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Abstract—Pricing electric vehicle (EV) charging services is
difficult when the electricity tariff includes both time-of-use
energy cost and demand charge based on peak power draw. In
this paper, we propose a pricing scheme that assigns a session-
specific energy price to each charging session at the end of the
billing period. The session price precisely captures the costs of
energy, demand charge, and infrastructure congestion for which
that session is responsible in that month while optimizing the
trade-off between inexpensive time-of-use pricing and peak power
draw. While our pricing scheme is calculated offline at the end
of the billing period, we propose an online scheduling algorithm
based on model predictive control to determine charging rates for
each EV in real-time. We provide theoretical justification for our
proposal and support it with simulations using real data collected
from charging facilities at Caltech and JPL. Our simulation
results suggest that the online algorithm can approximate the
offline optimal reasonably well, e.g., the cost paid by the operator
in the online setting is higher than the offline optimal cost by
9.2% and 6.5% at Caltech and JPL respectively. In the case of
JPL, congestion rents are enough to cover this increase in costs,
while at Caltech, this results in a negligible average loss of $18
per month.

Index Terms—demand charge, EV charging, pricing, smart
charging, online scheduling

I. INTRODUCTION

It is expected that 120 million electric vehicles (EVs) will
be on the road by 2030. These EVs will consume 271 billion
kWh of electricity annually and require nearly $50 billion
in charging infrastructure investments [1]. To reduce capital
and operating costs in large-scale facilities, charging must
be carefully managed, e.g., [2]. These facilities are gener-
ally subject to commercial electricity tariffs, which include
both time-varying energy costs ($/kWh) and demand charge
($/kW). Time-of-use (TOU) energy costs incentivize shifting
energy use to off-peak periods. Demand charges, which are
assessed on the peak power draw of the user over a billing
period, incentivize consumers to smooth their demand profile,
reducing infrastructure costs. These demand charges can make
up a significant portion of a charging facility’s total electricity
bill, e.g., up to 90% in the case of DC fast charging [3]. In
Section II we show that demand charge can be up to 75%
of the total electricity cost of uncontrolled level-2 charging
and up to 49% even when EVs are scheduled optimally
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1745301 and Resnick Sustainability Institute.

to reduce costs. Currently, most workplace and public-use
charging facilities are either free or charge a flat rate based on
time or energy delivered. As EV adoption grows, the current
practice cannot sustain. An emerging question for operators of
large-scale charging facilities is how to fairly allocate the total
cost of providing charging services to users of the system.

In this paper we propose a novel method to price charging
services which attributes the operator’s total cost to each user
based on her contribution to the social cost. Our method is
based on three ideas. First, the primary objective of the system
operator is to meet EVs’ energy requests by their departure
times without overloading the charging infrastructure and at
minimal cost (energy cost plus demand charge). Second, since
users do not directly control when their EV is charged in a
managed charging environment, the price the user pays should
be based on the lowest cost charging schedule the operator
could have used, rather than the actual charging schedule
used. This gives systems operators flexibility, by decoupling
charging decisions from pricing decisions while holding them
accountable to provide low cost charging to their users. It
also rewards users for providing useful flexibility even if the
operator chose not to utilize that flexibility. Third, in order
to properly assign prices to cover costs, billing should take
place at the end of the utility company’s billing period, when
demand charges and the full impacts of congestion are known.

Offline pricing. In Section III we design our pricing scheme.
This scheme takes the following form: At the end of each
month (billing period), we compute a session-specific energy
price α∗i for every charging session i in that month. Let ei
be the energy delivered in session i and Sj be the set of all
sessions belonging to user j. Then user j’s total bill at the end
of the month is

∑
i∈Sj α

∗
i ei, i.e., user j pays the session energy

price for all her sessions. Unlike pricing schemes that use the
same fixed or time-varying prices for all users regardless of
the burden they place on the system, our prices α∗i capture in
a precise sense the costs of energy, infrastructure congestion,
and demand charge for which session i is responsible in that
month.

Online scheduling. While the prices are computed with
perfect information at the end of each month based on
users’ collective behavior, charging decisions must be made
online with limited information. In Section IV, we propose
an online scheduling algorithm, based on model predictive
control, that approximates the offline minimum-cost solution
with only information available at that time. While many
online algorithms have been proposed to minimize the cost
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Fig. 1. (top) Total electricity costs, broken down by demand charge (DC)
and energy cost (EC), for the Caltech ACN when using SCE’s TOU-EV-
4 tariff schedule for various scheduling strategies. Note that all schedules
here are calculated offline with perfect future information. All algorithms,
except uncontrolled, respect the infrastructure constraints of the Caltech ACN
described in [10]. (bottom) Example of aggregate power draw for each
approach for May 1, 2019.

of EV charging for ToU tariffs [4], [5], [6], [7], these works
do not consider demand charge. Many algorithms for load
variance minimization have also been proposed [8], [9]. These
algorithms tend to minimize demand charge, but neglect the
tradeoff between minimizing energy cost and demand charge.
Our algorithm, on the other hand, explicitly optimizes this
tradeoff.

