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SUMMARY

Enhancers are DNA elements that are bound by tran-
scription factors (TFs), which recruit coactivators and
the transcriptional machinery to genes. Phase-sepa-
rated condensates of TFs and coactivators have
been implicated in assembling the transcription ma-
chinery at particular enhancers, yet the role of DNA
sequence in this process has not been explored. We
show that DNA sequences encoding TF binding site
number, density, and affinity above sharply defined
thresholds drive condensation of TFs and coactiva-
tors. A combination of specific structured (TF-DNA)
and weak multivalent (TF-coactivator) interactions al-
lows for condensates to form at particular genomic
loci determined by the DNA sequence and the com-
plement of expressed TFs. DNA features found to
drive condensation promote enhancer activity and
transcription in cells. Our study provides a framework
to understand how the genome can scaffold tran-
scriptional condensates at specific loci and how the
universal phenomenon of phase separation might
regulate this process.

INTRODUCTION

The precise regulation of gene transcription during development
and in response to signals is established by the action of
enhancer elements, which act as platforms for the recruitment
of the gene control machinery at specific genomic loci (Levo
and Segal, 2014; Long et al., 2016; Maniatis et al., 1998; Ptashne
and Gann, 1997; Shlyueva et al., 2014; Spitz and Furlong, 2012).
Imprecision in this process can cause disease, including cancer

(Lee and Young, 2013; Smith and Shilatifard, 2014). Enhancer
sequences contain short DNA motifs recognized by DNA-bind-
ing transcription factors (TFs), which recruit various coactivators
that act together to engage RNA polymerase Il (Pol Il), resulting in
transcriptional activity (Ptashne and Gann, 1997; Stampfel et al.,
2015). Eukaryotic TFs typically recognize short DNA motifs of
the order of 6-12 bp (Weirauch et al., 2014). There are many
such similar affinity motifs in the genome (Lambert et al., 2018;
Wunderlich and Mirny, 2009). As a result, active enhancer re-
gions represent only a small fraction of putative binding sites
forany given TF (Levo and Segal, 2014; Slattery et al., 2014; Spitz
and Furlong, 2012; Wunderlich and Mirny, 2009). Determining
whether a DNA motif participates in formation of an active
enhancer element is thought to require defining a specific set
of molecules and the mechanisms by which they act coopera-
tively to assemble the transcriptional machinery. Because this
choice is made from a large set of possibilities, predicting
enhancer elements is a significant challenge that has been
referred to as the “futility theorem” (Wasserman and Sande-
lin, 2004).

Previous studies into the rules that govern enhancer formation
have focused on cooperativity between TFs, mediated through
direct protein-protein interactions or indirectly through changes
in chromatin accessibility, nucleosome occupancy, local changes
in DNA shape upon binding, and motif organization (Jolma et al.,
2015; Lambert et al., 2018; Levo and Segal, 2014; Long et al.,
2016; Maniatis et al., 1998; Morgunova and Taipale, 2017; Spitz
and Furlong, 2012). The presence of clusters of TF binding sites
at a genomic locus has been found to be predictive of enhancer
elements (Berman et al., 2002; Markstein et al., 2002; Rajewsky
et al., 2002). Clusters of TF binding sites can also occur without
producing enhancer activity, and enhancer function can be real-
ized upon small insertions (Mansour et al., 2014). The mecha-
nisms by which TF binding site clusters enable the recruitment
and stabilization of the appropriate transcriptional machinery at
such loci are not well understood.
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Recent studies suggest that the cooperative process of phase
separation involving an ensemble of multivalent interactions
among TFs, coactivators, and RNA polymerase Il can assemble
these factors at specific enhancer elements as dynamic clusters
or condensates (Boija et al., 2018; Cho et al., 2018; Chong et al.,
2018; Fukaya et al., 2016; Hnisz et al., 2017; Sabari et al., 2018;
Tsai et al., 2017). Although transcriptional condensates have
been observed at specific genomic loci and features of proteins
with intrinsically disordered regions (IDRs) have been implicated
in their formation (Boija et al., 2018; Cho et al., 2018; Sabari et al.,
2018), the features encoded in the DNA elements that facilitate
this process have not been explored. We reasoned that, if tran-
scriptional condensate formation contributes to assembling
certain active enhancers, investigating how features encoded
in the DNA element regulate this process should shed light on
the cooperative mechanisms that enable the recruitment of
the transcriptional machinery and provide insights into how
enhancer regions in the genome are defined.

Using a combination of computational modeling and in vitro
reconstitutions, we first demonstrate that DNA elements with
specific types of TF binding site valence, density, and specificity
drive condensation of TFs and coactivators. We show that
modulating the affinities, number, or density of TF-DNA interac-
tions and strength of IDR-IDR interactions impacts condensate
formation. Because of the cooperative nature of phase separa-
tion, condensates form above sharply defined values of these
quantities. We then show that the DNA sequence features that
promote condensation in vitro also promote enhancer activity
in cell-based reporter assays. Genome-wide bioinformatic
analyses show that these features also characterize known
enhancer regions. Importantly, we show that condensation
localized to a specific genetic locus requires a combination of
both weak multivalent IDR-mediated interactions and structured
TF-DNA interactions. Our results also suggest that transcrip-
tional condensate formation may contribute to long-range
genomic interactions and organization, potentially promoting
compartmentalization of actively transcribed regions.

Together, these results suggest that specific features encoded
in DNA elements and the universal cooperative mechanism of
phase separation contribute to localization of the transcriptional
machinery at enhancers (especially super-enhancers) and sub-
sequent enhancer activity. Our studies provide a framework to
understand how the genome can scaffold condensates at spe-
cific loci and how these condensates might be regulated.

RESULTS

Development of a Computational Model

To explore how the complex interactions among regulatory DNA
elements, TFs, and coactivators impact formation of transcrip-
tional condensates, we first developed a simplified computa-
tional model (Figures 1A and S1A). Because enhancers are
typically short regions of DNA that are bound by multiple TFs
(Levo and Segal, 2014; Spitz and Furlong, 2012), we modeled
regulatory DNA elements as a polymer with varying numbers
of TF binding sites. Each TF binding site mimics a short (6- to
12-bp) DNA sequence. Specific recognition of DNA motifs by
TFs (Weirauch et al., 2014) is mediated by typical TF-DNA bind-
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ing strengths corresponding to nanomolar dissociation equilib-
rium constants (Jung et al., 2018), which is the range of TF-
DNA interaction energies that we have studied in our simulations
(STAR Methods). TFs and coactivators contain large IDRs that
interact with each other (Boija et al., 2018; Sabari et al., 2018).
Thus, we modeled IDRs of TFs and coactivators as flexible
chains attached to their respective structured domains. The
IDRs interact with each other via multiple low-affinity interac-
tions. The range of IDR-IDR interaction energies that we have
studied in our simulations (STAR Methods) corresponds to those
that have been determined by in vitro studies of such systems
(Brady et al., 2017; Nott et al., 2015; Wei et al., 2017). Our
computational studies were focused on obtaining qualitative
mechanistic insights that could then be tested by focused
experiments.

We simulated this model using standard Langevin molecular
dynamics methods to calculate spatiotemporal trajectories of
the participating species (see STAR Methods; Anderson et al.,
2008). To distinguish stoichiometrically bound complexes from
larger assemblies of transcriptional molecules, we computed
the size of the largest molecular cluster scaled by the number
of TF binding sites present on DNA. Values of this scaled size
greater than 1 represent super-stoichiometric assemblies, and
values close to 1 correspond to stoichiometrically bound TFs
(Figure 1B). The scaled size is a direct measure of recruitment
of transcription machinery and captures finite-size effects, an
important factor in characterizing transcriptional condensates,
which have been shown to contain ~100s-1,000s of molecules
(Cho et al., 2018). To study whether the super-stoichiometric
assemblies are phase-separated condensates, we calculated
fluctuations in the scaled size spectra when appropriate (see
STAR Methods). A characteristic signature of a phase transition
is that the fluctuation spectrum exhibits a peak across the
threshold value of the titrated parameter. Using the scaled size
and its fluctuation spectrum as measures of transcriptional
condensate formation, we studied how particular motif compo-
sitions on DNA, as well as TF-DNA interactions and interactions
between TF and coactivator IDRs, regulate transcriptional
condensate formation at DNA loci.

