

Temperature-Dependent Model for Small-Strain Shear Modulus of Unsaturated Soils

Farshid Vahedifard, M.ASCE¹; Sannith Kumar Thota, S.M.ASCE²; Toan Duc Cao, A.M.ASCE³; Radhavi Abeysiridara Samarakoon, S.M.ASCE⁴; and John S. McCartney, F.ASCE⁵

Abstract: Near-surface soils in geotechnical and geoenvironmental applications are often unsaturated, and natural or imposed changes in temperature may lead to a softening effect at constant suction that causes a change in stiffness. To capture thermal effects on the stiffness of unsaturated soils, this paper presents an effective stress-based, temperature-dependent model for the small-strain shear modulus of unsaturated soils, with an emphasis on silts. The temperature dependency of the model was accounted for by employing temperature-dependent functions for matric suction and effective saturation characterized using the soil—water retention curve. To validate the proposed model, laboratory tests using a modified triaxial apparatus with bender elements were carried out on Bonny silt to measure the small-strain shear modulus at 23°C and 43°C for varying matric suctions of 0−110 kPa. The results from the proposed model were in a reasonable agreement with the experimentally measured values and demonstrate the importance of considering temperature effects on the shear modulus of unsaturated soils. The accuracy of the model was further validated by comparing the predicted values with laboratory test results on silts reported by two independent studies in the literature. **DOI: 10.1061/(ASCE)GT.1943-5606.0002406.** © 2020 American Society of Civil Engineers.

Author keywords: Unsaturated soils; Temperature; Shear modulus; Silt; Stiffness; Suction; Effective stress.

Introduction and Background

Under working stress conditions, geotechnical structures like retaining walls, pavements, and foundations experience shear strains ranging from 0.001% to 1%, with shear strains equal to or smaller than 0.001% representing linear elastic conditions (e.g., Atkinson and Sallfors 1991; Mair et al. 1993; Atkinson 2000; Clayton 2011; Likitlersuang et al. 2013; Ng et al. 2016). The shear modulus and Young's modulus defined at these small strain magnitudes (also referred to as elastic moduli) are important soil properties that establish the elastic stress-strain relationships used extensively in the analysis of geotechnical structures, including immediate settlement of footings and embankments, pavement subgrade deformation response, soil-structure interaction, and foundation vibration response (e.g., Viggiani and Atkinson 1995; Kramer 1996; Rampello et al. 1997; Likitlersuang et al. 2013; Yang and Gu 2013).

¹Civil and Environmental Engineering Advisory Board Endowed Professor and Associate Professor, Dept. of Civil and Environmental Engineering, Mississippi State Univ., Mississippi State, MS 39762 (corresponding author). ORCID: https://orcid.org/0000-0001-8883-4533. Email: farshid@cee.msstate.edu

²Graduate Student, Dept. of Civil and Environmental Engineering, Mississippi State Univ., Mississippi State, MS 39762. Email: st1545@msstate.edu

³Postdoctoral Associate, Center for Advanced Vehicular Systems (CAVS) and Dept. of Civil and Environmental Engineering, Mississippi State Univ., Mississippi State, MS 39762. Email: toand@cavs.msstate.edu

⁴Graduate Student, Dept. of Structural Engineering, Univ. of California, San Diego, La Jolla, CA 92093. ORCID: https://orcid.org/0000-0002 -0369-973X. Email: rabeysir@eng.ucsd.edu

⁵Professor and Department Chair, Dept. of Structural Engineering, Univ. of California, San Diego, La Jolla, CA 92093. ORCID: https://orcid.org/0000-0003-2109-0378. Email: mccartney@ucsd.edu

Note. This manuscript was submitted on February 12, 2020; approved on July 15, 2020; published online on September 28, 2020. Discussion period open until February 28, 2021; separate discussions must be submitted for individual papers. This paper is part of the *Journal of Geotechnical and Geoenvironmental Engineering*, © ASCE, ISSN 1090-0241.

Several experimental studies have reported that the elastic moduli of soils greatly depend on particle size, void ratio, compaction energy, matric suction, effective saturation, stress history, and net normal stress (e.g., Hardin and Black 1969; Cho and Santamarina 2001; Mitchell and Soga 2005; Oh et al. 2009; Sawangsuriya et al. 2009; Khosravi and McCartney 2012; Oh and Vanapalli 2014).

Various attempts have been made to experimentally investigate and develop analytical models for the elastic moduli of unsaturated soils that capture the effects of suction and effective saturation (e.g., Fredlund et al. 1975; Edil and Motan 1979; Edil et al. 1981; Mancuso et al. 2002; Costa et al. 2003; Inci et al. 2003; Khoury and Zaman 2004; Sawangsuriya et al. 2005; Khosravi and McCartney 2012; Dong et al. 2016, 2018). The majority of existing analytical models for elastic moduli of unsaturated soils were developed by extending the models by Hardin and his collogues (e.g., Hardin and Black 1969; Hardin 1978) originally developed for dry or saturated soils. Previous studies have shown that elastic moduli increase with matric suction due to corresponding increases in the average skeleton stress and stabilization effects of suction on the soil skeleton (e.g., Edil and Motan 1979; Mancuso et al. 2002; Costa et al. 2003; Khoury and Zaman 2004; Sawangsuriya et al. 2005; Khosravi et al. 2016). An added complication with unsaturated soils is that hydraulic hysteresis leads to changes in elastic modulus because of suction-induced hardening (Khosravi and McCartney 2012). Another issue is that the shear modulus of soils, in general, decreases with the applied shear strain magnitude, and several empirical and semiempirical models have been proposed in the literature to establish matric suction-dependent relationships for shear and Young's moduli of unsaturated soils at larger shear strain magnitudes (e.g., Vanapalli et al. 2008; Sawangsuriya et al. 2009; Oh et al. 2009; Lu and Kaya 2014; Dong et al. 2018).