Evaluation using real data. In Section V, we simulate the
proposed offline pricing and online scheduling algorithms
using large-scale EV charging data from the field. Our design,
especially decoupling pricing and charging decisions, and
payment at the end of a billing period instead of a charging
session, is in stark contrast to the current practice. Our goal
is to carefully lay out a theoretical justification and support it
with realistic simulations.

II. DEMAND CHARGE

For many commercial customers, demand charge can be a
significant portion of their electricity bill. This is especially
true for large-scale charging systems at sites where demand
tends to be synchronized, such as workplaces. With uncon-
trolled charging, this would lead to large peaks in demand
followed by long periods of low utilization, which leads to
extremely high demand charges relative to the amount of
energy delivered. This can be seen in Fig 1. High demand
charges from uncontrolled charging must be passed on to
drivers in the form of higher per-unit prices. These higher
prices could dissuade customer adoption of EVs.

Managed charging can help reduce demand charges. How-
ever, there is an inherent trade-off between minimizing de-
mand charge and minimizing time-of-use energy costs. This
trade-off occurs because demand charge is minimized when
load is flat across the day, while energy cost is minimized
when load is concentrated in low-cost periods. To see this,
consider three possible schedules for EV charging, each with
its own objective: 1) minimize energy cost only, 2) minimize
demand charge only (load flattening), 3) minimize total cost.
To find each schedule, we solve an offline convex optimization
problem with the appropriate objective as well as constraints
and data collected from a real large-scale charging facility at
Caltech [10]. We consider the Southern California Edison EV
TOU-4 tariff described in Table I. The total cost, broken down
by energy cost and demand charge, of each optimal schedule
as well as uncontrolled charging, is shown in Fig 1.

The results exhibit two distinctive features. First, uncon-
trolled charging and energy-cost minimization result in much
higher peaks than demand-charge minimization and total-
cost minimization. As a consequence, uncontrolled charging
(energy-cost minimization) results in up to 335% (258%)
increase in demand charge relative to the minimum cost
schedule.1 Second, even in the cases where we minimize the
total cost or flatten load, the resulting demand charge is still
between 31-49% of the total cost. These results suggest:
• Because demand charges are significant, charging system

operators cannot ignore them and must pass these costs
on to their users. However, because demand charges
are assessed over the whole month, care must be taken
to properly attribute these costs to individual charging
sessions in a fair and principled way.

• Since managed charging offers the potential to reduce
overall costs significantly; the pricing scheme should
reward drivers who provide flexibility to the system if
that flexibility can be used to reduce overall costs.

Our goal is to design a pricing scheme and an online schedul-
ing algorithm with these properties.

III. PRICING RULE

In this section, we present the basic design of our pricing
method. While we calculate prices offline with perfect infor-
mation such as would be available at the end of a billing
period, we explain in Section IV how to combine this pricing
scheme with online scheduling algorithms so that it can be
used in practice.

A. Basic pricing design

Consider the problem of pricing EV charging service over
an entire month in an offline setting. We divide the month into
T control periods indexed by t = 1, . . . , T . For our experi-
ments we will consider periods of length 5 minutes. Suppose
there are N EVs requiring charging service throughout the
month. We will abuse notation and use T and N also to denote

1Note that uncontrolled charging has a higher peak as it is not subject
electrical infrastructure constraints.
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the sets T := {1, . . . , T} and N := {1, . . . , N} respectively.
Let
• EV i = 1, . . . , N be specified by (ai, di, ei, r̄i(t)) where
ai ∈ T : is its arrival time, di ∈ T is its departure time,
ei is its energy request. For simplicity we express energy
in kWp defined as the energy delivered by charging at 1
kW for 1 period, i.e. 1/12 kWh for 5 min period. r̄i(t)
is a possibly time-varying upper bound on the charging
rate (in A). Here r̄i(t) is assumed known and in practice
can be a limit imposed by the charger (EVSE) serving
EV i, the car’s battery management system, some other
algorithm, or a combination of these.

• pt be the possibly time-varying electricity prices (in
$/kWh) at time t ∈ T that the operator pays the
local utility company for energy. For simplicity we will
implicitly convert pt into $/kWp.

• P be the demand charge defined by the utility ($/kW).
• clt be the possibly time-varying capacities of bottlenecks
l = 1, . . . , L, at time t.

• Ali be the coefficient which relates the charging rate
of EV i to the aggregate current which is bound by
bottleneck l. In the simplest case this can be 1 if EV
i is constrained by bottleneck l, 0 otherwise. In more
complex three-phase systems this could be the linearized
constraints proposed in [10]. For simulations in this paper
we use the latter.

We assume ei > 0, r̄i(t) > 0, pt > 0, P > 0, Ali ≥ 0,
clt > 0. Given these parameters, the operator will determine
the charging rates r := (ri(t), i ∈ N, t ∈ T ) for every EV i
at time t.