Interactions between TFs and Multivalent DNA Drive
Formation of Condensates of TFs and Coactivators

TFs and coactivators form condensates in vitro at supra-physio-
logical concentrations (Boija et al., 2018; Lu et al., 2018; Sabari
et al., 2018). Our simulation results (Figure 1C) predict that a
dilute solution of TFs and coactivators that does not phase sepa-
rate by itself forms condensates (scaled size greater than 1) upon
adding multivalent DNA (DNA with 30 TF binding sites). To test
this prediction, we developed an in vitro phase separation
droplet assay containing the three components present in our
simulations: TF; coactivator; and DNA (Figure 1D). For TF and
coactivator, we employed purified OCT4, a master transcription
factor in murine embryonic stem cells (MESCs), and MED1-IDR,
the intrinsically disordered region of the largest subunit of the
Mediator coactivator complex. We have previously shown that
these proteins phase separate together in vitro and in vivo (Boija
et al., 2018; Sabari et al., 2018). For DNA, we used various syn-
thetic DNA sequences containing varying numbers of OCT4
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Figure 1. Interactions between TFs and
Multivalent DNA Drive Phase Separation of
TFs and Coactivators at Low Concentra-

3 tions
@ (A) Schematic depiction of the stochastic compu-
E 2 tational model and key interactions between mol-
‘;‘; ecules. The model consists of a DNA polymer with
&,’ variable number of TF binding sites, TFs, and co-

activators. TFs bind TF binding sites with strong
monovalent interactions, and TFs and coactivators
o interact via weak multivalent interactions between
DNA: - * their flexible chains, which mimic the disordered
regions of these proteins.
(B) Scaled size is calculated from simulation tra-
jectories, defined as the size of the largest cluster
normalized by the number of DNA binding sites.
This value is used as a proxy to differentiate stoi-
chiometric binding of TFs to DNA (scaled size =1,
top illustration) from phase-separated super-stoi-
chiometric assemblies (scaled size > 1, bottom
illustration). For all reported simulation results, re-
ported quantities are averaged over 10 replicate
trajectories.
(C) Simulations predict that multivalent DNA-TF
interactions result in phase separation of TF and
coactivator at dilute concentrations, as shown by
scaled size >1 upon addition of DNA.
(D) Schematic depiction of experimental workflow
and image analysis for in vitro droplet assay. DNA,
OCT4, and varying concentrations of MED1-IDR
are incubated together in the presence of 10%
polyethylene glycol (PEG)-8000 as a molecular
crowder (illustrated with test tubes; see STAR
Methods for detail). Fluorescence microscopy of
these mixtures is used to detect droplet formation
(illustrated by black square with or without white
droplets). Multiple images per condition are then
analyzed to calculate condensed fraction (c.f.) as
intensity of fluorescence signal within droplets
divided by total intensity in the image.
(E) Representative images of MED1-IDR droplets
in the presence of OCT4 and ODNA_20 (top row) or
with only OCT4 (bottom row) at indicated MED1-
IDR concentrations. See Table S2 for sequence of
DNAs used in droplet assays.
(F) Condensed fraction of MED1-IDR (in units of
percentage) with DNA (purple) or without DNA

78 nM 156 nM

(green) across a range of MED1-IDR concentrations (log scale). The respective inferred Cs,; values are shown in dashed lines, p values are estimated from a two-
sided Welch’s t test. Higher condensed fraction implies higher fraction of total signal in droplet phase. Solid lines represent mean, and error bars represent
boundaries of mean + SD from replicates. See STAR Methods for details on calculation of condensed fraction and Cgyt.

binding sites (see STAR Methods and Table S2). Each of the
three components was fluorescently labeled either by fluores-
cent protein fusion, MEGFP-OCT4 and mCherry-MED1-IDR, or
a fluorescent dye, Cy5-DNA.

Formation of phase-separated droplets was monitored over
a range of MED1-IDR concentrations by fluorescence micro-
scopy with a fixed concentration of OCT4 in the presence or
absence of multivalent DNA (DNA with 20 OCT4 binding
sites; 8-bp motif with 8-bp spacers; ODNA_20; see STAR
Methods and Table S2). The fluorescence microscopy results
were quantified by calculating the condensed fraction as a
function of MED1-IDR concentration (Figure 1D; also see
STAR Methods). From the condensed fraction, a saturation

concentration (Cg,y) is inferred (see STAR Methods under Image
Analysis and Statistical Analyses) to estimate the phase sepa-
ration threshold under the specified experimental condition.
Experimental variables with lower values of the inferred Cgy
promote phase separation at lower MED1-IDR concentrations
than ones with higher Cgy.

Consistent with model predictions, addition of DNA promoted
phase separation at low MED1-IDR concentrations (Figure 1E).
Addition of DNA lowered the inferred Cg, by ~68-fold from
~2,100 nM to 30 nM (Figure 1F). These results demonstrate
that multivalent DNA promotes the phase separation of TFs
and coactivators at low protein concentrations, comparable to
concentrations observed in vivo (Figure S1B).
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To further study how DNA influences condensate stability, we
performed simulations where TFs and coactivator condensates
were allowed to formin the presence of DNA, followed by a simu-
lated disruption of TF-DNA interactions (gray box in Figure 2A).
At dilute protein concentrations, disrupting TF-DNA interactions
resulted in dissolution of condensates (Figure 2A, green line;
Video S1), demonstrating that, under these conditions, DNA is
required for both formation and stability of condensates.
Computing the radial density function around DNA (see STAR
Methods) confirmed that TFs and coactivators form a largely
uniform dense phase dependent on TF-DNA interactions (Fig-
ure S1C). Although addition of DNA at high protein concentra-
tions increased the rate of condensate assembly (Figure S1D;
Video S2), by reducing the nucleation barrier, disruption of TF-
DNA interactions at these high concentrations did not lead to
condensate dissolution (Figure 2A, gray line). We observed a
drop in scaled size upon TF-DNA interaction disruption in this
case, but this was primarily due to the condensate being broken
into smaller droplets as the DNA was ejected from the conden-
sate (as depicted in Figure 2A, gray box; Video S2). Together,
these results predict that, at dilute protein concentrations, spe-
cific TF-DNA interactions are required for both formation and
stability of condensates at particular genomic loci.
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Figure 2. Transcriptional Condensate Sta-
bility Is Governed by a Combination of TF-
DNA and IDR-IDR Interactions between
TFs and Coactivators

. (A) Simulation results for dynamics of condensate

® 4° '.’.:: assembly-disassembly at two different protein
'.' < . ° concentrations are represented by average scaled
. ::'. . size on the ordinate and time (in simulation steps
> & after initialization) on the abscissa. TF-DNA in-
oo ... teractions are disrupted after stable condensate

% .'. o assembly (shown by a dark gray background).

: —& Schematic depiction of phase behavior is shown

- ' 0 2. enclosed in boxes whose colors match the

respective lines. See Videos S1 and S2.

(B) Scatterplot depiction of experimentally deter-
mined MED1-IDR partition ratio (see STAR
Methods) between condensate and background,
at high (2,500 nM, gray) and low concentrations
(39 nM, green) of MED1-IDR in the presence of
OCT4 and ODNA_20, in the absence (—) or in the
presence (+) of DNase |. The partition ratio is
normalized to the (—) condition, and lower partition
ratios imply lesser enrichment of MED1 in the
droplet phase. Individual data points are pre-
sented with mean + SD; p values represent
Student’s t test.

(C) Energetic attractions, arising from a combina-
tion of TF-DNA (brown) and IDR (black) in-
teractions, compensate for entropy loss (gray) of
forming a condensate.