In many of the aforementioned geotechnical and geoenvironmental applications, changes in temperature may occur, which have an additional effect on the elastic moduli of unsaturated soils. Further, other geotechnical applications involving elevated

temperatures include earthen structure-atmospheric interaction under a changing climate, storage of nuclear waste, energy piles, soil-borehole thermal energy storage systems, buried high voltage cables, and thermally active earthen structures (e.g., Gens and Olivella 2001; Laloui and Di Donna 2013; Robinson and Vahedifard 2016; Vahedifard et al. 2015, 2016, 2017, 2018a; McCartney et al. 2016; Başer et al. 2018; Thota et al. 2019; Shahrokhabadi et al. 2020). Several experimental studies have illustrated the effects of temperature on the shear strength, volume change, and stiffness of saturated and unsaturated soils (e.g., Cekerevac and Laloui 2004; Uchaipichat and Khalili 2009; Coccia et al. 2013; Alsherif and McCartney 2015; Zhou and Ng 2016; Ng et al. 2017). These studies have provided useful insights through the study of constitutive relationships of unsaturated soils under varying temperatures that rely on different stress state variables (e.g., Bishop's mean effective stress, matric suction, and deviator stress) and state variables (e.g., specific volume and effective saturation) for defining temperature-dependent elastic moduli (e.g., Cekerevac and Laloui 2004; Ng et al. 2016; Zhou and Ng 2017). However, more work is needed to enhance our understanding of the combined effects of temperature, effective stress state, anisotropic stress conditions, void ratio, and stress history on the elastic moduli (e.g., McCartney et al. 2019). Specifically, temperature may affect the soil-water retention curve (SWRC), which is a key component in the prediction of the effective stress of unsaturated soils (e.g., Lu et al. 2010). Temperature-induced changes in SWRC and effective stress can alter the stiffness of unsaturated soils.

Advances in equipment and methodologies for testing unsaturated soils under temperature-controlled and suction-controlled conditions at various scales have been employed to gain an improved understanding of the effect of temperature on soil stiffness and underlying mechanisms. However, the impact of temperature on the elastic moduli of unsaturated soils still poses a complex problem, leading to dissimilar trends reported by various investigators. For example, a group of studies (e.g., Dumont 2010; Zhou et al. 2015) reported that elastic moduli decrease with increasing temperature due to reduction of the air-water surface tension. However, several studies (e.g., Tanaka et al. 1996; Cekerevac and Laloui 2004; Laloui and Cekerevac 2008) reported that elastic moduli increase with increasing temperature due to thermal hardening and more interaction between particles. The difference in the reported trends could possibly be attributed to differences in drainage conditions, mean effective stress, and soil mineralogy (e.g., Uchaipichat 2005; Uchaipichat and Khalili 2009; François and Ettahiri 2012; Alsherif and McCartney 2015). For instance, during undrained heating, there may be an increase in pore-water pressure that leads to a decrease in effective stress and softening, which could result in decreases in shear modulus. For drained conditions, heating may cause a drying effect, leading to suction hardening, which could result in increases in shear modulus (e.g., McCartney et al. 2019). The majority of existing thermomechanical or thermo-hydro-mechanical constitutive models for unsaturated soils assume the elastic moduli (including the shear modulus) to be independent of temperature in order to simplify formulations (e.g., Thomas and He 1997; Loret and Khalili 2002; Laloui et al. 2003; Bolzon and Schrefler 2005; Nuth and Laloui 2008; Zhou and Ng 2016). Instead, many thermomechanical models assume that temperature only affects the mean effective preconsolidation stress (Laloui and Cekerevac 2008). However, the results of several experimental studies (e.g., Cekerevac and Laloui 2004; Alsherif and McCartney 2015; Zhou and Ng 2016; Ng et al. 2017) suggest that considering temperature-dependent elastic moduli could lead to more accurate simulations of the mechanical response of unsaturated soils under elevated temperatures.

Gaps and unanswered questions remain in the literature regarding the development of unified models for elastic moduli of unsaturated soils, particularly under elevated temperatures. Ideally, such models should properly account for all, or the majority, of the underlying mechanisms through which temperature affects the elastic response of unsaturated soil under elevated temperatures. To address the aforementioned gaps, this study presents a closed-form relationship for determining the temperature-dependent smallstrain (i.e., 0.001% or lower strain) shear modulus of unsaturated soils, with an emphasis on silts. For this purpose, a general functional form is proposed based upon a suction stress-based representation of effective stress, incorporating three primary variables—net normal stress, matric suction, and effective saturation. The temperature dependency of the model was accounted for by employing temperature-dependent functions for matric suction and effective saturation characterized using SWRC. A set of laboratory tests using a modified triaxial test setup were performed to measure the small-strain shear modulus of Bonny silt at two different temperatures for varying matric suctions. The proposed model was validated against the measured data obtained in the current study as well as those inferred from two other independent experimental studies performed on silts reported in the literature.

Theory and Formulations

General Functional Form

Hardin and Richart (1963) performed a set of micromechanical analyses and showed that the small-strain shear modulus of soils can be reasonably fitted with an effective stress-dependent power functional form as follows (Hardin and Richart 1963):

$$G = A_1 f(e) [p']^{n_1}$$
 (1)

where A_1 and n_1 = fitting parameters; p' = mean effective stress; and f(e) = void ratio function, which can be expressed for sands and clays as follows (Hardin 1978):

$$f(e) = \frac{1}{0.3 - 0.7e^2} \tag{2}$$

The Hardin and Richart (1963) equation [Eq. (1)] is applicable to saturated soils, because it is a function of Terzaghi's effective stress. For unsaturated soils, several studies have built upon Hardin's model and proposed new models for small-strain shear modulus primarily as a function of net normal stress and matric suction (e.g., Sawangsuriya et al. 2009; Khosravi and McCartney 2009, 2012; Ghayoomi et al. 2013; Oh and Vanapalli 2014; Dong et al. 2016). The majority of the previous models (e.g., Mancuso et al. 2002; Mendoza et al. 2005; Sawangsuriya et al. 2009; Khosravi and McCartney 2012; Oh and Vanapalli 2014) were developed using a form of Bishop's effective stress (Bishop 1959), which is primarily dominated by matric suction and effective saturation (Lu et al. 2010). Based on these observations, we propose the following general functional form for the small-strain shear modulus of unsaturated soils:

