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Abstract—We develop a novel iterative clustering method for
classifying time series of EV charging rates based on their "tail
features”. Our method first extracts tails from a diversity of
charging time series that have different lengths, contain missing
data, and are distorted by scheduling algorithms and measure-
ment noise. The charging tails are then clustered into a small
number of types whose representatives are then used to improve
tail extraction. This process iterates until it converges. We apply
our method to ACN-Data, a fine-grained EV charging dataset
recently made publicly available, to illustrate its effectiveness
and potential applications.

Index Terms—Time series clustering, EV charging curves

I. INTRODUCTION

According to the International Energy Agency (IEA) [1],
the global electric vehicle (EV) stock will exceed 130 million
vehicles by 2030. This trend has motivated a large body of
EV research in the last decade, from pilot studies to testbeds
and data analytics, from charging algorithms to user behavior
to optimal investments, from impact on electric grid to energy
services. In this paper we develop a method to learn battery
behavior based on fine-grained charging data from the field.

There are a large number of battery models for hybrid and
electric vehicles in the literature, e.g., those that capture the
underlying electro-chemical processes or equivalent circuit
behavior [2], [3]. Most of these models however are too
detailed for system-level applications such as grid impact
study or optimal scheduling. Instead, models that describe
the charging/discharging behavior as a battery fills up/depletes
will be more suitable. This paper develops a key component
of such a model that can be used for real-time optimization or
simulation.

Our model is based on a dynamic EV charging dataset,
called ACN-Data, collected from smart EV charging facilities,
called adaptive charging networks (ACN), at Caltech, JPL, and
a Bay Area workplace. See [4], [5] for details of Caltech ACN
which has been charging EVs since February 2016 and has

This work is supported by NSF through grants CCF 1637598, ECCS 1619352,
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delivered close to 850 MWh by October 2019, equivalent to
more than 2.5 million vehicle miles traveled and 880 metric
tons of avoided greenhouse gases. ACN-Data has recently been
released [6] and, to our knowledge, is the only large-scale
fine-grained charging data that is publicly available.

Our contributions. This paper presents the first analysis of
the charging curves in ACN-Data and develops a systematic
method to learn battery behavior from the data. Our main
results are two-fold:

1) We develop a novel iterative clustering framework, sum-
marized in Fig. 3, for classifying time series of battery
charging rates based on their "tail features” (see Defini-
tion II.1). A key challenge that our method overcomes is to
extract tails from a diversity of charging curves that have
different lengths, contain missing data, and are distorted
by scheduling algorithms and measurement noise. The
charging tails are then clustered into several types whose
representatives are then used to improve tail extraction.
This process iterates until it converges. To compare
charging tails of different lengths, we introduce a modified
Euclidean distance function in (5) that achieves a higher
silhouette coefficient and better classification accuracy
than traditional distance functions (see Section IV-A).

2) We validate our method on ACN-Data. Our result shows
that even though the number of charging curves is large,
they can be classified into a small number of types (in
our experiment, 304 charging curves are classified into 6
types). These battery types can be used to predict charging
behavior with good accuracy (generally high R2 values;
see Table II in Section IV-B).

These preliminary results open up venues for future work
and potential applications (see Section V). For instance, the
representative charging curves from the classification can serve
as a building block for online optimization of EV charging
and online detection of abnormal battery conditions.

The rest of the paper is organized as follows. We formulate
our problem in Section II. We develop our iterative clustering
method in Section III. We apply our method to ACN-Data in
Section IV and illustrate its effectiveness with an example ap-
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TABLE I
LIST OF KEY NOTATION USED IN THE PAPER.

Used ACN-Data Fields
connectionTime Time when the user plugs in
doneChargingTime Time of the last non-zero charging current
disconnectTime Time when the user unplugs
pilotSignal Time series of pilot signals
chargingCurrent Time series of actual charging currents
userID Unique identifier of the user

Clustering Parameters
N Set of n charging sessions
T Set of T charging time slots
S Set of n charging curves
Ck Cluster indexed by k (k = 1, . . . ,K)

Sequences
pi Pilot curve for session i ∈ N
si Charging curve for session i ∈ N
xi Charging tail for session i ∈ N
ck Tail representative for cluster Ck

plication. We conclude the paper in Section V with limitations
of this work, as well as potential extensions and applications.