To mimic disruption of TF-DNA interac-
tions in vitro, we added DNase | to drop-
lets formed at high or low concentrations
of MED1-IDR in presence of OCT4 and
ODNA_20 (see STAR Methods). As ex-
pected, DNA was significantly degraded
in both conditions (Figure S1E). Consistent with our model pre-
dictions, droplets formed at the lower concentrations were
more sensitive to the degradation of DNA than those formed at
higher concentrations (Figure 2B). Although enzymatic degrada-
tion of DNA did not completely dissolve droplets in our in vitro
experiments, MED1-IDR enrichment within droplets was signifi-
cantly diminished only at the lower protein concentration (Fig-
ure 2B). Together, the in silico and in vitro results indicate that
DNA can nucleate and scaffold phase-separated condensates
of TFs and coactivators at low protein concentrations.

N

Physical Mechanisms that Underlie Localized Formation
of Transcriptional Condensates

To understand the mechanisms driving DNA-mediated conden-
sate formation, we cast our results in terms of the competing
thermodynamic forces that govern phase separation. For
computational efficiency, further characterization of our model
was carried out with a simplified implicit-IDR model (Figure S2A),
which recapitulated all features (Figures S2B and S2C) of the
explicit-IDR model. Typically, condensate formation results in
entropy loss because the molecules in the droplet are more
confined than if they were in free solution. A condensate is stable
only if this entropy loss is compensated by the energetic gain



from enhanced attractive interaction energies between mole-
cules confined in the condensate. We computed the energetic
gain by summing up all pairwise molecular interactions in the
condensate. Entropy loss due to confinement was calculated
by adding a factor of kT In(Vdmp,et/Vsystem) for each molecule in
the condensate. This loss in free volume is the principal source
of entropy loss in our coarse-grained model. Other sources of
entropy loss like solvent and ion effects are effectively incorpo-
rated in our affinity parameters. Our simulations show that ener-
getic gains arising from a sum of specific TF-DNA interactions
and weak IDR interactions (TF-coactivator interactions) are
necessary to compensate the entropy loss of forming conden-
sates at low concentrations (Figure 2C). IDR interactions alone
are insufficient to compensate for the entropy loss of condensate
formation; thus, disruption of TF-DNA interactions results in
condensate dissolution (Figures 2 and S2B-S2D, dark gray
background). Likewise, TF-DNA interactions alone are insuffi-
cient to compensate for the entropy loss of condensate forma-
tion and disruption of IDR-IDR interactions results in condensate
dissolution (see next section). The same features are observed in
explicit-IDR simulations (Figures 2A, orange line, and S2E),
though our simplified calculation of the entropy loss in this
case (see above) is an underestimate, as contributions from
the change in configurational entropy of IDR chains is not ac-
counted. These results provide a mechanistic framework to un-
derstand how the combination of TF-DNA interactions and weak
IDR interactions determine assembly and stability of transcrip-
tion condensates at low concentrations.

Specific TF-DNA Interactions and Weak Multivalent IDR
Interactions Regulate Formation of Transcriptional
Condensates

Given that TF-DNA interactions are necessary for condensate
formation, we next investigated the effect of modulating TF-
DNA affinity at dilute protein concentrations. Simulations predict
that condensates form above a sharply defined affinity threshold
(Figure 3A) and that high-affinity TF-DNA interactions result in
condensate formation at low coactivator concentration thresh-
olds (Figure 3B). The normalized fluctuation spectrum of the
scaled size (see STAR Methods for details) showed a peak
across the threshold affinity value, characteristic of phase sepa-
ration (Figures S3A and S3B). Using the in vitro droplet assay, we
probed the effect of TF-DNA interactions by comparing phase
separation of MED1-IDR over a range of concentrations, with
fixed concentrations of both OCT4 and either ODNA_20 or a
scrambled ODNA_20, which does not contain any consensus
binding sites for OCT4 (ODNA_20sc; Table S2). High-affinity
OCT4-ODNA_20 interactions promoted phase separation at
lower MED1-IDR concentrations when compared to OCT4-OD-
NA_20sc interactions (Figure 3C). Quantifying the MED1-IDR
condensed fraction further corroborated our finding, showing a
~2-fold decrease in inferred saturation concentrations in pres-
ence of higher affinity OCT4-ODNA_20 interactions (Figure 3D).
Similar results were obtained by quantifying the condensed frac-
tion of OCT4 or DNA (Figures S4A and S4B). These results
demonstrate that higher TF-DNA affinities promote phase sepa-
ration above sharply defined thresholds. Therefore, TFs, which
exhibit higher affinity for specific DNA binding sites compared

to random DNA, can drive transcriptional condensate formation
at specific DNA loci.

We next investigated the effect of modulating the affinities of
multivalent IDR interactions, whose effective affinity can be regu-
lated in vivo through post-translational modifications (Banani
etal., 2017; Shin and Brangwynne, 2017). Reducing the strength
of IDR interactions between TFs and coactivators in our simula-
tions predicts that condensates dissolve below a sharply defined
interaction threshold (Figure 3E), and strong IDR interactions
result in condensate formation at lower coactivator concentra-
tion thresholds (Figure 3F). To test this prediction, we monitored
MED1-IDR phase separation over a range of MED1-IDR concen-
trations with fixed concentrations of both ODNA_20 and either
OCT4 or a previously characterized OCT4 activation-domain
mutant (acidic to alanine mutant) with reduced interaction with
MED1-IDR (Boija et al., 2018). Consistent with simulation predic-
tions, the OCT4 mutant was much less effective at promoting
phase separation at low concentrations, with a nearly 8-fold
higher inferred C¢,; as compared to OCT4 (Figures 3G and 3H).
These results further highlight the importance of weak multiva-
lent interactions between coactivators and TFs in the formation
of transcriptional condensates.

Our results thus far suggest the following model. Specific TF-
DNA interactions localize TFs to particular genomic loci. Tran-
scriptional condensate formation is a cooperative process that
occurs at these loci when the weak multivalent interactions
between TFs and coactivators exceed a threshold. Although
other processes may also be involved (e.g., DNA bending,
removal and modification of nucleosomes, and interactions
with RNA), this cooperative phenomenon of condensate forma-
tion by TF and coactivator phase separation contributes to
assembling the transcriptional machinery at enhancers.

Specific Motif Compositions Encoded in DNA Facilitate
Localized Transcriptional Condensate Formation

To begin defining the specific DNA sequence features that result
in condensate formation, we explored the effects of modulating
the valence and density of TF binding sites with the same TF-
DNA affinities. We reasoned that the same energetic compensa-
tion for entropy loss we observed by increasing TF-DNA affinities
(Figures 2C and 3A-3D) could be obtained instead through
increasing the number of DNA binding sites (i.e., valence). Our
simulations predict that, for the same TF-DNA binding affinity,
condensates form above a sharply defined valence threshold
(Figures 4A, S3C, and S3D), and higher valence results in
condensate formation at lower coactivator concentrations (Fig-
ure 4B). Consistent with this prediction, in vitro assays revealed
that ODNA_20 promoted phase separation of MED1-IDR and
OCT4 at lower concentrations, with an inferred Cg,; ~2-fold
lower than the threshold for DNA with fewer binding sites
(ODNA_5; Table S2; Figures 4C and 4D).

To test how motif valence impacts enhancer activity in cells,
we cloned synthetic DNA sequences with varying number of
OCT4 binding sites into previously characterized luciferase re-
porter constructs (Whyte et al., 2013) that were subsequently
transfected into MESCs (see STAR Methods and Figure 4E sche-
matic). In these reporter assays, expression of the luciferase
gene, read out as luminescence, is a measure of the strength
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of enhancer activity. Our computational studies and in vitro
results show (Figure 4D) that, for any concentration of MED1
less than Cg,; of ODNA_5 but higher than Cg,; of ODNA_20,
only DNA with valence greater than a threshold can drive
condensate formation. Because cellular protein levels are tightly
regulated, these results predict that condensate assembly,
and thus enhancer function, will be a digital function above a
threshold valence of binding sites. Using a series of DNAs with
0-8 binding sites (8-bp motif with 24-bp spacers; see Table
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S3), we found that enhancer activity increased above a sharply
defined valence threshold (Figure 4E), in striking qualitative
agreement with expectations from our computational and
in vitro studies.

