179 & Wares, 2017) prepared from individuals with distinct genotypic backgrounds
180 (SAMN06141149, SAMN06141151) to capture a full range of transcript data. In short, RNA-Seq
181 libraries were aligned to the soft masked genome using GSnap v. 2017-11-15 (Wu, Reeder,
182 Lawrence, Becker, & Brauer, 2016), and BRAKER was run on the soft masked genome with
183 information from spliced alignments (for code, see Data Accessibility section). A track data hub

184 for annotation visualization with the UCSC Genome Browser (Kent et al., 2002) was generated
185 using MakeHub (Hoff, 2019). The software faCount (UCSC) was used to count base composition
186 in each scaffold. Percentages of gaps—regions that were not sequenced or gaps included during
187 scaffolding—were calculated from these data (faCount) by dividing the number of Ns in each
188 chromosome-sized scaffold by the total number of bases in the scaffold. GC content in
189 contiguous windows of 500 nt was calculated using the GC function in the SeqinR package
190 (Charif & Lobry, 2007; Coghlann, 2011) and a logic function in Excel to count the regions with
191 >60% of bases being C+G.

192 We used NCBI Blastp v. 2.2.31+ (Altschul, Gish, Miller, Myers, & Lipman, 1990;
193 Camacho et al., 2009) to annotate the predicted gene models by searching invertebrate protein
194 sequences from the SwissProt protein database version 2018_02 (Uniprot Consortium, 2014;
195 “UniProt: The universal protein knowledgebase,” 2016). The most representative annotation from
196 UNIPROT ID was taken as the ID with lowest e-value, unless there was >1 lowest match in
197 which case we favored the UNIPROT ID from the closest relative. The table of the corresponding
198 ID numbers was downloaded to add gene ontology (GO; Ashburner et al., 2000; The Gene
199 Ontology Consortium, 2016)(GO v. 2018_02) terms to the annotation (Dataset S1) (for code, see
200 Data Accessibility section). GO terms were then grouped by categories using GO_slim and, given
201 our interest in disease, the immune system gene classes, with CateGORizer (Hu, Bao, & Reecy,
202 2008)—a GO term classification counter—and redundant parent terms were summarized with
203 REViGO (Supek, Bosnjak, Skunca, & Smuc, 2011).

204 *Mitochondrial genome*

205 Raw reads generated for the whole genome assembly (section *Chicago library*
206 *preparation and sequencing* in SI Appendix) were aligned to the annotated mitochondrial

207 genome of the confamilial *Asterias amurensis* (NC_006665; (Matsubara et al., 2005)) to generate
208 a whole mitochondrial assembly. A subsample of 3×10^7 reads were assembled using the mapping
209 function with “high sensitivity” parameters in Geneious 10.1.2, adjusted to accept reads with 25%
210 mismatch. Annotations were assessed manually from the alignment of this assembly with the *A.*
211 *amurensis* mitogenome, and via submission to MITOS (Bernt et al., 2013). Additional
212 annotation, including the location of the mitochondrial control region and adjustments to the
213 computationally estimated ORF of *ND2*, came from pairwise alignment with the mitochondrial
214 genome of *Acanthaster planci* (Yasuda et al., 2006).

215 *Differential gene expression*

216 We added a second lane of Illumina 2 x 150 paired-end HiSeq4000 sequencing with 2%
217 Phi X for the previously mentioned 50 RNA libraries (see *Transcriptome sequencing* section) to
218 increase depth and coverage of transcripts for differential gene expression (DGE) analyses.
219 Libraries represented individuals that were asymptomatic or symptomatic for SSWD (e.g. Fig. 1)
220 and of different size classes—a proxy for age: small (radius 13.0–17.1 mm), medium (43–67
221 mm), large (89–123 mm), and extra-large (165–212 mm)—for each of three tissue types (tube
222 feet, dermis, and pyloric caecum) (SI Appendix, Table S1). Raw sequences were again deposited
223 in the NCBI SRA (accession no. SRPXXXXXX). Trim Galore v. 0.4.4_dev was used to trim
224 adapters, low quality bases (<Q20), and reads less than 20bp.

225 Genestack v. 0.72.1 (<https://genestack.com/>) was used for analyses of trimmed sequences.
226 Trimmed paired-end reads were subsampled to 5 million reads (smallest library size) and aligned
227 to the *Pisaster ochraceus* nuclear genome using TopHat2 v. 2.0.13 (Kim et al., 2013) allowing 2
228 mismatches per read and yielding mean 2,599,568 mapped reads per library (range: 2,313,438–
229 2,969,060). (See SI Appendix Supplementary Methods and Results for alternative mapping

230 approach). For the mitochondria, trimmed R1 reads were aligned to the mitochondrial genome
231 using Bowtie2 v. 2.2.3 (Langmead, Trapnell, Pop, & Salzberg, 2009) allowing 3 mismatches per
232 read; reads were then subsampled to the smallest mapped library (0.213 million reads) using
233 seqtk v. 1.0 (<https://github.com/lh3/seqtk.git>), yielding 0.213 million mapped reads per library.
234 Raw coverage in genes¹ was quantified using SAMtools v. 0.1.19 (Li et al., 2009). Differential
235 gene expression was tested using EdgeR (McCarthy, Chen, & Smyth, 2012) for sequences
236 aligned to the nuclear genome and mitochondrial genome separately. A DGE analysis was first
237 conducted to evaluate differential expression between tissue types. Subsequent analyses were
238 conducted separately for each tissue type to assess differential expression between size classes
239 and between symptomatic and asymptomatic individuals. Each size class (i.e. small, medium,
240 large, or x-large) was compared to the mean of all other size classes. An additional analysis was
241 conducted comparing just the small individuals directly to the x-large individuals to reveal
242 potential DGE that might be masked by variation in intermediate size classes. Genes were filtered
243 at a minimum threshold of mean 1 count per million (CPM). Significance was assessed at a false
244 discovery rate (FDR) < 0.01 (unless otherwise noted); power to detect DGE will be influenced by
245 the number of reads in libraries. Given the small sample sizes of individuals included in the
246 asymptomatic (n = 2) compared to symptomatic (n = 2) analyses (SI Appendix, Table S1), a
247 minimum criterion of CPM > 1 in a minimum of two libraries per asymptomatic and/or
248 symptomatic categories was used. Gene enrichment analyses were performed in DAVID for the

¹ Gene models were defined, for complete genes, as beginning at the start codon and ending at the stop codon. For incomplete genes, gene models were recognized as spanning from the 5' to 3' sequence boundaries within the gene or, if partially incomplete, then between the gene boundary (start/stop codon) and matching sequence boundary.

249 annotated differentially expressed genes (Huang, Sherman, & Lempicki, 2008, 2009) using the
250 list of *Pisaster ochraceus* annotated genes as background.

251 *Reanalysis of DGE experiments*

252 Raw sequences from Chandler and Wares' (Chandler & Wares, 2017) *P. ochraceus*
253 temperature experiment—in which tube feet were sampled from 10 individuals acclimated to
254 ambient ocean temperature and resampled after 8 days at +3°C—were obtained from the
255 Sequence Read Archive (SRA) at NCBI (SRP095092). Forward sequences were reprocessed and
256 analyzed following the method described above in the section *Differential gene expression*. Each
257 filtered RNA library was subsampled to 22.5 million reads (the smallest library) and then mapped
258 to the nuclear genome, yielding mean 16,325,675 mapped reads (range: 15,830,301–16,754,055).
259 For the mitochondria, all forward reads were mapped to the mitochondrial genome and then
260 filtered to the smallest mapped library at 1.15 million reads. A DGE analysis contrasted between
261 individuals at ambient ocean temperature (~12°C with diurnal variation, lab acclimated for 2
262 days, 't0') and +3°C (tissue collected after 8 days of treatment, 't3'). Genes were filtered at a
263 minimum threshold of 1 CPM. Significant difference between the t0 and t3 groups was assessed
264 at a false discovery rate (FDR) < 0.1. Because Chandler and Wares (2017) biopsied the same 10
265 individuals before and after heat treatment, we also conducted a two-tailed paired *t* test (*p* < 0.05
266 following Benjamini-Hochberg adjustment for multiple tests;
267 <https://www.sdmproject.com/utilities/?show=FDR>) contrasting time-points within individuals to
268 identify other potential genes that might be differentially expressed under temperature stress but
269 not detected by comparing just the two groups. We filtered these results further by conducting a
270 χ^2 goodness-of-fit test (*p* < 0.05) to focus on genes that had consistent directional change in
271 expression between t0 and t3 across individuals (i.e. when ≥ 9 of 10 individuals agreed).

272 For mitochondrial analyses, raw sequences from Fuess et al. (Fuess et al., 2015) *P.*
273 *helianthoides* symptomatic versus asymptomatic experiment—in which coelomocytes were
274 sampled from 3 individuals (with wasting symptoms) after being treated with virus-sized
275 homogenate taken from wasting *P. helianthoides* and 3 control stars were treated with heat-killed
276 homogenate (and showed no signs of wasting)—were obtained from the NCBI SRA
277 (SRP051104). Forward sequences were reprocessed and aligned to the *P. ochraceus*
278 mitochondrial genome and analyzed following the method described above in the section
279 *Differential gene expression*. Each filtered and mapped RNA library was subsampled to 60,900
280 mapped reads (the fewest number of mapped reads of any individual). A DGE analysis contrasted
281 symptomatic and asymptomatic individuals using a minimum threshold of 1 CPM and FDR <
282 0.1. Raw reads from Gudenkauf & Hewson (2015) did not yield enough read depth to assess
283 mitochondrial DGE in *P. helianthoides*.

