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Abstract—Embedded systems are prone to leak information via side-channels associated with their physical internal activity, such as
power consumption, timing, and faults. Leaked information can be analyzed to extract sensitive data and devices should be assessed for
such vulnerabilities. Side-channel power-supply leakage from embedded devices can also provide information regarding instruction-level
activity for control code executed on these devices. Methods proposed to disassemble instruction-level activity via side-channel leakage
have not addressed issues related to pipelined multi-clock-cycle architectures, nor have proven robustness or reliability. The problem of
detecting malicious code modifications while not obstructing the sequence of instructions being executed needs to be addressed. In this
article, instruction sequences being executed on a general-purpose pipelined computing platform are identified and instructions that make
up these sequences are classified based on hardware utilization. Individual instruction classification results using a fine-grained classifier
is also presented. A dynamic programming algorithm was applied to detect the boundaries of instructions in a sequence with a 100 percent
accuracy. A unique aspect of this technique is the use of multiple power supply pin measurements to increase precision and accuracy. To
demonstrate the robustness of this technique, power leakage data from ten target FPGAs programmed with a prototype of the pipelined
architecture was analyzed and classification accuracies averaging 99 percent were achieved with instructions labeled based on hardware
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utilization. Individual instruction classification accuracies above 90 percent were achieved using a fine-grained classifier. Classification
accuracies were also verified when a target FPGA was subjected to different controlled temperatures. The classification accuracies on
discrete (ASIC) pipelined-architecture microcontrollers was 97 percent.

Index Terms—Side-channel analysis, power analysis, hardware security, instruction disassembly

1 ACTIVITY TRACKING IN EMBEDDED PROCESSORS
VIA SIDE-CHANNELS

ASSURANCE and security [1] of operations and data in micro-
crontrollers and embedded processors are essential for
our rapidly growing electronic infrastructure. Lightweight,
embedded processors are the basis of networking infrastruc-
ture. They are additionally used as part of smart sensors and
actuators for industrial control systems and cyber-physical
systems. Power management and boot processes for com-
puter systems from phones, laptops, and servers are other
applications. Each of these devices execute unique software/
firmware and usually have an isolated task such as control-
ling the angle of an aircraft rudder by sensing, computing,
and reporting the angle. The quantity and diversity of their
usage represent a large attack surface, complicated by the
need to support in-field updates. As the number of embed-
ded systems and their connectivity increase, the implications
of any compromise can be unpredictable and hazardous.
Going forward in the design of new computing building
blocks of electronic systems, security and assurance must be
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a cornerstone. An representative effort to meet new diverse
demands is the rising family RISC-V processors that have a
with a range of configurations from a 9-stage pipeline pro-
cessor used by Western Digital in hard-drives [2] to a two-
stage pipeline design which Google is supporting for
future products [3]. Also related to the direction of emerg-
ing embedded technology is the NIST lightweight crypto-
graphic block competitions [4], which includes selection
criteria based on side-channel vulnerability. However,
assurance and security should be understood holistically,
including general software execution. In work presented
herein, techniques for analysis of side-channels related to
activity within a microcontroller, driven by software exe-
cution, on a minimal computing building block, two-stage
pipeline microcontroller, are presented. The dual goal
is to examine the use of side-channels for assurance, and
to understand the security of software execution in this
building block.

Side-channels are unintended information pathways
across layers of design abstraction [5] and represent mutual
information between protected data or hidden activity and
observable channels. Complex systems involve several
layers, both within and across hardware and software.
Design abstraction is required to allow parallel design and
development that meets the competitive demands for rapid
growth. However, Kocher et al. [5] formalized side-channels,
vulnerabilities that arise when security is only addressed at
each layer individually. While there is no doubt that the
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achievements in function and performance through design
abstraction are impressive, addressing security remains a
complex challenge tied to abstraction. As we address assur-
ance and security within the building blocks of technology
and develop practices to improve security across design
layers, study of side-channels is key.

Side channels are exemplified by the analysis of power-
supply consumption to infer secret data and, as presented
further herein, to infer activity related to software execution.
Particularly, Kocher et al. [5] famously described a linkage
between power-supply transient consumption and activity
within processing circuity, catalyzing a field of research. In
that work, the authors presented a successful inference of
secret keys involved in cryptographic processes using indi-
rect yet accessible observations and analysis of power sup-
ply, called power-supply side-channels. In addition to
inferring data, the authors point out the potential use of
power-supply analysis to reverse-engineer computational
processes, but generalized automated methods to accom-
plish this is an open research problem.

Several variations of attacks based on side-channel leakage
have been explored including Power analysis attacks [5], Tim-
ing attacks [6], [7], Electromagnetic (EM) attacks [8], [9], Dif-
ferential fault attacks [10], Scan-based attacks [11], Cache-
based attacks [12], [13], Bus-snooping attacks [14], [15],
Acoustic attacks [16], [17], etc. In one side-channel based tech-
nique [18], the authors use power profiling of a Device Under
Attack (DUA) to locate trojans using a circuit partitioning
technique. EM attacks against public-key algorithms have
been demonstrated in [19]. The papers [20], and [21] discuss
EM based secret-key recovery from RSA implementations.
The authors, in [22], introduce a practical technique to mea-
sure EM emanations for instruction-level events based on a
metric called SAVAT (Signal Available to Attacker). Although
this technique can be useful in distinguishing on-chip from
off-chip memory access instructions such as load/store
instructions, fine-grained instruction level profiling is difficult
from EM emanations. The methodology and techniques pre-
sented in [23], and [24] by Baki, Yilmaz et al., cover EM based
side-channel techniques that distinguish instructions from a
pre-determined instruction sequence or micro-benchmark.
EM based side-channel analysis, however, is not generically
applicable for precise determination of instruction-level
events. In this work, a methodology is established, one that is
capable of retrieving information regarding instruction-level
events via side-channel leakage. The issue of detecting
instructions executed on an MSP430 microcontroller from its
power side-channel leakage, was approached by implement-
ing this methodology and yielded reliable results. In [23], [25],
and [24], statistical models of code were used to infer instruc-
tion execution, and in some cases, models are specialized to
the expected code. In this work, the information channel is
explored, assuming no prior statistics about the code execu-
tion. Priors may not always be representative of what is actu-
ally being executed and therefore can adversely bias results
for the characterization of abnormal code.

In [26], the authors propose an add-on monitoring sys-
tem (WattsUpDoc) that non-intrusively monitors power
consumption signals to detect the presence of malware on
state-constrained embedded systems. The paper presents a
coarse-grained approach to detect malicious code, utilizing
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machine learning techniques to discover patterns within the
power-consumption waveform of a sequence. Numerous
countermeasures have also been proposed to defend against
these attacks by means of introducing preventive measures
to obfuscate the leakage [27], [28], [29].

Studies into instruction level power leakages were pro-
posed in [30], [31]. However, these studies did not account
for instruction-level power leakage signatures and instead
explored models that optimized the total power leakage of
processors. Recently, researchers developed a tool (ELMO)
for modeling instruction-level leakages [32]. ELMO models
the power leakage only for a subset of the ARM instruc-
tions primarily selected for use in cryptographic algo-
rithms. The model achieves a classification accuracy of 100
percent when the subsets of instructions were classified
into five broad groups. This study also accounted for the
data dependency among sequences of instructions being
analyzed. A side-channel leakage based disassembler that
incorporated Hidden Markov Models (HMM) with a pre-
diction accuracy between 35 and 70 percent for individual
instructions was proposed in [33]. Power data from a
PIC16F687 microcontroller having a two-stage pipeline
with 35 instructions was discussed. The disassembler lev-
eraged profiling of existing code to generate models and
then detected the same instruction sequences using these
models. In [34] and [35], the authors present an instruction
classifier with 100 percent accuracy when the same instruc-
tion was compared against the templates generated for that
particular instruction. Measurements were derived from
an ATMegal63 microcontroller which has two pipeline
stages. Templates generated from power-supply side-
channel leakage data from a small subset of the instruction
set architecture (ISA) are classified. In [36], a disassembler
that utilizes Kullback-Leibler divergence and dimensional
reduction using PCA was proposed. The authors report
that the disassembler recognizes test instructions with
99.03 percent success. They also present some analysis of
detecting register names.

The above-mentioned works do not fully address some
key challenges of multi-clock-cycle instruction sets (dis-
cussed further in Section 2) and the identification of instruc-
tion sequences being executed on the processing platform.
The number of clock cycles required to execute an instruc-
tion is referred to as Clock Cycles Per Instruction (CCPI).
Furthermore, building classifiers and using those to classify
individual instructions against themselves, even with close
to 100 percent accuracy, does not necessarily translate into a
highly accurate instruction recovery and identification for
unknown code. In FISCAL [37], the authors of this work
presented a method to identify instruction sequences on an
instance of the openMSP430 synthesized on an FPGA.
Owing in part to the great number of MSP430s deployed in
both industrial and commercial applications and its versatil-
ity in terms of its ultra-low power capabilities [38], this
architecture is further explored in this work.