To provide the EV charging service, the operator needs
to pay for both energy and demand charge (among other
expenses). These costs are a function of the charging rates
r:

C(r) :=
∑
t

pt
∑
i

ri(t) + P max
t

∑
i

ri(t) (1a)

Hence the operator is interested in solving the following
minimum-cost charging problem:

Cmin := min
ri∈Ri

C(r)

s. t.
∑
t

ri(t) = ei, ∀i (1b)∑
i

Ali ri(t) ≤ clt, ∀l, ∀t (1c)

ri(t) ≤ r̄i(t), ∀i, ∀t (1d)

where

Ri := {ri ∈ RT : ri(t) ≥ 0; ri(t) = 0 for t < ai or t > di}

Here (1b) ensures every EV’s energy request ei is met before
its departure time di, (1c), (1d) ensures that the capacity
limits of the network clt and charger r̄i(t) are respected. We
assume problem (1) is feasible. An optimal solution specifies
a schedule that meets all EV energy demands safely and at
minimum cost to the operator.

Introduce the auxiliary variable q that represents the daily
peak demand and convert the problem into the equivalent form:

Cmin := min
ri∈Ri,s≥0

∑
t

pt
∑
i

ri(t) + Pq (2a)

s. t.
∑
t

ri(t) = ei, ∀i (2b)∑
i

Ali ri(t) ≤ clt, ∀l, ∀t (2c)

ri(t) ≤ r̄i(t), ∀i, ∀t (2d)

q ≥
∑
i

ri(t), ∀t (2e)

Let α := (αi,∀i), β := (βlt,∀l, ∀t), γ := (γit,∀i, ∀t), δ :=
(δt,∀t) be the Lagrange multipliers for (2b), (2c), (2d) (2e)
respectively. The dual of the optimization problem (2) is

max
α,β≥0
δ≥0,γ≥0

∑
i

eiαi −
∑
t,l

cltβlt −
∑
t,i

r̄i(t)γit (3a)

s. t. pt +
∑
l

Aliβlt + γit + δt ≥ αi ∀i,∀t (3b)

P ≥
∑
t

δt (3c)

Pricing rule. Let (r∗, q∗) and (α∗, β∗, γ∗, δ∗) be an optimal
primal-dual solution to the minimum-cost charging problem
(2), (3). LP duality implies the following observations at
optimality.

1) Network congestion price β∗lt. We interpret β∗lt as the
congestion price at bottleneck l at time t. From (2c),
this congestion price is zero, i.e., β∗lt = 0, if bottleneck
l is not congested at time t, i.e.,

∑
i r
∗
i (t) < clt.

2) Charger congestion price γ∗it. We interpret γ∗it as the
congestion price at charger i at time t. From (2d), this
congestion price is zero, i.e., γ∗it = 0, if EV i is charged
at lower than the peak rate allowed by the charger, i.e.,
r∗i (t) < r̄i(t).

3) DC price δ∗t . We interpret δ∗t as the demand charge price
at time t. From (2e), the price is nonzero, i.e., δ∗t > 0,
only if the total charging rate at time t hits the daily
peak (see Theorem 1), i.e.,

∑
i ri(t) = maxτ

∑
i r
∗
i (τ).

For each EV i at each time t, define a composite price π∗i (t):

π∗i (t) := pt︸︷︷︸
energy

+
∑
l

Aliβ
∗
lt︸ ︷︷ ︸

network congestion

+ γ∗it︸︷︷︸
charger

congestion

+ δ∗t︸︷︷︸
demand charge

(4)

This EV-specific time-varying price π∗i (t) incorporates the
energy price pt that the operator pays the utility, the congestion
prices β∗lt at all bottlenecks used by EV i, the congestion
price γ∗it at the charger, and the demand-charge price δ∗t . It
captures the social cost that EV i is responsible for at time
t. Since pt > 0, Ali ≥ 0 by assumption, the composite prices
π∗i (t) > 0 for all i, t.

Given the primal-dual solution pairs, the pricing rule is:
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• EV i pays π∗i (t)r∗i (t) at each time t ∈ [ai, di] it charges.
• Total payment for EV i’s session is:

Π∗i =
∑
t

π∗i (t)r∗i (t) (5)

Clearly the payment Π∗i > 0 since π∗i (t) > 0. This payment
covers energy cost, congestion rents, as well as demand charge
for which EV i is responsible. Having defined the above costs
and pricing rules, we present Theorem 1 on the consequences
of these costs and pricing rules.

Theorem 1. Suppose EV i charges at the optimal rates r∗i :=
((r∗i (t), t ∈ [ai, di]) and pays Π∗i given in (5). Then

1) Decomposition of DC price P . P is decomposed into
DC price δ∗t at each time t:

P =
∑
t

δ∗t

Moreover the DC price δ∗t > 0 only if
∑
i r
∗
i (t) =

maxτ
∑
i r
∗
i (τ), i.e., only if the total charging rate at

time t hits the daily peak. Thus Pq∗ =
∑
t δt
∑
i r
∗
i (t).

2) Equivalent session price α∗i . EV i’s total payment satis-
fies:

Π∗i := α∗i · ei

i.e., the total payment of EV i is equivalent to charging
i only a time-invariant price α∗i per unit of energy.
Moreover α∗i > 0.