II. PROBLEM FORMULATION

A. ACN-Data

An ACN typically consists of tens of level-2 chargers
controlled by a local controller that communicates wirelessly
with these chargers and servers in the cloud. An ACN is
capable of real-time measurement, communication, computing
and control. It adapts EV charging currents to driver needs
as well as capacity limits of the electric system. A typical
charging session starts when a driver plugs in her EV and
informs ACN through a mobile app the amount of energy
required (in terms of miles) and her estimated departure time.
The EV will be charged until either the requested energy
is delivered, or the battery is fully charged, or the EV is
unplugged, whichever occurs first. The charging currents of all
EVs that have not finished charging are jointly optimized and
updated every minute. Every 5 to 10 seconds, a control (pilot)
signal is sent to the EV and the actual charging current drawn
by the vehicle is measured. ACN-Data contains both session
data (user’s ID, arrival time, departure time, requested energy,
and actual energy delivered) and fine-grained charging data at
seconds resolution (time series of control signals and charging
currents). Unfortunately, the current EV charging standard does
not collect batteries’ states of charge nor EV specifications.
Table I summarizes some of the available features of ACN-Data
used in this work. Note that not all sessions contain user inputs
(i.e., the last three fields of Table 1 in [6].) In this paper we
shall focus on the claimed sessions that are associated with
user inputs.

B. Charging curves

With the terminology introduced in Table I, denote by
N := {1, . . . , n} the set of charging sessions. Each charging
session refers to the charging duration from connectionTime
to disconnectTime (see Table I). Without loss of generality,

Fig. 1. An example of a charging curve (in blue) and the corresponding pilot
curve (in orange) for a charging session with userID 409 on Oct. 13, 2018.

we assume the times series of charging currents have the same
length T and time granularity (If not, we preprocess the time
series as explained in Section III-A and pad the shorter ones
with zeros). Let T := {1, . . . , T} be the set of time slots from
connectionTime to disconnectTime. In the remaining contexts,
we refer to "time series” as the raw data and "charging curves”
the sequences with equally sampled points after preprocessing
(introduced in Section III-A), unless otherwise stated. We
first define a charging curve and its associated pilot curve.
For any session i ∈ N , a charging curve si ∈ RT is the
sequence of actual charging currents during the session i, i.e.,
si := (si(1), . . . , si(T )). For any session i ∈ N , a pilot curve
pi ∈ RT is the sequence of control signals during the session
i, i.e., pi := (pi(1), . . . , pi(T )). At each time t ∈ T , a charger
sends a pilot signal pi(t) to the vehicle which then draws
a current si(t) that is no higher than pi(t) (both si(t) and
pi(t) are in units of Amp). Given a set of n charging curves
S := {si ∈ RT : i ∈ N} and the associated pilot curves
P := {pi ∈ RT : i ∈ N}, the key issue considered in this
paper is: how to classify the elements of S into different groups
and implement the classification efficiently?

Typically, a charging curve from a charging session consists
of two stages – the bulk charging stage and the absorption
stage. In the bulk stage which usually occurs before the state
of charge (SoC) reaches 80% full, the charging current is
usually equal approximately to the pilot signal and the charging
voltage steadily increases. In the absorption stage, the voltage
stays approximately at its peak level and the charging currents
decreases as the battery reaches full charge. In cases when
the available time for charging is sufficiently long, a charging
session may contain an additional stage, namely the idle stage
where the charging current is closed to zero (neglecting noise).
An example of a charging curve and its associated pilot curve
is shown in Fig. 1. It can be observed that the measured
charging current does not follow the pilot signal exactly. The
gap between the pilot signal and charging current fluctuates due
to the following reasons: (1) the maximum charging current
that the vehicle can draw being smaller than the control signal;
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(2) random noise; (3) entry into the absorption or idle stage.

C. Charging tails

The charging current in the bulk charging stage is controlled
by the scheduling algorithm and therefore it exhibits little
information of the battery. For classification purposes, we are
mainly interested in the second stage, during which the charging
current might exhibit distinct patterns because of different types
of batteries. Let tis and tie denote the start time and end time
of the absorption stage for session i ∈ N . We refer to the
subsequence of the charging curve in this stage as charging
tail, defined as follows.

Definition II.1 (Charging Tail). For session i ∈ N , a charging
tail xi :=

(
si(t), t = tis, . . . , t

i
e

)
is the subsequence of the

charging curve si in the absorption stage
{
tis, . . . , t

i
e

}
.