284 *Mapping and comparison of genomic and transcriptomic variation*

285 We used the annotated *Pisaster ochraceus* genome and DGE analyses conducted in this
286 study to map and compare findings from other asteroid studies, including: (1) RAD-Seq loci
287 putatively under selection by wasting (Schiebelhut et al., 2018), (2) genes differentially expressed
288 between *Pycnopodia helianthoides* symptomatic and asymptomatic for wasting (Fuess et al.,
289 2015; Gudenkauf & Hewson, 2015), and (3) genes differentially expressed in *P. ochraceus*
290 undergoing temperature and/or related stress in aquarium experiments (Chandler & Wares, 2017).
291 Particularly, we aimed to infer chromosomes or regions of chromosomes that may be of
292 heightened interest for understanding the causes and effects of SSWD, as follows. (1) To evaluate
293 potential function of the top RAD-Seq loci discriminating pre- and post- AIWS (Schiebelhut et
294 al., 2018), the position of each locus in relation to the gene models was inspected visually, and

295 the transcripts that showed differential expression between individuals asymptomatic and
296 symptomatic for AIWS were noted as falling inside or outside of the gene model region. To
297 assess mitochondrial allele frequency changes between pre- (n = 153) and post-wasting adults (n
298 = 126) and recruits (n = 158) we aligned RAD-Seq reads from Schiebelhut et al. (Schiebelhut et
299 al., 2018) (NCBI SRA SRP136569) to the *P. ochraceus* mito-genome; 8 individuals were
300 dropped for low read count and an additional 3 dropped for ambiguous base calls. (2) To evaluate
301 gene position and function, RNA-Seq reads from coelomocytes and dermis punches of
302 *Pycnopodia helianthoides* symptomatic and asymptomatic for AIWS (Fuess et al., 2015;
303 Gudenkauf & Hewson, 2015) were mapped to the *Pisaster ochraceus* genome with BWA-MEM
304 v. 0.7.15 (Li & Durbin, 2009), sorted with SAMtools v. 1.4.1 (Li et al., 2009), merged and
305 converted to a bed file with BEDTools v. 2.23.0 (Quinlan & Hall, 2010). Finally, (3) transcripts
306 differentially expressed in *P. ochraceus* at ocean ambient and +3°C temperature treatments from
307 the re-analysis of Chandler and Wares (Chandler & Wares, 2017) (see section *Temperature*
308 *treatment comparisons*) were compared to the other DGE analyses in this study. The mapped
309 positions and/or functions of loci from all studies were compared to identify shared patterns
310 across datasets and so infer loci that may be important in the etiology of AIWS in *P. ochraceus*
311 and possibly also other sea stars. The R package ggbio (Yin, Cook, & Lawrence, 2012) was used
312 to visualize these results in concentric circular maps to highlight the positions of loci implicated
313 to be common components in the etiology of wasting disease.

314 In the absence of any general theoretical expectations for the number of loci and their
315 effect sizes influencing complex phenotypes such as disease susceptibility (in sea stars), we
316 modelled the probability of a specific locus occurring in more than one analysis using a simple
317 probability series. For this purpose, we estimated the probability of a locus being implicated in a

318 single analysis as the ‘number of DGE loci / gene count’ for that individual analysis. The
319 probability of the same locus being implicated by multiple analyses is then the product of the
320 individual probabilities; the probabilities for all possible combinations of 1–5 analyses are
321 provided in Dataset S9. Furthermore, the probability that the locus is differentially expressed in
322 the same direction is 0.5^n , where n is number of analyses considered. We also conducted a
323 Fisher’s Exact Test in R, corrected for multiple tests using the Benjamini-Hochberg procedure
324 (<https://www.sdmproject.com/utilities/?show=FDR>), to calculate the probability of overlap
325 between genes found to be differentially expressed between *P. ochraceus* symptomatic and
326 asymptomatic for sea star wasting disease and other studies — i.e. *P. ochraceus* size, temperature
327 treatment, ddRAD outliers, and *Pycnopodia helianthoides* disease status.

328 Non-random distribution of RAD-Seq and DGE loci—using super-scaffold length and the
329 length adjusted by the number of Ns in the scaffolds (Fig. 1) as null models for predicted
330 distributions—was tested using a χ^2 test. The outcomes did not differ qualitatively so only results
331 relative to the adjusted lengths are reported.

332

333 **Results**

334 *Genome*

335 Shotgun sequencing generated 551 million paired-end reads (totaling 78 Gbp) which were
336 assembled *de novo* into a draft assembly, to which Chicago library sequences were added to
337 produce scaffolds up to 13 Mb (N50 = 8.8 kb, total genome size = 366.6 Mb). Dovetail HiC
338 library sequences were aligned and scaffolded, and gaps filled with shotgun sequences to create
339 22 super scaffolds of approximately chromosome size (N50= 21 Mb) and a total genome size of
340 401.95 Mb (Fig. 1). The total percent of genome in gaps was 13.23% (range 10.0–20.5% per

341 chromosome-size scaffold). GC content of 500 nt windows ranged from 1.6% to 92.6% (mean
342 39.1%, median 38.9%; SI Appendix, Fig. S1) with 860 regions having GC content >60%.

343 A BUSCO comparison before masking indicated the *P. ochraceus* genome had 88.1%
344 genes complete, 9.6% genes fragmented, and 2.3% genes missing (SI Appendix, Fig. S2). 24% of
345 the genome was masked as areas of high repeat content first with WindowMasker (Morgulis et
346 al., 2005). RepeatMasker (Chen, 2004) with *Drosophila* and *S. purpuratus* as species option,
347 identified 1.35% of the masked genome as simple repeats and 0.38% as transposable elements,
348 mostly Non-LTR SINE2 repeats.

349 21,777 genes were predicted for the *Pisaster ochraceus* genome using the BRAKER
350 pipeline. 98% of the gene models were found in the 22 super scaffolds; the number of gene
351 models was correlated with super-scaffold size ($R^2 = 0.804$). Only 7,861 (36%) had significant
352 hits (e-value < 0.00001) to the non-redundant invertebrate protein sequences from the SwissProt
353 protein database (UniProt Consortium, 2016) (Dataset S2) and 7,694 (35%) gene models matched
354 one or more (up to 145) GO terms, totaling 853,637 GO terms (Dataset S2). The GO terms
355 mapped to 108 (of 110) immune class ancestors terms (CateGORizer); the main fractions were
356 metabolism (39%), stress response (13%), and protein metabolism (11%); the classes ‘stress
357 response’, ‘response to external stimulus’, response to ‘abiotic stimulus’, ‘apoptosis’, and
358 ‘response to biotic stimuli’ also were in the top ten most numerous classes, with the
359 ‘mitochondrion’ class 12th, the ‘immunology, immune response’ class is 13th, and ‘defense
360 response to bacteria’ is 24th (Dataset S3a, SI Appendix, Fig. S3). Twenty-one genes matched
361 Toll-like receptors and Leucine-rich repeat-containing proteins (Dataset S3b), fifteen of these
362 clustered within the Toll signaling pathway (Dataset S3c). Genes associated with the regulation
363 of innate immune response (n=34), stress response (n=37) and humoral response (n=42) were

364 identified (Dataset S3c). Some gene models were also annotated as retrovirus-related Pol
365 polyproteins from LRT retrotransposons (Dataset S3d), which were most abundant in
366 chromosome 12 (34 gene models).

367

368 *Mitochondrial genome*

369 The full mitochondrial genome (NCBI accession MH713001) was recovered from the
370 unassembled sequences. The mitochondrial genome is 16,376 bp in length, with all recognized
371 protein, ribosomal, and tRNA genes (SI Appendix, Fig. S4).

372

373 *Differential gene expression*

374 *Tissue comparisons* — Most differential gene expression (FDR < 0.01) was identified when
375 comparing different tissue types (SI Appendix, Fig. S5). Approximately 5,000 genes were
376 differentially expressed among tissues: 5,481 in pyloric caecum (of which 2,160 were annotated),
377 5,046 in tube feet (2,092 annotated), and 4,584 in the dermis (1,954 annotated) (SI Appendix,
378 Fig. S6). Due to this large difference in expression, other targeted differential expression analyses
379 were done separately for each tissue type.

380 *Size comparisons* — Gene expression analyses comparing size classes (i.e. small, medium, large,
381 and x-large versus all others, and smallest versus x-largest) revealed 261 nuclear genes were
382 differentially expressed (FDR < 0.01) among size classes in the pyloric caecum, 295 in the
383 dermis, and 414 in the tube feet (Fig. 2; Dataset S4; SI Appendix, Fig. S7). The majority of these
384 genes were differentially expressed in small individuals versus other size classes—88% of genes
385 in pyloric caecum, 62% in dermis, and 90% in tube feet. Restricting the analysis to the 3 smallest
386 (radius 13.0–17.1 mm) and 3 x-largest (165–212 mm) individuals resulted in 177 genes

387 differentially expressed in the pyloric caecum (72 of which were annotated), 75 genes in the
388 dermis (20 annotated), and 227 in the tube feet (90 annotated) (Fig. 2, Dataset S5). When
389 comparing smallest to x-largest individuals we find upregulation in genes associated with
390 hemolymph coagulation (in the dermis), lipid biosynthesis (pyloric caecum; fold enrichment =
391 6.4, $p < 0.001$, FDR = 7×10^{-4} ; Dataset S12), lipid metabolism (pyloric caecum; fold enrichment =
392 5.1, $p < 0.001$, FDR = 2×10^{-5} ; Dataset S12) and metabolism (dermis and tube feet) (SI Appendix,
393 Fig. S8A). Most processes were upregulated in the dermis of small stars, including those related
394 to development, ovarian (fold enrichment = 9.7, $p = 0.03$, FDR = 0.34; Dataset S12) and
395 metabolic processes (fold enrichment = 1.4, $p = 0.03$, FDR = 0.38; Dataset S12) (SI Appendix,
396 Fig. S8A). In the tube feet, cell differentiation (fold enrichment = 4.7, $p = 0.05$, FDR = 0.54;
397 Dataset S12), vesicle-mediated transport, actin capping, and thermotaxis were upregulated in
398 small stars (SI Appendix, Fig. S8A).

399 In analyses of the mitochondria, DGE analyses revealed higher expression of *tRNA-Gln*
400 (in pyloric caecum) and *tRNAs-Asp*, *Asn*, and *Met* (in tube feet) of small individuals relative to
401 other size classes, while *16S L-rRNA*, *ATP6*, *COX2* were downregulated in small individuals
402 relative to other size classes. In the dermis of medium individuals, *16S L-rRNA* was upregulated
403 relative to other groups, while *16S L-rRNA* in the tube feet of x-large individuals was upregulated
404 relative to small individuals. Medium individuals also had increased expression of *ND4L* in their
405 dermis relative to other size classes.

406 *Symptomatic vs. asymptomatic comparisons* — Nuclear genes differentially expressed between
407 symptomatic and asymptomatic samples were found in the pyloric caecum (581 genes, 257
408 annotated), dermis (259 genes, 94 annotated) and tube feet (49 genes, 23 annotated) (Fig. 3;
409 Dataset S6).

410 In the pyloric caecum, 346 genes (148 annotated) were upregulated in the symptomatic
411 individuals, while 235 genes (109 annotated) were downregulated (Fig. 3; Dataset S6a). 35 of the
412 genes differentially expressed between symptomatic-asymptomatic individuals were associated
413 with immune or stress response (Dataset S6a, Dataset S3c)—such as genes involved in hemocyte
414 proliferation (*TL5A*, *TL5B*), agglutination and phagocytosis (*SRCR1*)—and an additional four
415 involved in programmed cell death (fold enrichment = 1.6, $p = 0.09$; Dataset S12)—e.g. apoptosis
416 (*CASP1*) and programmed cell death (e.g. *CED1*) (Fig. 4, Dataset S3c). Toll-like genes putatively
417 involved in the Toll signaling pathway (fold enrichment = 9.5, $p = 0.04$, FDR = 0.46; Dataset
418 S12) were upregulated in the symptomatic individuals (Dataset S3c). Enriched GO terms also
419 included lipid metabolism (fold enrichment = 1.6, $p = 7 \times 10^{-4}$; Dataset S12), GDP-fucose
420 biosynthesis, catabolism and metabolism (steroid: fold enrichment = 4.6, $p = 0.003$, FDR = 0.05;
421 monosaccharide: fold enrichment = 4.5, $p = 0.02$, FDR = 0.31; Dataset S12). Additionally, ten
422 genes of the Cytochrome P450 family (*CP10* = g2103; *CP18A* = g17638, g6090, g6091; *CP2L1* =
423 g7145, g9883; *CP4D2* = g12454, g12447; *CP9E2* = g4034; *C524A* = g18059) were differentially
424 expressed in the pyloric caecum of the symptomatic samples (Dataset S6a).