3) Nonnegative operator surplus. The total payment by all
EVs exceeds the total electricity cost (energy + demand
charge) that the operator pays the utility:∑

i

Π∗i ≥ Cmin

Proof.
1) Since ei > 0 for all i, we must have q∗ =

maxt
∑
i r
∗
i (t) > 0 and hence P =

∑
t δ
∗
t in (3c).

2) The constraint (3b) and complementary slackness imply
that, for all t = 1, . . . , T ,

π∗i (t) ≥ α∗i with π∗i (t) = α∗i if r∗i (t) > 0

This implies (using (2b)):

Π∗i :=
∑
t

π∗i (t) r∗i (t) =
∑
t

α∗i r
∗
i (t) = α∗i · ei

As noted above Π∗i > 0 for all i. Hence α∗i > 0 since
ei > 0 by assumption.

3) Assertion 2 implies∑
i

Π∗i =
∑
i

ei α
∗
i

≥
∑
i

eiα
∗
i −

∑
t,l

cltβ
∗
lt −

∑
t,i

r̄i(t)γ
∗
it

= D(α∗, β∗, γ∗, δ∗) = Cmin

where D(α∗, β∗, γ∗, δ∗) is the optimal dual objective
value and the last equality follows from strong duality.

This completes the proof of the theorem.

Remark 1. 1) The equivalent session price α∗i > 0 is
the Lagrange multiplier associated with the (equality)
energy constraint (2b). This EV-specific time-invariant
energy price takes into account of energy, congestions,
and demand charge. It lower bounds the composite
prices at all times, i.e., π∗i (t) ≥ α∗i , but it alone
determines the total payment Π∗i = α∗i ei. Hence, instead
of charging EV i at each time t at the time-varying price
π∗i (t), we can instead charge i a session price α∗i based
only on energy ei delivered. It is in this sense that α∗i
is an equivalent session price for EV i.

2) Property (6) states that EV i pays a nonzero amount at
time t, i.e., r∗i (t) > 0, only if the composite price is at
its lower bound, i.e., only if π∗i (t) = α∗i at time t.

3) From assertion 3 of Theorem 1 the operator surplus

∑
i

Π∗i − Cmin =
∑
t,l

cltβ
∗
lt +

∑
t,i

r̄i(t)γ
∗
it

is a measure of how congested the bottlenecks and the
chargers are (congestion rents). The higher the surplus
is, the more congested the system is, and the surplus
is zero if and only if no bottleneck nor charger is ever
congested (β∗lt = 0 and γ∗it = 0 for all l, t). The demand
charge price δ∗t does not directly affect the site host
surplus.

Separation of pricing and control. Note that under the
pricing rule (5), EV i pays an amount

∑
t π
∗
i (t) r∗i (t) for its

service, even if it is not charged at rates r∗i (t) at time t. Indeed
charging rates in practice are often determined through other
means, e.g., using an online scheduling algorithm that does
not have perfect future information or even solving a different
optimization problem that has a different objective function
and a different set of constraints. However, by using this price
structure, operators are incentivized to schedule EVs at as low
a cost as possible so that the revenue provided by users is
enough to cover their costs. If, however, the operator chooses
to determine charging schedules in some other way, the user
is indifferent so long as their energy demand is fully met.

B. Pricing with onsite solar

Onsite solar generation can be used to reduce both the
environmental footprint and overall cost of an EV charging
system. However fairly distributing this savings and incentiviz-
ing drivers to provide enough flexibility so that the system can
charge their vehicles using solar generation can be challenging.
We can easily modify our pricing scheme to account for solar
generation by introducing two additional variables rgi (t) and
rsi (t) such that ri(t) = rgi (t) + rsi (t). We can interpret rgi (t)
to the the portion of EV i’s charging rate which was delivered
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from the grid while rsi (t) is the portion delivered by onsite
solar generation. We can then formulate the optimization as:

min
rgi ∈Ri

rsi∈Ri

s≥0

∑
t

pt
∑
i

rgi (t) +
∑
t

pst
∑
i

rsi (t) + Pq (6a)

s. t.
∑
t

(rgi (t) + rsi (t)) = ei, ∀i (6b)∑
i

Ali (rgi (t) + rsi (t)) ≤ clt, ∀l,∀t (6c)

rgi (t) + rsi (t) ≤ r̄i(t), ∀i, ∀t (6d)

q ≥
∑
i

rgi (t), ∀t (6e)

S(t) ≥
∑
i

rsi (t), ∀t (6f)

where S(t) is given and specifies the total solar generation
available for EV charging at time t. This could be the total
production of the PV array or the excess after all other
loads are met. Here we assume that energy generated by the
onsite solar PV has a price, pst ≥ 0 (such as from a power
purchase agreement). We can then formulate the dual problem,
introducing the additional dual variable ε := (εt,∀t) for (6d).

max
α
β≥0
δ≥0
γ≥0
ε≥0

∑
i

eiαi −
∑
t,l

cltβlt −
∑
t,i

r̄i(t)γit −
∑
t

εtS(t)(7a)

s.t. pt +
∑
l

Aliβlt + γit + δt ≥ αi ∀i, ∀t (7b)

pst +
∑
l

Aliβlt + γit + εt ≥ αi ∀i,∀t (7c)

