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Levee Fragility Behavior under Projected
Future Flooding in a Warming Climate
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Abstract: Adaptation to climate change requires careful evaluation of infrastructure performance under future climatic extremes. This study
demonstrates how a multidisciplinary approach integrating geotechnical engineering, hydrology, and climate science can be employed to quan-
tify site-specific impacts of climate change on geotechnical infrastructure. Specifically, this paper quantifies the effects of changes in future
streamflow on the performance of an earthen levee in Sacramento, California, considering multiple modes of failure. The streamflows for
historical (1950-2000) and projected (2049-2099) scenarios with different recurrence intervals were derived from routed hydrological sim-
ulations driven by bias-corrected global climate models. The historical and future flood levels were then applied in a set of transient coupled
finite-element seepage and limit equilibrium slope stability analyses to simulate the levee subjected to extreme streamflow. Variability in hy-
draulic and mechanical properties of soils was addressed using a Monte Carlo sampling method to evaluate and compare the probability of failure
of the levee under different historical and future climate scenarios. Three individual modes (underseepage, uplift, and slope stability) along with
lower and upper bounds for the combined mode of failure were examined. The results showed that incorporating future floods into levee failure
analysis led to considerable reductions in the mean factor of safety and increases in the levee’s probability of failure, suggesting that risk assess-
ment based on historical records can significantly underestimate the levee’s failure probability in a warming climate. Despite inherent uncer-
tainties in future projections and substantial variability across climate models, evaluating infrastructure against projected extremes offers insights
into their likely performance for the future. DOI: 10.1061/(ASCE)GT.1943-5606.0002399. © 2020 American Society of Civil Engineers.
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nonstationary extreme value analysis (ProNEVA).

Introduction

Historical observations show considerable changes in type, se-
verity, frequency, and duration of extreme precipitation and flood
events across the world (Groisman et al. 2004; USGCRP 2009;
IPCC 2013). For instance, ground-based observations show a 9%
increase in heavy precipitations from 1958 to 2012 (USGCRP
2009). Additionally, partly attributed to anthropogenic activities,
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climate models project increases in the intensity and frequency of
future extreme precipitation and flooding (e.g., Florsheim and
Mount 2003; Ragno et al. 2019). In the United States, the impact
of the annual flood-related damage to infrastructure has increased
significantly since 1934 (Pielke et al. 2002), attributed to both
increased exposure and changes in the frequency and severity of
extremes. A warming climate is expected to increase the water-
holding capacity of the atmosphere, which can intensify precipita-
tion extremes and flood risk (Trenberth 2001; Papalexiou and
Montanari 2019; Chen and Hossain 2019).

Adaptation to climate change requires evaluations of infrastruc-
ture performance for extreme events such as flooding for different
emission scenarios (e.g., Vardon 2015; CACC 2018; Forzieri et al.
2018; Hagenlocher et al. 2018; Reidmiller et al. 2017; Vahedifard
et al. 2018; Fletcher et al. 2019). Changes in statistics of extreme
precipitation and floods in a changing climate can significantly af-
fect the stability of natural and man-made earthen structures, in-
cluding levees (e.g., Robinson and Vahedifard 2016; Jasim et al.
2017; Robinson et al. 2017; Vahedifard et al. 2017; CACC 2018;
FEMA 2018). The severity of damage to levees depends on the
structural integrity of the levee as well as the intensity, duration,
and frequency characteristics of extreme climatic events such as
rainfalls, floods, and even droughts (e.g., Vahedifard et al. 2016).
The structural integrity of levees subjected to extreme events and
loading conditions can be threatened by one or more modes of fail-
ure, such as slope stability, underseepage, uplift, through seepage,
and overtopping.

Over the past few decades, several methods have been employed
for risk and reliability analyses of levees under various loading
conditions (e.g., Wood 1977; Wolff 2008; Wu et al. 2011; Ludy
and Kondolf 2012; Jongejan and Calle 2013; Zhang et al. 2013;
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Hui et al. 2016; Roe et al. 2016; Bessette et al. 2017; Jasim et al.
2017; Schultz et al. 2018; Lanzafame and Sitar 2019; Rahimi et al.
2019; USBR 2019; Zimmaro et al. 2019). These methods include
expert judgment, empirical, analytical, and hybrid methods, de-
pending upon the source of knowledge used to assess the proba-
bility of failure, or the probability of unsatisfactory performance,
versus the range of levee loads (e.g., Schultz et al. 2010). The prob-
ability of failure-load relationship is commonly referred to as a fra-
gility curve (or system response curve), a useful tool for levee risk
analysis (e.g., Schultz et al. 2010; USBR 2019). Among others, the
analytical method, which is based on quantitative models of load
and resistance, is shown to be best suited for robust risk analysis
(e.g., Schultz et al. 2018; Lanzafame and Sitar 2019; USBR 2019;
Zimmaro et al. 2019). In this approach, the levee’s probability of
failure is estimated by considering the uncertainly in one or more
variables (e.g., soil types, soil properties, levee geometry and di-
mensions, and water level) that affect load or resistance.