425 In the dermis, 166 genes were upregulated in the symptomatic samples (58 annotated) and
426 93 genes were downregulated (36 annotated) (SI Appendix Fig. S8B, Dataset S6b). 14
427 differentially expressed genes were associated with defense response (fold enrichment = 3.8, $p =$
428 0.04, FDR = 0.48; Dataset S12), wound healing (response to wounding: fold enrichment = 6.6, $p =$
429 0.02, FDR = 0.28; Dataset S12), apoptosis (*CASP1*) and clotting processes (Dataset S3c;
430 Dataset S6b). As in the pyloric caecum, genes involved in the regulation of immune response
431 (immune system processes: fold enrichment = 2.7, $p = 0.04$, FDR = 0.51; Dataset S12) and the
432 Toll signaling pathway were upregulated in symptomatic individuals (Dataset S3c). Genes

433 associated with antimicrobial humoral response and hemocyte proliferation (*TL5A*, *TL5B*, *LEC6*)
434 were also downregulated in the dermis of the symptomatic individuals (Dataset S3c). Genes
435 associated with wound healing were upregulated in the symptomatic samples, however, *Cadherin*
436 *96Ca* which is involved in positive regulation of wound healing was downregulated. Enriched
437 GO terms for negative regulation of innate immune response (fold enrichment = 6.27, $p = 0.01$,
438 FDR = 0.11; Dataset S3c; Fig. 4) and recognition of apoptotic cells were upregulated in the
439 symptomatic samples (SI Appendix, Fig. S8B).

440 In the tube feet, 37 genes were upregulated in the symptomatic samples (19 annotated)
441 and 12 genes were downregulated (4 annotated) (Fig. 3; Dataset S6c). Genes expressed in tube
442 feet were mainly associated with muscular function (fold enrichment = 15.7, $p = 0.01$, FDR =
443 0.17) and cell adhesion (Fig. 4; SI Appendix, Fig. S8B), but two genes associated with immune
444 response *TL5A* and *NOXC* were upregulated in symptomatic samples (Dataset S6c).

445 Individuals symptomatic for AIWS ($n = 2$), in DGE analyses of the mitochondria, had
446 higher expression (FDR < 0.01) of *12S s-rRNA* in all three tissue types independently—dermis
447 (fold change of 3.3, FDR $< 10^{-20}$), pyloric caecum (fold change of 20.6, FDR = 10^{-5}), and tube
448 feet (fold change of 2.6, FDR = 4×10^{-4})—relative to asymptomatic stars ($n = 2$). In the dermis,
449 *tRNA-Asn* and *16S L-rRNA* mitochondrial genes were also upregulated in symptomatic, relative to
450 asymptomatic stars (FDR = 0.009 and 0.063, respectively).

451 *Reanalysis of DGE experiments* — Genes differentially expressed between the tube feet of sea
452 stars sampled at ambient ocean temperature and after heat treatment ($+3^\circ\text{C}$) included 39
453 identified by the DGE analysis in EdgeR (FDR < 0.1) and 137 identified by the paired *t* test
454 followed by filtering for similar directional change in ≥ 9 of 10 individuals ($\chi^2 \geq 6.40$, $\text{df} = 1$, $N =$
455 10, $p < 0.05$); 59 of the 137 were significant after Benjamini-Hochberg adjustment $p_{0.05}$. 35 loci

456 were recovered by both analyses. The EdgeR analysis (FDR < 0.1) comparing the t0 group to the
457 t3 group also recovered four transcripts that did not overlap with the paired *t* test, three of which
458 were unannotated (g4748, g10034 and g20429) and one annotated (g12264)—the heat shock
459 protein *Hsp90*. In total, 73 loci were identified as being significantly differentially expressed by
460 one or both of these approaches.

461 In DGE analyses of the mitochondria, individuals after heat treatment (n = 10) had lower
462 expression (FDR < 0.1) of ATP Synthase subunit 6 (*ATP6*) and NADH dehydrogenase subunits 2
463 and 5 (*ND2*, *ND5*) and increased expression (FDR < 0.1) of *16S L-rRNA* and *tRNA-Asp* relative
464 to t0 (SI Appendix, Fig. S9).

465 In mitochondrial analyses of coelomocytes in *P. helianthoides*, no differential expression
466 was found between symptomatic (n = 3) and asymptomatic individuals (n = 3).

467 *Mapping and comparison of genomic and transcriptomic variation*

468 Comparisons of multiple studies—RAD-Seq, DGE analyses of *P. ochraceus* by disease
469 status, size, and temperature treatment, and *P. helianthoides* by disease status—revealed shared
470 and distinct genomic responses (Fig. 5; Dataset S7). Of the top 100 RAD-Seq loci identified in
471 Schiebelhut et al. (2018) discriminating pre- and post-AIWS mortality populations, 99 mapped to
472 the 22 chromosomes in the *P. ochraceus* genome (Fig. 5); 58 aligned to predicted gene models
473 (Dataset S8), 25 of which were annotated. Five loci mapped to genes that were differentially
474 expressed between *P. ochraceus* symptomatic and asymptomatic for SSWD (FDR < 0.01) (SI
475 Appendix, Fig. S10; Fig. 5): hypothetical protein *vilA* (g3886), mitochondrial putative
476 tricarboxylate transport protein *K11H3.3* (g17130), GTP-binding protein *drn-1* (g21294), and
477 unannotated g868 were all upregulated in symptomatic individuals, while unannotated g7633 was
478 downregulated. *vilA* also was upregulated in the coelomocytes of SSWD-symptomatic *P.*

479 *helianthoides* (Fuess et al., 2015) as well as overlapping with one of the three RAD-Seq loci
480 identified in the more conservative BayeScan analysis as discriminating pre- and post-SSWD *P.*
481 *ochraceus* (Schiebelhut et al., 2018). Four additional discriminant RAD-Seq loci (Schiebelhut et
482 al., 2018) mapped to genes upregulated in SSWD-symptomatic *P. helianthoides* (Fuess et al.,
483 2015): E3 ubiquitin-protein ligase *Nedd-4* (g14570), muscle M-line assembly protein *unc-89*
484 (g19459), Rho GTPase-activating protein 92B *RhoGAP92B* (g20941), and one unannotated gene
485 (g20271) (Dataset S7b). One discriminant RAD-Seq locus mapped to homeobox protein *Lhx3*
486 (g19194), a gene upregulated in the tube feet of small individuals (Dataset S7b).

487 Thirty-three transcripts upregulated in SSWD-symptomatic individuals in Gudenkauf &
488 Hewson (2015) mapped to *P. ochraceus* gene models (SI Appendix, Table S3; Dataset S7a), of
489 which six were also differentially upregulated in SSWD-symptomatic *P. ochraceus*: lateral
490 signaling target protein 2 *lst2* (g18551), frizzled *Dvir|fz* (g3737), and four unannotated gene
491 models (g3818, g6204, g14951, and g18769) (Dataset S7c,d).

492 Immune and neurological DGE responses of *Pycnopodia helianthoides* to treatment with a
493 viral sized homogenate (Fuess et al., 2015) yielded 1387 differentially expressed transcripts that
494 mapped to the *P. ochraceus* gene models (Fig. 5; Dataset S7a). There was considerable overlap
495 between DGE of symptomatic *P. ochraceus* and symptomatic *P. helianthoides*—112 of 129
496 genes (86.8%) that overlapped between the studies shared similar differential expression (SI
497 Appendix, Table S3; Dataset S7c,d)

498 DGE responses to heat treatment of *P. ochraceus* (Chandler & Wares, 2017) yielded 73
499 differentially expressed transcripts that mapped to the *P. ochraceus* genome (Fig. 5; Dataset S7a).
500 Of these, 6 transcripts overlapped with genes differentially expressed between symptomatic and
501 asymptomatic *P. ochraceus* (Dataset S7c,d). Three of these genes were upregulated in both heat-

502 treated and AIWS-symptomatic sea stars—Vitellogenin-6 (*vit-6*; g13155), and two unannotated
503 genes (g10034, g12499). Three other genes were downregulated—*Hyalin* (g2770), Spectrin beta
504 chain (*beta-Spec*; g9020), and one unannotated (g13988).

505 Comparison of DGE in symptomatic/asymptomatic *P. ochraceus* and size classes reveal
506 12.6% (114/902) of genes from the size analysis overlap with genes differentially expressed in
507 SSWD-symptomatic individuals, and of those 59% (67/114) share up/down-regulation in smaller
508 (relative to larger individuals) with symptomatic (relative to asymptomatic) individuals (SI
509 Appendix, Table S3; Dataset S7a). A subset of 9 of these genes overlap with two or more other
510 studies (Fig. 5A; Dataset S7d), four of which show similar regulation in smaller individuals and
511 symptomatic *P. ochraceus* and *P. helianthoides*—upregulation in Dopamine transporter (*DAT*,
512 g12628) and Myosin heavy chain (*MYS*, g21191), downregulation in Dehydrogenase/reductase
513 SDR family member 4 (*dhrs-4*, g2110) and WW domain containing oxidoreductase (*Wwox*,
514 g21298)—and one that is downregulated in smaller individuals, symptomatic *P. ochraceus*, and
515 temperature-treated *P. ochraceus* (Spectrin beta chain (*beta-Spec*; g9020)). Four genes show the
516 opposite pattern—Ets at 98B (*Ets98B*, g7334) and Fibrinogen-like protein A (*FIBA*, g9029) are
517 downregulated in smaller individuals, but upregulated in symptomatic *P. ochraceus* and *P.*
518 *helianthoides*, while Putative fatty acid elongation protein 3(*elo-3*, g5517) and Organic cation
519 transporter 1(*oct-1*, g9945) are upregulated in smaller individuals, but downregulated in
520 symptomatic *P. ochraceus* and *P. helianthoides* (Dataset S7d). An additional 8 transcripts
521 differentially expressed between size classes were also differentially expressed in heat-treated *P.*
522 *ochraceus* (Dataset S7b), with shared upregulation in smaller (versus larger) and heat-treated
523 individuals of Actin (*ACT1*, g11029) and (g4110, no annotation), and shared downregulation in
524 alpha Spectrin (*alpha-Spec*, g9023). Four of the eight transcripts were downregulated in smaller

525 individuals, but upregulated in heat-treated *P. ochraceus*—N-acetylglucosamine-6-phosphate
526 deacetylase (*CG17065*, g16112) and 3 unannotated genes (g7624, g14020, g19130)—while one
527 unannotated gene (g14019) was upregulated in smaller individuals, but downregulated in heat-
528 treated *P. ochraceus*.