Since charging tails display distinctive characteristics of their
corresponding charging curves, we will classify charging curves
based on their tails. A common battery model assumes that
a charging curve starts and stays at some maximum charging
current Ci

max until the battery enters the absorption stage when
the charging current steadily decreases to zero. In this model,
the start time tis of the charging tail is easily identifiable to be
the last time the charging current stays at the maximum rate
Ci

max and the end time tie is the first time the charging current
drops to zero, i.e., an (ideal) charging tail xi is a decreasing
sequence defined by: Ci

max = s(tis) > s(tis + 1) ≥ · · · ≥
s(tie − 1) > s(tie) = 0. In practice, however, extracting the
charging tail xi from a real charging curve si, i.e., identifying
the start time tis and end time tie of the absorption stage, can be
difficult. A charging curve si is rarely a decreasing sequence
as the simple model above assumes. The charging current
fluctuates for multiple reasons, not only the internal charging
state of a battery, but also external factors such as pilot signal
control (scheduling) or noise. In Fig. 2, we display examples
of charging curves where the rates drop due to these reasons.

The confusion caused by scheduling can be cleared up using
the first tail extraction method in Section III-B. The confusion
caused by noise is trickier to deal with since, in particular,
the noise can be large and fluctuate frequently as shown in
Fig. 1 and Fig. 2. Thus, it is nontrivial to differentiate the
changes due to noise from the other scenarios. In addition, it
is possible that more than one scenarios occur simultaneously,
e.g.,, scheduling within the tail stage. In this case, the charging
tails may not be decreasing sequences. Therefore, determining
the exact starting point (and ending point) of the absorption
stage is difficult. Moreover, for a given length-T charging curve
si ∈ RT , different tail extraction methods (as introduced in
Section III-B) may give distinct tails. Therefore, we consider
the set of all candidates of charging tails for session i ∈ N ,
denoted by Xi. As subsequences of si, the tails in Xi may
not have the same dimension. This motivates a novel selective
clustering problem with a new objective: How to cluster n
candidates (of charging tails) {xi ∈ Xi : i ∈ N} with the
ability of choosing a candidate xi ∈ Xi for each charging
curve si? In the sequel, we formalize our clustering problem.

Fig. 2. Examples of charging curves where charging currents drop due to
(1) scheduling, (2) battery charging state, and (3) noise, as indicated by the
shaded regions. Each plot only shows a selected portion of a session. The
time series are for sessions with userID 576 (top), 409 (mid) and 526 (bot),
obtained on Nov. 07, 2018, Oct. 09, 2018 and Oct. 22, 2018, respectively.

D. Selective clustering

With the above definitions, the charging tail classification
problem can be defined as the following optimization:

min
X

min
C

K∑
k=1

∑
i∈Ck

d(ck,xi) (1)

where X := {xi ∈ Xi : i ∈ N} is a set of n candidates,
constructed by selecting exactly one tail from X1, . . . ,Xn. We
assume the number of clusters K is known and searching the
best K is beyond the scope of this paper. Let K := {1, . . . ,K}.
The set C := {Ck : k ∈ K} specifies a partition N =

⋃K
k=1 Ck

of the charging sessions N with each Ck representing a
distinctive cluster. Moreover, ck is a tail representative for
the k-th cluster, defined as its medoid. The distance function(s)
is denoted by d(·, ·), which will be specified in Section III.

To solve the minimization in (1), we use the idea of
alternating minimization (AM) and refine the representative
of each cluster by iteratively implementing the following until
convergence. With suitable initialization, the iterations (the
(`+ 1)-step) consist of two main steps.
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• Tail Extraction (TE): Given n fixed tail representatives,
we find new candidates that minimize the following:

x
(`+1)
i := arg min

x∈Xi

min
k∈K

d
(
c
(`)
k ,x

)
, i ∈ N . (2)

• Tail Clustering (TC): We cluster the new tails obtained
via TE and find new representatives c

(`+1)
1 , . . . , c

(`+1)
K by

solving the following minimization:

min
C

∑
k∈K

∑
i∈Ck

d
(
c
(`+1)
k ,x

(`+1)
i

)
. (3)

In Algorithm 1, we summarize the iterative process. The
details of the initialization step is described in Section III-B.
Note that conducting TC and TE repeatedly cannot increase

Algorithm 1: AM for Selective Clustering

Input: Charging curves S and pilot curves P;
Output: Clustering C and representatives ĉ1, . . . , ĉK ;
`←− 1;
Initialization −→ x

(`)
1 , . . . ,x

(`)
n ;

while not converge do
Tail clustering (TC) −→ c

(`)
1 , . . . , c

(`)
n ;

Tail extraction (TE) −→ x
(`+1)
1 , . . . ,x

(`+1)
n ;

`←− `+ 1
end

the objective function in (1). Therefore, the AM we established
is guaranteed to have local convergence.