$$G = Af(e)P_a \left[\frac{p_n + S_e^{\kappa_{ref}} \psi}{P_a} \right]^n \tag{3}$$

where P_a = atmospheric pressure used as a normalizing parameter; A and n = fitting parameters; p_n = mean net normal stress (equal to the difference between the total mean stress p and the pore-air pressure u_a); S_e = effective saturation; ψ = matric suction, which is

equal to the difference between the pore-air pressure and the porewater pressure (u_w) ; and κ_{ref} = fitting parameter that controls the impact of variation of water content. The effective saturation to the κ_{ref} power is used to represent Bishop's effective stress parameter χ (Bishop 1959), as suggested by Vanapalli and Fredlund (2000). It should be noted that a similar functional form has been used by several studies and extensively validated against experimental tests performed on various soils at ambient temperature (e.g., Sawangsuriya et al. 2009; Oh and Vanapalli 2014; Dong et al. 2016). The variables used in the proposed functional form represent external confining level (by mean net normal stress), soil hardening or softening (by effective saturation), and interparticle contact forces (by effective stress) (Dong et al. 2016). The proposed function allows the effect of effective saturation and matric suction to be distinctly accounted for; while these are interrelated, they have been shown to possibly have independent effects on soil hardening or softening and effective stress (Khalili et al. 2004; Dong et al. 2016).

In this study, the temperature dependency of the small-strain shear modulus was considered by incorporating temperature-dependent functions for matric suction and effective saturation, which was characterized using SWRC, into the proposed functional form [Eq. (3)]. The temperature-dependency of matric suction was accounted for by quantifying the role of temperature on surface tension, soil–water contact angle, and adsorption by the enthalpy of immersion. Similar formulations were employed by Vahedifard et al. (2018b, 2019) to consider the effects of temperature on SWRC and effective stress, respectively.

Temperature-Dependent Matric Suction

The temperature dependency of matric suction, commonly used to represent capillary pressure in unsaturated soils, is well established in the literature (e.g., Young 1805; Grant and Salehzadeh 1996; Lu and Likos 2004) and arises from changes in the air—water surface tension and the water—solid contact angle with temperature. For example, temperature-dependent matric suction can be defined as follows (Grant and Salehzadeh 1996):

$$\psi = \psi_{T_r} \left(\frac{\beta + T}{\beta_{T_r} + T_r} \right) \tag{4}$$

where ψ_{T_r} = matric suction at the reference temperature; T and T_r = arbitrary and reference temperatures, respectively; and β_{T_r} = regression parameter defined at reference temperature T_r . The parameter β can be estimated as follows (Grant and Salehzadeh 1996):

$$\beta = \frac{-\Delta h T_r}{-\Delta h + a'(\cos\alpha)_{T_r} + b(\cos\alpha)_{T_r} T_r}$$
 (5)

where a' and b = fitting parameters that can be estimated from the work of Dorsey (1940) and Haar et al. (1984) to be a' = $0 \cdot 11766 \text{ N} \cdot \text{m}^{-1}$ and $b = -0.0001535 \text{ N} \cdot \text{m}^{-1}\text{K}^{-1}$; α = soilwater contact angle; and Δh = enthalpy of immersion per unit area, which can be determined by experimental measurements or by using the differential enthalpy of adsorption of the vapor.

Grant and Salehzadeh's (1996) study, which was used as the basis of the formulations for temperature-dependent matric suction in this study, did not consider the effect of temperature on the enthalpy of immersion. However, previous studies like Watson (1943) demonstrated that temperature can affect the enthalpy of immersion as well. In this study, we used the following equation developed by

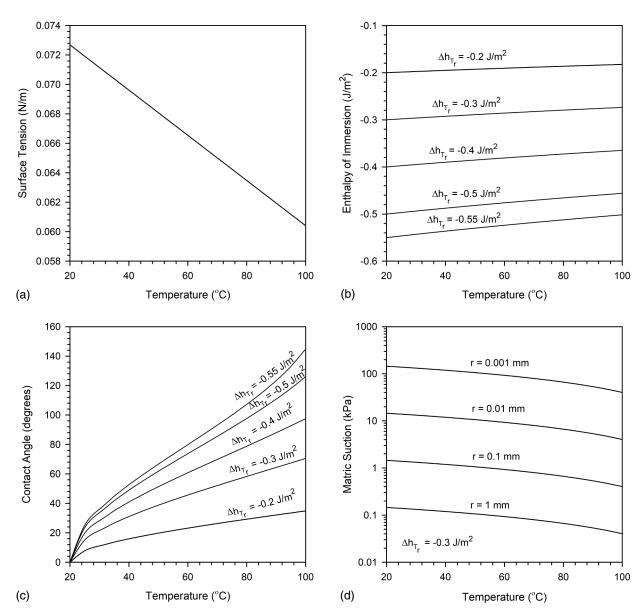
Watson (1943) to account for the reduction of enthalpy with increasing temperature:

$$\Delta h = \Delta h_{T_r} \left(\frac{1 - T_r}{1 - T} \right)^{0.38} \tag{6}$$

where Δh_{T_r} = enthalpy of immersion per unit area at the reference temperature. Further discussion regarding the enthalpy of immersion is presented in the Appendix.