This study demonstrates how hydrology and climate science
findings can be employed to quantify site-specific impacts of cli-
mate change on earthen levees. We quantified the effects of ex-
treme streamflow in a changing climate on the performance of
an earthen levee considering multiple failure modes. Historical
(1950-2000) and future (2049-2099) streamflow simulations were
derived from bias-corrected global climate models and routed
hydrologic simulations, developed for the 4th California Climate
Change Assessment (Pierce et al. 2015, 2018). Floods with differ-
ent climatic extreme recurrence intervals were then employed as
hydraulic loads into a set of transient coupled finite-element seep-
age and limit equilibrium slope stability analyses to simulate the
levee subjected to extreme streamflow. Considering the variability
in the hydraulic and mechanical properties of soils, the numerical
modeling framework was used along with the Monte Carlo method
to evaluate the probability of failure of the levee against individual
and combined modes of failure, including underseepage, uplift,
and slope stability.

Study Area

Over 21,000 km of levees protect land and infrastructure from
floods in California (CDWR 2011). However, most of these levees
work under relatively marginal conditions (CDWR 2011), which is
comparable to the overall grade of the nation’s levee systems (ASCE
2017). According to a 155-year observational data record from a
California river system, structural failures have occurred in more
than 25% of the earthen levees during the last century (Florsheim
and Dettinger 2007). Rapidly growing urbanization, socioeconomic
importance of the region, marginal conditions, and continuous
exposure to a variety of natural hazards and climate extremes
(e.g., earthquakes, land subsidence, droughts, floods, and wildfires)
have stimulated several studies over the past few decades to assess
the vulnerability and risk associated with California’s levee systems
(e.g., Deverel and Leighton 2010; Brooks et al. 2012; LAO 2015;
Vahedifard et al. 2015, 2016; Hui et al. 2016; Roe et al. 2016;
Deverel et al. 2016; Robinson and Vahedifard 2016; Jasim et al.
2017; Hui et al. 2018; Lanzafame and Sitar 2019; Zimmaro et al.
2019).

For modeling, we studied the Elkhorn Levee, an earthen levee
in a high-risk flooding zone (Reclamation District No. 1000) in
Sacramento, California (Fig. 1). Levee systems throughout the
Northern California Central Valley are often urban and protect
densely populated areas from flooding (CDWR 2011). Many of
these levees are loaded only during flooding or high water. In
contrast, the levees throughout most of the Delta downstream of
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Fig. 1. Leveed area in Reclamation District No. 1000, Sacramento,
California. (Reprinted from NLD 2020.)

Sacramento are mainly nonurban, protecting land that is at or below
sea level, and continuously hold back water.

Streamflow Loading in a Changing Climate

Current practices for design and risk assessments of infrastructure
systems commonly rely on observed historical extremes, such as
rainfall and flood records, assuming the statistics of extremes do
not change significantly over time (Cheng et al. 2014; Salas and
Obeysekera 2014). Here, we incorporated future flood projections
into the risk analysis of the Elkhorn Levee. Unlike common stat-
istical proxies to estimate future river discharge (e.g., Kundzewicz
et al. 2014; Wobus et al. 2014; Hui et al. 2018), we employed pro-
jected future streamflow derived from global climate models and
hydrologic simulations. The Elkhorn Levee is adjacent to Camp
Far West, one of the 59 locations across Northern California where
daily streamflow projections (1950-2099) were developed, bias
corrected, and routed as part of the California Fourth Climate
Change Assessment project (Pierce et al. 2014, 2015, 2018). The
variable infiltration capacity (VIC) hydrological model (Lohmann
et al. 1996, 1998), which simulates surface and subsurface proc-
esses, was forced with downscaled global climate model (GCM)
simulations to route daily streamflow. The bias-corrected inputs to
the hydrologic model (VIC) were based on ten GCMs from the Fifth
Coupled Model Intercomparing Project (CMIP5) and two repre-
sentative concentration pathways (RCPs): RCP4.5 and RCP8.5.
For flood risk assessment in the Elkhorn Levee, we employed
RCP8.5 data and the most extreme projected streamflow scenario
from the CanESM2 model, one of four representative climate mod-
els for California. Pierce et al. (2018) and Thorne et al. (2018) pro-
vided more information on representative models for the state of
California. We ran flood frequency analysis using process-informed
nonstationary extreme value analysis (ProNEVA, Ragno et al. 2019;
Cheng et al. 2014) to identify flood magnitudes for different recur-
rence intervals (White 1976; Groves et al. 2006). We used daily an-
nual flow maxima for flood frequency analysis, as it is a key design
variable and the most commonly used variable for flood risk assess-
ment when instantaneous observations are unavailable (e.g., England
et al. 2019). The streamflow design load was represented by the
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Table 1. Streamflow and corresponding flood level for different recurrence
intervals using historical and projected future data

Recurrence Historical Future
interval (years) Levee loading (1950-2000) (2049-2099)
10 Streamflow (m?/s) 613.86 1,073.07
Flood level (m) 18.33 20.46
25 Streamflow (m?/s) 858.83 1,308.43
Flood level (m) 19.54 21.38
50 Streamflow (m?/s) 1,095.59 1,478.50
Flood level (m) 20.56 21.90

flood water level behind the levee. Applying the rating curve con-
cept (i.e., river stage and discharge relationship at the gauging sta-
tion), we estimated the flood water level corresponding to the design
streamflow for different recurrence intervals (e.g., 25- and 50-year
flood events).