Theorem II.1. With arbitrary initialization x
(1)
1 , . . . ,x

(1)
n , by

iteratively performing (2) and (3), Algorithm 1 converges to a
local optimum consisting of representative tails ĉ1, . . . , ĉK .

Proof. First, TE cannot decrease the objective function in (1).
For any session i ∈ N and pair of x

(`)
i ∈ Ck(i) and the

corresponding tail representative c
(`)
k(i), the minimization in (2)

guarantees that there exists a tail representative ck′ such that

d
(
ck′ ,x

(`+1)
i

)
≤ d

(
c
(`)
k(i),x

(`)
i

)
.

Therefore, this specifies a clustering with the objective function
less than or equal to the previous clustering. Similarly, TC
cannot decrease the objective function, since we just show
that there exists a better clustering for the new tails, and the
minimization in (3) can only result in an objective value that
is equal to or smaller than the original one.

The computational complexity for solving (2) in TE is
O(nKγ(d)) where γ(d) is the complexity for computing the
distance function with fixed input sequences. Our experiments
use an approximation in (4) for a more efficient implementation.
In practice, for efficiently implementing TC, heuristics are
used for finding a local optimum of (3). Moreover, as the
AM procedure also leads to a local minimum, an initialization
that is close to a global minimum is important. In the next
section, we introduce tail extraction methods for initialization
and heuristic algorithms for clustering.

III. CLASSIFICATION METHOD

In this section, we present our framework for charging curve
clustering. It consists of three main stages depicted in Fig. 3.

A. Preprocessing

In general, the charging curve si and the pilot curve pi for
session i ∈ N are neither sampled at a fixed rate nor perfectly
aligned. Most analysis techniques, however, require that the
time series be unevenly spaced. We therefore re-sample the
time series as the mean over a fixed interval δ (if there is
at least one sample) and fill in the missing points by linear
interpolation. This preprocessing step ensures the alignment of
signals in the time domain T = {1, . . . , T} so that the distance
metric d(c,x) is well defined.

B. Tail extraction

Not all charging curves contain tails, for two reasons. First,
certain batteries do not exhibit a smooth absorption stage and
the current just drops from C to 0 directly. Second, EVs may
be unplugged before they are fully charged. This can happen
when the EV leaves earlier than the input departure time, or
when the requested energy is lower than the battery’s remaining
capacity. We consider three rules of thumb for tail extraction.

1) Extraction by pilot signals: As mentioned in Section II-C,
a tail is typically a decreasing sequence. Therefore, we declare
that a battery has entered the absorption stage if the charging
current s(t) falls below a certain value C > 0. The end
of the stage is the time when the charging current first
reaches approximately zero. This simple rule of thumb is
straightforward to implement. A drawback however is that it
is hard to determine a suitable threshold C > 0. Scheduling,
system congestion, or noise may cause the charging current to
drop below the threshold C even before entering the absorption
stage. To mitigate the confusion due to scheduling, we utilize
the pilot curves and call a subsequence s′ of a charging curve
s piloted at time t if p(t) − p(t − 1) ≥ s(t) − s(t − 1). We
accept a tail if it is not piloted everywhere and s(t) ≤ C for a
given threshold parameter C > 0.

2) Extraction by duration: The end of the absorption stage
can be found by locating the first (approximately) zero value
of the charging currents. If we have an estimate of the duration
of the adsorption stage, we will be able to extract the tail. This
approach requires the knowledge of the tail duration. Moreover,
even for the same battery, the duration of the adsorption stage
varies across different sessions because of noise and our re-
sampling.

The first two extraction methods can be combined to extract
tails. In our experiments reported in Section IV, for each
distinct user, we regard the first two methods as a two-layer
filter and extract a tail representative for each session if the
tail passes the filtering criteria. In particular, for session i, we
employ grid search for the selection of threshold parameter
C > 0 by decreasing it from the maximal charging current
Ci

max.
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Fig. 3. The classification method introduced in this paper.