The temperature-dependent soil—water contact angle is given as follows (Grant and Salehzadeh 1996):

$$\cos \alpha = \frac{-\Delta h + TC_1}{a' + bT} \tag{7}$$


where C_1 = constant that can be determined as follows (Grant and Salehzadeh 1996):

$$C_1 = \frac{\Delta h_{T_r} + a'(\cos\alpha)_{T_r} + b(\cos\alpha)_{T_r} T_r}{T_r}$$
 (8)

Considering the Young-Laplace equation, matric suction (or capillary pressure) is a function of surface tension and contact angle at a given pore size. These parameters, which control matric suction, are sensitive to temperature. Fig. 1 depicts temperature effects on surface tension, enthalpy of immersion, contact angle, and matric suction at various pore sizes. As shown in Fig. 1(a), surface tension decreases with an increase in temperature. This could be due to a reduction in attractive forces because of an increase in molecular thermal sensitivity (e.g., Gardner 1955; Grant and Bachmann 2002). Fig 1(b) depicts the variation of enthalpy of immersion with temperature for various values of enthalpy of immersion at reference temperature (see typical enthalpy values for different minerals in Table 5). The temperature-dependent contact angles were calculated for different enthalpy values and are shown in Fig. 1(c). Based on the proposed model, the enthalpy of immersion [Fig. 1(b)] and the contact angle [Fig. 1(c)] increase with temperature. Soils with higher contact angle and enthalpy of immersion are more sensitive to temperature. The predicted trends of contact angle and enthalpy of immersion shown in Fig. 1 are consistent with the existing experimental data in the literature (e.g., Watson 1943; Bachmann et al. 2002; Grant and Bachmann 2002). Fig. 1(d) illustrates the variation in matric suction with temperature for different pore sizes. Typically, a pore size of 0.10 mm represents fine sand; 0.02 mm represents silt, and 0.0015 mm represents clay (Nimmo 2004). For example, at r = 0.02 mm, the matric suction decreases by approximately 18%, 36%, 54%, and 72% when soil temperature increases incrementally from 20°C to 40°C, 60°C, 80°C, and 100°C, respectively. These results show the importance of considering temperature effects on the surface tension, contact angle, and enthalpy of immersion. The predicted thermal effects are consistent with the trends reported from laboratory tests (Watson 1943; She and Sleep 1998; Bachmann et al. 2002) but are commonly ignored in the majority of existing temperature-dependent analytical and numerical simulations.

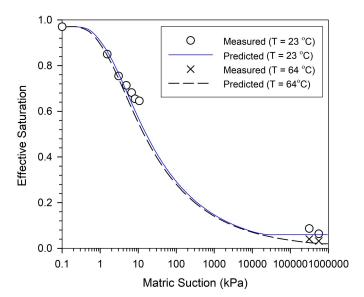
Temperature-Dependent Effective Saturation

In this study, we used SWRC to characterize the effective saturation. Following work by Grant and Salehzadeh (1996), all temperature-dependent SWRC formulations are developed as a function of matric suction at the reference temperature. Accordingly, Eq. (5) was rearranged to obtain matric suction at the reference temperature and was incorporated into the SWRC model

Fig. 1. Temperature effects on (a) surface tension; (b) enthalpy of immersion with different values at the reference temperature; (c) contact angle at different values of enthalpy of immersion at the reference temperature; and (d) matric suction for various pore sizes.

proposed by van Genuchten (1980). The temperature-dependent effective saturation can be obtained using the temperature-dependent extension of the van Genuchten SWRC model as follows (Vahedifard et al. 2018b):

$$S_e = \left\{ 1 + \left[\alpha_{VG} \psi \left(\frac{\beta_{T_r} + T_r}{\beta + T} \right) \right]^{n_{VG}} \right\}^{-m_{VG}} \tag{9}$$


where α_{VG} = fitting parameter inversely related to the air-entry suction (1/kPa); n_{VG} = pore-size distribution fitting parameter; and m_{VG} = fitting parameter representing the overall geometry of SWRC, assumed to be equal to $1-1/n_{VG}$. A key feature of Eq. (9) is that the formulation only requires the SWRC fitting parameters (α_{VG} and n_{VG}) to be defined at the reference (ambient) temperature, with Δh_{T_r} being the only additional parameter needed to account for the effect of temperature.

Vahedifard et al. (2018b) employed similar formulations for matric suction and effective saturation to develop temperature-dependent SWRC models. They validated proposed formulations

versus three laboratory tests on sand, silt, and clay at different temperatures. To avoid redundancy and keep the focus of this study on shear modulus, we do not repeat the entire validation results and related discussion for matric suction and SWRC in this paper. For completeness, and using the data presented in Table 1, Fig. 2 shows the predicted effective saturation from the van Genuchten SWRC model versus measured data for Bonny silt reported by Alsherif and McCartney (2014, 2015) at temperatures of 23°C and 64°C. Results from the proposed formulation, in general, show

Table 1. SWRC parameters used for calculating temperature-dependent effective saturation

Soil type	$\Delta h_{T_r} (\text{J} \cdot \text{m}^{-2})$	T_r (K)	$\alpha_{VG}~(\mathrm{kPa^{-1}})$	n_{VG} (-)
Bonny silt	-0.516	298.15	0.330	1.61
Bourke silt	-0.516	298.15	0.021	1.54
Completely	-0.516	298.15	0.023	1.46
decomposed tuff				

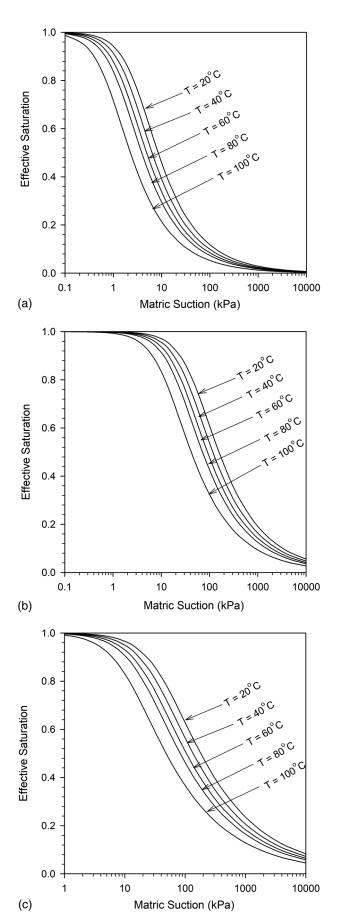


Fig. 2. Comparison of predicted versus measured effective saturation for Bonny silt at T = 23°C and 64°C. (Data from Alsherif and McCartney 2015.)

good agreement with the measured effective saturation at different temperatures. Interested readers are referred to Vahedifard et al. (2018b) for further details regarding validation of the matric suction and effective saturation formulations.