Table 1 shows the streamflow and flood level for different re-
currence intervals using the historical (1950-2000) and projected
future (2049-2099, RCP 8.5) simulations. The future flood levels
from the CanESM?2 model, for all recurrence intervals, show higher
peak water levels compared to baseline (1950-2000) flood levels
simulations, implying higher flood risk in the future, consistent
with the findings of Mallakpour et al. (2018). The future flood sim-
ulations had a 1.34-m higher flood level than the baseline period for
the 50-year event, a 6.5% increase.

Probability of Failure Considering Different
Modes of Failure

In this study, the probability of unsatisfactory performance, here-
after referred to as the probability of failure, was calculated by treat-
ing the soils’ hydromechanical properties as random variables. The
performance function, G(X), can be defined as

Gr(X)

G(X) = G(R.S) = e (1)

where X = vector of random variables; § = G(X) is the load im-
posed on the levee; and R = G (X) is the capacity of levee to resist
the load. In this equation, G(R, S) represents the factor of safety,
which is the ratio of the capacity to resist a demand (i.e., load)
placed on the levee. When G(X) is less than the predefined perfor-
mance criteria [Ges;qn (X)], the performance of the levee is consid-
ered unsatisfactory. The probability of failure for the ith mode of
failure (P ;) is determined by integrating the multivariate density
function, fx(X), for the n-dimensional vector of random variables
over the unsatisfactory performance domain (e.g., Schultz et al.
2018)

Pf’,»:P[G(X)<l]:/ /G(M | (X)fX(X)dX 2)

The historical and future flood levels were applied in a set of
coupled transient finite-element seepage and limit equilibrium
slope stability analyses to simulate the levee subjected to extreme
streamflow. The Monte Carlo method with 6,000 realizations of
soil properties (treated as random variables) was used to estimate
the probability of failure for each mode at each water level. The
input data sets needed for the Monte Carlo simulation were from
sampling the probability distributions of uncertain mechanical and
hydraulic properties of each soil type [based on its unified soil clas-
sification system (USCS) classification] in the levee embankment
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and foundation. A total of 11 random variables (including sampled
and derived variables) for each soil type were considered, covering
mechanical and hydraulic properties of the soil layers in saturated
and unsaturated conditions (see the section “Soil Properties and
Random Variables” for more details). Each realization was exam-
ined to see if the levee met the performance criteria defined for
underseepage, uplift, and slope stability. The probability of failure
at selected times during the simulation was calculated as the fraction
of 6,000 realizations that failed to satisfy the performance criteria for
that failure mode. The following performance functions were used
for different modes of failure:

0.33i,
G(R.S) <= ©
l’U
0.667u,
G(R,S _ 4
(R.S)y <= @
T
G(R,S),; <0.909 (—) (5)
Tr/ min
where G(R, S),,, G(R,S),,, and G(R,S),, = performance func-

tions for underseepage, uplift, and slope stability modes of failure,
respectively; i, = critical vertical exit gradient at the landside toe of
the levee; i, = vertical exit gradient at the landside toe of the levee;
u, = pressure applied by the weight of the saturated soil at the toe
beneath the confining layer of the levee; u, = uplift pressure at
the same location; 7 = shear stress; and TF= shear strength of the
soil along the most critical failure surface sought in the limit equi-
librium slope stability analysis of the landside levee slope. The
aforementioned performance functions embody the following fac-
tors of safety: 3 for underseepage, 1.5 for uplift, and 1.1 for slope
stability. These values were selected within the range of recom-
mended values by guidelines for design and risk analysis of earthen
levees (e.g., USACE 2000; USBR 2019).

After estimating the probability of failure for each mode, the
combined probability of failure can be calculated. As discussed by
Lendering et al. (2018), the upper and lower bounds of the com-
bined probability of failure can be determined by assuming mutual
exclusivity (upper bound) or complete dependence (lower bound)
between n modes of failure as follows:

n n

max(Py;) S Pr, <Y Pri=1-[J(1-Py,) (6)

i=1 i=1

where P/, = combined (aggregate) probability of failure. Most pre-
vious studies (e.g., Wolff 2008; Rice and Polanco 2012; Jongejan
etal. 2013; Bogérdi and Balogh 2014; Schultz et al. 2018; Lendering
et al. 2018) determine the combined probability of failure of earthen
levees by assuming independence among failure modes. However,
different failure modes can be somewhat dependent, because they
share common triggering and resisting factors. To properly represent
the range of possible P, values, we considered and presented both
lower and upper bounds in this study. Other possible uncertainties
not considered in this study include uncertainties in the response
threshold, model error, and flood scenarios. The latter itself includes
uncertainties from intermodel variability when multiple models are
used, and uncertainties from future RCPs.

Numerical Modeling

Probabilistic numerical simulations were performed using two codes,
SEEP2D-COUPLED-HPC and SLOPE2D-HPC (Tracy et al. 2020).
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Fig. 2. Geometry of Elkhorn Levee used in numerical modeling.