3) Extraction by matching: Our third method assumes that

all charging tails from the same EV have similar properties

such as duration and shape. Before the iterative steps, suppose

that for a fixed user, we are able to obtain an initial charging

tail x(1), e.g., using the two methods above. This x(1) is used

as a “template” to extract the tails of all other charging curves

of the same user. Then, we go through the subsequences of the

charging curve that have the same length as the template, and

find a charging tail with improved noise robustness. Suppose we

obtain a tail representative x for a fixed user. For the remaining

sessions i of the same user, we minimize the Euclidean distance

dED

(
x,x

(1)
i

)
over all consecutive subsequences x

(1)
i of the

charging curve si that have the same length as x. In this way,

we use the three extraction rules jointly to compute the initial

tails x
(1)
1 , . . . ,x

(1)
n in Algorithm 1. Fig. 4 illustrates the idea

and effectiveness of this approach.

Besides speeding up the initialization, the third approach

is also used as the TE step as an approximation of the

optimization in (2). At the �-th iteration, by setting the medoid

(tail representative) c
(�)
k of the k-th cluster that the charging

curve xi is classified into as the template1 and using the

Euclidean distance as the distance function, we approximate

the optimization in (2) for the �-th iteration:

x̂
(�+1)
i = argmin

x
dED

(
c
(�)
k ,x

)
(4)

where the minimization is over all x ∈ Xi

(
c�k

)
and Xi

(
c�k

)
is

the set containing all consecutive subsequences of the charging

curve si that have the same length as c
(�)
k .

1In our experiments (elaborated in Section IV), for improving efficiency, we
implement a simplified TE, wherein we focus on the medoid of the cluster that
the charging curve si for session i belongs to and remove the minimization
over k in (2). This modification does not affect the local convergence property
stated in Theorem II.1.
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Fig. 4. An example of extraction by matching. The red subsequence x1 is
a template with userID 409, which is extracted from the first session s1 of
this user. The figure below visualizes the change of Euclidean distance of the
second session s2 with respect to x1. The black vertical line indicates the best
matching location in s2 for x1 and the tail x2 can be found correspondingly
despite the slight difference of both tails.

C. Tail clustering

Time series clustering is a well-studied problem; see [7]

for a review and [8] for a detailed experimental comparison.

One of the main problems considered in the literature is

determining the distance/similarity between time series. Based

on their own applications, a variety of similarity distance

metrics have been proposed, including the Euclidean distance

[9] for stock price movements clustering, the edit distance

[10] for trajectory clustering and the cross correlation [11]

for electrocardiogram time series clustering, etc. However,

most of the existing metrics require that the two sequences

have the same length. As an exception, dynamic time warping

(DTW) [12] is able to calculate the distance between two

sequences with different lengths. However, it is computationally
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expensive. For clustering tails, we introduce a penalty term to

the Euclidean distance and our experiments show that the new

distance function (defined as the MED in (5)) surpasses the

others for charging time series clustering. We use similarity

based clustering techniques for solving the minimization in

(3). Tails of varying lengths are clustered in two steps: (a)

similarity matrix construction (b) similarity based clustering.

1) Similarity matrix construction: The lengths of tails

extracted from the charging curves of different EVs are

generally different. This creates difficulty in comparing two tails

as the standard Euclidean distance is defined for two vectors of

the same length. We compare three different distance definitions

for tails of different lengths and more results can be found in

Section IV. The first method simply pads the shorter tail with

zeros to make two tails the same length so their distance is

the standard Euclidean distance (ED). The second method uses

a distance function defined as follows. Suppose x ∈ s and

y ∈ l with s ≤ l. Their corresponding modified Euclidean
distance (MED) is

dMED (x,y) :=min
{
dED (x,y(≤ s)) ,

dED (x,y(≥ l − s+ 1))
}
+ λ |l − s| (5)

where dED(·, ·) is the Euclidean distance and y(≤ s) and

y(≥ l − s+ 1) represent the first s and last s coordinates

of y, respectively. The penalty parameter λ > 0 can be tuned.

By default we set it to 1. Note that the distance function MED

in (5) may not satisfy the triangle inequality. The third method

uses the dynamic time warping (DTW) defined in [12], [13].

The clustering results obtained via the ED with zero padding

technique, the MED defined above and the DTW are compared

in Fig. 5, with more details in Section IV-A.

2) Similarity based clustering: For similarity based cluster-

ing, we apply the spectral clustering [14]–[16] as the heuristic

for approximating the minimization in (3).

IV. CLUSTERING, APPLICATIONS AND DISCUSSIONS

A. Clustering evaluation

In this section, we evaluate the proposed method (shown in

Fig. 3) on ACN-Data [6]. We use the dataset from JPL from

Sep. 2018 to Dec. 2018 as the training data, which contains

2933 claimed sessions from 195 users.2 In preprocessing (see

Section III-A), we resample the data at a time resolution of

δ = 4 seconds.