To demonstrate the effect of temperature, the extended van Genuchten SWRC model was used to study the temperature dependency of effective saturation for three silts: Bonny silt (Alsherif and McCartney 2015), Bourke silt (Uchaipichat and Khalili 2009), and a completely decomposed tuff classified as silt (Zhou et al. 2015). Table 1 shows the SWRC parameters used for the determination of temperature-dependent effective saturation for these silts. The SWRC fitting parameters at ambient temperature were obtained using the measured SWRC data reported by Alsherif and McCartney (2015), Uchaipichat and Khalili (2009), and Zhou et al. (2015). The parameter Δh_{T_r} was assumed to be the same for all three silts and was taken from the value reported by Grant and Salehzadeh (1996) for a comparable silty soil.

Fig. 3 depicts the changes in effective saturation at various temperatures ranging from 20°C to 100°C for the three silts. For comparison purposes, the temperature-induced changes in effective saturation at a matric suction of 150 kPa were examined. For Bonny silt, the effective saturation decreased by approximately 16%, 28%, 38%, and 55% when the temperature increased from 20°C to 40°C, 60°C, 80°C, and 100°C, respectively. For the same temperatures, the decreases in effective saturation were approximately 13%, 23%, 32%, and 49% for Bourke silt and 11%, 20%, 28%, and 43% for completely decomposed tuff. These decreases in effective saturation could be due to thermal effects on surface tension, contact angle, and enthalpy (Vahedifard et al. 2018b). Furthermore, the results for all silts suggest that increasing temperature leads to a smaller air-entry suction. This finding could contribute to more representative simulations of unsaturated soils under elevated temperatures. As mentioned previously, the proposed formulations only need the SWRC parameter representing the air entry suction at the reference temperature. Employing temperature-dependent formulations for the contact angle and enthalpy of immersion captures the impact of elevated temperature on reducing the air entry suction (Vahedifard et al. 2019).

Fig. 3. Effective saturation versus matric suction at different soil temperatures using the extended van Genuchten SWRC model: (a) Bonny silt; (b) Bourke silt; and (c) completely decomposed tuff.

Closed-Form Equation for Temperature-Dependent Shear Modulus

Using S_e obtained from the extended van Genuchten SWRC model and by substituting Eqs. (4), (5), and (9) into Eq. (3), one can obtain the following closed-form model for the temperature-dependent shear modulus of unsaturated soils:

$$G = Af(e)P_{a}$$

$$\times \left\{ \frac{p_{n} + \left\{ \left\{ 1 + \left[\alpha_{VG} \psi \left(\frac{\beta_{T_{r}} + T_{r}}{\beta + T} \right) \right]^{n_{VG}} \right\}^{-(1 - 1/n_{VG})} \right\}^{\kappa_{T}} \psi \left(\frac{\beta_{T_{r}} + T_{r}}{\beta + T} \right)}{P_{a}} \right\}^{n_{VG}} \right\}^{n_{VG}}$$

$$(10)$$

where κ_T = parameter that controls the impact of effective saturation on the effective stress and depends on temperature as follows:

$$\kappa_T = \kappa_{ref} + \frac{T - T_r}{T_r} e^{(\kappa_{ref} m)}$$
 (11)

where m = fitting parameter equivalent to m_{VG} . For ambient temperature conditions, κ_T degenerates to κ_{ref} , but the value of κ_T increases as temperature increases. Physically, Eq. (10) captures the changes in effective saturation caused by variation of temperature. Heat-induced reductions in water content can cause changes in confinement and, therefore, in the stiffness of the soil mass. At a given matric suction, increases in confinement cause sharper reductions in water content with temperature. Similar to the proposed temperature-dependent SWRC, all the fitting parameters (α_{VG} , n_{VG} , n, A, κ_{ref}) used in Eqs. (10) and (11) are those determined at the reference (ambient) temperature, and Δh_{T_r} is the only additional parameter needed to account for the effect of temperature. This feature can facilitate the use of the proposed model, because it does not require many additional parameters.

The proposed formulations for temperature-dependent suction and effective saturation can be used to extend other existing models for small-strain shear modulus (e.g., Sawangsuriya et al. 2009; Dong et al. 2016) to temperature-dependent conditions. The model presented in this study does not consider possible effects of temperature on net normal stress, which may occur due to the impact of temperature on pore air pressure. Further, hydraulic hysteresis was not modeled but can be considered by following the approach of Khosravi and McCartney (2012). They incorporated the ratio of the mean apparent yield stress to the current mean effective stress [equal to the overconsolidation ratio (OCR) for saturated or dry soils] into the model for the small-strain shear modulus in order to consider suction hardening during hydraulic hysteresis.

In general, capillarity and adsorption are two main soil-water retention mechanisms (Lu 2016), which also control the soil stiffness (Lu 2018). The model proposed in this study was developed based upon capillarity being the dominant soil-water retention mechanism. This assumption is legitimate for most soil types including silts, which are the main focus of this study. For clays, it is prudent to consider both capillarity and adsorption mechanisms in the development of a shear modulus model. Following this rationale, Lu (2018) proposed a generalized model for Young's modulus of unsaturated soils at ambient temperature explicitly considering capillarity and adsorption mechanisms. Temperature can affect adsorption and capillarity differently, an aspect that needs to be taken into consideration when developing a temperaturedependent model of small-strain shear modulus that includes both mechanisms. This can be done by following the approach outlined Vahedifard et al. (2018b, 2019) for the development of temperature-dependent SWRC and effective stress models, respectively.

Temperature may affect small-strain shear modulus through inducing changes in parameters other than matric suction and effective saturation as well. However, capturing all relevant temperature-induced mechanisms is certainly not feasible using a closed-form model (as intended in this study) and warrants the use of more complex numerical models. Even with such numerical models and despite major advances in the constitutive modeling of coupled processes in unsaturated soils, it is still hard to argue that there is a single constitutive model in the literature than can capture all of the relevant temperature effects. Nevertheless, the proposed model provides a simple yet reliable tool to account for the effect of temperature on the small-strain shear modulus of unsaturated soils. To the best of the authors' knowledge, this work is the first study presenting such a closed-form model. Although major elements used in the development of the proposed model (i.e., temperature-dependent matric suction, SWRC) were already part of the literature, there had been no such attempt in the literature to make use of all these elements to develop an analytical model to capture the effect of temperature on the shear modulus of unsaturated soils in the form and details presented in this study.