P ≥
∑
t

δt (7d)

Let (rg∗, rs∗, q∗) and (α∗, β∗, γ∗, δ∗, ε∗) be the optimal
primal/dual solution to (6)/(7). The charging rate for each EV
is r∗i (t) := rg∗(t) + rs∗(t).2 We define a composite price for
each component of the charging current:

πg∗i (t) := pt︸︷︷︸
energy

+ δ∗t︸︷︷︸
demand charge

+
∑
l

Aliβ
∗
lt︸ ︷︷ ︸

network congestion

+ γ∗it︸︷︷︸
charger

congestion

(8)

πs∗i (t) := pst︸︷︷︸
solar
price

+ ε∗t︸︷︷︸
solar congestion

+
∑
l

Aliβ
∗
lt︸ ︷︷ ︸

network congestion

+ γ∗it︸︷︷︸
charger

congestion

(9)

We then define the total price paid by driver i as

Πsol∗
i =

∑
t

πg∗i (t)rg∗i (t) + πs∗i (t)rs∗i (t) (10)

Theorem 1 and its implications extend directly to the case
with onsite solar.

2It is important to note that the decomposition into rg∗, rs∗ is purely for
accounting purposes, as we cannot control the source of power to each EV.

Theorem 2. Suppose EV i charges at the optimal rates r∗i :=
rg∗i +rs∗i = ((r∗i (t), t ∈ [ai, di]) and pays Πon∗

i given in (10).
Then

1) Decomposition of DC price P . Suppose
∃(i, t) s.t. rg∗i (t) > 0. P is decomposed into DC
price δ∗t at each time t:

P =
∑
t

δ∗t

Moreover the DC price δ∗t > 0 only if
∑
i r
g∗
i (t) =

maxτ
∑
i r
g∗
i (τ), i.e., only if the total charging rate

from the grid at time t hits the peak. Thus Pq∗ =∑
t δt
∑
i r
g∗
i (t).

2) Equivalent session price α∗i . EV i’s total payment satis-
fies:

Πsol∗
i := α∗i · ei

i.e., the total payment of EV i is equivalent to charging
i only a time-invariant price α∗i per unit of energy.
Moreover αi ≥ 0.

3) Nonnegative operator surplus. The total payment by all
EVs exceeds the total electricity cost (energy + demand
charge + solar value) that the operator pays:∑

i

Πsol∗
i ≥ Cmin

sol

4) Savings with onsite solar. The total cost to the operator
with onsite solar is not greater than the total cost without
it.

Cmin ≥ Cmin
sol

Proof.
1) Since by assumption ∃(i, t) s.t. rg∗i (t) > 0 we must have

q∗ = maxt
∑
i r
g∗
i (t) > 0 and hence P =

∑
t δ
∗
t .

2) The constraints (7b) and (7c) and complementary slack-
ness imply:

πg∗i ≥ α
∗
i with πg∗i = α∗i if rg∗i (t) > 0

πs∗i ≥ α∗i with πs∗i = α∗i if rs∗i (t) > 0

This implies (using (6b)):

Πsol∗
i :=

∑
t

πg∗i (t) rg∗i (t) + πs∗i (t) rs∗i (t)

=
∑
t

α∗i (r
g∗
i (t) + rs∗i (t)) = α∗i · ei

3) Assertion 2 implies∑
i

Πsol∗
i =

∑
i

ei α
∗
i

≥
∑
i

eiα
∗
i −

∑
t,l

cltβ
∗
lt

−
∑
t,i

r̄i(t)γ
∗
it −

∑
t

εtS(t)

= Dsol(α
∗, β∗, γ∗, δ∗, ε∗) = Cmin

sol
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where Dsol(α
∗, β∗, γ∗, δ∗) is the optimal dual objective

value and the last equality follows from strong duality.
4) Let (r∗, q∗) be an optimal solution of (2) yielding an

optimal value Cmin. By inspection, (rgi := r∗i , rsi :=
0, q∗) is a feasible point for (6) which achieves Cmin,
implying Cminsol ≤ Cmin.

This completes the proof of the theorem.

IV. ONLINE SCHEDULING

While the prices are computed in an offline setting with
perfect information at the end of each month based on users’
collective behavior, charging decisions must be made online
with limited information. For example, the operator does not
know when future EVs will arrive nor what their energy
demands will be. Instead, EVs arrive at random times, but
when an EV arrives, it informs the operator, e.g., using a
mobile app, its energy demand ei and departure time di ∈ T .
We assume in this paper that ei and di provided by the drivers
are accurate. In practice, they are not but can be learned from
historical data for workplace charging; see [11].