We use two evaluation metrics to find the number of clusters

K. The first is the silhouette coefficient [17], which takes a

value in [−1, 1]. A higher silhouette coefficient indicates better

clustering performance. The second is the correctly classified
percentage. Recall that each tail is associated with a userID

(see Table I). We evaluate the clustering quality by checking

if the tails with the same userID are consistently grouped into

2More than a half of the users have less than 12 charging sessions during the
period. In the clustering experiment, we only consider the 35 users with more
than 30 sessions. Out of the 35 users, 16 of them have sufficient number of
charging curves with tail-like features. Our experiments used the 304 charging
curves from these 16 users.
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Fig. 5. The performance for different number of clusters using three different
distance functions – Euclidean distance (ED), Modified Euclidean distance
(MED), Dynamic Time warping distance (DTW).

the same cluster.3 A tail is considered correctly classified if it

is clustered into a group wherein the majority of the tails have

the same userID as the considered tail.

The evaluation results for three different distance functions –

the modified Euclidean distance (MED), Euclidean distance

(ED), and dynamic time wrapping (DTW) are shown in Fig. 5.

We use λ = 1 for MED. For distance to similarity conversion,

we use the Gaussian kernel κ(d) = exp
(
−d2/θ

)
∈ (0, 1]

where d is the pairwise distance between two sequences and

θ > 0 is a tuning parameter. In particular, we choose θ = 20 for

MED and ED and θ = 110 for DTW. It can be seen that K = 6
is a good choice of number of clusters for this dataset, as it is

the largest value at which all the tails are correctly classified

for both ED and MED. In addition, the silhouette coefficient is

relatively high for K = 6. Fixing K = 6, the clustering results

for different distance functions are visualized in Fig. 6. It can

be seen that using MED, the six clusters are well-separated

and the corresponding medoids provide informative patterns

for charging tails. In Fig. 7, we project the tails to a two-

dimensional space using the t-distributed stochastic neighbor

embedding (t-SNE) and MED. It demonstrates the hierarchical

relationship between the groups of users and the clusters for

our training data.

B. Charging behavior prediction

The ability to classify charging behavior can enable both

offline and online applications in the future (see Section V).

One of the building blocks for these applications will be the

use of cluster representatives for prediction. In this subsection,

we illustrate its accuracy.

3It is possible that the same userID exhibits different charging patterns.
This may occur if the user changes her EV or owns more than one EV. But
as shown in Table III, such scenario is rare.
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Fig. 6. Visualization of K = 6 clusters for MED, ED and DTW. Tails are within the same cluster if they have the same color and the tail representatives
(medoids) are emphasized.

Fig. 7. Two-dimensional visualization of our clustering results with K = 6
clusters. Tails for different users are colored differently. The clusters’ colors
are consistent with those used in Fig. 6. The marginal probabilities p1, . . . , p6
represent the portions of charging sessions falling into the six clusters.

The training data is the same as in Section IV-A and the
testing data contains 731 tails for 1441 sessions collected from
Jan. 2019 to Aug. 2019. We use the tail representatives of
the training data obtained using our framework in Fig. 3 to
predict the behavior of the charging tails of the testing data.
Denote by s a real charging curve in the testing data and
x̂ the estimated tail. We consider two situations – with and
without the knowledge of userID, and the results are shown in
Table II and Table III respectively. We evaluate the prediction
quality using the following three metrics. The first metric is
the coefficient of determination (R2) (generalized in our case
for comparing two sequences of different lengths) defined as:

R2
Predict(s, x̂) := min

x

{
1−

∑r
t=1(xt − x̂t)2∑r
t=1(xt − x̄)2

}
(6)

where the minimization is over all consecutive subsequences
x of the charging curve s that have the same length as x̂ and

Fig. 8. Examples of the training and testing data (tails) for four users.
Sub-figures (a) and (b) are the tails of the two users with poor prediction
performance (highlighted in blue in Table II). The poor prediction performance
is due to the fact that the tails in the training data are very different from
those in the testing data. Sub-figures (c) and (d) are examples where the
tail representatives achieve high-quality prediction performance. Tails in the
training data and those in the testing data are similar.

x̄ =
∑r

t=1 xt/n and r is the length of x and x̂. It ranges from
(−∞, 1] and the larger the better. A negative value indicates
that performance is worse than the arithmetic mean mean. Our
second metric is the root mean square error (RMSE) that is
useful for measuring scale-dependent prediction error. The
last metric is the mean absolute error (MAE). Similar to (6),
the last two metrics are also generalized with an additional
minimization over consecutive subsequences of charging curves
in the testing data.