In this paper, the mutual information between power
supply consumption and code execution is established to
represent a fundamentally useful side-channel to a high-
level abstraction of system behavior that can be leveraged
as a foundation for new methods for both attacking and pro-
tecting systems. In particular, how an attacker can use this
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Fig. 1. A sequence of instructions being executed on a microcontroller is
processed by a number of built-in hardware units. Power-supply side-
channel leakage is observed via the power pin on the microcontroller.
Power templates representing instructions are created and a dynamic
programming technique is used to match the templates to power-supply
leakage observations corresponding to the code sequence being exe-
cuted on the microcontroller. Once the instruction execution boundaries
are determined, a hardware-based classification of the observed instruc-
tions is performed. In the example, a sequence of CCPI, < 2,3,4 > ,
and hardware utilization bin labels, < X,Y,Z > ,isinferred.

information to monitor code execution is demonstrated as
well as countermeasures that can detect clandestine code
execution. In solving this problem, instruction classification
was investigated; instruction execution boundary determi-
nation was solved; and a coarse-grained classification
method to efficiently perform segmentation was created.
The method proposed, as illustrated in Fig. 1, is useful for a
number of applications including efficient classification of
code without exact disassembly (coarse-grained classifier)
and working with larger code sequences to not only analyze
but also find regions of critical code execution for attack or
protection schemes. The proposed technique can be the
foundation of new and improved attacks, and be used to
search for and identify code as a precursor to other attacks.
For instance, the proposed algorithm can be used to find
where code is executed in order to launch an attack or as a
directory to perform advanced code timing attacks.

Research Contributions. The design and implementation of
our system present the following research contributions.

e A novel power-supply side-channel technique that
uses two training loops and dynamic programming
without requiring statistical assumptions about code
being executed to infer instruction boundaries from
observations of code execution on a pipelined multi-
cycle general-purpose microcontroller, and demon-
strated experimentally the ability to characterize and
identify code.

e Alow-overhead, coarse-grained SVM-based classifier
to determine the hardware unit being utilized within
a processor.

e A fine-grained SVM-based classifier that identifies
actual instruction-level details.

e Demonstrated robustness and repeatability of both
classifiers, by running analysis on power-supply traces
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collected from four power pins on 10 Spartan3 FPGAs
that are programmed with a soft-core MPS430 as well
as a single power pin on 4 discrete MSP430 chips.

e Demonstrated robustness to temperature variations
by subjecting the FPGA package to multiple con-
trolled temperatures.

2 POWER-SUPPLY AS A SIDE-CHANNEL
FOR CODE DISASSEMBLY

As compared to hardware implementations, software repre-
sents a level of abstraction very disparate from the low-level
circuits generating power-supply signals, and thus inference
involves additional complexity. A general purpose process-
or’s hardware is complex and designed to support many
possible operations at any given time. Challenges arise when
directly modeling the relationship of software and power-
supply signals, and are complicated by unknown timing of
operations. Machine-learning techniques to infer timing and
activity, grounded in basic knowledge of hardware and
power-supply transients as well as architecture, are used in
this work to overcome modeling challenges.

As mentioned in Section 1, a key challenge in power-sup-
ply-based disassembly for many types of processors is that
they not only have multiple clock-cycles per instructions,
but also that the number of cycles per instruction varies. In
general, software is made of a sequence of instructions with
varied and unknown CCPI. While some processors use
instructions that are mostly 1 CCPI, and others have a larger
but moderately varied CCPI, many processors have a highly
variable CCPI (as illustrated in Fig. 1). This uncertainty
inherently complicates side-channel based disassembly since
knowing the clock signal cannot be used alone to infer when
instructions to be classified begin and end. In Section 6, a
solution to the problem of finding execution boundaries of
instructions within a sequence is presented. Once instruction
execution boundaries are determined, the power-supply
transients within the intervals between can be used to infer
which instruction was likely executed during that time. For a
given CCPI several instructions are likely, and thus a classi-
fier is built for each CCPI group.

The predominant components of power-supply transients
as a side-channel arise from how transistor-based digital cir-
cuits operate. Digital computation involves transitioning val-
ues between logical 1 and 0 values, and each such transition
represents a charge transfer from or to a power-supply con-
nection, e.g., power pin. While some approaches to model
power-supply transients from a gate-level abstraction invo-
Ive accounting for the set of transition events, along with a
minimal set of attributes about the physical circuit, e.g., load
capacitance, in practice, however, the problem is complex,
with factors such as R-C attenuation in the power grid and
nonlinear interaction of circuits, each dependent on the loca-
tion of gates and power-pads [39]. This complexity and diffi-
culty to simulate or derive low-order empirical models led
us to investigate this problem through experimentation and
data-driven analysis. Inference models are built by data as
well as knowledge of a hardware processor. In general,
instruction power-supply traces vary based on (i) hardware
use and options (ii) data (iii) other instructions in the pipe-
line. Herein a training framework is presented for creating a
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robust classifier in this context, including data and analysis
across several dies and temperatures.

3 SECURITY MODEL

Two scenarios are of interest, wherein for one an attacker
seeks to discover and exploit obscured code, and in the
other an attacker seeks to modify code without detection.
In the first scenario, a system manufacturer assumes code
obscurity (security through obscurity), yet an attacker has
access to a microcontroller to measure power-supply tran-
sients and therefore can infer operations, algorithms, and
specific segments of vulnerable code using our technique
and thereby stage further exploits and attacks (e.g., timing
attacks, bug exploits). Knowledge of our technique there-
fore should be considered going forward in the design of
systems, and appropriate countermeasures should be
developed. Further discussion on reverse-engineering is
provided in Section 10. In the second scenario, code execu-
tion assurance is desired; side-channel leakage can serve
to build a system that detects malicious code insertions or
modifications. In this section, the adversary model, threat
model, and trust assumptions are described for the scenario
wherein the side-channel leakage information is used to pro-
vide assurance in the system.

3.1 System Hardware Assumptions

The System Under Test (SUT) is a processing unit which is
a low-power micro-controller architecture with multiple
pipeline stages. The micro-controller architecture supports
instructions that require a variable number of execution cycles
within a pipeline stage.

3.2 Adversary and Threat Model
The adversary

has physical or remote access to the SUT.
has knowledge of processing unit architecture.
has apriori access to the code or can retrieve it from
the program memory.

e may modify existing code by re-arranging or insert-
ing instructions in the program memory.

e has the ability to manipulate sensitive information in
the data memory.

Modification to code and/or data memory can go unde-

tected by other countermeasures implemented in the system

3.3 Trust Model

We make the following trust assumptions regarding the user
of the SUT, the provider of the power monitoring system and
the manufacturer of the processing unit(s) used in the SUT.

e The user and provider of the power monitoring sys-
tem trusts that the manufacturer provides a discrete-
chip or a soft-core for the processing unit, that adheres
to the implementation and Instruction Set Architec-
ture (ISA) specifications.

e The user and the manufacturer trusts that the pro-
vider of power monitoring system does not alter the
original specifications of the processing unit.
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e The user trusts the provider of the power monitoring
system to report the instruction execution sequence
and the type of each instruction.

e The user trusts the provider of the power monitoring
system to ensure that it is non-intrusive and does not
alter the normal operation of the SUT.

e The user trusts that the processing unit and other
hardware components of the SUT cannot be altered
after final system implementation.

4 SIDE-CHANNEL DISASSEMBLY OVERVIEW

Given the physical implementation of computation as
described in the previous section, it is apparent why power
supply fluctuations are indicators of computational activity
and can be used to infer instructions. An observation of a
power trace during instruction execution can be used to
infer which instruction was being executed by the proces-
sor. However, if observing a processor with a highly vari-
able number of cycles per instruction, knowing the actual
begin and end times in order to define the temporal bound-
ary for classification is not trivial. Therefore a solution to
identifying instruction boundaries is required so that the
power-supply transient data can be temporally segmented
in alignment with actual instruction execution.

The presented solution involves inference of instructions
based on the execution cycles (excluding fetch cycles), and
so a set of instruction execution boundaries (IEB), defined
as the times in terms of clock-cycles of the start of an instruc-
tion execution stage, are first established. Clock-cycles not in
this set are a continuation of execution. The number of pos-
sible answers for a sequence of K cycles is 27! assuming
that the start of observation coincides with the beginning of
the first instruction execution. If the power trace examina-
tion is advanced forward in time, each subsequent IEB
defines the proceeding segment of instruction execution
after the preceding IEB. The number of clock-cycles in this
segment limits which sets of instructions are potentially
being executed since there are varying clock-cycles per
instruction execution (CCPI). The cost of this decision is
attributed to how mismatched the observed power trace is
from any template traces for the given CCPL The identifica-
tion of each IEB also defines the optimization subproblem
of determining remaining IEB using the power trace.

For each CCPI (1-6), one or more representative tem-
plates can be used. One approach would be to build a tem-
plate for each possible instruction (152 for the MSP430),
allowing the best match to define the cost for a particular
segment. Another approach would be to provide a well-
suited template set designed to solve the segmentation
problem. An intuitive choice is to provide a few representa-
tive templates for each CCPI group, and in the presented
approach, representative sets were empirically built based
on knowledge of discernible types of hardware use.

Once the temporal segmentation has been performed to
prepare the power-supply segments, instruction inference
can be performed within a single CCPI group. The number
of such instructions per CCPI varies. Herein, this classifica-
tion for which each instruction belongs to its own class is
called a fine-grained classification and is discussed in
Section 9. However, a less complex, coarse-grained classifier,
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Fig. 2. The MSP430 LaunchPad along with a custom-designed board for
power supply measurement is shown in the figures (a) & (b). The power
pin is sampled using a high-bandwidth oscilloscope and analysis on the
captured power traces is performed offline. Custom-designed board
using FPGAs for communication/control and testbed [37] is illustrated in
(c) & (d). Temperature setup with heat exchange and fan is shown in (e).

for which multiple instructions belong to a class based on
common hardware usage traits is useful for detecting modifi-
cations in the code being executed. The coarse-grain instruc-
tion representation as used for the dynamic programming
solution is related to this classifier and discussed in Section 7.