529 In addition to the nuclear analysis, we compared mitochondrial responses and found *16S*
530 *L-rRNA* had increased expression in both temperature treated *P. ochraceus* (SI Appendix, Fig.
531 S9) and AIWS-symptomatic *P. ochraceus* (Fig. 5B). We also identified a synonymous
532 substitution in *ND5* in 3.2% (n = 4 of 125) of surviving adults and 2.5% (n = 4 of 154) of
533 juveniles that was undetected in the pre-wasting population of *P. ochraceus* and this gene was
534 downregulated in temperature treated stars.

535 The probability of a specific locus being implicated in multiple analyses ranges from
536 0.0039 in 2 analyses, through ~0.0007–0.0001 in 3 analyses, to ~0.00003–0.00001 in 4 analyses.
537 The probability that these implicated loci also have the same direction of differential gene
538 expression is even smaller at 10⁻⁴ in 2 analyses, through 10⁻⁵ in 3 analyses, to 10⁻⁶–10⁻⁷ in 4
539 analyses. A Fisher’s Exact Test, corrected for multiple tests using the Benjamini-Hochberg
540 procedure, supports overlap in genetic mechanisms associated with wasting disease in *P.*
541 *ochraceus* and those associated with *P. ochraceus* size (*p* < 10⁻¹⁵) and *P. helianthoides* disease (*p*
542 = 0.002, *p* < 10⁻¹⁵); Fisher’s Exact Test is marginally non-significant for overlap between *P.*
543 *ochraceus* disease-associated differentially expressed genes (*p* = 0.06) and temperature-
544 associated differentially expressed genes or disease-associated ddRAD loci (*p* = 0.06).

545 The outlier loci described above were distributed across all or almost all chromosomes.
546 The top 100 RAD-Seq loci of Schiebelhut et al. (2018) were randomly distributed among
547 chromosomes ($\chi^2 = 26.00$, df = 21, N = 99, *p* = 0.205), as were the RNA-seq loci differentially

548 expressed between symptomatic and asymptomatic individuals ($\chi^2 = 32.39$, df = 21, N = 802, $p =$
549 0.053). However, RNA-seq loci differentially expressed after heat treatment were non-randomly
550 distributed, with a notable cluster of 8 loci on the fourth shortest Chromosome 19 ($\chi^2 = 35.57$, df
551 = 21, N = 73, $p = 0.024$), as were loci that were differentially expressed by size, which were
552 disproportionately numerous on chromosomes 16 and 18–20 ($\chi^2 = 84.30$, df = 21, N = 897, $p < 10^{-$
553 8 }).

554

555 **Discussion**

556 For the first time since the 2013 outbreak of sea star wasting disease (SSWD)—one of the largest
557 marine mass mortality events on record—we are able to integrate data from field observations,
558 field collections, and laboratory experiments on multiple species within the common framework
559 of a high quality reference genome. This physical genetic map links a suspected environmental
560 driver (elevated temperature) and intrinsic differences among individuals (age/size, genotype) and
561 genes underlying organismal responses (e.g. immune response [*TL5A*, *TL5B*], phagocytosis
562 [*SRCR1*], cell death and wound healing [*CASP1*], apoptosis [*WWOX*], muscle contraction [*MYS*],
563 heat shock protein [*HSP71*]) with presentation of SSWD. These results help define what was
564 becoming known as asteroid idiopathic wasting syndrome (AIWS; (Hewson et al., 2018)) due to
565 its previously elusive etiology. We do not claim to circumscribe the entire set of factors involved
566 in SSWD, but to have identified important candidate genes and to have described an approach—
567 an autopsy guided by genomic analyses—for better understanding causes and mechanisms of
568 MMEs. Through a set of logical steps, our preliminary exploration suggests several candidate
569 genetic mechanisms for further investigation of the relationship between the sea star wasting

570 outbreak and large scale environmental change are merited (see also Fey et al., (2015); Harvell et
571 al., (2019)).

572 The genome and annotation of *Pisaster ochraceus* is the first for Order Forcipulatida, a
573 diverse and ecologically notable clade of sea stars (Mah & Blake, 2012). The assembly is ~90%
574 complete with 22 super-scaffolds, matching the haploid number of chromosomes estimated by
575 karyotyping (Saotome & Komatsu, 2002). At ~402 Mb, the *P. ochraceus* genome tends toward
576 the middle of the size-spectrum for most animals and deuterostomes (Canapa, Barucca, Biscotti,
577 Forconi, & Olmo, 2015; Elliott & Gregory, 2015). The modest size of the *P. ochraceus* genome
578 suggests relatively few transposable elements (Elliott & Gregory, 2015). Its GC content (mean
579 ~39.1%) is marginally higher than that of *S. purpuratus* (~36.9%; (Sodergren et al., 2006)), and
580 the 0.1% of 500 nt windows with >60% CG content may be interesting to investigate in the
581 context of methylation status and potential CpG islands proximate to genes implicated in wasting.
582 The estimated number of genes in *P. ochraceus* is marginally higher than predicted for a genome
583 of this size (Elliott & Gregory, 2015). The potential conservation suggested here—of
584 chromosome number, genome size, and gene number within the clade—merits further
585 investigation, as does genome architecture, in the context of wasting as an asteroid zoonosis.

586 Our new analyses of differential gene expression in *P. ochraceus* reveal differences
587 among tissues, among sizes, and between symptomatic versus asymptomatic individuals. The
588 greatest differences reflect the distinct expression needed during development to generate
589 different tissues (Ralston & Shaw, 2008) and then to deliver their complementary functions.
590 These functions have recently become of particular interest given the putative involvement of
591 densoviruses in wasting (Hewson et al., 2014; but see Hewson et al., 2018), that the microbiome
592 of sea stars appears to be anatomically partitioned (Jackson, Pepe-Ranney, Debenport, Buckley,

593 & Hewson, 2018), and that tissues may display different prevalence of viruses within and
594 between species (Hewson et al., 2018). The pyloric caecum shows the greatest number of
595 transcripts being differentially expressed between symptomatic and asymptomatic *P. ochraceus*
596 (Fig. 3; Fig. 4; SI Appendix, Fig. S8B); the cause is unclear but may help explain the prior
597 association between SSaDV and wasting: elevated transcription could indicate hyperplasia, and
598 densovirus are favored by rapidly dividing cells (Tijssen, Pénzes, Yu, Pham, & Bergoin, 2016).
599 The dermis, where lesions occur most prominently, also has a high degree of differential
600 expression between symptomatic and asymptomatic *P. ochraceus*. Less affected, though not
601 unaffected, are the tube feet, consistent with field observations that even very sick sea stars still
602 attach to rocks and separated arms walk. Likewise, differential gene expression within tissues
603 between sizes (Fig. 2), common in many organisms, is also consistent with field observations that
604 differences in susceptibility are possibly related to age/size (Eisenlord et al., 2016; Menge et al.,
605 2016).

606 Differential gene expression within tissues between symptomatic versus asymptomatic
607 individuals occurs in both mitochondrial and nuclear genes. One mitochondrial locus (*12S r-*
608 *rRNA*) was upregulated in all three tissue types in symptomatic *P. ochraceus* (relative to
609 asymptomatic individuals). The 12S ribosomal region intriguingly is a focus of recent studies
610 examining the role of mitochondria in (human) systemic disease and apoptosis (Raimundo et al.,
611 2012; Shadel, 2008). This may be meaningful for understanding wasting and its linkage with
612 apoptosis (Fig. 4; Dataset S6; Dataset S7d; Dataset S8; (Fuess et al., 2015; Gudenkauf &
613 Hewson, 2015)). One mitochondrial gene (*16S L-rRNA*) was upregulated in symptomatic and
614 heat-treated *P. ochraceus*. Heat-treated stars showed upregulation of another mitochondrial gene
615 (*tRNA-Asp*) and downregulation of three mitochondrial genes (*ATP6*, *ND2*, *ND5*), relative to stars

616 kept at ambient ocean temperature (SI Appendix, Fig. S9). The *ND* subunits appear relevant
617 because decreased activity in the mitochondrial oxidative phosphorylation (OXPHOS) electron
618 transport chain leads to increased production of reactive oxygen species (ROS) (Kamogashira,
619 Fujimoto, & Yamasoba, 2015), which can lead to increased apoptotic cell death (Zapico &
620 Ubelaker, 2013) and contribute to mitochondrial permeabilization, triggering caspase-induced
621 apoptosis (Oberst, Bender, & Green, 2008; Tait & Green, 2010). Commensurately, DGE analysis
622 of the nuclear genome evinced caspase activation in the symptomatic stars: *Caspase-1*, which is
623 involved in the activation cascade of caspases responsible for apoptosis execution, was elevated
624 in the symptomatic samples, both in the pyloric caecum and dermis. Intriguingly, in humans,
625 *Caspase-1* also regulates the response to DNA viruses upon inflammasome activation (Wang et
626 al., 2017). Other nuclear genes that were differentially expressed in all tissues in the
627 symptomatic–asymptomatic comparison included those associated with immune defense, cell
628 adhesion and wound healing. Humoral (*TLS-5*) and cellular (*SRCR*) components of the asteroid
629 innate immune system (Hibino et al., 2006; Ramírez-Gómez & García-Arrarás, 2010) were
630 represented in the differentially expressed genes in the symptomatic versus asymptomatic
631 comparisons. In symptomatic individuals genes associated with activation of the immune
632 response (*KPEL*, g15346; *CED1*, g19731) were upregulated; for coelomocyte proliferation,
633 different transcripts of *SRCR1* were upregulated (g2511, g12941) or downregulated (g234,
634 g6871), and agglutination agents downregulated (*TLS-5*, g14108; *LEC6*, g2945) in different
635 tissues of symptomatic samples. *SRCR* genes are expressed specifically in the coelomocytes
636 (Pancer, 2000), cells that are abundant and diverse in echinoderms, with roles in chemotaxis,
637 clotting, phagocytosis and encapsulation (Ramírez-Gómez & García-Arrarás, 2010). Due to their
638 multiple functions, it is unsurprising that different *SRCR1* genes have different expression

639 patterns. The downregulation of lectins (*TLs-5* and *LEC6*) in the pyloric caecum and dermis of
640 symptomatic stars, suggests wasting is not of bacterial origin: *TLs-5* [*TL5A* (g14108) and *TL5B*
641 (g18833)] are lectins involved in innate immunity and antimicrobial activity functioning in non-
642 self recognition (Gokudan et al., 1999) and strong agglutinating response to bacteria (Gokudan et
643 al., 1999). Additionally, we found differential gene expression between symptomatic and
644 asymptomatic *P. ochraceus* at loci putatively involved in selection (Fig. S10) associated with
645 SSWD (Schiebelhut et al., 2018), including upregulation of GTP-binding protein (*drn-1*, g21294)
646 in individuals symptomatic for SSWD, suggesting there could be a link between genotypic
647 variation and gene expression associated with SSWD.