Validation Against Experimentally Measured data

The accuracy of the proposed model was validated by comparing the predicted values with experimentally measured results obtained from (1) laboratory tests performed in this study on Bonny silt using a modified triaxial apparatus with bender elements, and (2) laboratory tests on silts reported by two independent studies in the literature. For each set of data, the validation process involved two steps: (1) calibrating the model at ambient temperature to determine the fitting parameters $(n, A, \text{ and } \kappa_{ref})$ leading to minimum error using the least square optimization, and (2) using the calibrated model to predict the shear modulus at elevated temperatures and comparing against results from the laboratory tests.

Comparison with Laboratory Measurements Using Bender Elements

A set of laboratory tests was performed to measure the small strain shear modulus of Bonny silt at different suctions and temperatures. The tests were carried out using a modified Bishop-Wesley (Global Digital Systems, Hook, UK) triaxial apparatus with bender elements. The apparatus was set up to measure shear wave velocities at different matric suctions for a specific temperature and net normal stress. Fig. 4 shows the schematic diagram of the complete test setup. Three individual systems were included in the test setup to measure temperature, matric suction, and shear wave velocities. First, a pressure panel was used to apply confining, air, and water pressures to the specimen. Second, a temperature controller and circulating pump were used to control and mix the water in the cell to achieve the desired specimen temperature. In addition, a thermocouple sensor was installed to measure the temperature in the cell. Third, bender elements were embedded in the top and bottom caps to send and receive wave signals and, therefore, measure shear wave velocities.

Table 2 displays the index properties of the Bonny silt. The specimens used in the tests were prepared with a thickness of 25 mm and a diameter of 76 mm. The specimens were compacted under a water content of 10.5% (dry side of optimum) with a void ratio of 0.68 (Alsherif and McCartney 2015). The compacted specimens were placed in the cell, and saturation was achieved by

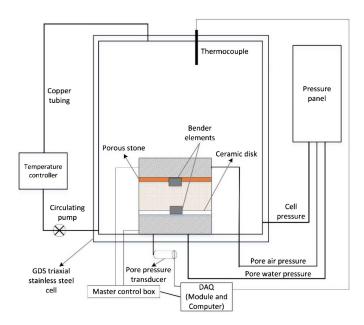
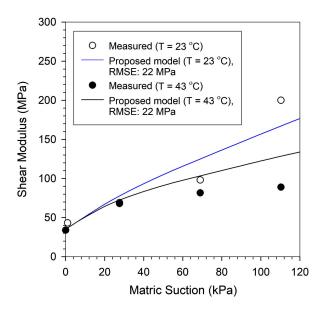


Fig. 4. Schematic diagram showing the experimental setup.

Table 2. Index and compaction properties of Bonny silt

Property (unit)	Magnitude
Liquid limit (%)	25
Plastic limit (%)	21
Specific gravity	2.65
Maximum dry unit weight (kN/m ³)	16.3
Initial void ratio	0.68
Optimum moisture content (%)	13.6

Source: Data from Alsherif and McCartney (2015).


reaching a minimum B-value of 0.95 at regular intervals of confining and pore water pressures. The axis-translation technique was used to apply matric suction to the specimens. The air pressure on the top of the specimens was maintained constant, and the water pressure at the bottom was reduced to apply different matric suctions in the specimens. The first matric suction was applied after making sure there was no change in water levels in the pressure panel for at least 12 h. The matric suction was applied in intervals from zero to 110 kPa at two constant temperatures, 23°C and 43°C. The next step of matric suction was applied after the specimens reached a steady or equilibrium state. For both tests, the specimens were confined at a constant net normal stress of approximately 50 kPa. To assess the variability of the results, multiple wave velocity measurements were made at a given suction after reaching suction equilibrium. The measurements were found to be identical, implying zero variability. The suction was increased to the next level only after the wave velocities remained constant for at least 12 h.

The measured shear wave velocities at different matric suctions and temperatures obtained from the experimental tests were used to determine the small-strain shear modulus as follows:

$$G = \rho V^2 \tag{12}$$

where ρ = total density of the soil; and V = shear wave velocity of the soil.

Fig. 5 depicts the measured and predicted small-strain shear modulus versus matric suction at T = 23°C and 43°C. The experimentally measured data demonstrate that the shear wave

Fig. 5. Measured and proposed variation in small strain shear modulus with matric suction at T = 23°C (with calibrated model values) and 43°C (with predicted model values).

velocities and, therefore, the small-strain shear modulus were affected by matric suction and temperature. At a given temperature, the shear modulus increased with increased matric suction. At a given matric suction, the shear modulus decreased with an increase in temperature. The effect of temperature on shear modulus was more pronounced at higher matric suctions. For example, at a matric suction of 40 kPa, the reduction of shear modulus was approximately 16% with an increase in temperature from 23°C to 43°C. At a higher matric suction of 100 kPa, the reduction of shear modulus was approximately 39% with an increase in temperature from 23°C to 43°C. This could have been due to variation in effective stress and, in turn, stiffness at a higher temperature, depending on the range of matric suction. At low matric suctions, the trend of effective stress with temperature was similar to the one shown in Vahedifard et al. (2019). For the proposed model, the input parameters A = 1000, n = 2.1, $\alpha_{VG} = 0.05 \text{ kPa}^{-1}$, $n_{VG} = 2.2$, $\kappa_{ref} = 0.35$, and $\Delta h_{T_s} = -0.516 \text{ J} \cdot \text{m}^{-2}$ were used to calibrate and predict the shear modulus at ambient and elevated temperatures. The root-mean-square error (RMSE) values of the model with respect to the measured data were 22 and 22 MPa at 23°C and 43°C, respectively. As can be seen, the model showed a reasonable match with the measured values for the elevated temperature case (T = 43°C). The only exception for which the model showed a relatively high overestimation was at a matric suction of 75 kPa and T = 23°C. The large difference may have been due to the measured shear modulus being somehow lower than expected at this point, which may have been due to testing issues and limitations.