It is important to note that the core of this technique does
not require the actual deployed code for any part of the train-
ing, nor does the instruction inference rely on prior expecta-
tion of code being executed, unlike [22]. In specific problems
where the exact prior code is known, such information could
be used to augment our technique, but the intent of this work
is a solution to a harder problem of extracting useful knowl-
edge about the code being executed when the exact code or
compilation is not known. A solution to this foundational
problem has many applications including non-intrusive
detection and analysis of malicious code insertions, as well
as understanding potential vulnerabilities of code execution
to side-channel analysis. The technique is applied to well-
established code modules (e.g., 128-bit AES encryption and
PID controller) prediction accuracy is presented.

5 EXPERIMENTAL HARDWARE SETUP

To evaluate the robustness of the proposed technique, exper-
imentation was performed on both a discrete TI MSP430
microcontroller LaunchPad [40] and a soft-processor imple-
mentation of an open-MSP430 instantiated on an FPGA [41].
In this section, the experimental setup for power measure-
ment on both platforms is detailed.

For experimentation with a discrete microcontroller, a
custom auxiliary board (Figs. 2a and 2b) was designed and
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fabricated to measure power-consumption data from an
MSP430G2553 chip housed on a TI LaunchPad kit. The cus-
tom PCB includes an on-board regulator (3.3V) to power
the LaunchPad. An on-board amplifier (powered indepen-
dently) amplifies the power signal which is high-pass fil-
tered (cutoff frequency of IMHz) and then passed through
a coax cable to an oscilloscope.

For experimentation with an FPGA-based soft-processor
implementation, a custom board (Fig. 2c) was designed and
fabricated that both houses FPGAs and includes power
measurement circuitry. The board comprises one control
FPGA, which facilitates timing and controls for experimen-
tation, and a Xilinx Spartan 3E as the Device Under Test
(DUT) (Fig. 2d). The design macro, an openMSP430 [41] is
instantiated on this FPGA. The control FPGA functions as
the control/communication device to convey debug and
control data to the DUT. All four power-supply pins avail-
able on a TQFP package of the DUT are simultaneously and
separately measured producing four waveforms. Power-
supply current probing is performed using 1() resistors in
the supply path for each power pin. The voltage across
each resistor due to the current consumption of the device
is probed using a voltage buffer and passed through an
amplification-stage before passing through coax cables to
an oscilloscope. It should be noted that re-synthesis or re-
placement changes measured results, so the same bit-
stream was used for each subsequent FPGA (Section 7.2).
Two versions of the board were developed and tested, one
with a directly soldered DUT and a socketed version to
show results across many FPGAs. For reliability analysis
under varying temperatures, the socketed version of the
board was fit with a Peltier module (operating tempera-
ture range: 0°C-80°C), a metal interface plate with thermis-
tor sensor holes providing feedback to a multimeter that
provided temperature readings (Fig. 2e). Temperature on
the Peltier device was modulated using an external tem-
perature controller. Although in this work an MSP430 soft-
processor was synthesized on the DUT, the platform has
been designed to prototype multiple processor architec-
tures, as well as hardware-based computation macros
(e.g., encryption cores, PID controller).

For both setups, the processor was driven with a 10 MHz
clock. The power supply was sampled using a Tektronix
DPO7354C oscilloscope at 500MSPS, which resulted in 50
samples per processor clock-cycle. A 2.5GHz bandwidth-
limit setting was used.

6 MIXED-INSTRUCTION SEQUENCE ANALYSIS

The primary requirement towards the goals of assurance
and security is to be able to identify instruction boundaries
followed by classification. The MSP430 ISA consists of
instructions that use 1 to 6 clock-cycles per instruction in the
execute (EXE) stage, as specified in the MSP430 User Guide
[42]. The processor's word access instruction set is seg-
mented into six mutually exclusive sets, each respectively
labeled N-CCPI, where N = {1, 2, 3,4, 5,6}. Each instruction
power profile is labeled Iy;, corresponding to the ith
instruction in the set N-CCPL The number of instructions
per CCPI set is 16 (1-CCPI), 44 (2-CCPI), 22 (3-CCPI), 19 (4-
CCPI), 39 (5-CCPI), and 12 (6-CCPI).
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Fig. 3. Three-iteration training loops: (a) Interleaved register access
instruction (b) Interleaved memory and register access instructions. These
account for data-dependencies and influence of nearby instructions.

6.1 Generation of Robust Training Data

To ensure robustness of the classifiers, a training set with
representative variations of each instruction must be gener-
ated. The power-supply fluctuates according to several fac-
tors including the following: (i) instruction operation (ii)
addressing modes (reg, mem, imm, symbolic); (iii) data (i.e.
data dependency); and (iv) other instructions in the pipeline.

To account for data-dependencies and influences of
nearby instruction types in the sequence, a training loop
was developed that included three instances of the instruc-
tion under characterization and data was varied within and
between the loop iterations as shown in Fig. 3. A reg and a
mem instruction were interleaved into each sequence. There
was a difference among the 1%, 2" and 3¢ instance of the
instruction within each loop, with the power profile for the
first instance showing the most variance. This variance can
be attributed to the fact that the preceding instruction for
the first instance is different from the other two. Classifica-
tion using training samples from the 2"! and 3" instance
independently provided similar accuracy to use of samples
from the 1% instance. In the aforementioned case, testing
samples were selected randomly from three instances of the
instruction, with power profiles acquired during an inde-
pendent run of the experiment. In this work, data from all
observations, was used to create the training sample pool
and selected training samples randomly.

The training set that was constructed included each non-
emulated word-mode instruction in the MSP430 instruction
set. To account for clock jitter within power captures, a
cross-correlation is performed on power samples for each
loop iteration. Waveforms created from an average of 10000
single-pin power measurements of instructions are depicted
in Fig. 4, for 1-CCPI and 4-CCPI. The figures show that a
peak and valley in the power profile for an instruction cor-
relate to one instruction execution cycle for the data from an
FPGA device. In the template building phase, we utilize the

Current (mA)
Current (mA)

o B % % aw ms B0 s ae
Time Samples

) )
Time Samples

Fig. 4. Cases (a) and (b) depict the raw power profile averages for vari-
ous clusters of 1-CCPI and 4-CCPI. (a) Power profiles for 1-CCPI tem-
plates comprising 16 different instructions. (b) Power profiles for 4-CCPI
templates comprising 19 different instructions.
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TABLE 1
Hardware Usage Classes With Their Description
and Instruction Count

Label Interpretation (Associated Traits) ’\;CCI l4

reg_reg (RR)
reg_reg_sub (RRS)

Source Register, Destination Register 10
Source Register, Destination Register

Includes Arithmetic and logical instructions

Source Memory, Destination Memory

mem._mem_sub (MMS) < Rardware involved - includes ‘bic’ instructi

Source Memory, Destination Memory

(No

Source Memory, Destination Index

(No

Source Memory, Destination Index ‘bic’

(No

Source Memory, Destination Index No Subtraction

(No complement hardware)

Source Register or a constant, Destination Memory

Destination includes a constant and involves indirect addressing
Source Register or a constant, Destination Memory

Indirect at source, No subtraction hardware

Source Register or a constant, Destination Memory Push Instruction
Indirect ing at source, No subtraction hardware

Source Register, Destination Memory

Indirect at source, No subtraction hardware

Source Memory, Destination Register

Indirect addressing at source

Source Memory, Destination Register

Indirect addressing at source includes logical op

Source Memory, Destination Register

Includes Arithmetic and logical instructions

Source is a generated constant, Destination Register

Includes Arithmetic and logical instructions

Source involves a constant, Destination Register

Includes Arithmetic and logical instructions

Source involves a constant, Destination Memory

Indirect ing involving constant at

Source involves a constant, Desfination Memory

Indirect addressing involving constant at destination, 1
No hardware

mem_mem_nosub (MMNS)

mem_idx_sub (MIS)

‘mem_idx_bic (MIB)

‘mem_idx_nosub (MINS)

reg_const_ind_sub (RCInS)

reg_const_ind_nosub (RCInNS)

reg_const_ind_push (RCInP)

reg_ind_nosub (RINNS)

ind_reg (InR) 24 | 10

ind_reg_log (InRL)

‘mem_reg (MR)

const_reg (CR)

imm_reg (ImR)

imm_ind_sub (ImInS)

imm_ind_nosub (ImInNS)

salient deviations among the power profiles of instructions
requiring the same number of clock-cycles to determine a
proper fit for the classification model.

6.2 Hardware-Utilization-Based Labeling

Within each N-CCPI group, we empirically group instruc-
tions based on hardware utilization and choose to define a
class label for each group, Table 1. Hardware utilization, for
example, includes addressing mode (e.g., memory, register),
computational operation (e.g., multiplier, twos-complement
unit), and status register updates. As shown under the col-
umn heading N-CCPI, instructions in a given N-CCPI
group can be labeled with different hardware utilization.
For example, within 1-CPPI RRC was included in the group
const_reg while the remaining 15 were in the reg.reg
and reg_reg_sub groups.