The former is a two-dimensional coupled transient finite-element
seepage/structural plane strain program designed to run on the
US Army Engineer Research and Development Center (ERDC)’s
high-performance computing facticity, whereas the latter is a limit
equilibrium slope stability code that uses the simplified Bishop
method. The pore-water pressures obtained from the coupled finite-
element seepage are incorporated into the limit equilibrium slope
stability analysis. Geometry and soil types were assumed to be
known. Parameters describing the hydraulic and mechanical proper-
ties of soils were treated as uncertain variables, while the geometry
of the two-dimensional levee section was held constant. It is noted
that a similar probabilistic modeling framework is currently being
used by the USACE (Schultz et al. 2018; Tracy et al. 2020) to ex-
amine the fragility behavior of an extensive array of USACE port-
folio of levees throughout the nation. Employing this method allows
performing site-specific probabilistic analysis for levees with limited
in situ data (such as geometry and soil type) while accounting for
the uncertainly of soil parameters. This feature makes the method
broadly applicable to the nation’s portfolio of levees. Further, the
probabilistic method is objective, rigorous, and quantitative (Schultz
et al. 2018; Tracy et al. 2020).

Theory of Coupled Seepage Analysis in Variably
Saturated Soils

Transient flow under an elevating water level can be described us-
ing Laplace’s equation as follows:

0 00 0 od 00
a("*a) +a—y("ya—y> =" @)

where x = horizontal direction; y = vertical direction; k, and k, =
hydraulic conductivities in the x- and y-directions; @ = total head;
m,, = coefficient of soil volume compressibility; and 7 = time. The
coupled governing equation for conservation of flow can be written
as (Tracy et al. 2020)

DI D0 oy
Ox \ " Ox oy \ Y dy) 0r\ox Oy

where u and v = displacements in the x- and y-directions, respec-
tively. The derivation of displacement with respect to the horizontal
and vertical directions can be determined using the conservation of
forces inside a finite element:
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ou
Oy 1 gx
v
Tyy +’7w(® _y) 1y = [C] a_y (9)
0 o0 o
ox 0Oy
1l—p u 0
E
- p 1=p 0
€l (I+6)(1—26) 1-2u (10)
0 2

where o, = normal stress in the x-direction; o, = normal stress in
the y-direction; 7,, = shearing stress; £ = Young’s modulus; and
1 = Poisson’s ratio.

For unsaturated soils, the model proposed by Fredlund and
Xing (1994) was used to represent the soil-water retention curve
(SWRC) as follows:

0,

o A
W)= ) e s @F

(11)

where (1)) = volumetric water content at matric suction (¢);
0, = saturated volumetric water content; 1) = matric suction; a, b,
and ¢ = fitting parameters; and C(¢) is defined as

In(1+ %
cwy=1-20*E)

ln(l + C,) (12)

where C, = constant related to matric suction at the residual water
content. For the hydraulic conductivity function (HCF), the
Fredlund et al. (1994) model was used as

10° 0(e*)—0(¥) 0’ (e%)dvp
_ k

k() = Tl : 13
W Ry ay "

where z = dummy variable of integration representing In; €, =
small positive number; 6’ = derivative of Eq. (11) with respect
to 1; and kg = saturated hydraulic conductivity.

Model Geometry

Fig. 2 shows the cross section of the Elkhorn Levee numerically
modeled to evaluate and compare the impacts of historical and pro-
jected future floods. The model consisted of a five-layer soil system.
The levee’s body is 3.7 m of silty sand (SM) over a deep foundation,
consisting of a thin layer of sandy clay (CL) with low hydraulic
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conductivity. Under the CL layer is a 2.1-m-thick layer of ML, and
below that the soil is mostly silty sand (SM). The geometry was
adopted and modified from that reported in Brizendine (1997) and
Khalilzad et al. (2014).

Soil Properties and Random Variables

Three soil types (SM, ML, and CL) were used in the model, and
for each soil type, a total of 11 random variables (including three
sampled and eight derived random variables) and two deterministic
properties were considered as input covering both the mechanical
and hydraulic properties of soil layers under saturated and unsatu-
rated conditions. Sampling from the probability distributions rep-
resenting the uncertain mechanical and hydraulic properties of
each soil type was performed to obtain data sets for the Monte
Carlo simulation. Probability distributions were defined for (1) ver-
tical saturated hydraulic conductivity, (2) anisotropy ratio with re-
spect to hydraulic conductivity, (3) liquid limit, (4) plasticity index,
(5) effective friction angle of coarse-grained soils, (6) porosity, and
(7) percent fines. Three sampled variables out of the aforemen-
tioned seven variables were used directly as random variables into
the seepage and slope stability analyses: vertical saturated hy-
draulic conductivity, effective friction angle of coarse-grained soils,
and porosity. The sampled variables were assumed to be uncorre-
lated. Input values for the additional eight soil properties required
to perform the seepage and slope stability simulations were derived
from the aforementioned seven sampled random variables. Derived
random variables include (1) horizontal saturated hydraulic conduc-
tivity, (2) saturated unit weight, (3) partially saturated unit weight,
(4) undrained shear strength for foundation fine-grained soils,
(5) SWRC parameter a, (6) SWRC parameter b, (7) SWRC param-
eter ¢, and (8) SWRC parameter C,. Further details about these soil
properties are provided in the following. It is noted that the soil
properties and random variables are mostly adopted from Schultz
et al. (2018) and Tracy et al. (2020).

Sampled Variables

* Vertical saturated hydraulic conductivity (k,): The uncertainty
in hydraulic conductivities is commonly shown using lognormal
probability distribution (Baecher and Christian 2003). The
parameters of a lognormal distribution of &, for each soil class
in the levee or foundation are reported in Table 2. The mean of
the distribution was obtained by taking the midpoint between
the log-transformed minimum and maximum. The standard
deviation was obtained by assuming a coefficient of variation
equal to 0.9, which produced extreme values that approximate
these minimums and maximumes.