A. Online scheduling algorithm

The goal then of the operator at time τ is to approximate
the offline minimum cost solution with only the information
available at that time. Since in the online setting we cannot
optimize over the entire billing period, we instead employ
the model predictive control proposed in [10] where an op-
timization problem is solved over a receding horizon (12 hrs)
assuming no future EV arrivals. To account for the online
setting, we make several modifications to (2). First, because
the online algorithm could make a decision in one computation
period which makes it infeasible to meet all energy demands
in a later period, we relax (2b) to∑

t

ri(t) ≤ ei (11)

However, doing so would make ri(t) = 0, ∀i,∀t, the optimal
solution. To fix this, we also modify the objective (2a) by
adding a penalty, ρ, for unmet demand. In addition, there
are several equivalent solutions to (2). In the online case we
do not have information about future arrivals, thus we wish
to select the solution which charges each EV as quickly as
possible, while not increasing costs. This frees capacity for
future arrivals. Let η(t) < 0 be a linearly increasing function
in t. For a small η,

∑
i,t η(t)ri(t) encourages charging quickly

while having a negligible effect on the optimal cost. For more
information see [10].

Con(r, s) :=
∑
t

pt
∑
i

ri(t) + Pq (12)

+ρ
∑
i

(
ei −

∑
t

ri(t)

)
+
∑
t,t

η(t)ri(t)

When ρ is sufficiently high, and it is feasible to do so, then
(11) will be tight and the resulting r̂∗ is also a solution to (2).

To account for demand charge in this shortened horizon,
we also propose two additional modifications. First, we add a
constraint

q ≥ max{q0, q′} (13)

where q0 is the running peak demand from the beginning of
the current billing period up to (but not including) the current
time τ , and q′ is a prediction of the optimal peak demand
based on historical data. With this constraint the optimization
is only penalized if q exceeds the maximum of q0 and q′.
Second, we replace P in (12) with a demand charge proxy
P̂ ≤ P which can depend on the computation period. The
purpose of this proxy is to amortize the total demand charge
over each day. The resulting optimization problem is

min
ri∈Ri,q≥0

Con(r, q) (14a)

s. t.
∑
t

ri(t) ≤ ei, ∀i (14b)∑
i

Ali ri(t) ≤ clt, ∀l, ∀t (14c)

ri(t) ≤ r̄i(t), ∀i, ∀t (14d)

q ≥
∑
i

ri(t), ∀t (14e)

q ≥ max{q0, q′} (14f)

The online algorithms is then as follows. For each compu-
tation period k = 1, 2, . . . :

1) Construct the modified linear program with the set of
EVs that are currently charging (including new arrivals),
so the arrival times ai = 1 for all i and ei := ei(k) is
the remaining energy demand in (14).

2) Solve (14) to compute r̂∗.
3) Set the charging rate of EV i to r̂∗i (1).
4) Update the remaining energy demand ei(k + 1) based

on the actual energy delivered to EV i.
5) Go to Step 1.

B. Selecting tunable parameters

In (14), ρ, η, q′, and P̂ are tunable parameters. We let
η(t) := 10−4 t−T−1T . To determine q′, we first solve the offline
problem (2) on previous month’s data to obtain the optimal
peak q∗−1. Note this is already done to calculate the prices for
each user. One approach would be to set q′ = q∗−1. While this
would be optimal if all months had the same usage pattern,
there is some variability in the optimal peak power across
months. Instead, we set q′ = 0.75q∗. This allows the online
algorithm to increase the peak only when necessary to meet
demand. Note that the maximum historical variability from
month to month in our dataset is 12% (-23%) for Caltech and
+13% (-9%) for JPL.

The demand charge proxy P̂ controls the trade-off between
energy costs and demand charges in the online problem. If P̂
is high, i.e., P̂ = P , the algorithm will only increase its peak
when it absolutely must. However, if P̂ is too low, e.g., P̂ = 0,
the algorithm will increase its peak significantly if doing so
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would lead to lower energy costs. We propose the following
heuristic, P̂ = P/(Dp− d), where Dp be the number of days
in the billing period, and d be the index of the current day.

This heuristic is based on a simple amortization. At the
beginning of the billing period, any increase in the demand
charge can be spread over Dp days. The next day it can
only be spread over Dp − 1 days, and so on. Thus, this
heuristic encourages any increases in demand charge to occur
early in the billing period, which allows the algorithm to
decrease energy costs in the remainder of the billing period
by concentrating charging during low cost times.

C. Prices in the online setting

While scheduling is done online, we still calculate prices
offline at the end of the month using (2) and (3) as in
Section III. Note that in this case, ei in (3) is the actual
energy delivered which may differ from the user’s energy
request. This pricing scheme is similar to other services such
as electricity, water, and phone bills which are calculated based
on usage at the end of the month rather than as the service is
used. However, we note that this scheme is more volatile than
most other bills faced by consumers owing to the challenges of
demand charge. In future work we hope to provide predictions
and bounds of the cost faced by consumers when they input
their parameters.