648 We acknowledge our survey of currently available genomic data may miss loci of weaker
649 effect, loci in the unassembled 13% of the genome, and loci not involved in multiple pathways,
650 that influence SSWD. Additionally, *cis*-regulatory evolution can play an important role in gene
651 expression that may be important in adaptation (Lasky et al., 2014), although our current analyses
652 do not address this explicitly. Nonetheless, our approach highlights candidate loci that provide a
653 common thread tying together the ecological observations reported to date. Statistically, some of
654 these candidates may be false positives; however, the probability that any particular locus is
655 implicated as a candidate locus purely by chance is small ($p = \sim 10^{-4} - 10^{-7}$; Fisher's Exact Test, $p =$
656 $0.06 - p < 10^{-15}$) and so we consider the highlighted loci to be of considerable interest.

657 One of the most intriguing aspects of the 2013 outbreak of sea star wasting disease has
658 been its wide zoonotic impact and yet apparently few consistent responses among species in
659 subsequent studies (e.g., see Hewson et al. (2018) and Miner et al. (2018)). Our synthesis of prior
660 datasets (Chandler & Wares, 2017; Fuess et al., 2015; Gudenkauf & Hewson, 2015; Schiebelhut
661 et al., 2018) enabled by the common reference of the *P. ochraceus* genome however begins to

662 suggest some potential commonalities (Fig. 5), although we do not consider the role of complex
663 interactions among stressors, which may manifest in unintuitive ways that do not necessarily
664 result in shared differential expression of the same genes. However, we do find evidence linking
665 DGE responses to temperature treatments with DGE in symptomatic (versus asymptomatic)
666 individuals. Additionally, we find a synonymous substitution in mitochondrial *ND5* in adult and
667 juvenile survivors that was undetected in pre-wasting populations. All sea stars exposed to
668 increased temperature showed a decrease in *ND5* expression (Fig. 5, SI Appendix, Fig. S9)
669 relative to stars at ambient ocean temperature. And while synonymous (Goymer, 2007) mutations
670 in *ND5* can lead to oxidative phosphorylation disease (Blok et al., 2007), there are many
671 polymorphisms in mtDNA, including in the control region, that could affect transcription. These
672 results are particularly interesting as recent long-term coast-wide analyses have suggested a link
673 between temperature and the wasting disease outbreak of 2013 (Eisenlord et al., 2016; Harvell et
674 al., 2019; Kohl et al., 2016). Nonetheless, regional stressors may vary (Hewson et al., 2018), and
675 whether wasting is a direct response to temperature stress or is part of a general stress response
676 that increases disease risk, is still unknown (Miner et al., 2018). That the differentially expressed
677 genes for temperature treated stars are distributed across all 22 chromosomes and the 6 genes that
678 overlap with symptomatic versus asymptomatic DGE are distributed across 6 different
679 chromosomes (Dataset S7d), does suggest that the sea star response is a general response (i.e. not
680 attributable to a single gene or few genes), fitting its innate-only immune system. The potential
681 conservation of genomic attributes and organismal responses may therefore indicate underlying
682 similarities that could help explain the susceptibility of over 20 species of subtidal and intertidal
683 asteroids to wasting (Hewson et al., 2014). To resolve this question, controlled laboratory

684 experiments will be needed, along with expansion of the comparative genomic approach to
685 include many more asteroid species with different reported susceptibilities to wasting.

686 The temporal rapidity and geographic heterogeneity of the 2013 sea star wasting disease
687 outbreak made it difficult to narrow down the range of factors, causes, and mechanisms involved
688 at the time. Similar to other multi-taxon pandemics (e.g. “white nose” syndrome in bats, chytrid
689 fungi for amphibians, morbillivirus in dolphins) SSWD was elusive in the early stages of study
690 (Hewson et al., 2018; Miner et al., 2018), which is a concern as mass mortalities are increasing in
691 frequency with global change in some taxa (Fey et al., 2015; Tracy et al., 2019) and require more
692 rapid assessment. Given the central role of asteroid predators in community ecology (Gravem &
693 Morgan, 2017; Menge, 1983; Paine, 1974), as the focal organisms in the 2013 wasting pandemic,
694 and wasting’s intermittent recurrence (albeit with different intensity and taxonomic breadth) we
695 desperately need to better understand risk factors. While our abilities to reconstruct potential
696 agents from genomic signatures (De Wit et al., 2014) and infer longer-term decline of vulnerable
697 populations with genomic tools (Bay et al., 2018) are improving, we often remain ignorant of
698 genomic attributes that may elevate susceptibility or resilience to MMEs. Our approach—
699 retrospectively comparing “omic” changes across taxa, using the *Pisaster* genome to arrange
700 expression and other data associated with disease status and other phenotypes, i.e. genomic
701 autopsy—could form a model for approaching other emerging diseases. This approach can help
702 us understand genomic attributes that may shape—sometimes very differently, as in *Pisaster* and
703 *Pycnopodia*—organismal, population, species, and ecosystem responses to, and in the aftermath
704 of, marine MMEs (Burge et al., 2016; Lafferty & Hofmann, 2016).

705

706 **Acknowledgements**

707 Funding was provided by a University of California President's Research Catalyst Award (CA-
708 16-376437) and the National Science Foundation Biological Oceanography program (OCE-
709 1737381, OCE-1737091). The California Department of Fish and Wildlife and National Park
710 Service provided permits and access to field sites. Computation time was provided by the
711 MERCED cluster at UC Merced, funded by National Science Foundation award ACI-1429783.
712 We thank Ian Hewson for discussion of disease etiology and viruses and members of the
713 University of California Conservation Genomics Consortium (especially the Wayne lab at UCLA
714 and Shapiro lab at UCSC) for discussion of genomics. The Raimondi lab at UCSC kindly assisted
715 with collections.

716
717
718

719 **References**

720

721 Alker, A. P., Smith, G. W., & Kim, K. (2001). Characterization of *Aspergillus sydowii* (Thom et Church),
722 a fungal pathogen of Caribbean sea fan corals. *Hydrobiologia*, 460(1–3), 105–111.

723 Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search
724 tool. *Journal of Molecular Biology*, 215, 403–410.

725 Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., ... Eppig, J. T. (2000).
726 Gene Ontology: Tool for the unification of biology. *Nature Genetics*, 25, 25–29.

727 Bao, W., Kojima, K. K., & Kohany, O. (2015). Repbase Update, a database of repetitive elements in
728 eukaryotic genomes. *Mobile Dna*, 6(1), 11.

729 Bates, A. E., Hilton, B. J., & Harley, C. D. (2009). Effects of temperature, season and locality on wasting
730 disease in the keystone predatory sea star *Pisaster ochraceus*. *Diseases of Aquatic Organisms*,
731 86(3), 245–251.

732 Bay, R. A., Harrigan, R. J., Le Underwood, V., Gibbs, H. L., Smith, T. B., & Ruegg, K. (2018). Genomic
733 signals of selection predict climate-driven population declines in a migratory bird. *Science*,
734 359(6371), 83–86.

735 Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., ... Stadler, P. F. (2013).
736 MITOS: improved de novo metazoan mitochondrial genome annotation. *Molecular Phylogenetics
737 and Evolution*, 69(2), 313–319.

738 Blok, M. J., Spruijt, L., de Coo, I. F. M., Schoonderwoerd, K., Hendrickx, A., & Smeets, H. J. (2007).
739 Mutations in the ND5 subunit of complex I of the mitochondrial DNA are a frequent cause of
740 oxidative phosphorylation disease. *Journal of Medical Genetics*, 44(4), e74–e74.

741 Bond, N. A., Cronin, M. F., Freeland, H., & Mantua, N. (2015). Causes and impacts of the 2014 warm
742 anomaly in the NE Pacific. *Geophysical Research Letters*, 42(9), 3414–3420.

743 Burge, C. A., Eakin, C. M., Friedman, C. S., Froelich, B., Hershberger, P. K., Hofmann, E. E., ... Willis,
744 B. L. (2014). *Climate change influences on marine infectious diseases: Implications for*
745 *management and society*.

746 Burge, C. A., Friedman, C. S., Getchell, R., House, M., Lafferty, K. D., Mydlarz, L. D., ... Kiryu, I.
747 (2016). Complementary approaches to diagnosing marine diseases: A union of the modern and the
748 classic. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 371(1689),
749 20150207.

750 Burge, C. A., Griffin, F. J., & Friedman, C. S. (2006). Mortality and herpesvirus infections of the Pacific
751 oyster *Crassostrea gigas* in Tomales Bay, California, USA. *Diseases of Aquatic Organisms*,
752 72(1), 31–43.

753 Burge, C. A., Kim, C. J. S., Lyles, J. M., & Harvell, D. (2013). Special Issue Oceans and Humans Health:
754 The ecology of marine opportunists. *Microbial Ecology*, 65(4), 869–879.

755 Burt, J. M., Tinker, M. T., Okamoto, D. K., Demes, K. W., Holmes, K., & Salomon, A. K. (2018). Sudden
756 collapse of a mesopredator reveals its complementary role in mediating rocky reef regime shifts.
757 *Proceedings of the Royal Society B: Biological Sciences*, 285(1883), 20180553.

758 Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009).
759 BLAST+: Architecture and applications. *BMC Bioinformatics*, 10(1), 421.

760 Canapa, A., Barucca, M., Biscotti, M. A., Forconi, M., & Olmo, E. (2015). Transposons, genome size, and
761 evolutionary insights in animals. *Cytogenetic and Genome Research*, 147(4), 217–239.

762 Castro, K. M., Cobb, J. S., Gomez-Chiarri, M., & Tlusty, M. (2012). Epizootic shell disease in American
763 lobsters *Homarus americanus* in southern New England: Past, present and future. *Diseases of*
764 *Aquatic Organisms*, 100(2), 149–158.

765 Chandler, V. K., & Wares, J. P. (2017). RNA expression and disease tolerance are associated with a
766 “keystone mutation” in the ochre sea star *Pisaster ochraceus*. *PeerJ*, 5, e3696.

767 Chapman, J. A., Ho, I., Sunkara, S., Luo, S., Schroth, G. P., & Rokhsar, D. S. (2011). Meraculous: De
768 novo genome assembly with short paired-end reads. *PLoS One*, 6(8), e23501.

769 Chapman, R. W., Mancia, A., Beal, M., Veloso, A., Rathburn, C., Blair, A., ... Sokolova, I. M. (2011).
770 The transcriptomic responses of the eastern oyster, *Crassostrea virginica*, to environmental
771 conditions. *Molecular Ecology*, 20(7), 1431–1449.

772 Charif, D., & Lobry, J. R. (2007). SeqinR 1.0-2: A contributed package to the R project for statistical
773 computing devoted to biological sequences retrieval and analysis. In *Structural approaches to
774 sequence evolution* (pp. 207–232). Springer.