* Anisotropy ratio (r): The anisotropy ratio, r, is the ratio of the
vertical to the horizontal hydraulic conductivity (r = k,/kj).
The variable is distributed lognormally. A mean of one was used
for the sandy soils (SM), a mean of 0.5 was used for silty soils
(ML), and a mean of 0.25 was used for clayey soils (CL). A
coefficient of variation equal to 0.4 is reported for clay soils in
USACE (1999). Silt and sand show less variability in r than clay
soils. Thus, variation coefficients of 0.2 and 0.075 were

Table 2. Minimum and maximum values for k, (m/s)

Horizontal hydraulic conductivity, k, (m/s)
USCS Minimum

SM 5.00x 1078 5.00x10°® 637 x 1077
ML 500x 107 5.00x 1077 6.37x 107%
CL 5.00x 1071 5.00x 1078 6.37 x 107°

Source: Data from Holtz et al. (2011).

Standard deviation

6.05x 1077
6.05 x 107%
6.05 x 107°

Maximum Mean
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considered for silt and sand, respectively. In this study, the same
values of the anisotropy ratio were used for foundation and em-
bankment soils of the same USCS class.

* Liquid limit (LL) and plasticity index (PI): Correlated values of
LL and PI were obtained by sampling each from uniform ran-
dom fields with upper and lower bounds as indicated in the plas-
ticity chart (Fig. 3). Combinations of values between the U-line
and the A-line were then randomly selected. The correlated ran-
dom samples of LL and PI are shown in Fig. 3.

* Effective friction angle for coarse-grained soils (¢'): The effec-
tive friction angle was used to calculate the long-term strength
of soil. For the SM layer in the foundation, values of ¢’ were
sampled from symmetrical triangular distributions with mini-
mum and maximum values reported by Holtz et al. (2011).
For silty sand, SM: min = 29°, max = 37°.

* Porosity (n): Ranges of porosity were obtained from Holtz
et al. (2011) and are as follows for different soil types: SM:
min = 0.36, max = 0.45; ML: min = 0.40, max = 0.50; CL:
min = 0.40, max = 0.52. A symmetric triangular distribution
was assumed for porosity.

e Percent fines (w): Percent fines is the fraction of material by
weight that is less than 0.075 mm in diameter. For the soil layer
classified as SM, a uniform distribution with a lower bound of
0.12 and an upper bound of 0.4999 was used. For the soil layers
classified as ML and CL, a uniform distribution with a lower
bound of 0.5 and an upper bound of 0.65 was used.

Derived Variables

e Horizontal saturated hydraulic conductivity (ky): Values of Ky
were derived by multiplying the vertical saturated hydraulic
conductivity (Ky) by the anisotropy ratio (r). Deriving K from
Ky ensured that the two values were correlated. Soils with
higher values of Ky also tend to have higher values of K.

* Saturated and partially saturated unit weight (v, 7,): The
saturated unit weight, ~g,, was calculated from void ratio
Ysat = (G+ S, -e) -7, - (1+e)7!, where G is the specific
gravity of soil, G = 2.68; 7, is the unit weight of water, ~,, =
9.81 kN/m?; ¢ is the void ratio where e = n/(1 — n); and S, is
the degree of saturation. For saturated soils below the phreatic
surface, S, = 1. For partially saturated soils above the phreatic
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Fig. 3. Correlated random samples of LL and PI used in simulation.
(Data from Schultz et al. 2018.)
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surface, S, was defined as a uniform random variable between
0.5 and 0.95.

e Undrained shear strength (S,): For silts and clays in founda-
tions, undrained shear strength S, was defined as a function of
the strength ratio (SR). SR is the ratio of the shear strength to
the effective overburden pressure (o). Values of SR were ob-
tained by sampling from asymmetrical triangular distributions in
which its three parameters were calculated from PI using the
correlations developed by Mayne (2012):

S,=SR-o! (14)
SRpin = 0.05 + 0.0019P1 (15)
SRax = 0.35 + 0.0002P1 (16)
SRuoq = 0.198 + 0.001P1 (17)

where SR ins SRmax> and SR,,¢ = minimum, maximum, and
mode of the distribution.

* SWRC and HCF parameters (a, b, ¢, and C,): The SWRC and
HCF parameters were sampled from symmetrical triangular dis-
tributions. The parameters of the SWRC and HCF models were
correlated with the wPI parameter as follows (Witczak et al.
2000):

a = 0.00364(wPI)>% + 4(wPI) + 11 (18)
b 0.14
— = -2313(wPI)?!* 45 (19)
c
¢ = 0.0514(wPI)%465 4 0.5 (20)
c :
T — 32.440-0186(wPI) (21)
a
wPI = percent fines x P/ (22)

Deterministic Soil Properties

* Modulus of elasticity (E): The modulus of elasticity, E, was
used as a constant value of 1.47 x 104, 3.48 x 103, and
8.62 x 10% kPa for SM, ML, and CL soils, respectively.

e Undrained shear strength (S,) for ML in embankment: A con-
stant value of 38.3 kPa (800 psf) was assigned to model the un-
drained strength of the ML layer under flood loading.