Comparison with Experimental Data Reported in the Literature

There is no experimental data in the literature directly reporting the small-strain shear modulus of unsaturated soils under elevated temperatures. Nevertheless, data from tests at higher shear strain amplitudes available in the literature were used to extrapolate trends in the small-strain shear modulus for further validation of the proposed model. For this purpose, we used results from suction-controlled temperature-controlled triaxial tests on Bourke silt

Table 3. Experimental tests from the literature used for calibration and validation

Soil type	Reference	Net normal stress (kPa)	Temperature (°C)	Suction (kPa)
Bourke silt	Uchaipichat and Khalili (2009)	150	25	100 300
			40	100 300
			60	100 300
Completely decomposed	Zhou et al. (2015)	200	20	1 150
tuff			60	1 150

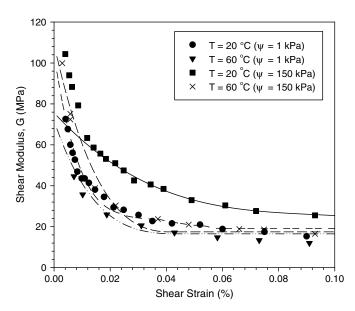
(reported by Uchaipichat and Khalili 2009) and completely decomposed tuff (reported by Zhou et al. 2015). Following the procedure explained subsequently, we inferred the shear modulus of the tested soils at a shear strain of 0.001% and used it for validation against predictions of the proposed model. Table 3 presents a summary of the experimental testing matrix used for calibration and validation purposes in this section.

For the results presented by Uchaipichat and Khalili (2009), the finite-strain Young's modulus at an axial strain of 1% was obtained from the reported deviatoric stress—axial strain curve for each tested combination of net normal stress, temperature, and suction. The corresponding finite-strain shear modulus was calculated using a Poisson's ratio of 0.25 (e.g., Alsherif and McCartney 2015) and was then scaled to 0.001% strain using the scaling equation proposed by Dong et al. (2018) as follows:

$$\frac{G^*}{G} = \frac{1}{1 + \left[\frac{\gamma}{\alpha_{VG}(p_n + S_e \psi)\gamma_{ref}}\right]}$$
(13)

where G^* = finite-strain modulus; and $\gamma_{\rm ref}$ = reference shear strain. The reference shear strain can be defined as follows (Dong et al. 2018):

$$\gamma_{\rm ref} = \eta \theta^{\xi} \tag{14}$$


where η = multiplier parameter; ξ = power factor for water content; and θ = volumetric water content, which is related to S_e as follows:

$$S_e = \frac{\theta - \theta_r}{\theta_s - \theta_r} \tag{15}$$

where θ_s and θ_r = saturated and residual volumetric water contents, respectively. For the data reported by Uchaipichat and Khalili (2009), the following parameters were used to scale the measured finite-strain shear moduli to small-strain conditions: $\theta_r = 0.1258$, $\theta_s = 0.55$, $\gamma = 1\%$, $\eta = 0.0027$, and $\xi = 1.857$.

Zhou et al. (2015) reported the measured secant shear modulus at several shear strains ranging from 0.003% to 1%. Using regression analysis to find the best nonlinear fit passing through the data, we employed the regression equation to infer the shear modulus at 0.001% strain, $G_{0.001}$. Fig. 6 shows the measured shear moduli versus shear strain for the tested silt reported by Zhou et al. (2015) and best-fit curves through the measured data.

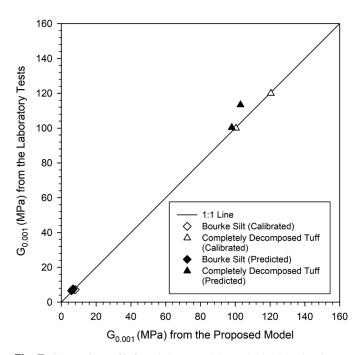

For calibration, the SWRC parameters given in Table 1 were used in the model. Table 4 summarizes the calibrated fitting parameters of the proposed shear modulus model at ambient temperature

Fig. 6. Measured shear moduli versus shear strain for completely decomposed tuff reported by Zhou et al. (2015) and best fit curves through the measured data.

Table 4. Calibrated fitting parameters for the proposed shear modulus model at ambient temperature

Soil type	n	A	κ_{ref}
Bourke silt	0.35	40	1.3
Completely decomposed tuff	0.95	220	0.5

Fig. 7. Comparison of inferred shear modulus at 0.001% strain ($G_{0.001}$) with calibrated shear modulus at ambient temperature and predicted shear modulus at elevated temperatures.

for the two silts. Fig. 7 provides a comparison between the inferred shear moduli at 0.001% strain $(G_{0.001})$ against calibrated results at ambient temperature and predicted results at elevated temperatures. For both Bourke silt and decomposed tuff, the results of the

proposed model were in good agreement with the experimental data. More tests are needed at higher matric suctions in order to better understand and model the shear stiffness of unsaturated soils at high matric suctions under elevated temperatures.

Conclusions

Capturing the temperature dependency of small-strain shear modulus can be an important aspect of modeling the behavior of unsaturated soils subjected to varying temperatures. This study presented a closed-form model to determine the temperature-dependent small-strain shear modulus of unsaturated soils, with an emphasis on silts. An effective stress-based general functional form was proposed, and the temperature dependency of the model was considered by incorporating temperature-dependent functions for matric suction and effective saturation. The effective saturation was presented by analytical expressions in which the effects of temperature were considered on the surface tension, soil-water contact angle, and adsorption by the enthalpy of immersion per unit area. The proposed formulations were used to extend the SWRC model originally developed by van Genuchten (1980), which was then used to develop the equations for temperature-dependent shear modulus of unsaturated soils at small strains. Furthermore, a series of experimental tests were conducted to measure the small-strain shear modulus of unsaturated Bonny silts at elevated temperatures. The proposed formulation was compared and validated against experimental data from the current study and two other independent studies reported in the literature. The results of the proposed model showed a good match with the measured data.