6.3 Determining IEBs in Complex Instruction
Sequences
In this subsection, two main steps for IEB determination for
random instruction sequences, with instructions of heteroge-
neous CCP], are discussed. The first goal of determining the
IEB is to correctly segment the power supply waveform. A
correct segment is defined by a true starting and a true ending
execution clock-cycle (Fig. 5a), such that the corresponding
epoch comprises exactly one instruction. Initially, every pos-
sible valid window from length 1- to 6- clock-cycles must be
assigned to determine whether it is the correct segment. This
involves extracting overlapping windows (i.e. sliding win-
dow) for evaluation. Windows overlap by a unit step of 1-
clock cycle for each of the lengths, 1-6, as depicted in Fig. 5b.
In [37], the authors presented the algorithm, summarized
in Algorithm 1, to determine a likely sequence of IEBs in an
instruction sequence based on an optimal fit of instruction
templates to build a waveform to match the observed data.
The observed test data for a sequence is defined to be the
average power-supply transient of 5000 observations of the
sequence execution. The power traces for test sequences
need to be sampled more than once, otherwise the same
accuracy is not guaranteed. In an experimental sweep, it
was possible to maintain accuracies above 90 percent for the
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Fig. 5. Given the power profile for a test sequence, the first step is to
locate the last clock cycle of execute stage for each instruction: Instruc-
tion Execution Boundary (IEB) (specified by EX1, EX2 etc. for execution
cycle 1, execution cycle 2 respectively in the instruction pipeline). In the
example shown (a), the sequence of CCPI is identified, i.e. 2, 3, and 4
for instructions 11 - BIC @R5,R6, 12 - AND 30(R1), R2, and 13 - ADD
R2,30(R6), once the IEBs are determined at the 245th, 247th, and 250th
clock-cycle. In (b), the sliding window scheme is shown for a 4-CCPI
where the next subsequent window is shifted by 1-clock-cycle.

coarse-grained classifier, with a lower bound of 1000 traces,
below which the accuracies dropped. For the experiments
presented in this work, the test power transients are aver-
aged over 5000 traces. The applicability of the technique
presented in this paper is to sequences that are executed
more than once, such as in a loop.

The IEB identifications involve solving two problems.
The first is deciding the optimal tagging of Instruction Exe-
cution Boundaries (IEB) in a clock-cycle sequence ¢y, ¢y, ...,
¢,,. For any solution, it is assumed that the instruction starts
in the first clock-cycle, so ¢; is always an IEB. As an exam-
ple, for a 2-clock-cycle sequence choice, a choice for the set
for labeling as IEBs could be {c¢;, ¢;}, meaning that there are
two instructions, starting at clock-cycle 1 and clock-cycle
2 and are each 1-clock-cycle instructions. The alternative
choice is {¢;}, meaning that there is only a single 2-CCPL
For a 3-CCPI observation the choice could be {c;}, {c1, 2},
{c1,¢2,¢3}, or {c1,¢3}. These decisions correspond to CCPI
sequences of (3), (1,2), (1,1,1) and (2,1). In general, the search
space for the optimal tagging of IEBs is of size 2* ! where K
is the number of observed instruction clock-cycles. It can be
reasoned that determining the IEBs is the same as determin-
ing an N-CCPI sequence.

The second problem is in determining the cost function
for deciding the optimal labeling of TEBs, and thus the
sequence of clock-cycle lengths, L = (Ly, ..., Ly;). For each
entry L,, in the series L, a clock-cycle offset Oy, can be deter-
mined from the summation of the previous values,
S°F | L,. Taking k to be the number of power supply wave-
form samples taken per clock-cycle, the cost of each label is
the minimum of the total squared distance between any
template waveform in the template book that comprises
N x k samples and the observed power supply waveform
over the samples O; xk+1 to (O;+ L;) x k. In other
words, for every possible span of clock-cycles, the minimum
cost is the squared sum distance to the best matching func-
tion in the template book. The solutions to these minimal
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cost computations are precomputed and labeled as Moy,
which denote the cost of deciding there is an instruction of
clock-cycle-length N at clock-cycle offset O:

kxl
> (Twiln] = D[O x N +n))?,

n=0

Moy = min

Viel. length(Cy)

(1)
where £ is the number of power supply data points taken in
a clock-cycle; Ty ;[n] is data point n of the ith template in a
book of template waveforms for each instruction that takes
N clock-cycles; D[n] is data point n in the captured power
supply waveform; and thus Mo x represents the minimum
euclidean distance from an instruction with clock-cycle off-
set O and clock-cycle-length N. With these pre-computed
results, a dynamic programming solution can be used to
decide the optimal sequence of clock-cycle lengths.

Starting at the first position, the challenge is to decide the
optimal choice of instruction length N and thus the second
instruction-initiating-cycle label. The cost of a given decision
for N is the summation of the cost M; 5 and the cost of the
remaining optimally decided labels chosen from clock-cycle
cn+1 onward that includes the IEB labeling on ¢ 1. Thus each
decision introduces the subproblem of computing the remain-
ing labels and their cost, which represents a solution to an opti-
mal-substructure [43] to find the best overall solution. The
number of choices for M,y depend on the size of the set of
possible clock-cycle-lengths. The decision with the lowest sum
cost is chosen. Among the 2%~ possible choices sets of IEBs, a
given clock-cycle can be labeled as an IEB ¢; in multiple possi-
ble sets. Labeling of ¢; represents a subproblem of an optimal-
substructure solution beginning at that clock-cycle. Therefore,
overlapping subproblems [43] exist in choosing between overall
solutions, making the overall problem solution appropriate
for dynamic programming. For a given clock-cycle offset, there
is a minimum distance-based cost (sum squared error, COST?,
where COST(P,x,y) = HPTa:f P”y||,) in representing the
remaining waveform using template waveforms in the col-
lected dictionary. This minimum cost is denoted Cp. Let KC be
the total number of clock-cycles in the overall observed
sequence. Then, the subproblem may be solved recursively as

i M, C O<K
Co = W\/ETJICI}O+1 ON + CotN - . 2)
0 otherwise

The recurrence relation in (2) for Cp allows for the memo-
ization of optimal solutions to subproblems Cy , where Co
remembers the most current optimal solution to a subprob-
lem. The optimal solution is available at C. For readability,
clock-cycle offsets O;, O; and O, are represented by 4, j and
l respectively. split and psplit are temporary placeholders
where s holds the indexes for substructures utilized during
the memoization step to determine the optimal solution.
Ly is the clock-cycle length for the instruction sequence
being observed. Ly, is the maximum clock-cycle window
length possible for the current instruction set. The optimal
sequence of IEBs is available from optimall EB.

Algorithm 1, determines the optimal sequence of IEBs for
an instruction sequence by evaluating the recurrence rela-
tion defined in (2).
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Algorithm 1. Optimal IEB Sequence Determination

1: procedure DETERMINEOPTIMALIEB(M)

2: fori = 1to Ly > Initialization of cost matrix do
3: forj=1toi—1do

4 C;;j = o0

5 j=1

6: whilej < Ly,and j < Ly, +ido

70 Cij=Min

8

j=Jj+1

9: whilej < Ly, do
10: Ci‘]’ =0
11: j=7+1

12: for! =2to Ly, do

13: fori=1to Ly, — 1+ 1do
14: j=i+1-1

15: fors=itoj—1do

> Dynamic programming

16: if ijs + Cs+1,j < Ciﬁj then

17: Cij=Cis+Cor

18: split; j = s > For recovery
19: optimallIEB, = splity L, > Recover optimal path
20: index = 2

21: 4 = splity 1, + 1

22: psplit = splity L,

23: while split; 1., # 0 do

24:  optimallEBinge, = spliti r,, — psplit
25:  psplit = split; r,,

26: i =splitif,, +1

27:  index = index + 1

28: optimallEB;y g, = Lgeq — psplit

7 COARSE-GRAINED CLASSIFICATION

In this section, one-instruction classification using Support
Vector Machine (SVM) is evaluated. Evaluation of Algo-
rithm 1 for classifying instruction sequences is also pre-
sented. In Table 1, instructions are binned into 18 coarsely
defined classes based on hardware utilization. These are
further categorized into six groups based on CCPI In the
training phase, power traces for every instruction, are cap-
tured on the oscilloscope for each loop as explained in Sec-
tion 6 using Fig. 3. The number of such power traces
captured is proportional to the number of loop iterations
(7000) and instances of an instruction within a loop
sequence. For example, per Table 1, a five-clock-cycle,
immediate-to-indirect addressing instruction is uniquely
labeled and requires 61 clock cycles per loop iteration. With
three instances of an instruction being observed per itera-
tion, there are 5050 instances of this instruction in each cap-
ture. Hence, two power captures on the scope will fulfill the
requirement for classification.