Boundary Conditions

The bottom boundary was constrained in both the vertical and
horizontal directions. For the flow boundary conditions, the bottom
boundary was set as impermeable. The total head was applied to the
left boundary according to the specified elevation of the water as a
function of time on the levee (hydrograph), no flow was applied to
the right boundary of the embankment, and the total head equal to
the ground elevation was applied on the landside or right boundary
of the foundation.

Modeling Stages

The simulation for the historical and the projected flood levels
consisted of two stages. It is noted that the landside and riverside
ground elevations were different (as shown in Fig. 2). The first
stage involved generation of a steady-state seepage flow throughout
the levee domain as the initial hydraulic condition. In this stage, the
simulation was started with an initial condition of total head
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defined at the elevation of the landside ground surface throughout
the levee. Total hydraulic heads of 18.3 and 17.0 m were then as-
signed to the riverside and landside, which represent the ground
surface elevation at the riverside and landside, respectively. Seep-
age analysis was performed to achieve a steady state condition
under the assigned boundary conditions. In the second stage (tran-
sient stage), the water level behind the levee was raised at a constant
rate of 6 cm/hour until reaching the peak flood level for each sce-
nario (shown in Table 1). Then, the flood peak was maintained for
several days until a steady-state condition was reached. The flood
modeling stage is consistent with the approach commonly used by
operational agencies (e.g., USACE 2000) and other similar studies.
For example, Khalilzad et al. (2014) employed the same approach
for modeling the Elkhorn Levee.

Results and Discussion

This section presents and discusses results of the probabilistic
seepage-slope stability modeling for the three failure modes exam-
ined (underseepage at toe, uplift at toe, and slope stability for the
landside slope) using historical and future flood scenarios. For each
mode, the probability of failure at each time was determined as the
fraction of 6,000 Monte Carlo realizations that failed to satisfy the
performance criteria for that mode of failure. Further, for each mode
and at each specified time, factors of safety corresponding to 6,000
realizations were averaged to estimate the mean factor of safety.
Lower and upper bounds for the probability of failure considering
combined mode of failure were also calculated and presented. The
primary emphasis was on the comparison between the results of the
historical floods versus those from future floods. The probabilities
of failure that are presented are probabilities of failure for particular
scenarios. The presented results represent changes in conditional
probabilities of failure (i.e., conditioned on the given scenarios).
These are different than the probability of failure at different return
periods. For instance, the probabilities of failure shown in the fol-
lowing sections for a recurrence interval of 50 years are not the
probabilities of failure over a 50-year period. The latter would have
to account for the frequency at which these scenarios occur.

Underseepage

Fig. 4 shows the mean factor of safety against underseepage at toe
versus time using the historical and future flood scenarios for three
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— — —  Future (2049-2099)
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=
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Fig. 4. Mean factor of safety for underseepage at the toe versus time
using the historical and future 10-, 25-, and 50-year flood simulations.
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recurrence intervals of 10, 25, and 50 years. For all recurrence in-
tervals and climate scenarios, the mean factor of safety decreased as
the water level approached the flood peak and continued to further
decrease even after the water level was maintained at the peak
flood, reaching an almost plateau toward the end of simulations.

These curves in Fig. 4 illustrate the buildup of excess pore-water
pressure and release in soils with relatively low hydraulic conduc-
tivity. Higher water levels increase total head due to the higher
hydraulic boundary conditions. In the coupled analysis, the forces
were also considered from the increase of water load on the embank-
ment. Because the soil particles and water were considered incom-
pressible, this extra load was first seen by “excess” pore-water
pressure (those that were above what would be realized by hydraulic
boundary conditions only in an uncoupled computation). So, in the
50-year future curve, a strong decrease in the mean factor of safety
was seen until around 2.5 days. Beyond this point, the mean factor of
safety reached a plateau. When given a chance, the built-up excess
pore-water pressure was dissipated, and that is what is shown in the
results by the mean factor of safety going up as the total head went
down during this process. However, because the water on the levee
stayed constant at its highest level, the mean factor of safety started
falling again and eventually reached a steady-state value.

The 50-year current hydrograph reached its maximum height at
around 1.6 days, so the downturn in mean factor of safety for under-
seepage occurred at that time but did not get nearly as low as with the
larger 50-year future simulated event. Therefore, we see that
the stronger the rise of the water level for a given event, the more
profound the coupled effect is. All results showed this dip and re-
bound, but this behavior was more pronounced in under-seepage re-
sults than uplift or slope stability results. This is because the exit
gradient represents a type of derivative (A¢/Ay) at the toe, whereas
uplift and slope stability just involve parameter values. Derivatives
can magnify changes. Finally, in an uncoupled analysis, parameter
values do not experience this dip and rebound effect but simply in-
crease monotonically, and with enough time will achieve steady state.

This explains why the mean factor of safety against underseepage
for the future flood was much less than those for the historical flood
in all recurrence intervals. In all cases, the mean factor of safety
against underseepage was 7.03 in the beginning (initial steady-state
condition). For the 50-year flood, the mean factor of safety decreased
to 3.04 and 1.88 after 30 days by applying the historical and future
floods, respectively. For the 10-year flood, applying the historical
flood data led to a mean factor of safety of 6.87 against underseepage

1.01 — Historical (1950-2000)
— — Future (2049-2099)

Probability of Failure

Time (days)

Fig. 5. Probability of failure for underseepage at the toe versus time
using the historical and future 10-, 25-, and 50-year flood simulations.

after 30 days, whereas a mean factor of safety of 3.15 was attained
for the same case by imposing the future flood data.