V. SIMULATIONS

A. ACN Research Portal

To evaluate the pricing scheme proposed in Section III
and the online scheduling algorithm proposed in Section IV,
we use a large-scale EV charging dataset, called ACN-Data,
collected from smart charging facilities, called adaptive charg-
ing networks (ACNs), at Caltech and JPL [11]. The Caltech
ACN is a large-scale charging facility that has delivered over
998 MWh of energy since it began operation in early 2016
[10], [12]. The facility currently has 54 charging ports, each
of which is capable of real-time monitoring and control.
Likewise, since beginning operation in October 2018, the
JPL ACN has delivered over 358 MWh of energy from 52
charging ports. ACN-Data contains charging data collected
from these ACNs. It has recently been released [6] and, to our
knowledge, is the only large-scale fine-grained charging data
that is publicly available. We use ACN-Data to playback real
charging scenarios using ACN-Sim, an open-source simulator,
for evaluating our charging algorithms [13].

B. Summary of simulation results

We use ACN-Data and ACN-Sim to explore several ques-
tions about the proposed pricing scheme and online scheduling
algorithm. The code and data for these experiments is available
at https://github.com/zach401/pricing ev charging service.
• Assuming the pricing scheme proposed in Section III,

how much surplus would the operator receive if they were
able to schedule charging offline in order to minimize
costs (solving (2))?

TABLE I
SCE TOU RATE SCHEDULE FOR EV CHARGING

Summer Rates Winter Rates
On-Peak $0.267 / kWh $0.087 / kWh
Mid-Peak $0.0925 / kWh $0.075 / kWh
Off-Peak $0.0562 / kWh $0.061 / kWh
Demand Charge $15.51 / kW / month

• How much surplus would the operator receive if they in-
stead schedule according to the online algorithm proposed
in Section IV with the same pricing scheme?

• Does the proposed pricing scheme result in reasonable
prices on a per session and per user basis?

In summary, our results are:
• On average, when charging vehicles according to the

offline optimal charging schedule r∗, the Caltech ACN
would receive $101 in surplus each month, while JPL
would receive a surplus of $324.

• As expected, in the offline case, revenue from energy
costs (

∑
t,i ptr

∗
i (t)) matches the actual energy cost and

revenue from demand charges (
∑
t,i δ
∗
t r
∗
i (t)) matches the

actual demand charge.
• When using the online algorithm proposed in Section

IV, costs for operating the Caltech ACN increase by an
average of 9.2%, while costs for JPL increased by 6.5%.

• On average, with the online algorithm, Caltech has a
surplus of -$18 per month, while JPL has a surplus of
$92.

• We find that the basic pricing scheme described in
Section III can lead to high prices for some sessions,
particularly those involved in setting the peak demand
for the month. The maximum price for any one session
was $1.62 / kWh at Caltech and $1.53 / kWh at JPL out
of 12,049 and 15,509 sessions, respectively.

The absolute values of the surpluses being small is a desirable
feature since the design objective is not profit maximization. It
suggests our pricing design is approximately revenue adequate
and sites are sized appropriately.

C. Detailed results

Simulation setup. For each simulation, we used data collected
from from Jan. 1, 2019 - Aug. 1, 2019 at the Caltech and JPL
ACNs. We adopt the Southern California Edison TOU rate
schedule for separately metered EV charging systems between
20-500 kW, which is shown in Table I. Here, Summer runs
June 1 - Oct. 1. Weekends are always considered off-peak,
while for weekdays, peak periods are 12:00 - 18:00, mid-peak
is from 8:00 - 12:00 and 18:00 - 23:00, and all other hours are
off-peak [14]. While this rate structure was recently replaced
with the TOU-EV-8 structure which temporarily removed
demand charges for EV charging, this exception is slated to be
removed in 5 years. So it is still relevant to investigate pricing
schemes under the old tariff structure.

Operator surplus offline. To investigate the upper bound on
the surplus an operator can expect, we solve (2) and (3) for
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Fig. 2. Comparison of the total cost of providing charging services in the
offline case (shown in darker colors to the left) to the total revenue of the
operator (in lighter colors to the right).

TABLE II
OFFLINE OPERATOR SURPLUS BY MONTH

Jan Feb March April May June July
Caltech $114 $82 $64 $93 $95 $165 $99
JPL $190 $267 $215 $284 $250 $472 $594

each month and each site. We then calculate the actual cost of
electricity for each scenario as well as the revenue paid to the
operator. The results of this experiment are shown in Fig. 2.
In each case, we split the total cost and total revenue into its
constituent components.

From this plot, we can see that the revenue for energy and
demand charge perfectly match their respective costs. Thus in
the offline case, the operator passes on these costs to users,
as we expected. All surplus comes from congestion rents on
the network and EVSEs. Note that for Caltech, there is very
little rent for network congestion, as the charging network has
been over-provisioned for future growth. On the other-hand,
JPL experiences significant network congestion in the summer
months. Note that the magnitude of congestion rents are higher
in the summer, when there is higher price variability. This
reflects how congestion rents allow (3b) to hold with equality
despite variability in pt and δt. Table II shows a more detailed
breakdown of the surplus for each site. In total, Caltech had
a surplus of $711 for these seven months, while JPL had
a surplus of $2,270. Since in this context, the surplus is a
result of congestion, this indicates that JPL should invest these
surpluses in increasing the capacity of bottleneck links.