775 Chen, N. (2004). Using RepeatMasker to identify repetitive elements in genomic sequences. *Current
776 Protocols in Bioinformatics*, 5(1), 4.10. 1-4.10. 14.

777 Coghlan, A. (2011). *Little book of R for bioinformatics*.

778 De Wit, P., Rogers-Bennett, L., Kudela, R. M., & Palumbi, S. R. (2014). Forensic genomics as a novel
779 tool for identifying the causes of mass mortality events. *Nature Communications*, 5, 3652.

780 Dubey, J. P., Zarnke, R., Thomas, N. J., Wong, S. K., Van Bonn, W., Briggs, M., ... Kwok, O. C. H.
781 (2003). *Toxoplasma gondii*, *Neospora caninum*, *Sarcocystis neurona*, and *Sarcocystis canis*-like
782 infections in marine mammals. *Veterinary Parasitology*, 116(4), 275–296.

783 Duggins, D. O. (1983). Starfish predation and the creation of mosaic patterns in a kelp-dominated
784 community. *Ecology*, 64(6), 1610–1619.

785 Eisenlord, M. E., Groner, M. L., Yoshioka, R. M., Elliott, J., Maynard, J., Fradkin, S., ... van Hooijdonk,
786 R. (2016). Ochre star mortality during the 2014 wasting disease epizootic: Role of population size
787 structure and temperature. *Phil. Trans. R. Soc. B*, 371(1689), 20150212.

788 Elliott, T. A., & Gregory, T. R. (2015). What's in a genome? The C-value enigma and the evolution of
789 eukaryotic genome content. *Philosophical Transactions of the Royal Society B: Biological
790 Sciences*, 370(1678), 20140331.

791 Fey, S. B., Siepielski, A. M., Nusslé, S., Cervantes-Yoshida, K., Hwan, J. L., Huber, E. R., ... Carlson, S.
792 M. (2015). Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events.
793 *Proceedings of the National Academy of Sciences*, 112(4), 1083–1088.

794 Fuess, L. E., Eisenlord, M. E., Closek, C. J., Tracy, A. M., Mauntz, R., Gignoux-Wolfsohn, S., ... Harvell,
795 D. (2015). Up in arms: Immune and nervous system response to sea star wasting disease. *PLoS
796 One*, 10(7), e0133053.

797 Gardner, G. R., Harshbarger, J. C., Lake, J. L., Sawyer, T. K., Price, K. L., Stephenson, M. D., ...
798 Togstad, H. A. (1995). Association of prokaryotes with symptomatic appearance of withering
799 syndrome in black abalone *Haliotis cracherodii*. *Journal of Invertebrate Pathology*, 66(2), 111–
800 120.

801 Gokudan, S., Muta, T., Tsuda, R., Koori, K., Kawahara, T., Seki, N., ... Kawabata, S. (1999). Horseshoe
802 crab acetyl group-recognizing lectins involved in innate immunity are structurally related to
803 fibrinogen. *Proceedings of the National Academy of Sciences*, 96(18), 10086–10091.

804 Goymer, P. (2007). Genetic variation: Synonymous mutations break their silence. *Nature Reviews
805 Genetics*, 8(2), 92.

806 Gravem, S. A., & Morgan, S. G. (2017). Shifts in intertidal zonation and refuge use by prey after mass
807 mortalities of two predators. *Ecology*, 98(4), 1006–1015.

808 Gudenkauf, B. M., & Hewson, I. (2015). Metatranscriptomic analysis of *Pycnopodia helianthoides*
809 (Asteroidea) affected by sea star wasting disease. *PloS One*, 10(5), e0128150.

810 Harley, C. D. G., Pankey, M. S., Wares, J. P., Grosberg, R. K., & Wonham, M. J. (2006). Color
811 polymorphism and genetic structure in the sea star *Pisaster ochraceus*. *The Biological Bulletin*,
812 211(3), 248–262.

813 Harvell, D., Altizer, S., Cattadori, I. M., Harrington, L., & Weil, E. (2009). Climate change and wildlife
814 diseases: When does the host matter the most? *Ecology*, 90(4), 912–920.

815 Harvell, D., Montecino-Latorre, D., Caldwell, J. M., Burt, J. M., Bosley, K., Keller, A., ... Pontier, O.
816 (2019). Disease epidemic and a marine heat wave are associated with the continental-scale
817 collapse of a pivotal predator (*Pycnopodia helianthoides*). *Science Advances*, 5(1), eaau7042.

818 Hewson, I., Bistolas, K. S., Quijano Cardé, E. M., Button, J. B., Foster, P. J., Flanzenbaum, J. M., ...
819 Lewis, C. K. (2018). Investigating the complex association between viral ecology, environment,
820 and Northeast Pacific Sea Star Wasting. *Frontiers in Marine Science*, 5, 77.

821 Hewson, I., Button, J. B., Gudenkauf, B. M., Miner, B., Newton, A. L., Gaydos, J. K., ... Murray, M.
822 (2014). Densovirus associated with sea-star wasting disease and mass mortality. *Proceedings of
823 the National Academy of Sciences*, 111(48), 17278–17283.

824 Hibino, T., Loza-Coll, M., Messier, C., Majeske, A. J., Cohen, A. H., Terwilliger, D. P., ... Berney, K.
825 (2006). The immune gene repertoire encoded in the purple sea urchin genome. *Developmental
826 Biology*, 300(1), 349–365.

827 Hoff, K. J. (2019). MakeHub: Fully automated generation of UCSC Genome Browser Assembly Hubs.
828 *BioRxiv*, 550145.

829 Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M., & Stanke, M. (2015). BRAKER1: Unsupervised
830 RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS. *Bioinformatics*, 32(5),
831 767–769.

832 Hoff, K. J., Lomsadze, A., Borodovsky, M., & Stanke, M. (2019). Whole-Genome Annotation with
833 BRAKER. In *Gene Prediction* (pp. 65–95). Springer.

834 Hu, Z.-L., Bao, J., & Reecy, J. M. (2008). CateGORizer: A web-based program to batch analyze gene on-
835 tology classification categories. *Online J Bioinform*, 9, 108–112.

836 Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2008). Bioinformatics enrichment tools: Paths toward
837 the comprehensive functional analysis of large gene lists. *Nucleic Acids Research*, 37(1), 1–13.

838 Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large
839 gene lists using DAVID bioinformatics resources. *Nature Protocols*, 4(1), 44.

840 Jackson, E. W., Pepe-Ranney, C., Debenport, S. J., Buckley, D. H., & Hewson, I. (2018). The microbial
841 landscape of sea stars and the anatomical and interspecies variability of their microbiome.
842 *Frontiers in Microbiology*, 9, 1829.

843 Kamogashira, T., Fujimoto, C., & Yamasoba, T. (2015). Reactive oxygen species, apoptosis, and
844 mitochondrial dysfunction in hearing loss. *BioMed Research International*, 2015.

845 Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. M., & Haussler, D.
846 (2002). The human genome browser at UCSC. *Genome Research*, 12(6), 996–1006.

847 Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., & Salzberg, S. L. (2013). TopHat2: Accurate
848 alignment of transcriptomes in the presence of insertions, deletions and gene fusions. *Genome
849 Biology*, 14(4), R36.

850 Kohl, W. T., McClure, T. I., & Miner, B. G. (2016). Decreased temperature facilitates short-term sea star
851 wasting disease survival in the keystone intertidal sea star *Pisaster ochraceus*. *PLoS One*, 11(4),
852 e0153670.

853 Lafferty, K. D., & Hofmann, E. E. (2016). *Marine disease impacts, diagnosis, forecasting, management
854 and policy*. The Royal Society.

855 Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. (2009). Ultrafast and memory-efficient alignment of
856 short DNA sequences to the human genome. *Genome Biology*, 10, R25.

857 Lasky, J. R., Des Marais, D. L., Lowry, D. B., Povolotskaya, I., McKay, J. K., Richards, J. H., ... Juenger,
858 T. E. (2014). Natural variation in abiotic stress responsive gene expression and local adaptation to
859 climate in *Arabidopsis thaliana*. *Molecular Biology and Evolution*, 31(9), 2283–2296.

860 Lessios, H. A. (2016). The Great *Diadema antillarum* Die-Off: 30 Years Later. *Annual Review of Marine
861 Science*, 8(1), 267–283.

862 Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform.
863 *Bioinformatics*, 25(14), 1754–1760.

864 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., ... Durbin, R. (2009). The sequence
865 alignment/map format and SAMtools. *Bioinformatics*, 25, 2078–2079.

866 Lieberman-Aiden, E., Van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., ...
867 Dorschner, M. O. (2009). Comprehensive mapping of long-range interactions reveals folding
868 principles of the human genome. *Science*, 326(5950), 289–293.

869 Lomsadze, A., Burns, P. D., & Borodovsky, M. (2014). Integration of mapped RNA-Seq reads into
870 automatic training of eukaryotic gene finding algorithm. *Nucleic Acids Research*, 42(15), e119–
871 e119.

872 Mah, C. L., & Blake, D. B. (2012). Global diversity and phylogeny of the Asteroidea (Echinodermata).
873 *PLoS One*, 7(4), e35644.

874 Matsubara, M., Komatsu, M., Araki, T., Asakawa, S., Yokobori, S., Watanabe, K., & Wada, H. (2005).
875 The phylogenetic status of Paxillosida (Asteroidea) based on complete mitochondrial DNA
876 sequences. *Molecular Phylogenetics and Evolution*, 36(3), 598–605.

877 McCarthy, D. J., Chen, Y., & Smyth, G. K. (2012). Differential expression analysis of multifactor RNA-
878 Seq experiments with respect to biological variation. *Nucleic Acids Research*, 40(10), 4288–4297.

879 Menge, B. A. (1983). Components of predation intensity in the low zone of the New England rocky
880 intertidal region. *Oecologia*, 58(2), 141–155.

881 Menge, B. A., Cerny-Chipman, E. B., Johnson, A., Sullivan, J., Gravem, S., & Chan, F. (2016). Sea star
882 wasting disease in the keystone predator *Pisaster ochraceus* in Oregon: Insights into differential
883 population impacts, recovery, predation rate, and temperature effects from long-term research.
884 *PLoS One*, 11(5), e0153994.

885 Miner, C. M., Burnaford, J. L., Ambrose, R. F., Antrim, L., Bohlmann, H., Blanchette, C. A., ... Harley,
886 C. D. (2018). Large-scale impacts of sea star wasting disease (SSWD) on intertidal sea stars and
887 implications for recovery. *PLoS One*, 13(3), e0192870.

888 Montecino-Latorre, D., Eisenlord, M. E., Turner, M., Yoshioka, R., Harvell, D., Pattengill-Semmens, C.
889 V., ... Gaydos, J. K. (2016). Devastating transboundary impacts of sea star wasting disease on
890 subtidal asteroids. *PLoS One*, 11(10), e0163190.