A similar behavior was seen when studying this mode of failure
(Fig. 5). The probability of failure against underseepage was almost
zero in the initial steady-state condition. When using the historical
flood simulations, the probability of failure due to underseepage
was zero, 0.05, and 0.36 at the end of modeling for 10-, 25-, and
50-year floods, respectively. Employing the future floods signifi-
cantly increased the probability of failure due to underseepage,
resulting in 0.32, 0.71, and 0.84 probability of failure against
underseepage for 10-, 25-, and 50-year floods, respectively. This
observation signifies the importance of considering the climate
change for levee risk analysis under flooding. It is also important
to note the dip and rebound that occurred in these results, with the
50-year future being the most dramatic and occurring again at
2.5 days (when the hydrograph stopped increasing and the excess
pore-water pressure began to dissipate).

Uplift

Fig. 6 depicts the mean factor of safety against uplift at the toe ver-
sus time for historical and future flood scenarios at different recur-
rence intervals. The factor of safety against uplift was 1.61 in the
beginning and continuously decreased for all cases until reaching an
almost steady state toward the end of simulations. Like the under-
seepage results, employing the future floods led to significantly
lower factors of safety against uplift compared to the historical flood
scenario. The mean factor of safety against uplift was 1.60, 1.46,
and 1.32 after 30 days by applying 10-, 25-, and 50-year historical
flood data, respectively. It is noted that the mean factor of safety for
10-year historical flood data remained almost unchanged, which is
due to the fact that the flood level for this scenario (Table 1) raised
only few centimeters above the riverside ground surface (Fig. 2). For
the same cases but using the future floods, the mean factor of safety
against uplift was found to be 1.33, 1.21, and 1.15 after 30 days for
10-, 25-, and 50-year flood data.

Fig. 7 illustrates the probability of failure against uplift for dif-
ferent historical and projected flooding. The trends are consistent
with those in Fig. 6. The probability of failure against uplift was
zero in the initial condition. With the historical flood data, the prob-
ability of failure due to uplift was zero, 0.73, and 0.95 at the end of
simulations for 10-, 25-, and 50-year floods, respectively. These
values increased to 0.94, 0.99, and 1.00 for 10-, 25-, and 50-year

2.0
Historical (1950-2000)
— — — Future (2049-2099)
1.8 1
1.6

1.4 4

Mean Factor of Safety

1.2

1.0 T T T T T

Time (days)

Fig. 6. Mean factor of safety for uplift at the toe versus time using the
historical and future 10-, 25-, and 50-year flood simulations.
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Fig. 7. Probability of failure for uplift at the toe versus time using the
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Fig. 8. Mean factor of safety for slope stability versus time using the
historical and future 10-, 25-, and 50-year flood simulations.

floods, respectively, for the future flooding scenario. Overall, the
levee showed very high probabilities of failure against uplift for
almost all cases, except the 10-year historical flood. For the 10-year
flooding, using the future data led to a drastic increase in the prob-
ability of failure (from zero to 0.94), which is due to the significant
increase (2.13 m) in the flood level obtained for these two cases
(Table 1).

Slope Stability

Fig. 8 provides a comparison between the mean factors of safety for
slope stability of the landside slope versus time for different recur-
rence intervals using historical versus future floods. The mean fac-
tor of safety was 1.28 initially, and then decreased with time. Under
the historical flooding scenario, it reached to 1.28, 1.16, and 1.05
after 30 days for 10-, 25-, and 50-year floods. For the same cases
but using the future flood data, the mean factor of safety dropped to
1.06, 0.95, and 0.89 for 10-, 25-, and 50-year floods, respectively.
The landside slope initially exhibited a marginal stability, which
was further degraded by the introduction of the flood, bringing the
mean factor of safety even below the limit state. Longer duration
and higher flood levels increased the pore-water pressure within
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Fig. 9. Probability of failure for slope stability versus time using the
historical and future 10-, 25-, and 50-year flood simulations.

the level embankment, which led to a reduction in the soil’s shear
strength, degrading the stability of the levee. Incorporating the fu-
ture climate (i.e., higher flood stage) rather than relying on the his-
torical dataset resulted in a further decrease in the factor of safety
against slope stability.

Fig. 9 shows the probability of failure for slope stability. Con-
sistent with the tendancies discussed for Fig. 8, the probability of
failure increased with time and reached very high values in most
cases (e.g., 0.94 and 0.98 for the 25- and 50-year future floods).
The probability of failure for the 10-year historical flood exhibited
an almost constant value over time, because the water level did not
increase considerably with time for this case. When the projected
future flood was applied, the probability of failure was significantly
higher compared to those attained using the historical floods.

Combined Mode of Failure

Fig. 10 shows the probability of failure in combined failure modes
for various flood water levels using historical and future flood
events considering different recurrence intervals. The upper and
lower bounds for the combined probability of failure were deter-
mined by employing the individual probabilities of failure along
with Eq. (6). The combined probability of failure provides an ef-
fective measure to properly assess overall levee performance. For
all cases, the results from the lower and upper bounds were close,
leading to a narrow band. Considering the combined mode of fail-
ure, the probability of failure quickly approached to one for 25- and
50-year future floods. Also, the probability of failure significantly
increased toward higher recurrence intervals with high water level.