Operator surplus online. Since in practice operators cannot
apply the offline optimal schedule that requires future infor-
mation, they must instead use an online algorithm like the one
proposed in Section IV. For this experiment we let ρ = 20,
η(t) := 10−4 t−T−1T , P̂ = P/(Dp − d), and q′ = 0.75q∗−1.
We can then compare the cost of this online algorithm with
the revenues generated based on the offline pricing scheme, as
shown in Fig. 3. We find that this online algorithm results in
an average increase of 9.2% and 6.5% in total costs at Caltech

Co
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 / 
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e 
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)

Caltech

JPL
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Fig. 3. Comparison of the total cost of providing charging services in the
online case (shown in darker colors to the left) to the total revenue of the
operator (in lighter colors to the right).

TABLE III
ONLINE OPERATOR SURPLUS BY MONTH

Jan Feb March April May June July
Caltech -$13 -$3 -$10 -$105 -$38 $94 -$54
JPL $-7 $68 $194.84 -$56 -$93 $187 $353

TABLE IV
ENERGY SURCHARGES TO ENSURE NON-NEGATIVE SURPLUS ($/KWH)

Jan Feb March April May June July
Caltech .0013 .0004 .0011 .012 .0045 - .0082
JPL .0003 - - .0025 .004 - -

and JPL, respectively.
In some cases, such as JPL in July, the surplus is enough to

cover this increase in cost. However, in other cases, such as
Caltech in July, the costs are higher than the revenue generated,
and operator surplus is negative. Table III shows a breakdown
of the operator surplus in each month for each site. From
this table, we can see that over these seven months, Caltech
lost $129 while JPL made $647. This shows that non-negative
operator surplus cannot be guaranteed in the online setting
with this pricing scheme (even though these surplus and loss
are small).

If this possibility of negative surplus is troubling to opera-
tors, a simple solution is to distribute any negative surplus as
a energy surcharge to be covered by each user in proportion to
the energy they consumed.3 The resulting energy surcharges
for each month are shown in Table IV. From this table, we
can see that only a modest (<$0.015) surcharge on each kWh
delivered is necessary to ensure a non-negative surplus. Note
that even with this surcharge, the proposed pricing scheme still
communicates price signals which align individuals’ incentives
with those of the group. This is in contrast to a plan which
divides all costs by the total energy delivered and provides a
flat price to all users.

3This could also be done with surpluses if the operator does not wish to
make a profit or reinvest the surpluses in reducing congestion.
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Fig. 4. Distribution of prices per session (left) and blended per user (right)
for each month.

Distribution of prices. The left panels of Fig 4 show the

distribution of session prices αi. From the figure, we see

that most sessions (>95%) have αi very near to or below

the maximum energy cost for the period ($0.087 for winter

months and $0.267 for summer months). We also note that

in winter months, a small percentage of the total charging

sessions have very high prices. Upon close examination, we

find that these sessions all occur on the same day and are

responsible for setting the demand charge for the month. In

summer months (June and July) we see that this effect is

much less pronounced at Caltech and non-existent at JPL.

The likely reason for this is that the higher variation in prices

during the summer months causes the scheduling algorithms

to concentrate charging during low-cost periods. This means

that δ∗t is non-zero in more periods, spreading the demand

charge among more charging sessions.

Since the proposed pricing scheme involves charging users

at the end of the month, users are more likely to care about

their blended price, defined as the total price paid by the

user divided by their total energy received, rather than the

price paid for any individual session. The distribution of these

blended prices is shown in the right panels of Fig 4. From the

figure, we see that these blended prices tend to smooth out the

price distribution. In addition, we can see that even though

some users may experience one or more high-cost sessions

throughout the month, for most users these are offset by other

lower-cost sessions, lowering their blended price.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a pricing scheme which assigns

a per-session price α∗
i to each charging session that captures

the session’s effect on energy cost, demand charge, and system

congestion. This scheme has several desirable properties, in-

cluding guaranteed non-negative operator surplus in the offline

setting, and an explicit decomposition to prices on each cost

component (energy, demand, and congestion).

We also propose an online scheduling algorithm based on

model predictive control, which uses historical information

and a demand charge proxy in order to manage the trade-off

between energy costs and demand charge. Using data collected

from large-scale charging facilities at Caltech and JPL, we

demonstrate that the proposed online scheduling algorithm

approximates the offline optimal reasonably well, e.g., the

online optimal cost is higher than the offline optimal cost by

9.2% and 6.5% at Caltech and JPL respectively. In the case

of JPL, congestion rents are enough to cover this increase in

costs, while at Caltech, this results in a negligible average loss

of $18 per month.

While in this work, we consider pricing only at the end of

each billing period (1 month), in the future, we hope to build

on this scheme to develop online variants. For example, if we

can predict session prices when an EV arrives and provide real-

time feedback to the driver as they select their energy request

and departure time, we can incentivize users to provide more

flexibility to the system. Likewise, if final prices can be set

when a user leaves, we no longer will need to bill the user at

the end of the month. We also plan to address the case where

users can provide willingness to pay bids to the system which

bound their session price αi.
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