The power templates are then categorized into classes
based on hardware utilization (Table 1) and CCPIL To com-
pare inter-pin relationships with prior observations, we con-
struct an aggregate template (Agg.) by combining
templates from each power pin. As a result, there are four
times the number of data points for a template as compared
to an individual pin. In addition, we determine Py, [n] =
SNl Py [n], where Npad (=4) is the number of power sup-
ply pins. P;[n] is the power data from power supply pin ¢ at
data point n, Pgm[n] is the power data sum result (PSUM)
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TABLE 2
Confusion Matrices for N-CCPI Instructions
After SVM Classification
(a) 1-CCPI Classification (%) (c) 4-CCPI Classification (%)
= | Actual Inferred Class 5 Actual | Inferred Class
A | Class | CR RR RRS 2 | Class |RCIONS ImInNS RCInP RInNS  RCInS

0.00 0.00 0.00
0.00 0.00 0.00
100.00 0.00

CR
F RR

0.39 RCInNS RO 0.00
ImInNS 0.00 IRV
F | RCInP 0.00 0.00

RInNS 0.00 0.00

RCInS 0.00 0.00
RCINNS RS 0.00
ImInNS [V 100.00
D | RCInP 0.00 0.00
RInNS 0.00 0.00

0.00
0.17
100.00
0.02
0.00

100.00
0.00

99.98
0.00

100.00 0.00 0.00 0.15
0.00 0.00

0.00

100.00
100.00

RCInS| 001 001 0.00

(b)  2-CCPI Classification (%) (d) 5-CCPI Classification (%)

= | Actual Inferred Class S Actual | Inferred Class

Q| Class | [mR InR MR A| Class [MMS MMNS MIB MInS MINS  MIS
mR ) 0.01 MMS [BOOXOM 000  0.00 000 000  0.00

F InR
MR

0.00
0.00

100.00
0.00

MMNS
MIB | 000
MInS | 000  0.00
MINS| 000 000  0.00
Mis| 001 000 000  0.00
MMS 000 000 000  0.00
MMNs | 0.00 [T 000 000  0.00
MIB| 000 000
MIS| 000  0.00
MINS| 003  0.00
MIS| 013 000

100.00 0.00

100.00

0.00 0.00 0.00
0.00 0.00 0.00
100.00 0.00

100.00

0.00
0.00

100.00
0.07

100.00

100.00

Cases (a)-(b) show classification results for 1-, 2-, 4-, and 5-CCPI. Aggregated
results from all four pins of the FPGA as the DUT is indicated under the letter
'F’. The letter ‘D’ for results from discrete MSP430 chip.

from all power supply pins at data point n. Additional
power supply transients are acquired for a testing dataset of
size 3000 samples for each category and instructions from
each loop in Fig. 3. SVM classification per CCPI group is
then performed over training and test power templates.

7.1 Cross-Validation of Coarse-Grained Classifier

A 10-fold cross-validation was performed over a data set size
of 10000 samples for every label based on hardware utiliza-
tion. This includes all instructions in the N-CCPI group.
Classification is performed using a subset of the training
data collected from the devices as described in Section 6. The
dataset for cross-validation comprises of 100000 samples of
power data acquired from each loop in Fig. 3 for every label
in an N-CCPI group. Hence, there is an entry from each loop
in Fig. 3 per sample in the dataset. In Table 2 (a-d), confusion
matrices for 1, 2, 4, and 5-CCPI groups are presented based
on data acquired from four power pins when the DUT is an
FPGA (designated F) and when data is from the single power
supply pin on a discrete MSP430 chip (designated D). For 3
and 6-clock-cycle instructions, the average classification
accuracy is 99.99 percent for both cases, when data is from
the FPGA. These accuracies are 99.97 percent and 100 percent
respectively when the DUT is a discrete MSP430 chip. The
confusion matrices in Table 2 (a-d) demonstrate high levels
of classification accuracies for classifying instructions based
on hardware utilization.

7.1.1  Classification Techniques

In [37], the nearest neighbor algorithm is utilized to classify
instructions to different groups of hardware utilization
based on the Manhattan distance (/; norm) to the templates
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Fig. 6. Receiver operating characteristic (ROC) curve of different classification techniques on the N-CCPI tasks. Accuracy Under Curve (AUC) in the
legend indicates the overall discriminative performance. SVM shows better discriminative performance across 1- to 6-CCPI instructions.

(centroids) of different instructions in that specific group.
The group label G is classified with (3):

G = argmin(min DPCA(P, x, tY)) , (3)
g i

where ¢/ is the template for instruction ¢ after component
reduction is achieved using principal component analysis
(DPCA). Instruction ¢ belongs to group g of hardware utili-
zation. Other classification techniques are explored here
and compared with SVM-based classification on the dataset
described earlier.

To evaluate their discriminative ability, the ROC curve of
different classifiers over 1, 2, 4, and 5-CCPI groups are com-
pared in Fig. 6. Three additional classifiers, 1 Nearest
Neighbor (INN), Linear Discriminant Analysis (LDA), and
Decision Tree, are used for comparison. In all cases, SVM
classifiers show the highest Area Under Curve (AUC) (>
0.9976). This indicates that power measurements of instruc-
tions with different hardware utilization are mostly linearly
separable with clear margins in its high-dimensional feature
space.

7.2 Validation of IEB Using Real Code Sequences

In this section, we demonstrate the effectiveness of the tech-
nique, discussed in Section 6, w.r.t. CCPI reported in the
MSP430 manual. The technique determines an optimal IEB
sequence across a number of random sequences of instruc-
tions. Although extensive power data has been captured
from multiple random as well as predefined sequences
(e.g., AES, PID controller, etc.), for the purpose of brevity,
given the constraints of this manuscript, just two sample

TABLE 3
Optimal Sequence Of IEBs (Sequence 1)

sequences are listed in Tables 3 and 4, with correct predic-
tions marked in bold with a blue background.

Multi-CCPI templates constructed from individual power
supply pin data, majority decision from these individual
results (MV), aggregate template (Agg.) and power sum
(PSUM) are presented. CAX values depict the classification
accuracy for the templates from the discrete MSP430 chip.

Most often, 2-clock-cycle instructions are mis-predicted as
two 1-clock-cycle instructions (Tables 3 and 4). This can pri-
marily be attributed to the two-stage pipeline architecture of
the openMSP430. The decode and fetch stage of any subse-
quent instruction is in the pipeline with the last execute clock-
cycle of an instruction that is currently being executed. For 2-
clock-cycle instructions, this translates to higher power con-
sumption during the second clock-cycle of the execute stage.
Furthermore, if a 1-clock-cycle instruction is in its execute
stage, the decode and fetch stage for the next instruction is in
pipeline. The two 1-clock-cycle templates tend to be similar
to two execute clock-cycles of a 2-clock-cycle instruction as
opposed to the 2-CCPI templates for 2-clock-cycle instruc-
tions. A similar argument can be made for the low predict-
ability of the 4-clock-cycle XOR instruction followed by a 1-
clock-cycle INC instruction.

For improved IEB sequence recovery accuracy, templates
are generated (as outlined in Section 6) from two different
training loops, depicted in Fig. 3, and the template book,
Ty, comprises templates from both loops. Minimal distan-
ces, Mo n from 2 are then recomputed to decide the pres-
ence of an instruction at offset @. The minimum cost, Cp in
(2), based on dynamic programming then provides the opti-
mal sequence of IEBs. As Table 5 shows, using the resulting

TABLE 4
Optimal Sequence Of IEBs (Sequence 2)

C Optimal IEB Sequences

g Optimal IEB Sequences Sequence 2 SL””“MV Age psum| CAl CA2 CA3 CA4 AGG PSUM CAX

Sequence | | p | PowerPin o Agg psum| CAl CAZ CA3 CA4 AGG PSUM CAX Iyt 2 3 4
11 2 3 4 pop_MR 212 1 2 2 2 2 2 |9898 9898 98.98 98.98 99.34 99.99 100.00
pop_MR 202 1 2 2 2 2 2 98.98 98.98 98.98 98.98 100.00 99.99 98.72 inc RCINNS | 4 | 4 < 4 4 4 4 4 | 99.89 96.79 97.15 99.99 99.99 98.67 97.46
add MMNS |55 5 5 5 5 5 5 |100.00100.00100.00 100.00 100.00 100.00 96.34 mov MMNS| 5|5 5 5 5 5 5 110000 100.00 100.00 100.00 100.00 100.00 95.29
inc RCINNS |4 4 5 4 4 4 4 4 | 9969 96.79 92.95 99.99 99.99 97.27 97.46 add_RR 11 11 1 1 1 [ 9899 98.99 96.53 98.99 100.00 99.99 100.00
movMMNS |5 5 5 5 5 5 5 | 9882 98.99 96.53 98.99 100.00 99.99 99.99 subMMS |6 6 6 6 6 6 6 6 | 9999 9697 99.99 99.99 100.00 98.26 9523
add_RR 11 6 © 1 - 1 1 [10000 9878 9421 9865 97.65100.00 98.81 dec CR 111 1 1 1 1 | 9424 8535 8328 92.58 9635 89.57 9348
sub MMS |66 1 6 6 6 6 6 | 97.16 8535 88.28 95.19 96.35 89.57 97.56 add MMNS |55 5 O 5 5 5 5 | 9997 9535 9624 97.35 100.00 97.66 98.96
dec_CR 11 1 1 1 | 9635 9535 96.24 97.35100.00 97.56 98.96 dec_CR 1|1 1 - 1 1 | 9589 96.68 97.89 97.89 98.67 98.56 96.32
mov RInNS {33 6 6 3 3 3 [100.00100.00 100.00 100.00 100.00 100.00 98.44 mov RInNS [3] 3 © 6 3 3 3 [100.00 100.00 100.00 100.00 100.00 100.00 98.53
subc_ImR |2 2 2 - 2 2 | 97.89 98.68 97.89 97.89 98.67 98.56 96.32 subc ImR | 2| 2 2 - 2 2 | 9878 97.88 9565 97.30 96.56 95.44 95.24
bit MMNS |66 6 6 6 6 6 6 | 9878 9623 95.65 97.30 98.35 95.46 96.53 bit MMNS (6| 6 6 6 6 6 6 6 | 9756 97.56 93.24 95.14 9879 96.55 98.18
emp MMS |55 5 5 5 5 5 5 | 97.56 97.56 93.24 95.14 98.79 97.56 99.99 cmp MMS |5| 5 . . 5 5 5 | 9325 9427 9535 96.19 9845 97.35 9536
xor RCInNS | 4| 4 4 5 4 4 4 4 93.25 94.26 95.35 96.54 98.45 97.35 96.55 xor RCInNS | 4 | 4 5 & 4 5 4 | 99.54 9954 99.54 99.53 97.57 100.00 97.36
inc_CR 11 1 1 1 1 1 | 9726 9528 98.34 99.99 100.00 100.00 95.45 inc_CR 1] 1 1 1 | 9699 96.97 98.98 97.45 98.26 100.00 98.25
Total [45] 45 45 45 45 45 45 | 98.13 96.63 95.97 98.15 99.10 97.95 97.78 Total 46|46 46 46 46 46 46 | 98.15 96.81 96.63 97.96 98.86 98.00 97.12
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TABLE 5
Prediction Sensitivity Per Instruction Using
Codebook of Templates
CCPI 1EB Sensitivity [%]
Instructions Power Freq. %
Pin 1 Pin 2 Pin 3 Pin 4 Sum a7
2 pop_mem_reg 100.00  100.00  90.00  100.00  100.00 7.52
5 add_mem_mem_nosub 100.00  100.00  100.00  100.00  100.00 8.27
4 inc_reg_const_ind_nosub | 100.00  100.00 100.00  100.00  100.00 6.01
5 mov_mem_mem_nosub 100.00  100.00 8750  100.00  100.00 6.01
1 add_reg_reg 100.00  100.00  80.00  100.00  100.00 7.52
6 sub_mem_mem_sub 100.00  100.00  100.00  100.00  100.00 8.27
1 dec_const_reg 100.00  100.00  100.00  100.00  100.00 12.03
3 mov_ind_reg_nosub 100.00  100.00  100.00  100.00  100.00 7.52
2 subc_imm_reg_sub 100.00  100.00  100.00  100.00  100.00 6.77
6 bit_mem_mem_nosub 100.00  100.00  100.00  100.00  100.00 6.77
5 cmp_mem_mem_sub 100.00  100.00  81.81  100.00  100.00 8.27
4 xor_reg_const_ind_nosub | 100.00  100.00 36.36 100.00  100.00 8.27
1 inc_const_reg 100.00  100.00 12,50  100.00  100.00 6.01
1 nop_reg_reg 100.00  100.00  100.00  100.00  100.00 0.76
| Overall Sensitivity [%] | 100.00 100.00  84.96  100.00  100.00 |