To distinguish whether this behavior stemmed from motif
valence alone or local motif density, we carried out simulations
of DNA chains with a fixed number of binding sites but different
distributions along the chain (Figure 5A). We found that high local
density, as compared to the same number of binding sites at



p. S~

Scaled size
N
o
o

N
o
o

Largest cluster

[ Many binding sites
4 : 300| @ Few binding sites

Figure 4. Motif Valence Encoded in DNA
Drives Phase Separation

(A) Simulations predict a shift in scaled size from
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lower density, promoted condensate formation at low protein
concentration (Figure 5A). In vitro experiments were carried out
with DNA containing the same binding site number (5 binding
sites) but different densities (DNA_5M with higher density than
DNA_5; see STAR Methods and Table S2). Quantifying the mi-
croscopy data validated simulation predictions, evidenced by a
~30% increase in inferred C4 for DNA_5 over DNA_5M (Figures
5C and 5D). To test the effect of binding site density on enhancer
activity in cells, we compared the enhancer activity of 5 binding
sites with different densities (see Table S3) in luciferase assays in
mESCs (Figure 5B). In agreement with the model predictions,
reducing density of binding sites led to reduced enhancer
activity.

The results in Figures 4 and 5 show that dense clusters of a
particular TF’s binding sites, with the valence of binding sites
exceeding a sharply defined threshold, drive localized formation
of transcriptional condensates and that these same features in-
fluence enhancer activity in cells. The condensates form by the
universal cooperative mechanism of phase separation which,
in turn, requires weak cooperative interactions between the
IDRs of TFs and coactivators (Figure 3). IDR-IDR interactions
are relatively non-specific, and the same coactivator IDRs can

assemble the transcriptional machinery in stable condensates
at different enhancers upon cognate TF binding.

Transcriptional Condensate Formation May Facilitate
Long-Range Interactions and Higher-Order Genome
Organization

Given that regulatory elements often communicate over long
linear distances, we next investigated whether two dense clus-
ters of TF binding sites in DNA separated by a linker could
assemble a single condensate. Our simulations show that this
is indeed the case (Figure 6A, green line). Contact frequency
maps, computed from the simulation data (see STAR Methods),
show long-range interactions between the dense clusters of
binding sites, which are absent (Figure 6B) at conditions with a
low density of TF binding sites distributed uniformly (Figure 6A,
black line). Further, removing a single cluster strongly diminished
the ability of DNA to assemble a condensate (Figure S5), sug-
gesting that both clusters of binding sites worked cooperatively
over intervening linker DNA to assemble a condensate. These re-
sults suggest that condensate formation could explain recent
observations of CTCF- and/or cohesin-independent long-range
interactions between active regions of the genome (Rowley
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et al., 2017; Schwarzer et al., 2017). More generally, our results
suggest that localized transcriptional condensate formation
can facilitate higher-order organization of the 3D genome and
contribute to long-range communication between enhancer-
promoter pairs.

Mammalian Genomes Encode Specific Motif Features in
Enhancers to Assemble High Densities of Transcription
Apparatus

We next investigated whether enhancer features that our results
suggest promote transcriptional condensate formation are
present in mammalian genomes. Given that our results show
that a linear increase in TF binding site valence can result in an
exponential increase in coactivator recruitment by condensate
formation (Figure 4), we investigated the relationship between
TF binding site valence (i.e., occurrence of TF motifs) and
coactivator recruitment in mESCs. We gathered genome-wide
distribution of TF motif occurrence for highly expressed mESC
master TFs—OCT4, SOX2, KLF4, and ESRRB (OSKE). Super-
enhancers, genomic regions with unusually high densities of
transcriptional molecules (Whyte et al., 2013), where transcrip-
tional condensates have recently been observed (Boija et al.,
2018; Cho et al., 2018; Sabari et al., 2018), have higher OSKE
motif densities when compared to typical enhancers or random
loci (Figures 7A and 7B; STAR Methods). Consistent with our re-
sults, we found a highly non-linear (roughly exponential) correla-
tion between OSKE motif density and chromatin immunoprecip-
itation sequencing (ChIP-seq) data for MED1, Pol Il (Figure 7C),
and BRD4 (Figure S6A) across genetic regions, including
super-enhancers (SEs), typical enhancers (TEs), and random
loci. This correlation was minimal when input control data were
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analyzed (Figure S6B). These results suggest that enhancer
elements that encode specific DNA sequence features we
have described can recruit unusually high densities of tran-
scriptional apparatus by transcriptional condensate formation,
consistent with our results. The same features enable recruit-
ment of varied cofactors—BRD4, MED1, and Pol Il—thus sug-
gesting that phase separation contributes to stabilization of
transcription machinery at specific genomic loci.

DISCUSSION

Enhancers are DNA elements that control gene expression by
promoting assembly of transcriptional machinery at specific
genomic loci. Recent studies have suggested that phase-sepa-
rated condensates of molecules involved in transcription form at
enhancers (Boijaetal., 2018; Cho et al., 2018; Chong et al., 2018;
Fukaya et al., 2016; Hnisz et al., 2017; Sabari et al., 2018; Tsai
et al., 2017), providing a potential mechanism for concentrating
transcriptional machinery at specific loci. Here, we investigated
how features encoded in DNA elements can regulate the forma-
tion of transcriptional condensates. Our results identify features
of DNA sequences that can enable assembly of the transcrip-
tional machinery at specific genomic loci by the general cooper-
ative mechanism of phase separation.

We first demonstrated that interactions between TFs, coacti-
vators, and multivalent DNA elements can form condensates at
protein concentrations that are too low for such a phase transi-
tion in the absence of the DNA. We suggest that these results
help explain why condensates of coactivators and TFs form at
enhancers in cells wherein protein concentrations are much
lower than that required for phase separation without DNA
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(computed for green line in Figure 5A) and not for
low motif density (left panel, computed for black

in vitro. We also found that, at low protein concentrations, DNA
elements with multiple TF binding sites serve as scaffolds for
the phase-separated transcriptional condensates. However, at
high protein concentrations, the DNA elements act only as a
nucleation seed and are not necessary for condensate stability.
These results suggest an explanation for why coactivator over-
expression is often linked to pathological gene expression pro-
grams (Bouras et al., 2001; Zhu et al., 1999).

By considering the competing thermodynamic forces of en-
tropy loss and energy gain that control phase separation, we
described how a combination of specific TF-DNA interactions
and weak cooperative interactions between IDRs of TFs and
coactivators are required for transcriptional condensate forma-
tion. These parameters must be above sharply defined thresh-
olds for phase separation to occur. The necessary sharp
threshold for TF-DNA interactions results in formation of tran-
scriptional condensates at specific genomic loci containing
cognate TF binding sites. That there is a threshold affinity and
valence between IDRs of the interacting species for conden-
sate formation implies that molecules with IDRs with comple-
mentary characteristics, such as those contained in TFs and
coactivators, will be incorporated in transcriptional conden-
sates. Therefore, different TFs with IDRs that are statistically
matched with coactivator IDRs can mediate transcriptional
condensate formation at different genomic loci via similar
weak cooperative interactions. This may be the reason underly-
ing recent observations that TFs with different disordered acti-
vation domains can co-localize with MED-1 condensates (Boija
et al., 2018). Biomolecular condensates can exhibit diverse ma-
terial properties and phase behavior as a function of their spe-
cific IDR sequences (Banani et al., 2017; Dignon et al., 2018;
Shin and Brangwynne, 2017). For example, recent studies
focused on electrostatic interactions in IDRs have shown that
particular statistical patterns of charged residues dictate over-
all phase behavior (Das and Pappu, 2013; Huihui et al., 2018;
Lin et al., 2017) and enable specific protein interactions (Borgia
et al., 2018; Sherry et al., 2017). Similarly, the “spacer-sticker”
framework (Harmon et al., 2017; Wang et al., 2018), which
builds on previous mean-field models (Semenov and Rubin-
stein, 1998), has been successfully used to elucidate the inter-
play of gelation and phase separation in prion-like proteins
(Wang et al., 2018). Leveraging these techniques to charac-

line in Figure 5A). lllustrations depicting the orga-
nization of model components are provided for
each condition below their respective contact map.

terize IDRs of transcription-associated proteins will provide in-
sights on the molecular grammar underlying their interactions
and enable better understanding of the biophysical properties
of transcription condensates.