891 Morgulis, A., Gertz, E. M., Schäffer, A. A., & Agarwala, R. (2005). WindowMasker: Window-based
892 masker for sequenced genomes. *Bioinformatics*, 22(2), 134–141.

893 Oberst, A., Bender, C., & Green, D. R. (2008). Living with death: The evolution of the mitochondrial
894 pathway of apoptosis in animals. *Cell Death and Differentiation*, 15(7), 1139.

895 Paine, R. T. (1974). Intertidal community structure. *Oecologia*, 15(2), 93–120.

896 Pancer, Z. (2000). Dynamic expression of multiple scavenger receptor cysteine-rich genes in
897 coelomocytes of the purple sea urchin. *Proceedings of the National Academy of Sciences*, 97(24),
898 13156–13161.

899 Putnam, N. H., O'Connell, B. L., Stites, J. C., Rice, B. J., Blanchette, M., Calef, R., ... Sugnet, C. W.
900 (2016). Chromosome-scale shotgun assembly using an in vitro method for long-range linkage.
901 *Genome Research*, 26(3), 342–350.

902 Quinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic
903 features. *Bioinformatics*, 26(6), 841–842.

904 Raimundo, N., Song, L., Shutt, T. E., McKay, S. E., Cotney, J., Guan, M.-X., ... Shadel, G. S. (2012).
905 Mitochondrial stress engages E2F1 apoptotic signaling to cause deafness. *Cell*, 148(4), 716–726.

906 Ralston, A., & Shaw, K. (2008). Gene expression regulates cell differentiation. *Nat Educ*, 1(1), 127–131.

907 Ramírez-Gómez, F., & García-Arrarás, J. E. (2010). Echinoderm immunity. *Invertebrate Survival Journal*,
908 7(2), 211–220.

909 Saotome, K., & Komatsu, M. (2002). Chromosomes of Japanese starfishes. *Zoological Science*, 19(10),
910 1095–1104.

911 Schiebelhut, L. M., Puritz, J. B., & Dawson, M. N. (2018). Decimation by sea star wasting disease and
912 rapid genetic change in a keystone species, *Pisaster ochraceus*. *Proceedings of the National
913 Academy of Sciences*, 115(27), 7069–7074.

914 Schultz, J. A., Cloutier, R. N., & Côté, I. M. (2016). Evidence for a trophic cascade on rocky reefs
915 following sea star mass mortality in British Columbia. *PeerJ*, 4, e1980.

916 Shadel, G. S. (2008). Expression and maintenance of mitochondrial DNA: new insights into human
917 disease pathology. *The American Journal of Pathology*, 172(6), 1445–1456.

918 Short, F. T., Muehlstein, L. K., & Porter, D. (1987). Eelgrass wasting disease: Cause and recurrence of a
919 marine epidemic. *The Biological Bulletin*, 173(3), 557–562.

920 Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO:
921 assessing genome assembly and annotation completeness with single-copy orthologs.
922 *Bioinformatics*, 31(19), 3210–3212.

923 Sodergren, E., Weinstock, G. M., Davidson, E. H., Cameron, R. A., Gibbs, R. A., Angerer, R. C., ...
924 Burke, R. D. (2006). The genome of the sea urchin *Strongylocentrotus purpuratus*. *Science*,
925 314(5801), 941–952.

926 Stanke, M., Diekhans, M., Baertsch, R., & Haussler, D. (2008). Using native and syntenically mapped
927 cDNA alignments to improve de novo gene finding. *Bioinformatics*, 24(5), 637–644.

928 Supek, F., Bosnjak, M., Skunca, N., & Smuc, T. (2011). REVIGO summarizes and visualizes long lists of
929 gene ontology terms. *PLoS One*, 6, e21800.

930 Tait, S. W., & Green, D. R. (2010). Mitochondria and cell death: Outer membrane permeabilization and
931 beyond. *Nature Reviews Molecular Cell Biology*, 11(9), 621.

932 The Gene Ontology Consortium. (2016). Expansion of the Gene Ontology knowledgebase and resources.
933 *Nucleic Acids Research*, 45(D1), D331–D338.

934 Tijssen, P., Pénzes, J. J., Yu, Q., Pham, H. T., & Bergoin, M. (2016). Diversity of small, single-stranded
935 DNA viruses of invertebrates and their chaotic evolutionary past. *Journal of Invertebrate
936 Pathology*, 140, 83–96.

937 Uniprot Consortium. (2014). UniProt: A hub for protein information. *Nucleic Acids Research*, 43(D1),
938 D204–D212.

939 UniProt: The universal protein knowledgebase. (2016). *Nucleic Acids Research*, 45(D1), D158–D169.

940 Wang, Y., Ning, X., Gao, P., Wu, S., Sha, M., Lv, M., ... Meng, G. (2017). Inflammasome activation
941 triggers caspase-1-mediated cleavage of cGAS to regulate responses to DNA virus infection.
942 *Immunity*, 46(3), 393–404.

943 Wares, J. P., & Schiebelhut, L. M. (2016). What doesn't kill them makes them stronger: An association
944 between elongation factor 1- α overdominance in the sea star *Pisaster ochraceus* and "sea star
945 wasting disease." *PeerJ*, 4, e1876.

946 Wu, T. D., Reeder, J., Lawrence, M., Becker, G., & Brauer, M. J. (2016). GMAP and GSNAP for genomic
947 sequence alignment: Enhancements to speed, accuracy, and functionality. In *Statistical Genomics*
948 (pp. 283–334). Springer.

949 Yasuda, N., Hamaguchi, M., Sasaki, M., Nagai, S., Saba, M., & Nadaoka, K. (2006). Complete
950 mitochondrial genome sequences for Crown-of-thorns starfish *Acanthaster planci* and *Acanthaster
951 brevispinus*. *BMC Genomics*, 7(1), 17.

952 Yin, T., Cook, D., & Lawrence, M. (2012). ggbio: An R package for extending the grammar of graphics
953 for genomic data. *Genome Biology*, 13(8), R77.

954 Zapico, S. C., & Ubelaker, D. H. (2013). MtDNA mutations and their role in aging, diseases and forensic
955 sciences. *Aging and Disease*, 4(6), 364.

956

957

958

959 **Data Accessibility Statement**

960 The *Pisaster ochraceus* nuclear genome has been deposited in the Genome database of the
961 National Center for Biotechnology Information (NCBI; BioProject PRJNA532896,
962 SUB5448653) and the UCSC Genome browser (<http://genome.ucsc.edu>); the mitochondrial
963 genome is deposited with the NCBI (accession MH713001). RNA-Seq reads are deposited at the
964 NCBI sequence read archive (accession no. SRP#####) and the [GFF3 genome annotation file](#)
965 and [commented code](#) are deposited in DRYAD (<https://doi.org/10.6071/M3ND50>).

966

967 **Supplementary Information**

968 Appendix Supplementary methods, figures, and tables

969 [Dataset S1](#) *P. ochraceus* gene model BLAST and Gene Ontology results

970 [Dataset S2](#) *P. ochraceus* annotation

971 [Dataset S3](#) *P. ochraceus* immune related genes

972 [Dataset S4](#) *P. ochraceus* DGE by size – each size class versus all others

973 [Dataset S5](#) *P. ochraceus* DGE by size – smallest versus x-largest

974 [Dataset S6](#) *P. ochraceus* DGE SSWD-symptomatic versus asymptomatic

975 [Dataset S7](#) Overlap between studies of *P. ochraceus* and *P. helianthoides*

976 [Dataset S8](#) *P. ochraceus* RAD-seq SSWD-discriminant loci overlap with gene models

977 [Dataset S9](#) Probabilities a single locus is implicated in multiple analyses

978 [Dataset S10](#) Mapped read counts per library for *P. ochraceus* and *P. helianthoides* analyses

979 [Dataset S11](#) Comparison of two mapping and subsampling approaches for nuclear DNA

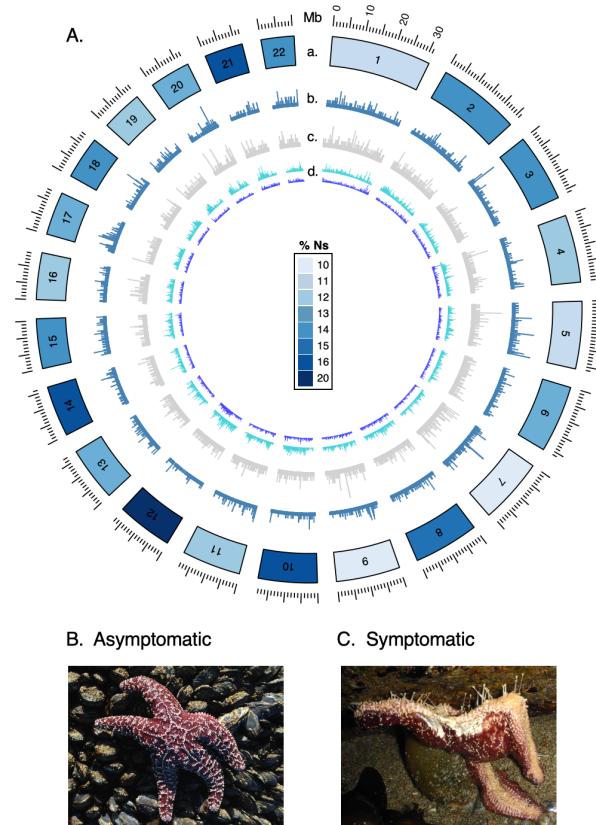
980 [Dataset S12](#) Enrichment scores and functional annotations from DAVID

981

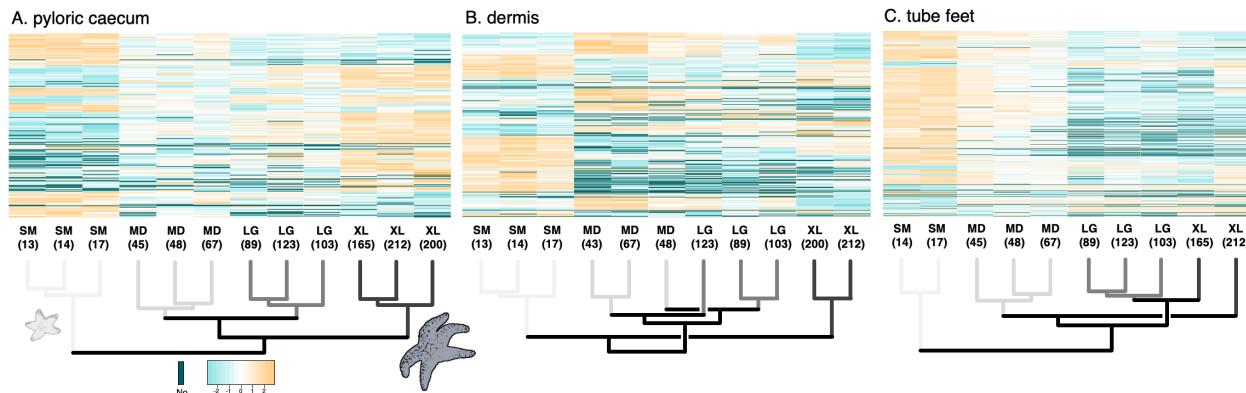
982

983 **Authors Contributions**

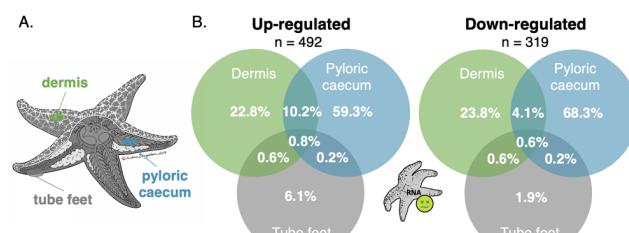
984 M.ND. and L.M.S. conceived and designed the study with D.V.R. and J.P.W., all implemented
985 the research; K.J.H. annotated the genome; D.V.R. and L.M.S. performed analyses, with some
986 assistance from J.P.W. and M.ND.; D.V.R. / L.M.S., M.ND., J.P.W., and K.J.H. wrote and edited
987 the manuscript.