codebook of templates allow for 100 percent sensitivity (per-
cent detected) for each instruction from individual power
supply pins.

CA values 1-4 (for templates from power pins 1-4 respec-
tively) depict the classification accuracies once the IEB
sequence has been determined which is the final step in the
instruction sequence recovery process. Test data comprising
of 10000 instances of power traces is prepared based on IEB
determined in the test sequence. The training data prepared
in advance and described in Section 7 based on power data
from two loop sequences is utilized for SVM classification
on the test data. A further improvement in classification is
achieved when a majority decision is made on the selection
of a training dataset from one of the loop sequences in
Fig. 3. When computing Minimal distances Mo y, if a major-
ity of the minimal distances from the test data to the training
templates match a template derived from power traces of
one of the two loops, then the test data at an offset would
classify well based on training data derived exclusively
from that loop. Accuracy of classification varied between
95 and 99 percent.

8 TESTING FOR ROBUSTNESS OF THE
COARSE-GRAINED CLASSIFIER

Both a soldered and socketed version of the testbed were built
to test a quad flat package IC. Thorough reliability tests were
conducted on the socketed version of the testbed which
allowed for DUT replacements, yielding results incorporating
multiple FPGAs. Observations from the target FPGA were
later analyzed when the package surface was subjected to
controlled temperature settings (Fig. 7). Results when the
FPGA package was set to an uncontrolled temperature were
compared against those set to 12°C, 20°C, 40°C, and 60°C Uti-
lizing the SVM classifier, classification accuracies ranging
from 92 to 100 percent were achieved as training samples
were captured at the specified temperatures. When training
data samples, captured at a specific temperature, were tested
for classifying instructions from datasets at other tempera-
tures, the classifier provides results with above 92 percent
accuracy. Similar results were achieved for other CCPI
groups. This experiment was repeated on a different FPGA
chip and similar results were achieved.
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Fig. 7. Results after performing SVM classification over temperature con-
trolled 4-CCPI datasets with power sum metric applied on power data from
all four power pins. Color shades represent the training sets used in classi-
fying test data observed at different temperatures. Results show that good
classification accuracy is achieved across operating temperatures.

Robustness of the technique was evaluated on training
data over ten different FPGAs and summarized in Table 6.
The values in Table 6 represent average accuracy based on
SVM-classification performed with the 6-CCPI group. Each
row summarizes independent results with the training data-
sets from ten FPGAs (labeled as C1-C10). Test datasets from
ten FPGAs were classified into hardware classes in Table 1.
The classification accuracies were averaged and given under
columns labeled as C1-C10. From the classifier results, it is
evident that the training data prepared from one FPGA can
be utilized for classifying test data observed from different
FPGA with high accuracies (> 91%). However, it can be
noted that for a specific case, FPGA C9, the lower accuracies
(50 percent) may be attributed to socket wear accumulated
over time. It was later determined that the socket to pin con-
tacts were not as firmly established as compared to other
FPGAs. Similar results were achieved when the SVM-classi-
fication was performed with the other CCPI sets.

The technique’s robustness was evaluated on test data
based on random sequences using ten different FPGAs and
is summarized in Table. 7. The table depicts classification
accuracy across multiple FPGA observations when SVM
classification was performed over random sequence data-
sets. Labels C1-C10 represent ten different FPGA chips.
Training data for both aggregate and power sum from C1
was used to classify random test sequences for every chip
including itself. Results show that the training data from one
FPGA can be used in the classification of random sequences
on other FPGAs with relatively high accuracies (> 83%).

TABLE 6
SVM Classification Accuracy [%] Over 6-CCPI Datasets
Using 10 FPGAs for Training and Classification

Training

FPGA' Test FPGA Dataset

Dataset Cl C2 C3 C4 C5 Co C7 C8 Cc9 C10
Cl 91.38 98.19 9848 91.85 9924 97.52 97.06 50.00 98.13
C2 99.57 99.89 97.84 99.98 99.88 99.90 99.89 50.00 99.32
C3 99.91 99.26 99.93  99.70 1 99.96 99.97 99.98 50.00 99.90
C4 99.99 99.14 99.96 99.17 99.96 99.92 100.00 50.00 100.00
C5 98.57 99.97 99.65 92.90 99.88 99.44 99.68 50.00 98.78
C6 100.00 9990 99.98 99.94 99.92 99.94 99.98 50.00 99.96
Cc7 99.98 98.84 99.99 99.38 99.48 99.98 100.00  50.00 99.98
C8 99.92 97.84 99.93 99.52 9554 99.94 99.95 50.00 99.95
c9 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00
C10 99.99 93.87 99.98 99.98 96.88 99.94 99.90 99.99 50.00

Restrictions apply.
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TABLE 7
Classification Accuracies [%] of Random
Sequences Across 10 FPGAs

Training FPGA Test FPGA Dataset
Dataset Cl C2 C3 C4 C5 C6 C7 C8 C9 C10

98.53 86.34 96.54 97.61 8850 97.43 9825 9548 8346 94.64
96.54 8356 9332 9523 89.64 97.50 97.30 94.67 84.67 93.12

Aggregate
Power Sum

8.1 Interpolating Power Templates to Match Device
Specific Variations in Frequency

To compare the classification results from each of the four dis-
crete MSP430 devices, the internal DCO (Digitally Controlled
Oscillator) was set to 10 MHz by specifying control registers
RSEL and DCO. However, due to device-level process varia-
tions, the clock frequencies among each device exhibit devia-
tions of approximately 1 percent from normal. In Fig. 9a, the
time dilation of power-supply waveforms observed on chips
LP2, LP3, LP4 w.r.t chip LP1 is evident after the 40th time
sample. These device-specific variations are accounted for by
interpolating the power waveforms observed on those devi-
ces by one to two time-samples (Fig. 9b).

With the interpolated power waveforms, trained tem-
plates constructed using our methodology was tested for
reliability across four different discrete MSP430 chips
(Fig. 8). Results after interpolation are above 92 percent.
Training datasets are interchangeable among different chips
with classification accuracy over 90 percent in cross valida-
tion among different FPGAs. Similar performance was
observed with other CCPI groups.

9 VALIDATION OF FINE-GRAINED CLASSIFIER

The eventual goal of side-channel power-leakage-based
disassembly is to precisely determine instructions being
executed, including on op-code and the operands being proc-
essed. To achieve the latter, it would necessitate enforcing
tighter constraints on control flow, operand data being proc-
essed, and higher data sampling rates for the measurement
device. A practical approach could restrict disassembly to
determining the addressing modes, which was addressed in
part by the coarse-grained classifier discussed in Section 7.