Importantly, we find that DNA elements with dense clusters of
TF binding sites that exceed a sharply defined valence threshold
promote transcriptional condensate formation, and the same
findings are mirrored for enhancer activity in cells. Our results
also provide insights on specific combinations of DNA features
that facilitate transcription condensate formation. For example,
low-affinity TF binding sites can contribute to scaffolding a tran-
scriptional condensate, if present in sufficiently high valence and
density, as the total energy gain comes from a combination of
these parameters. This may explain recent intriguing descrip-
tions of enhancer regulation through clusters of weak TF binding
sites (Crocker et al., 2015; Tsai et al., 2017). In contrast, DNA se-
quences with many high-affinity TF binding sites (high valence)
distributed at low local density are not enhancer regions because
they will not enable formation of transcriptional condensates.
This may explain why many high-affinity sites that are not en-
hancers remain largely unbound and contribute to a deeper un-
derstanding of the futility theorem (Wasserman and Sandelin,
2004). Thus, our framework elucidates the key parameters, or
specific combinations of these parameters, that must be above
sharply defined thresholds for phase-separated transcriptional
condensates to form at specific genomic loci that function as
enhancers.

Bioinformatic analyses reveal that the DNA sequence features
that we have described as important for transcriptional conden-
sate formation also characterize enhancer regions in mammalian
genomes, and increases in the recruitment of transcriptional
molecules at different loci are correlated in a highly non-linear
way with motif density.

Taken together, our results suggest the following model for a
general cooperative mechanism that contributes to assembling
the transcriptional machinery at enhancers, perhaps especially
at super-enhancers. Dense clusters of a particular TF’s binding
sites, with the number of binding sites exceeding a sharply
defined threshold, drive localized formation of transcriptional
condensates at a specific genomic locus. The condensate,
which recruits and stabilizes various transcriptional mole-
cules, forms by the universal cooperative mechanism of phase
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Figure 7. Mammalian Genomes Leverage High Motif Density to
Assemble High Density of Transcriptional Apparatus at Key Regula-
tory Elements

(A) Box plot depiction of motif density (per kb) of master mESC TFs—OCT4 +
SOX2 + KLF4 + ESRRB (OSKE)—over 20-kb regions centered on super-en-
hancers (SEs) (orange), typical enhancers (TEs) (black), and random loci
(light gray).

(B) OSKE motif density over a 100-kb window centered at SEs (orange), TEs
(black), and random loci (gray).

(C) MED1 (left) and Pol Il (right) ChlP-seq counts (ordinate, reads-per-million,
and log scale) against total OSKE motifs over 20-kb regions centered on SEs
(orange), TEs (black), and random loci (gray). The black line is a fit inferred
between the logarithmic ChIP signal and the linearly graphed motif count
across all regions, and so the fit represents a highly non-linear (exponential)
correlation. The gray shaded regions represent 95% confidence intervals in
the value of the inferred slope. The exponential fit describes a sizable
fraction of the observed variance, i.e., R?2 =0.25,p=0.5 for both in-
ferred lines.

separation. Thus, a threshold number of cooperative binding
events have to occur at a particular genomic locus before
phase separation occurs to robustly assemble the transcription
machinery. Although included only implicitly in our model, past
data suggest that TF binding to DNA can be cooperative and
sequential (for example, due to DNA bending; Levo and Segal,
2014; Spitz and Furlong, 2012). Thus, a series of sequential
steps occurs when TFs bind to a sufficiently large number
of binding sites that serve as enhancers. This is analogous to
kinetic proofreading in cell signaling processes (Hopfield,
1974; Ninio, 1975), such as T cell receptor signaling that
discriminates between self and cognate ligands to mediate
pathogen-specific immune responses. In the latter situation,
a sequence of biochemical steps needs to occur before pro-
ductive downstream signaling can lead to activation; only the
cognate ligands can complete these steps with high probabil-
ity. In T cell signaling, once the kinetic proofreading steps
are completed, a positive feedback loop amplifies signal levels
to result in robust downstream signaling, leading to activation
(Das et al., 2009). At enhancers, after TFs have bound to a
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sufficiently large number of cognate binding sites on DNA,
amplification of the recruitment of transcriptional machinery
occurs by condensate formation. Intriguingly, the mathematical
description of a first-order phase transition and a positive feed-
back loop’s effect on signaling are isomorphic, suggesting that
perhaps biological processes have evolved similar strategies in
diverse contexts.

Condensate formation requires weak cooperative interactions
between the IDRs of TFs and coactivators (Figure 3). Although
different molecular grammars may describe different types of
IDR-IDR interactions, these interactions are relatively non-spe-
cific, and the same coactivator IDRs can assemble within con-
densates at different enhancers. This model is consistent with
the observation that clusters of TF binding can often correctly
predict active enhancers because this feature of the DNA
sequence drives formation of transcriptional condensates by a
common mechanism (Berman et al., 2002; Markstein et al.,
2002; Rajewsky et al., 2002).

Our model can also describe situations where insertion of a
relatively small DNA element that binds to a master TF that reg-
ulates cell-type-specific gene expression programs can stabi-
lize TFs that bind weakly to adjacent binding sites and recruit
the transcriptional machinery in condensates. We carried out
simulations with a DNA sequence comprised of two types of
binding sites—those that bind strongly to a TF and others that
bind weakly. As Figures S3E and S3F show, a transcriptional
condensate forms at such a locus beyond a threshold fraction
of high-affinity (master) TF binding sites. This is because the
cooperative process of condensate formation recruits and sta-
bilizes the transcriptional machinery once the number of strong
TF binding sites exceeds a certain value. This result may
explain why a relatively small insertion of a TF binding site
into a region that contained an inactive cluster of binding sites
for other TFs resulted in the formation of a super-enhancer in
T cell acute lymphoblastic leukemia (T-ALL) cells (Mansour
et al., 2014).

Although our model explicitly incorporates enhancer DNA,
TFs, and coactivators, the underlying mechanistic framework
can be extended to understand diverse condensates that form
at specific genomic loci. Examples may include condensates
in heterochromatin organization (Larson et al., 2017; Strom
et al., 2017), histone locus body assembly (Nizami et al., 2010),
long non-coding RNA (IncRNA)-mediated paraspeckle formation
(Fox et al., 2018; Yamazaki et al., 2018), nucleolar formation (Fe-
ric et al.,, 2016; Pederson, 2011), and in polycomb-mediated
transcriptional silencing (Tatavosian et al., 2018). Recent ad-
vances in microscopy at the nano-scales (Li et al., 2019) can
potentially shed light onto whether transcription-associated con-
densates form higher-order sub-structures, like the nucleolus
(Feric et al., 2016).

Our study provides a framework toward understanding how
the genome can scaffold condensates at specific loci and
implicates particular TF binding site compositions. In addition
to TF binding sites, processes that dynamically modulate
valence and specificity of interacting species at specific genetic
loci, such as local RNA synthesis or chromatin modifications,
are likely to play a role in the formation of transcriptional
condensates.
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Arup K.
Chakraborty (arupc@mit.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cells
V6.5 murine embryonic stem cells were a gift from R. Jaenisch of the Whitehead Institute. V6.5 are male cells derived from a C57BL/
6(F) x 129/sv(M) cross.