Table II shows the userID -based prediction results. Each tail
representative (medoid) corresponds to each group of users.
As can be observed from the results, except for user 404 and
user 651, the tail representatives of the other 14 users can well
predict the charging tail behavior in incoming sessions for the
same user. Fig. 8 visualizes the training tails, testing tails and
tail representatives of 4 users, including the two users with
high prediction error. Note that the charging tails of user 404
exhibit two distinct groups, one is from Sep. 2018 to Dec.
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TABLE II
PREDICTION RESULTS WITH USER TAIL REPRESENTATIVE

userID R2 RMSE MAE

322 0.6464± 1.2509 0.9306 ± 1.1596 0.7947 ± 1.1773
334 0.8783± 0.4765 1.3840 ± 1.3656 0.9954 ± 1.2012
368 0.6812 ± 0.6259 2.4878 ± 1.9991 2.0742 ± 1.7777
371 0.8615 ± 0.2040 0.8735 ± 0.6297 0.6946 ± 0.5655
374 0.9329 ± 0.0571 1.3872 ± 0.5800 0.9128 ± 0.4418
404 -11.906 ± 4.9304 10.522 ± 2.1957 10.230 ± 2.1357
405 0.8335 ± 0.1253 1.2936 ± 0.4793 0.9011 ± 0.3733
406 0.8917 ± 0.1315 0.5243 ± 0.2889 0.4082 ± 0.2305
409 0.9078 ± 0.0464 0.9412 ± 0.2310 0.6423 ± 0.1853
476 0.9509 ± 0.0757 0.5369 ± 0.3062 0.4077 ± 0.2536
551 0.9199 ± 0.1256 1.4938 ± 1.0355 1.1755 ± 0.7750
576 0.9209 ± 0.0249 0.6258 ± 0.1136 0.4802 ± 0.1178
577 0.9150 ± 0.0749 1.0301 ± 0.4422 0.6683 ± 0.2736
592 0.8699 ± 0.2607 0.7686 ± 0.6002 0.5394 ± 0.4607
607 0.9506 ± 0.0936 1.0141 ± 0.7940 0.8195 ± 0.6497
651 -3.5447 ± 1.9932 6.7702 ± 1.5415 5.4010 ± 1.0258

TABLE III
PREDICTION RMSE WITH CLUSTER REPRESENTATIVE

UserID MED ED DTW

322 2.7170 ± 0.8737 0.9306 ± 1.1596 2.7363 ± 0.9032
334 1.1880 ±1.4109 4.3331 ± 1.0066 2.8291 ± 1.7102
368 2.6745 ± 2.0675 2.7885 ± 1.2932 2.8450 ± 1.5884
371 0.8266 ± 0.5495 3.1160 ± 0.7986 0.8266 ± 0.5495
374 1.3872 ± 0.5800 1.3872 ± 0.5800 3.8939 ± 2.4183
404 9.4865 ± 2.0709 13.4698 ± 2.1212 9.4865 ± 2.0709
405 1.2805 ± 0.5074 1.4343 ± 0.5525 1.3289 ± 0.4918
406 1.4506 ± 0.4911 3.0573 ± 0.1223 1.4506 ± 0.4911
409 1.0244 ± 0.1878 1.6821 ± 0.5381 0.9960 ± 0.1940
476 1.5438 ± 0.3304 4.2103 ± 0.3307 1.5438 ± 0.3304
551 1.5861 ± 1.0745 1.5861 ± 1.0745 4.8002 ± 3.3426
576 2.5593 ± 0.0552 0.7033 ± 0.1582 2.6073 ± 0.0357
577 0.8972 ± 0.2218 1.4100 ± 0.5203 0.8832 ± 0.2140
592 0.7682 ± 0.5871 0.7686 ± 0.6002 0.8690 ± 0.5895
607 1.0393 ± 0.6984 4.2828 ± 0.9654 2.7691 ± 1.4346
651 4.7786 ± 0.5789 5.4719 ± 1.8010 4.7786 ± 0.5789

2018 (tails colored in light blue) and the other is from Jan.