To further explore the discriminating capabilities of the
methodology presented in Section 6 and possibly distin-
guish instructions based on their op-code, the SVM-classi-
fier was applied on power data for individual instructions
on a case-by-case basis for each N-CCPI group. In Table 8,
classification results for the 6-CCPI group are presented

L P1 m— | P2 — _P3 P4

100

Classification
Accuracy [%]
o
(=]

LP1 LP2 LP3
MSP430 LaunchPad Training Vs Test Datasets

LP4

Fig. 8. Results of SVM classification across four discrete MSP430 chips
over their 4-CCPI datasets. Color shades represent the training sets
used in classifying test data for each discrete chip. Variation in frequency
due to process variations among the devices is accounted for by means
of interpolation. Results prior to performing interpolation (shaded) have
lower classifier accuracies.
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(a) Raw power waveforms
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(b) Time-dilation corrected waveforms

Fig. 9. In (a) the time dilation shown among power traces from four dis-
crete MSP430 chips (LP1, LP2, LP3, and LP4). The arrow near time
sample 20 indicates where the waveforms are exceedingly different.
After interpolation (b), the time dilation is corrected.

based on aggregate templates. In both cases, the training
dataset comprised 7000 samples and was classified over a
test dataset comprising 3000 samples. Average classifica-
tion accuracies were 97.58, 93.45, 99.74, 99.20, 99.7, and
99.97 percent for 1, 2, 3, 4, 5, 6-CCPI groups respectively
based on four-pin-aggregate templates. Average classifica-
tion accuracies were 90.52, 89.91, 97.69, 98.45, 99.47, and
99.82 percent for 1, 2, 3, 4, 5, 6-CCPI groups respectively
based on the power sum templates. In general, discriminat-
ing capabilities improve as the number of features increase
for longer execute-cycle instruction sets.

Instructions that incorporate the two’s complement unit
(e.g., SUB, SUBC, and CMP) were misclassified as XOR, or the
BIC instructions on occasion. In hardware, SUB, SUBC, and
CMP instructions perform a bit inversion followed by an
XOR operation to determine two’s complement. The XOR
instruction, on the other hand, performs its namesake oper-
ation. Hence, they are very similar in operation which
accounts for 0.05-10 percent misclassification rates across
different CCPI groups. To take one particular example, a 4-
CCPI CMP is misclassified as an XOR at a rate of 2.20 percent
and as a SUB with a rate of 0.03 percent. A finer classifica-
tion that isolates these instructions is seen to reduce misclas-
sification rates. When a subset of 4-CCPI instructions is
classified as CMP, XOR, and SUB a 100 percent classification
is achieved. Thus, one could use hierarchical SVM classifica-
tion that involves running the coarse-grained classifier to
identify the hardware utilization bin followed by a fine-
grained classification to identify individual instructions.

Robustness of the technique is evaluated on test data
based on random sequences using ten different FPGAs and

TABLE 8
Fine-Grained Classification Accuracy [%] of 6-CCPI Instructions
From a Dataset Aggregating Data From all

Power Pins for 10 FPGAs

Training | Test Instruction

Instruction | mov  sub  subc  xor cmp  and bic bis bit add  dadd  addc
mov 0.00 000 000 000 000 000 000 000 000 0.00
sub 0.00 0.00 0.00 000 000 000 000 000 000 000 0.00
subc 0.00  0.00 0.00 0.00 0.00 0.00 000 000 000 000 000
xor 0.00  0.00 0.00 000 0.00 000 000 000 0.00
cmp 0.00  0.00 0.00 0.00 0.00 0.07 0.00 000 000 000 0.00
and 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.00 0.00
bic 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00
bis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 QLX) 0.00  0.00  0.00
bit 0.00 0.00 000 0.0 000 000 000 0.00 0.00  0.00
add 0.00 000 000 000 000 000 000 0.00 0.00
dadd 0.00 0.00 000 000 000 000 000 000 000
addc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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TABLE 9
Fine-Grained Classification Accuracy [%],
Random Sequences, 10 FPGAs
Training Test FPGA Dataset
FPGA 0 3 4 s 6 7 8 O Clo
Dataset
Cl 9036 77.01 8225
2 7740 70.81 77.89
c3 90.18 74.75 88.17
c4 87.33 74.00 8532
cs 70.75 7047 73.66
c6 90.96 79.36 82.04
c7 89.29 73.62 85.19
c8 90.05
C9 | 7404 7325 7784 7725 7423 7037 7530 74.93
CI10 [87.68 71.90 8225 90.53 77.08 90.86 88.45 83.41

is summarized in Table 9. When classifying instructions in
random sequences using training data from the same FPGA,
the accuracies range from 90.05 — 92.72 percent. Robustness
across discrete four MSP430 chips is summarized in Table 10.
When classifying instructions in random sequences using
training data from the same discrete MSP430 chip, the accu-
racies range from 91.71 — 94.88 percent. For both results,
aggregate templates were utilized for classification.
9.1 Comparison of Fine-Grained Classifier Results
to Coarse-Grained Classifier
Information entropy is utilized to quantify the complexity of
the instruction classification problem and performance of
classifiers. Let X be the random variable of the instruction to
be classified assuming following a uniform distribution
over the set {ci,...,cx}, where K is the number of classes.
The entropy of the classification problem H(X) in units of
bits is H(X) = 28 pi log, - = log, K, where p; is the prob-
ability of X = ¢;. '

The performance of classifier Y can be quantified in
entropy reduction (how many bits of information the classi-
fier provided about X) using mutual information as:

I(X:Y) =) plx,y) log, 208

2.2 p(@)p(y)

In Table 11, it can be seen that the fine-grain classifier
recovers more information than the coarse-grain classier.
However, the accuracy of the coarse-grain classifier shows
that the division of classes is well-suited to hardware and
thus provides an accurate and meaningful label for hard-
ware use. The coarse-grain classifier could be used as the
basis for hierarchical classification or other algorithms where
a different fine-grain classifier could be created for each
hardware utilization bin for detailed discrimination.

For each instruction, one dataset was collected from the
same set which training were drawn. Based on this manner

TABLE 10
Fine-Grained Classification Accuracy [%],
Random Sequences, 4 Discrete MSP430 Chips

Test Dataset

LP2 LP3 LP4
85.84 89.43 88.23
83.17
82.97

Training |
Dataset
LP1
LP2
LP3
LP4

LP1

88.94 8737
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TABLE 11
Number of Classes, H(X) and I(X;Y) for Each N-CCPI Group
CCPI

1 2 3 4 5 6

# Classes 3 3 3 5 6 2
Coarse | H(x) [bits] | 1.59 | 1.59 | 1.59 | 2.32 | 2.58 | 1.00
1(x) [bits] 145 [ 158 | 1.27 | 1.75 | 219 | 097

# Classes 16 44 22 19 39 12
Fine H() [bits] | 400 | 5.46 | 446 | 425 | 529 | 3.58
1(x) [bits] 291 | 378 | 354 | 397 | 4.63 | 2.56

of data collection, it is difficult to determine if differentiat-
ing features the classifier picked up on where from the
inter-capture variations or instructions themselves. There-
fore for final validation, the classifier was used to identify
random instruction sequences as well as representative
codes like AES and PID, as discussed in Section 10, with
high classification accuracies.

10 APPLICATIONS DISCUSSION

In this section, real-world applications of the IEB determina-
tion and classification technique are presented. However, it
must be noted that this technique is not limited to the pre-
sented subset of problems; the approach can be utilized in
detecting the presence of malicious code sequences (as the
first line of defense) and in mitigating faults that might
occur in a broader class of systems.

10.1 Feasibility of IEB Sequence Determination

Two sequences, Sequence 1 (Table 3) and Sequence 2
(Table 4) are evaluated for demonstrating the robustness of
IEB sequence detection and the SVM classifier. Sequence 1
is an untampered sequence of instructions which contains
only one dec instruction, Sequence 2 comprises a tampered
and re-ordered sequence of instructions with a second dec
instruction introduced after the seventh instruction. For
both instruction sequences, the IEB sequence determina-
tion technique recovered the sequence of clock cycles with a
100 percent accuracy. Classification accuracy with templates
from power pins 1-4 of the FPGA vary between 95.97 and
98.95 percent. There is an improvement (97.78 for sequence
1 and 97.12 percent for sequence 2) of 1-2 percent in classifi-
cation accuracy from the discrete MSP430 chip when com-
pared to results from an FPGA. An improvement of nearly
1 percent comes with the cost of retaining more components
as discussed in Section 7. Sequence 2 is detected as modified
when the IEB determination of the two sequences is com-
pared. Thus, this technique covers a wide range of anoma-
lies, ranging from code insertions, and re-arrangement of
instructions in a code segment where the sequence of IEBs
in a code segment is affected. This shows that our technique
is applicable to provide system assurance.