Cell culture conditions

V6.5 murine embryonic stem cells were grown in 2i + LIF conditions on 0.2% gelatinized (Sigma, G1890) tissue culture plates. 2i + LIF
media contains the following: 967.5 mL DMEM/F12 (GIBCO 11320), 5 mL N2 supplement (GIBCO 17502048), 10 mL B27 supplement
(GIBCO 17504044), 0.5mML-glutaminae (GIBCO 25030), 0.5X non-essential amino acids (GIBCO 11140), 100 U/mL Penicillin-Strep-
tomycin (GIBCO 15140), 0.1 mM b-mercaptoethanol (Sigma), 1 uM PD0325901 (Stemgent 04-0006), 3 uM CHIR99021 (Stemgent 04-
0004), and 1000 U/mL recombinant LIF (ESGRO ESG1107). Cells were negative for mycoplasma.

METHOD DETAILS

Developing coarse-grained simulations of DNA, TFs, and coactivators
We set up a coarse-grained molecular-dynamics simulation to model 3 different components — TFs, DNA, and coactivators, employ-
ing the HOOMD simulation framework (Anderson et al., 2008; Glaser et al., 2015). Briefly, the DNA chain was modeled as beads on a
string, with two types of monomers. “Active” DNA units were modeled by tessellating a sphere (diameter = 1/3 unit), using the rigid-
body feature (Nguyen et al., 2011), to form a roughly cubical monomer of unit side length (Figure 1A). Binding patches were modeled
as rigid particles along the cubic face centers, with as many patches added as number of binding sites per monomer. Tessellation of
active DNA monomers enabled 1:1 binding interactions, facilitated by excluded volume interactions from other tessellated spheres.
“Inactive” DNA monomers were modeled as spherical monomers of unit diameter without any binding patches. TFs and coactivators
were modeled employing two different methods - explicit-IDR (Figure 1A) and implicit-IDR models (Figure S2A). In the explicit-IDR
framework, TFs and coactivators were designed in a modular fashion (Figure S1A). The “structured” domain was modeled as a
spherical monomer of diameter d =0.75 units. IDRs were constructed by tethering a polymeric tail to the spherical domain, with
TFs having shorter chains (4 monomers of d = 1/3 unit) than coactivators (9 monomers of d = 1/3 unit), to mimic the differential
size of disordered regions. In the implicit-IDR model, TFs and coactivators were modeled as spherical monomers of unit diameter.
All monomers had the same density. The sizes of the modeled monomers of DNA and proteins mimics the relative similarity in sizes
between TFs/coactivators and nucleosomes. In both methods, DNA binding patches on proteins were modeled as rigid particles
buried in the “structured” domains.

Non-bonding interactions between any two particles (including binding patches) were modeled using a truncated, shifted, and
size-normalized LJ potential (U) with hard-core repulsion (particles don’t overlap), derived in the following form:

U(T) = (P,“(r) —OPi/(f*) ;f;‘)
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Bonding interactions between neighboring monomers on a chain were modeled using a harmonic potential with hard-cores, with a
spring constant k = 1e4. All energy units are scaled to KT units, with kT = 1.

The strength of various interactions was set based on the rationale stated in main text. Typical TF-DNA binding affinities are strong
and in the range of nanomolar (Jung et al., 2018) disassociation constants i.e., Kp = 10-°M. The Gibbs free enthalpy change of bind-
ing can be approximately calculated as AG = — kTIn(Kp) =20kT. Thus, specific monovalent DNA interactions were set to high affin-
ities - for e.g., epya_71F = 20kT in Figures 1B and 2A, epna_77 = 16 kT in Figures S2A and S2B. IDR interactions were much weaker and
individual interactions are often of the order of thermal fluctuations (Brady et al., 2017; Nott et al., 2015; Wei et al., 2017) i.e., order kT,
though their energetic contributions can effectively multiply through multivalence. Thus, we set epg ~ kT between monomers on the
IDR chain. For the implicit-IDR model reported in Figure S2, multivalent interactions were approximated by a weak LJ potential be-
tween particles, for €.9., e7r_coa = 1.5kT, €coa—con = 1.5kT ,ere_1r = 1.0 kT. The key qualitative results i.e multivalent DNA acts as
scaffold for phase separation at low protein concentrations and seed at higher protein levels, has been reproduced for different
choices of interaction parameters guided by the rationale above.

Particles are randomly initialized in the periodic simulation box, and randomly re-seeded for each replicate trajectory, with the Lan-
gevin thermostat. Friction coefficients were y =1 for proteins and y =100 for DNA, to mimic chromosomal motion damping. Initial
velocities were drawn from the Boltzmann distribution. First, simulations were run with small time steps (dt =5x107) to prevent
randomly generated “high-energy” configurations from blowing up and to relax the system to the thermostat temperature. These
“warm-up” period (t ~ 0.1 units) is much smaller than the time to reach steady-state tss ~ (1000 units), so these warm-up data
points are not used in any analysis. All simulations are run with a single DNA chain.

Explicit-IDR simulations are run for at least 45e6 steps to accurately recapitulate dynamics and reach steady-state, while implicit-
IDR simulations are run for 5e6 steps. The slowing down of explicit-IDR simulations (due to slower explicit-IDR dynamics), combined
with additional pairwise interaction computations (explicit pairwise calls for all monomers, which are an order of magnitude
more particles for explicit-IDR simulations, scale as ~ N? for N monomers), cause computation times for single trajectories to be
~50-100 times longer than the implicit-IDR version. Trajectory states were logged in the highly compressed, binarized GSD format
every 50000 steps, while observables were logged every 20000 steps.

To probe the role of DNA in our simulations, after steady-state is reached, interactions with the DNA binding sites are switched off.
Interactions are switched off by replacing all binding patches with “ghost” patches, with no energetic benefits. Simulations are
typically continued for the same amount of steps before disrupting TF-DNA interactions to accurately sample steady-state. A brief
overview of key parameters used in main/supplementary figures is found below in Table S1. The MD code for running analysis will be
made freely available upon publication.

Analysis of simulation data

Broadly, analyses of simulation data were split into on-the-fly calculations employing the Freud package (https://freud.readthedocs.
io/en/stable/installation.html), as well as post-simulation calculations that leverage a combination of various libraries which interface
with python - including numpy, scipy, freud, matplotlib, and fresnel. On-the-fly calculations include:

1. In-built functions for logging potential energy, kinetic energy, and temperature.

2. Number of monomers in largest cluster and radius of largest cluster: A call-back routine was implemented that used Freud to
estimate the size of the largest connected cluster with r = 1.40nax (dmax diameter of largest monomer) to identify largest cluster.
This largest cluster size is relatively insensitive to studied choices of parameter r = 1.25,1.35,1.45 dpnax. Every reported plot
with scaled size at steady state, which is the number of molecules in the largest cluster divided by number of binding sites (Fig-
ure 1B), reports the mean in the dark line, and one standard deviation in the shaded background.

For post-simulation calculations, data were read from GSD formats using the gsd module. Explicit-IDR simulation trajec-
tory data were parsed to convert from number of molecules to number of chains, while following the other steps as mentioned
above.

The entropy was calculated in Figures 2 and S2 by identifying the number of molecules in the largest cluster (in the case of the

explicit-IDR simulations, each polymer was counted as one molecule), and adding a value of kTin (4 /SWRS/Vfree) for each molecule

in the condensed phase. Ve Was computed as the total volume minus the excluded volume occupied by all molecules.
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For the fluctuation analysis in Figure S3, the variance in largest cluster size of individual stochastic trajectories was computed and
averaged at steady state. This value was normalized by the scaled cluster size, to compute the scaling of fluctuations beyond the
usual V/N finite-size effects.