2019 onward (tails colored in light orange); similarly for user

476. Unlike for the other users, the tails in the training data are

very different from those in the testing data for user 404 and

651. Ignoring the user labels, Table III compares the prediction

RMSE using the most similar cluster representative from the 6
clusters obtained for three different distance functions – MED,

ED and DTW. In this case, the estimate is the tail representative

of the cluster to which the charging curve in the testing data

belongs. The best distance function for each user is highlighted

in bold. MED is the best for most of the cases. In addition,

Tables II and III show that the cluster representatives with

MED achieves comparable and even better prediction than

user representatives, indicating the existence of charging tail

patterns.

C. Charging stage decision

In the remainder of our experimental results, we consider

a real-time binary decision problem on whether an EV is in

the absorption stage (AS) (see Section II-C for more details

of the AS) or not. Our training data remains the same. In

particular, for the testing data, we choose the user with ID

476 as an example, and manually label the start time ts and

end time te of the AS for each of the charging sessions since

Jan. 2019. There are n = 38 out of 46 sessions in total that

contain tails. The MAE is used for deciding the charging stage.

Let εMAE be the error threshold. At time t ∈ T , denote by

m the number of samples that can be used in our decision.

Equivalently, m is the time delay that are allowed for deciding

if at time t the EV enters the AS. The decision rule in our

experiments is that if dED (s (t : t+m) , c (≤ m)) ≤ εMAE,

then we claim that the EV is in the AS; otherwise the EV is

not in the AS where s (t : t+m) := s(t), . . . , s(t +m) and

c (≤ m) := c(1), . . . , c(m). We set εMAE = 0.7 in the tests.

Fig. 9 shows the trade-offs between the decision accuracy

and the number of samples. In particular, in Fig. 9, the average
accuracy is defined as

n∑
i=1

TPm(si) + TNm(si)

TPm(si) + TNm(si) + FNm(si) + FPm(si)

where TPm(si), FPm(si), TNm(si) and FNm(si) are the

numbers of true positive, false positive, true negative and false

negative decisions for the charging stage decision of a charging

curve si with m samples. The average sensitivity and average
precision are defined similarly as

n∑
i=1

TPm(si)

TPm(si) + FNm(si)
and

n∑
i=1

TPm(si)

TPm(si) + FPm(si)
,

respectively. Both the average precision and the average

sensitivity grow with the number of samples m.
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Fig. 9. Trade-offs between the number of samples m and the accuracy,
sensitivity and precision.

V. CONCLUSION

We have presented an iterative clustering method to classify

EV charging time series and illustrated its performance using

ACN-Data, a fine-grained charging dataset recently made

publicly available. Our analysis shows that, even though the

number of charging curves is large, they can be accurately

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020



classified into a small number of types. Moreover, the cluster
representatives can be used for effective prediction.

This opens up potentials for future applications. For in-
stance, a natural statistical EV model consists of (ck, pk, k =
1, . . . ,K) where ck is the tail representative and pk is the
marginal probability that an EV arrival is of type k = 1, . . . ,K
as exemplified in Fig. 7. This model can be useful for
planning purposes and for simulations, e.g., to determine the
capacity of electric infrastructure supplying a large-scale EV
charging facility. For another instance, online optimization
of EV charging can be implemented as a model predictive
control (MPC) where a forward optimization problem is solved
in each control interval (c.f., [4], [5]). The representative for
each individual user can be used as prediction to improve
the performance of MPC. Moreover, the ability to decide the
charging stage in real time as illustrated in Section IV-C can be
helpful to online scheduling. Yet another application is to use
the representative tail ck to detect abnormal battery behavior
in real-time and alert the drivers, or charging facilities, or EV
manufacturers.

This paper presents the first analysis of the fine-grained
charging data in ACN-Data and develops a systematic method
to learn battery behavior from the data. It has several limitations
that motivate extensions. First, our current method works well
only with charging curves that exhibit relatively clean tail
behavior. Additional techniques are needed to extract useful
information from other charging curves. Second, our current
method is offline. It would be useful to extend it to an
online setting, for continuous improvement of classification
performance and adaptation to changing EV behavior. Such
an online method will be useful as the building block for
many online applications. Here theories and algorithms in
statistical detection and signal processing will prove to be
helpful. Third, we model battery behavior by the representative
tail ck as functions of time. More detailed battery models
can be developed using ck and other information such as the
energy capacities of the batteries and the voltage time series,
e.g., their current and voltage behavior in the absorption stage
as functions of their states of charge. Finally, it would be
interesting to develop a tractable mathematical model of the
classification framework shown in Figure 3 and formally prove
its convergence and optimality properties.
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