In the analysis of several sample sets of unknown sequen-
ces, CCPI sequence recovery rates (defined as % of actual
CCPI correctly determined) ranged from 97.24 to 99.1 percent
using the optimal IEB sequence algorithm on the templates
constructed using the aggregate power profile data using a
single codebook of templates. With the combined codebook
of templates (Table 5), the sensitivity is 100 percent. Further-
more, the application of this technique is a first for microcon-
trollers with many-clock-cycle instructions. This shows that
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TABLE 14

Fine-Grained Classification Accuracy [%],PID, 10 FPGAs
Training Test FPGA Dataset

FPGA

cI C2 ¢ C4 C5 C C7 €8 C9 CIo

Dataset

Cl 82.10 84.21
2 82.79 76.40
c3 83.10 86.98
c4 79.16 90.94
C5 75.78 77.36
C6 75.55 86.99
c7 84.61 85.87
c8 84.89 86.76
C9 [80.71 7442 8181 76.13 7641 79.62 74.66 84.55 |E2RR

CI10 | 8495 79.60 90.88 82.79 81.17 83.59 87.55 83.68 77.84

TABLE 15

Fine-Grained Classification Accuracy [%],AES, 10 FPGAs
Training Test FPGA Dataset

FPGAY 0 3 4 s 6 7 8 O Clo

TABLE 12
Grouped Instruction Classification Accuracy (PID)

4 H/W Classification Rates Freq.

Class | CAl CA2 CA3 CA4 AGG PSUM CAX | (%)

1 [RR 98.98 98.98 9898 98.98 99.34 99.99 100.00| 12.07
2 |IRRS 99.89 96.79 97.15 99.99 9835 98.89 99.37| 6.90
3 IMMS 99.89 96.32 98.27 99.99 97.14 98.45 9529| 6.90
4 IMMNS [100.00 100.00 100.00 100.00 100.00 100.00 100.00 | 3.45
5 IMIS 99.99 96.97 99.99 95.65 100.00 98.26 98.36| 5.17
6 [MIB 9424 8535 83.28 92.58 96.35 89.57 95.17| 3.45
7 IMINS | 99.97 95.15 96.24 9735 9834 97.66 99.57| 1.72
8 |[RCInS | 95.89 96.68 97.89 97.80 98.67 98.56 96.32| 1.72
9 [RCInNS|100.00 100.00 100.00 100.00 100.00 100.00 98.53| 1.72
10[RCInP | 98.78 97.88 95.65 97.30 96.56 9543 9524| 1.72
11|{RInNS | 97.56 97.56 93.24 95.14 9745 96.55 98.18| 1.72
12 {InR 93.25 9427 9535 96.19 98.45 9735 97.26| 1.72
13 |InRL 97.18 98.14 99.54 99.63 97.57 100.00 97.88| 1.72
14 MR 96.99 96.97 98.98 99.47 97.25 100.00 99.46| 3.45
15|CR 99.89 96.79 97.15 99.99 98.14 98.67 98.25]| 25.86
16 ImR 100.00 95.65 96.79 100.00 95.25 100.00 98.25| 10.34
17 ImINS | 93.25 97.33 96.56 97.57 99.44 98.56 98.25| 8.62
18{ImInNS | 98.37 98.16 9836 99.44 98.56 99.56 98.25| 1.72
Total 98.01 96.61 98.86 98.18 98.16 98.19 97.98 [100.00

TABLE 13
Grouped Instruction Classification Accuracy (AES)

4 H/W Classification Rates Freq.

Class | CAl __CA2 CA3 CA4 AGG PSUM CAX | (%)
1|RR 98.98 98.98 98.98 97.45 9834 98.26 100.00| 25.31
2|RRS 99.89 95.13 9525 94.35 99.04 93.48 97.46| 2.68
3IMMS 99.89 97.25 9832 98.65 9525 98.66 97.27| 16.02
4MMNS [100.00 100.00 100.00 100.00 100.00 100.00 100.00| 3.99
5|MIS 98.46 97.31 9845 94.14 100.00 97.88 95.23| 0.48
6|MIB 87.25 8832 8126 9426 96.25 88.25 93.48| 0.60
7\MINS 90.44 91.58 93.26 90.23 97.21 91.24 98.96| 0.48
8|RCInS 95.89 9534 96.17 98.86 98.39 99.79 96.32 7.03
9|RCInNS | 100.00 100.00 100.00 100.00 100.00 100.00 98.53| 0.95
10|RCInP 9523 98.26 95.19 9435 96.31 9533 9835| 2.08
11|RInNS 96.16 93.28 96.27 95.14 9426 96.65 98.18 1.43
12|{InR 92.11 93.39 9427 96.19 9825 94.17 98.61 0.48
13|InRL 96.28 98.36 95.39 9736 9747 9453 97.36| 0.36
14|MR 9526 9524 96.47 97.45 96.25 9342 98.51 2.98
15|CR 98.03 96.79 97.15 98.63 99.68 98.77 98.25| 17.99
16{ImR 93.25 95.65 96.79 97.57 96.19 93.23 98.19| 13.10
17ImINS | 9433 92.16 97.36 94.28 9539 97.18 9825| 2.03
18|ImInNS | 95.56 96.35 89.94 87.45 97.12 89.35 98.25 2.03
Total 9595 9574 95.58 9591 97.52 95.57 97.84|100.00

unknown code can be
instructions.

disassembled to identify individual

10.2 Results From Targeted Algorithms in Security
Applications

The IEB sequence determination was performed on code for
an AES encryption (1679 instructions - 4231 clock cycles)
and a PID controller sequence (58 instructions - 177 clock
cycles). The CCPI sequence recovery rate when using dis-
crete MSP430 chips was 100 percent. In the case of a soft-
core implementation on FPGA, the CCPI sequence recovery
rates were 95 percent for AES and 97 percent for the PID
controller code. Towards determining code modification,
anomaly detection was performed with the PID controller
code by injecting malicious instructions which would mod-
ify the setpoint values after the derivative gain is applied.
The modified instruction sequence could be distinctly iden-
tified from the unmodified controller code.

With the IEB sequence for the AES and PID controller
determined, the coarse-grained classification was per-
formed using the combined codebook of power templates
for the FPGA-based soft implementation and discrete
MSP430 chip testbed. The results for the PID controller and
AES are shown in Tables 12 and 13 respectively. Individual
instructions that belong to the same hardware utilization
class were grouped together and the data shown in the table

TABLE 16
Fine-Grained Classification Accuracy [%],PID,
4 Discrete MSP430 Chips

Test Dataset

LP2 LP3 LP4
89.32 87.96 88.53
88.86 88.85

Training |
Dataset
LP1
LP2
LP3
LP4

LP1

89.57
89.85 86.86
89.01 87.73 86.18

is the average classification accuracy within each group. The
average classification accuracy (CA 1-4 for the FPGA dataset
and the CAX for the discrete MSP430 dataset) for most clas-
ses are above 94 percent. Classification accuracy for the dis-
crete MSP430s are comparable to those from the FPGA for
both sequences.

Furthermore, we performed fine-grained classification on
the PID controller and AES code. The accuracy obtained
using aggregate data for both the PID controller and AES
codes using ten different FPGAs is summarized in Tables 14
and 15 respectively. The table shows the average cross-vali-
dation results for all hardware utilization bins when the
training dataset for each FPGA was used to classify test
data for all ten FPGAs. When classifying instructions in the
PID controller and AES instruction sequences using training
data from the same FPGA, the accuracies range from 91.35 —
94.57 percent and 92.2 — 94.81 percent respectively. The clas-
sification accuracy is above 74 and 70 percent for PID con-
troller and AES respectively, when the training dataset and
test data are from different FPGAs. Similarly, the classifica-
tion accuracies for the PID controller and AES codes for
four discrete MSP430 chips are summarized in Tables 16
and 17 respectively. When classifying instructions in the
PID controller and AES instruction sequences using training
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TABLE 17
Fine-Grained Classification Accuracy [%],AES,
4 Discrete MSP430 Chips

Test Dataset

LP2 LP3 LP4
88.79 88.06 90.17
91.99 89.43

Training |
Dataset
LP1
LpP2
LP3
LP4

LP1

90.12 86.97
89.38 91.30 89.09

data from the same discrete MSP430 chip, the accuracies are
in the ranges 93.26 — 95.82 percent and 93.42 — 94.88 percent
respectively. The classification accuracy is above 86 percent
for both codes when the training data and test data are from
different MSP430 chips.

11 CONCLUSION

This work presents a novel non-intrusive technique to detect
multi-clock-cycle instruction sequences on a pipelined archi-
tecture, based on the analysis of power-supply side-channel
analysis. The presented technique employs a dynamic pro-
gramming algorithm that uses observations from multiple
power supply pins. Using a codebook of templates based on
two training loop sequences, IEB sequences were recovered
accurately. This technique can detect modifications to the
firmware running on a general-purpose pipelined embedded
platform. Future work includes further investigation of the
trade-off between implementation complexity and accuracy
of advanced hierarchical classification techniques. Also, the
compensation of broader clock frequency variations could
explored with further signal processing, since temporal
dynamics may or may not be decoupled from the clock fre-
quency variations.

It has been demonstrated experimentally that the pro-
posed multi-clock-cycle instruction classification tech-
nique can be seamlessly applied to a discrete instance of a
multi-clock-cycle pipelined architecture, a TI LaunchPad
MSP430 and also on a soft-core implementation on an
FPGA. An evaluation of the reliability of our technique
across four discrete MSP430 micro-controllers yielded
accuracies between 92 and 100 percent for classifying
instructions into hardware bins. This non-intrusive tech-
nique provided CCPI sequence recovery rates between 95
and 100 percent from random, AES, and PID instruction
sequences. For the same sequences running on a soft-core
FPGA implementation, the technique provided CCPI
sequence recovery rates between 95 and 100 and over 98 per-
cent accuracy for classifying instructions into hardware utili-
zation bins. An evaluation using several metrics based on
power-supply side-channel measurements show improve-
ments in classification accuracy. The proposed technique
yielded accuracies 92 and 100 percent for classifying instruc-
tions into hardware bins even as the target FPGA package
was subjected to different controlled temperatures. When
classifying individual instructions using a fine-grain classifier
in random, PID controller, and AES instruction sequences
using training data from the same FPGA, the accuracies were
above 90.05 percent. For the discrete chip, the accuracies were
above 91.71 percent.
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