Contact frequency analysis of simulation data

For contact frequency maps, which are similar to Hi-C maps, represented in Figures 6B and S5, the following analysis protocol was
employed. After individual trajectories reached steady-state, the position of each DNA monomer along the chain was logged at every
time step. Monomers closer than (r= 3.0 units) a distance at a time t are “cross-linked” i.e., they count as an interacting pair. The
qualitative interaction maps reported in Figure 6B are robust to other tested values of crosslinking radius in the regime of
2.5<r<4 units. The pairwise contact frequency matrix is then constructed by averaging over interactions over a time window at
steady state per trajectory, as well as averaging over 10 replicate trajectories per simulation condition. The contact matrix is visual-
ized using the seaborn and matplotlib packages in python3.

Computing radial density profiles from simulation data

Simulations were analyzed at steady-state to estimate the radial density of TFs and coactivators around the DNA chain (g(r) from
DNA). The freud rdf analysis package was used to compute the rdf around reference positions of DNA for both distributions of
TFs and coactivator molecules. In case of explicit-IDR simulation, the structured domains of the respective molecules were used
to probe their locations. The final g(r) from DNA is obtained by averaging over 50 distinct simulation frames (typically logged once
every 50,000 steps) per trajectory, and over 10 trajectories. The g(r) is visualized for both explicit-IDR (Figure S1C) and implicit-
IDR (Figure S2C) at low concentrations, before and after disruption of TF-DNA interactions, using matplotlib in python3.

Visualization of simulation data

All simulation datasets were analyzed in python3, with the aid of matplotlib, to generate publication-ready figures. Simulation movies
were generated by stitching together down-sampled frames (once every 100000 steps) of individual stochastic trajectories, using
Fresnel to render scenes with the same color palette used in Figure 1A, and PIL to store image arrays as gifs. After storing the
gifs, these files were converted to .mp4 movies externally and subs are added at the frame at which TF-DNA interactions are
turned off.

Quantitative immunoblot

Determination of number of MED1 molecules per cell and concentration by linear regression analysis. Quantitative Western Blotting
was carried out as described in Lin et al. (2012). Cell number was determined using a Countless Il FL Automated Cell Counter (Thermo
Fisher Scientific). Cells were lysed with Cell Lytic M (Sigma) with protease inhibitors at various concentrations and denatured in DTT
and XT Sample Buffer (Biorad) at 90°C for 5 min. Purified recombinant MED1-IDR was used as a standard and loaded in the amounts
depicted in the figure in the same gel as the cell lysates. Lysates and standards were run on a 3%-8% Tris-acetate gel at 80 V for
~2 h, followed by 120 V until dye front reached the end of the gel. Protein was then wet transferred to a 0.45 pm PVDF membrane
(Millipore, IPVH00010) in ice-cold transfer buffer (25 mM Tris, 192 mM glycine, 10% methanol) at 300 mA for 2 h at 4°C. After transfer
the membrane was blocked with 5% non-fat milk in TBS for 1 h at room temperature, shaking. Membrane was then incubated with
1:1,000 anti-MED1 (Assay Biotech B0556) diluted in 5% non-fat milk in TBST and incubated overnight at 4°C, with shaking. The mem-
brane was then washed three times with TBST for 5 min at room temperature shaking for each wash. Membrane was incubated with
1:10,000 secondary antibody conjugated to HRP for 1 h at RT and washed three times in TBST for 5 min. Membranes were developed
with ECL substrate (Thermo Scientific, 34080) and imaged using a CCD camera (BioRad ChemiDoc). Band intensities were deter-
mined using Imaged. Number of molecules per cell was determined by linear regression analysis through the origin using Prism 7.
The concentration of MED1 was calculated using nuclear volumes obtained by analysis of Hoechst (Life Technologies)-stained
mouse embryonic stem cells in Imaged and assuming all MED1 molecules reside in the nucleus.

Protein purification

Proteins were purified as in Boija et al. (2018) and Sabari et al. (2018). cDNA encoding the genes of interest or their IDRs were cloned
into a modified version of a T7 pET expression vector. The base vector was engineered to include a 5 6xHIS followed by either
MEGFP or mCherry and a 14 amino acid linker sequence “GAPGSAGSAAGGSG.” NEBuilder HiFi DNA Assembly Master Mix
(NEB E2621S) was used to insert these sequences (generated by PCR) in-frame with the linker amino acids. Mutant sequences
were synthesized as gBlocks (IDT) and inserted into the same base vector as described above. All expression constructs were
sequenced to ensure sequence identity. For protein expression, plasmids were transformed into LOBSTR cells (gift of Chessman
Lab) and grown as follows. A fresh bacterial colony was inoculated into LB media containing kanamycin and chloramphenicol
and grown overnight at 37°C. Cells containing the MED1-IDR constructs were diluted 1:30 in 500ml room temperature LB with freshly
added kanamycin and chloramphenicol and grown 1.5 h at 16°C. IPTG was added to 1mM and growth continued for 18 h. Cells were
collected and stored frozen at —80°C. Cells containing all other constructs were treated in a similar manner except they were grown
for 5 h at 37°C after IPTG induction. 500ml cell pellets were resuspended in 15ml of Buffer A (50mM Tris pH7.5, 500 mM NaCl) con-
taining 10mM imidazole and cOmplete protease inhibitors, sonicated, lysates cleared by centrifugation at 12,000 g for 30 min at 4°C,
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added to 1ml of pre-equilibrated Ni-NTA agarose, and rotated at 4°C for 1.5 h. The slurry was poured into a column, washed with
15 volumes of Buffer A containing 10mM imidazole and protein was eluted 2 X with Buffer A containing 50mM imidazole, 2 X with
Buffer A containing 100mM imidazole, and 3 X with Buffer A containing 250mM imidazole.

Production of fluorescent DNA

Gene fragments were synthesized by either GeneWiz or IDT and cloned into a pUC19 vector using HiFi Assembly (NEB) so that the
sequence was immediately flanked by M13(—21) and M13 reverse primer sequences. 5'-fluorescently labeled (Cy5) M13(—21)
(/5Cy5/ TGTAAAACGACGGCCAGT) and M13 reverse (/5Cy5/ CAGGAAACAGCTATGAC) primers (IDT) were used to PCR amplify
the synthetic DNA sequence, yielding a fluorescently labeled PCR product. Fluorescent PCR products were gel-purified (QIAGEN)
and eluted products were further purified using NEB Monarch PCR purification to remove any residual contaminants. The octamer
motif sequence “ATTTGCAT” from the immunoglobulin kappa promoter was used as the TF binding site. All PCR products used are
377 bp. The sequences of PCR products are provided in Table S2.

In vitro droplet assay

Recombinant GFP or mCherry fusion proteins were concentrated and desalted to an appropriate protein concentration and 125mM
NaCl using Amicon Ultra centrifugal filters (30K MWCO, Millipore) in Buffer D(125) (50mM Tris-HCI pH 7.5, 125mM NaCl, 10% glyc-
erol, 1mM DTT). Fluorescent PCR products were concentration normalized in Buffer D(0) (50mM Tris-HCI pH 7.5, 10% glycerol, 1mM
DTT). For all droplet assays, DNA was included at 50nM, mEGFP-OCT4 at 1250nM, and mCherry-MED1-IDR at the indicated con-
centration. Recombinant proteins and DNA were mixed with 10% PEG-8000 as a crowding agent. The final buffer conditions were
50mM Tris-HCI pH 7.5, 100mM NaCl, 10% glycerol, TmM DTT. The solution was immediately loaded onto a homemade chamber
comprising a glass slide with a coverslip attached by two parallel strips of double-sided tape. Slides were then imaged with an Andor
spinning disk confocal microscope with a 100x objective and 1.5x magnification. Unless indicated, images presented are of droplets
settled on the glass coverslip.

For DNase | experiment, MED1-IDR droplets were formed at indicated concentration in the presence of OCT4 (1250nM) and
ODNA_20 (50nM). The solution containing droplets was split into two equal volumes, to one volume DNase | (Turbo DNase, Invitro-
gen, 3U) was added with manufacturer provided reaction buffer and to the second volume enzyme storage buffer and reaction buffer
were added. These were loaded onto slides, incubated at 37°C for 2 h and subsequently imaged as described above.