988

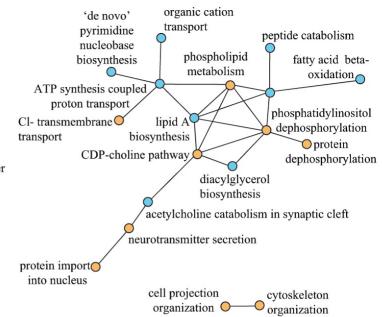
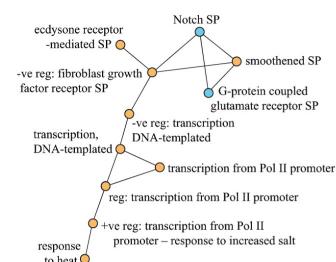
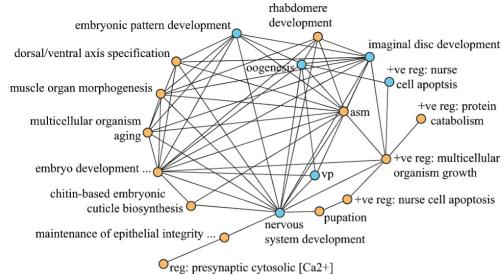
989 The authors declare no conflict of interest.

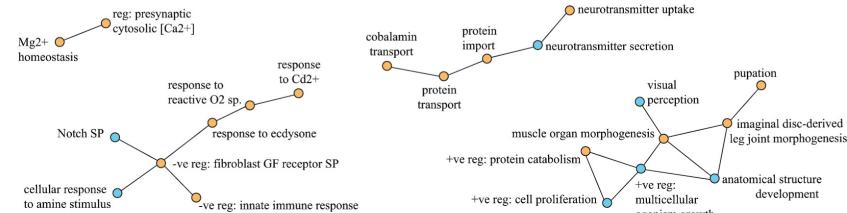

990
991
992

993
994


Figures

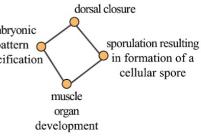
995
996 **Figure 1** Genomic analysis of wasting in asymptomatic and symptomatic *Pisaster ochraceus*.
997 (A) Schematic representation of the *P. ochraceus* genome. (a) Chromosome ideogram where
998 colors represent the percentage of the super-scaffold comprised of Ns. (b) Occurrence of
999 annotated gene models, range 1–9, and (c) occurrence of gene models without annotations, range
1000 1–7. (d) Frequency histogram showing the proportion of 500 nt regions within contiguous 250
1001 KB segments in which %GC content is more extreme than 2 standard deviations from the
1002 genome-wide mean: upper tail (outer track), range = 0–0.100; lower tail (inner track), range = 0–
1003 0.074 (SI Appendix, Fig. S1). *Pisaster ochraceus* (B) asymptomatic and (C) symptomatic for
1004 SSWD; note lesions, loss of turgor, and twisted arm, yet continued adhesion to surface with tube
1005 feet.




1011
1012 **Figure 2** Differential gene expression between size-classes within tissue types. Heat maps of
1013 genes differentially expressed (FDR < 0.01) in at least one size class—small (SM), medium
1014 (MD), large (LG), and x-large (XL) (numbers represent radius in mm)—relative to the mean of
1015 all other sizes, or in SM versus XL. Heatmaps generated for each tissue type separately: (A)
1016 pyloric caecum, 261 genes, (B) dermis, 295 genes, and (C) tube feet, 414 genes. Colors represent
1017 log-normalized gene expression converted to Z-score. Each row corresponds to a gene, dark-teal
1018 cells correspond to NaN values. Dendrogram reflects clustering by Euclidean distance.

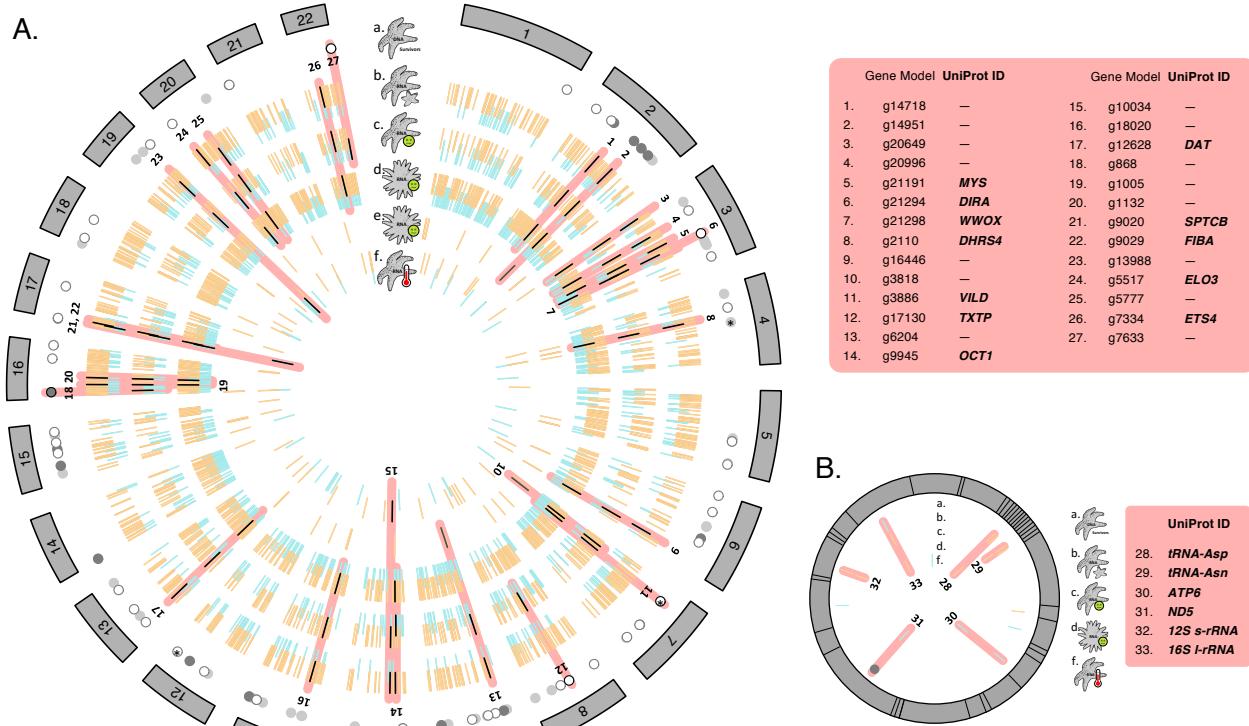

1027
1028 **Figure 3** Summary of all differentially expressed mitochondrial and nuclear transcripts by tissue
1029 in comparisons of asymptomatic and symptomatic sea stars. (A) Anatomical illustration of *P.*
1030 *ochraceus*, highlighting tissue types used in this study. (B) Venn diagrams of genes up-regulated
1031 (left) and down-regulated (right) in symptomatic (relative to asymptomatic) ochre sea stars. n =
1032 number of differentially expressed genes between symptomatic and asymptomatic individuals.

1039
1040
1041
1042

Pyloric caecum



Dermis



1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054

Tube feet

Figure 4 Associations among gene ontology (GO) terms for genes that are differentially expressed in asymptomatic versus symptomatic *Pisaster ochraceus*, organized by tissue type. Orange indicates an upregulated gene, blue a downregulated gene. Edges connect similar GO terms but do not imply co-regulation. GO terms may be specific to the organism in which the gene was identified and thus imply a related function in sea stars (e.g. pupation may represent metamorphosis). The network includes nuclear genes only, with links to mitochondrial function implied in several cases. Abbreviations: apoptosis = apoptotic process; asm = anatomical structure morphogenesis; GF = growth factor; Pol II = RNA polymerase II; SP = signaling pathway; vp = visual perception, +ve reg = positive regulation, -ve reg = negative regulation.

1055
1056
1057 **Figure 5** Comparisons of genomic and transcriptomic studies mapped to the *Pisaster ochraceus*
1058 nuclear and mitochondrial genomes. (A) Nuclear datasets, from the outside inwards: (a) position
1059 of the top discriminating RAD-Seq loci in *P. ochraceus* (solid = exons, open = introns, light
1060 shading = outside of gene model; n=99), * indicates the three BayeScan outlier loci identified by
1061 Schiebelhut et al. (Schiebelhut et al., 2018); (b) genes differentially expressed in smaller, relative
1062 to larger, *P. ochraceus* (FDR < 0.01, see Fig. 2 and Dataset S7a for full description of DGE by
1063 all size classes; (c) genes differentially expressed between symptomatic and asymptomatic *P.*
1064 *ochraceus* (FDR < 0.01); (d) genes differentially expressed between symptomatic and
1065 asymptomatic *P. helianthoides* in Fuess et al. (FDR < 0.01; Fuess et al. (2015)); (e) genes
1066 differentially expressed between symptomatic and asymptomatic *P. helianthoides* in Gudenkauf
1067 & Hewson (FDR < 0.01; Gudenkauf & Hewson (2015)); (f) genes differentially expressed
1068 between ambient ocean temperature and elevated temperature (+3°C) in *P. ochraceus* (FDR <
1069 0.1; Chandler & Wares (2017)). (B) Mitochondrial datasets, from the outside inwards; icons
1070 correspond to those in panel A; DGE at FDR < 0.1. In both nuclear and mitochondrial datasets,
1071 orange = upregulated, blue = downregulated; black marks and salmon shading highlight nuclear
1072 loci recovered in ≥3 analyses (≥2 for mitochondria), or that overlapped between discriminant loci
1073 from Schiebelhut et al. (Schiebelhut et al., 2018) and track c. Numbered bars correspond to
1074 Dataset S7d.