Relative Changes in Results for Past versus
Future Flood Scenarios

Table 3 summarizes the relative decreases in the mean factor of
safety and the relative increases in the probability of failure for dif-
ferent modes of failure and recurrence intervals using the future
compared to the historical flood data. In each case, the relative
change percentage was calculated as (future-historical)/historical.
The future floods significantly decrease the mean factor of safety
and increase the probability of failure for all modes and recurrence
intervals. The highest relative reduction in the mean factor of safety
was found to be 54.2% for underseepage for the 10-year flood
scenario. Among different modes of failure, underseepage had the
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Fig. 10. Upper and lower bounds for combined probability of failure versus time using the historical and future flood scenarios for different

recurrence intervals: (a) 10 years; (b) 25 years; and (c) 50 years.

Table 3. Relative decrease in mean factor of safety and relative increase in probability of failure for different modes of failure and recurrence intervals using

future compared to historical flood data

Recurrence interval

Relative change in results using future versus past floods

Performance metric (years) Underseepage Uplift Slope stability =~ Combined—Ilower bound ~ Combined—upper bound
Decrease in mean 10 54.2 16.9 17.3 — —
factor of safety (%) 25 49.3 17.0 18.2 — —
50 38.1 13.3 14.8 — —
Increase in probability 10 >100 >100 >100 >100 >100
of failure (%) 25 100 34.6 >100 34.6 29.2
50 100 52 27.1 52 0.8

largest change for the future flood scenarios. Further, the impact
of using future flooding is more pronounced for shorter recurrence
intervals (e.g., 10-year). This can be from the significant increase in
projected future flood levels for 10-year events (shown in Table 1).
For the 10-year events, because the historical probabilities of fail-
ure were very low, the dominator in the relative difference was very
small, exaggerating relative differences. For these cases, a relative
difference of >100% was reported in Table 3. For the 25- and
50-year events, the probability of failure increased as much as 100%
for the cases examined.

This study presented a systematic framework for translating
large-scale climate information down to local-scale engineering
applications, an aspect that has been indemnified as a critical gap
in the state of the art and practice by the Fourth National Climate
Assessment model (Reidmiller et al. 2017). This framework allows
engineers and other stakeholders to perform levee risk analysis
while accounting for possible effects of climate change. While the
impact can be significant in one region/levee system, it might be
insignificant in another area/levee system. The approach introduced
in this study can be applied to a wide array of levee systems to
quantify the impact of climate change on the integrity and reliabil-
ity of levees.

Conclusions

The warming climate and its consequences cause changes in se-
verity, frequency, and duration of extreme precipitation and flood-
ing, which can significantly affect the integrity and performance of
levees. This study incorporated a set of historical and projected
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flood levels into a fully coupled finite-element seepage —limit equi-
librium slope stability model to numerically evaluate the fragility
of the Elkhorn Levee in Sacramento, California, against multiple
modes of failures including slope stability, underseepage, and up-
lift. The projected design floods were obtained using a nonstation-
ary framework and climate model simulations. The results obtained
from historical (baseline) and future flood simulations are evaluated
against each other to quantify climate change impact on the levee
integrity.

The results showed that future flood events could significantly
increase the levee’s probability of failure against individual and
combined modes of underseepage, uplift and slope stability. For
all cases, an increase in the flood level of all recurrence intervals
significantly impacts the overall stability in the future relative to the
past. For the cases examined, the results showed up to 54% reduc-
tion in safety factor and over 100% increase in the probability of
failure when considering the future versus historical flood scenar-
ios. Any changes in the statistics of extreme events due to climate
change will directly impact the overall stability of levees. The pro-
posed framework in this study can be adopted as a basis for per-
forming risk analysis of geotechnical structures under changes in
climatic extreme events. Integrating concepts from geotechnical
engineering, hydrology, and climate science, this study demon-
strated how a multidisciplinary approach can be employed to quan-
tify site-specific impacts of climate change on earthen infrastructure
[i.e., translating large-scale climate information down to local-scale
applications—this is identified as one of the current gaps in the
Fourth National Climate Assessment model (USGCRP 2018)]. The
probabilistic methodology presented in this study requires very
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limited in situ data (such as geometry and soil type) and can be
broadly applicable to the nation’s portfolio of levees while account-
ing for the uncertainly of soil parameters.

The focus in this paper was presenting a methodological frame-
work to integrate climate model simulations for analyzing the
integrity of infrastructure systems. For site-specific engineering ap-
plications, depending on the location and driving forces, different
types of inputs and design variables may be required. Further, to
account for intermodel variability and uncertainty in model simu-
lations and future scenarios, we recommend using multiple climate
model simulations and representative concentration pathways. The
approach would be very similar to this study but would involve
running more simulations using different climate models and/or fu-
ture scenarios. Given that our goal here was to introduce a meth-
odological framework, we did not use a wide range of scenarios,
so we cannot claim that this is a comprehensive local-scale future
flood risk analysis.

Data Availability Statement

Some or all data, models, or code generated or used during the study
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