Image analysis for reconstructing experimental phase curves
A custom analysis pipeline was developed in MATLAB, building on code described in Boija et al. (2018). Briefly, droplets were iden-
tified by employing a two-step thresholding procedure. First, the image was segmented in the MED1-IDR channel with an intensity
threshold (/yixer > 1* + 30, where p* is the most probable intensity, representative of background, and ¢ is the width of the distribution)
to identify bright pixels. Subsequently, the identified bright pixels were labeled as “condensed” droplet phase after enforcing a min-
imum droplet size of 9 pixels i.e., atleast 9 clustered pixels had to simultaneously pass the intensity threshold to belong to the
condensed phase. In the absence of phase separation, no pixels are identified as belonging to the condensed phase.

For each image, the total intensity in the condensed droplet phase was summed in each channel (Ichanner aropiet), @s well as the total
background intensity outside droplets (Ichannesbuik)- The condensed fraction in each channel was defined as:

/ channel droplet

C-f~channel :I
channel droplet +1 channel bulk

The condensed fraction was averaged over replicate images (>10 per condition). At very low concentrations or in the absence

of observable phase separation, c.f. is close to 0. We repeated the c.f. analysis with different intensity thresholds

(I>u*+2.50,1>u*+3.50,/> u* +40) and size thresholds (9, 16, 25 pixels). The qualitative results reported in main and supplemen-

tary figures did not change under these tested conditions.

In all plots of the c.f., solid lines represent the mean condensed fraction and error bars refer to values one standard deviation above
and below the mean, computed from replicates (n>10). Plots of the condensed fraction were generated by using the matplotlib
library in python3. In all plots in the main figures (Figures 1F, 3D, 3H, 4D, and 5D), the condensed fraction in the MED1-IDR channel
is reported.

For inferring saturation concentrations from the condensed fraction curves, a linear interpolation was fit using the linear-least-
squares approach to the data from the replicates across the data points above and below the threshold (0.4% - for all data reported).
The apparent saturation concentration (Cs,y) Was estimated as the concentration at which the condensed fraction reached the
threshold value. The standard deviation in inferred values were computed from the standard error of the regression.

The difference between the inferred values of saturation concentrations across any set of conditions (as measured by their ratio)
was insensitive to other tested values of the threshold in the range 0.3%-0.6%. Lower values of the threshold (< 0.3%) led to
unreliable estimates, confounded by noise from replicates, as well as specking from background, and were thus not employed. A
t test (with unequal variances, Welch’s test, refer - scipy.stats.ttest_ind_from_stats) was performed to test for significance between
inferred saturation concentrations.
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DNase | image analysis
Building on the above-described analysis, for each condition, the partition ratio for each replicate image is calculated as pchannel =
(Intensity) yopiet/ (Intensity) ., in various channels for each image-set. The key difference is that a background intensity subtraction
(of 80 pixel units) is performed to aid in droplet identification and partition calculation at low concentrations. The partition ratio is a
proxy for the relative enrichment of molecules in the condensed phase over the bulk phase. For any given experimental condition, the
sample of partition ratios are obtained over replicate images (n> 10).

Subsequently, the partition ratios for control (without DNasel) and DNasel experiments were normalized to the mean partition ratio
for the control at same concentration of MED1-IDR. Scatterplots with mean + std were generated using the normalized partition ratios
in the 561(MED1-IDR) channel for Figure 2B, and in the 640 channel (DNA) for Figure S1E, using PRISM.

Luciferase reporter assays

For enhancer activity reporter assays, synthetic enhancer DNA sequences with varying valences or densities of OCT4 binding sites
(see Table S3) were cloned into a previously characterized pGL3-basic construct containing a minimal OCT4 promoter (pGL3-
pOCT4) (Whyte et al., 2013). The synthetic enhancer sequences were cloned into the Sall site of the pGL3-pOct4 vector by HiFi
DNA Assembly (NEB E2621) with a Sall digested vector and PCR-amplified insert. All cloned constructs were sequenced to ensure
sequence identity. 0.4 ug of the pGL3-based enhancer plasmids were used to transfect 1x10° murine ESCs in 24-well plates using
Lipofectamine 3000 (Thermo Fisher L3000015) according to the manufacturer’s instructions. 0.1 ng of the pRL-SV40 plasmid was co-
transfected in each condition as a luminescence control. Transfected cells were harvested after 24 h, and luciferase activity was
measured using the Dual-Glo Luciferase Assay System (Promega E2920). Luciferase signal was normalized to the signal measured
in cells transfected with a construct containing zero OCT4 motifs. Experiments were performed in triplicates.

Bioinformatic analysis

Position-weight matrices (PWMS) for Mus musculus stem cell master TFs -SOX2 (MA0143), OCT4+SOX2 (MA0142), KLF4 (MA0039),
and ESRRB (MA0141), were obtained from the JASPAR database (Khan et al., 2018). 100kb DNA sequences centered on super-en-
hancers (SEs, N =231), as annotated in Whyte et al. (2013) were gathered. The same number and length of sequences were randomly
subsampled from enhancers (typical enhancers, TEs) annotated in Whyte et al. (2013), as well as from random genetic loci (Random)
on the mm9 reference genome. FIMO was used to predict individual motif instances in all sequences, against a background uniform
random distribution, at a p value threshold of 1e-4.

For the boxplots in Figure 7A, the average motif density is calculated as total number of motifs divided by length of sequence over a
20kb sequence region centered on SEs, TEs, and random loci, normalized in units of motifs/kb. For the line plots in Figure 7B, the
whole distribution of motif density is represented along the 100 KB sequence, in bins of 2kb with similar units.

Published ChIP-seq datasets are gathered from Sabari et al. (2018) for MED1, BRD4, RNA Pol Il, and input control from GEO:
GSE112808. Reads-per-million (rpm) are summed in previously defined regions for SEs, TEs, and random using BedTools. For Fig-
ure 7C, and Figure S6, the summed rpm values are plotted on a log scale. On the x axis, the total number of motifs calculated in a 20kb
window centered on SEs, TEs, and random loci is plotted. Finally, a linear model is inferred between log(ChlP) signal and motif values
using ordinary least-squares regression. The inferred line is plotted in black and 95% confidence intervals are plotted as a shaded
gray background. The data are visualized using the matplotlib library in python3.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis for simulation data

Steady-state analysis of simulation datasets in Figures 3 and 4 are reported with solid lines represented by the mean (u) and
averaged fluctuations at steady state (across trajectories) in the shaded background, whose boundaries are characterized by one
standard deviation away from the mean on either side (u+ ). In all figures, the mean represents an average over 10 trajectories.
In Figure 1C, the steady-state value is reported for 2 specific conditions (+/— DNA at low protein concentrations), with mean
and 1 standard deviance (n = 10 trajectories). For dynamical plots reported in Figures 2, 5, and 6, the mean trajectory (n = 10) is
reported.

Statistical analysis for bioinformatics

The inferred linear lines in Figures 7C and S6 are generated between the logarithm of the ChlP signal and the motif density, and the R?
reported in the respective captions. The 95% confidence interval in the inferred slope of the linear fit is reported in the gray
background, calculated from statsmodels.api in python.

Statistical analysis for in vitro condensate assays

Condensed fraction reported at any given concentration in all figures are averaged over >10 image-sets, with error bars representing
one standard deviation from the mean condensed fraction. Saturation concentrations are inferred (mean and std error) from the
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above data (n > 10 datasets, ref methods above for details). The t test (with unequal variances, Welch'’s test, refer - scipy.stats.
ttest_ind_from_stats) was performed to test for significance. Pairwise Student’s t test for DNase experiment (Figure 2B) and lucif-
erase experiments (Figures 4E and 5B) were performed using PRISM 7 (GraphPad).

DATA AND CODE AVAILABILITY

All software and code generated in this project are publicly available at https://github.com/krishna-shrinivas/2019_
Shrinivas_Sabari_enhancer_features. The raw experimental data can be found at https://data.mendeley.com/datasets/c36nyy79y4/1.
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