The model presented in this study contributes to an improved understanding of the effect of temperature on the mechanical response of unsaturated soils. Experimental measurements of elastic moduli of unsaturated soils under different temperatures require time-consuming tests and certain expertise. Hence, empirical or semiempirical models such as the one developed in this study can facilitate the implementation of temperature-dependent analyses in geotechnical engineering practice by providing a reasonable estimation of the small-strain shear modulus of unsaturated soils at elevated temperatures. The proposed formulation offers a generalized model and involves constitutive relationships that are needed in a coupled heat transfer and water flow model. As the degree of saturation, suction, and temperature change during a transient flow process, the model should still provide accurate predictions. Thus, the model can be incorporated as a constitutive relationship into both steady-state and transient flow and heat analyses. This study is the first attempt in the literature to experimentally measure and predict the small-strain shear modulus of unsaturated soils at elevated temperatures. For future studies, more experimental tests are recommended in order to examine and further validate the proposed model for different soil types and wider ranges of suction and temperature.

Appendix. Enthalpy of Immersion at Reference Temperature

The enthalpy of immersion at the reference temperature (Δh_{T_r}) is a key input parameter in the proposed formulations and is defined by the International Union of Pure and Applied Chemistry (IUPAC) as the difference between the enthalpy of a solid completely immersed in a wetting fluid and that of the solid and the liquid taken separately (Grant and Salehzadeh 1996). At a given partial pressure, the magnitude of enthalpy of immersion of soil particles must be specified in contact with vacuum or liquid vapor. According to Everett (1972), the measurements of the enthalpy of wetting of a solid

Table 5. Enthalpies of immersion per unit area of different materials reported in the literature

	T of	n Λh	
Material	(°C)	(mJ/m^2)	Reference
Silica	35	-195	Khalil (1978)
	35	-202	Khalil (1978)
	35	-278	Khalil (1978)
	35	-309	Khalil (1978)
Quartz	31	-505	Partyka et al. (1979)
	31	-510	Partyka et al. (1979)
	25	-120	Whalen (1961)
	25	-120	Whalen (1961)
Anatase (untreated)	25	-510	Harkins and Jura (1944)
Anatase	25	-630	Harkins and Jura (1944)
(coated with Al ₂ O ₃)			
Na-bentonite	20	-400	Kahr et al. (1990)
Ca-bentonite	20	-750	Kahr et al. (1990)
Plano silt loam	25	-516	Grant and Salehzadeh (1996)
Elkmound sandy	25	-285	Grant and Salehzadeh (1996)
loam			
Kaolinite	25	-358	Brooks (1960)
Bentonite	25	-575	Zettlemoyer et al. (1955)

equilibrated with varying relative pressures of the vapor of a pure wetting liquid may be used to derive the differential enthalpy of adsorption. Jaroniec and Madey (1988) showed that the enthalpy of immersion is proportional to the average adsorption potential and can be calculated using the parameters characterizing the energetic heterogeneity of microporous solids. Table 5 presents Δh_{T_r} of different materials reported in the literature.

The enthalpy of immersion at the reference temperature can be determined based on experimentally measured variables. For example, as per Harkins and Jura (1944), Δh_{T_r} can be calculated as follows:

$$\Delta h_{T_r} = -[\sigma(\cos \alpha)]_{T_r} \tag{16}$$

where σ = air–water surface tension at T_r . There are several studies in the literature that experimentally measure σ and $\cos \alpha$ (e.g., She and Sleep 1998; Bachmann et al. 2002). Furthermore, previous studies have proposed several empirical models for Δh_{T_r} (e.g., Stoeckli and Kraehenbuehl 1981; Watson 1943; Kahr et al. 1990). Kahr et al. (1990) proposed the following expression for the enthalpy of immersion of sodium and calcium bentonites as a function of initial total water content. (θ) at a reference temperature of 293 K:

$$\Delta h_{T_r} = A \exp(-B\theta - C\theta^2) \tag{17}$$

where A, B, and C = fitting parameters.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This material is based upon work supported in part by the National Science Foundation under Grant No. CMMI-1634748. Any opinions, findings, and conclusions or recommendations expressed

in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

- Alsherif, N. A., and J. S. McCartney. 2014. "Effective stress in unsaturated silt at low degrees of saturation." *Vadose Zone J.* 13 (5): 1–13. https://doi.org/10.2136/vzj2013.06.0109.
- Alsherif, N. A., and J. S. McCartney. 2015. "Thermal behaviour of unsaturated silt at high suction magnitudes." *Géotechnique* 65 (9): 703–716. https://doi.org/10.1680/geot.14.P.049.
- Atkinson, J. H. 2000. "Non-linear soil stiffness in routine design." *Géotechnique* 50 (5): 487–508. https://doi.org/10.1680/geot.2000.50.5.487.
- Atkinson, J. H., and G. Sallfors. 1991. "Experimental determination of soil properties (stres—strain–time)." In Vol. 3 of *Proc. 10th European Conf.: Soil Mechanics*, 915–956. Rotterdam, Netherlands: A.A. Balkema.
- Bachmann, J., R. Horton, S. A. Grant, and R. R. Van der Ploeg. 2002. "Temperature dependence of water retention curves for wettable and water-repellent soils." Soil Sci. Soc. Am. J. 66 (1): 44–52. https://doi.org/10.2136/sssaj2002.4400.
- Başer, T., Y. Dong, A. M. Moradi, N. Lu, K. Smits, S. Ge, D. Tartakovsky, and J. S. McCartney. 2018. "Role of nonequilibrium water vapor diffusion in thermal energy storage systems in the vadose zone." J. Geotech. Geoenviron. Eng. 144 (7): 04018038. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001910.
- Bishop, A. W. 1959. "The principle of effective stress." *Tecnisk Ukeblad* 106 (39): 859–863.
- Bolzon, G., and B. A. Schrefler. 2005. "Thermal effects in partially saturated soils: A constitutive model." *Int. J. Numer. Anal. Methods Geomech.* 29 (9): 861–877. https://doi.org/10.1002/nag.437.
- Brooks, C. S. 1960. "Free energies of immersion for clay minerals in water, ethanol and n-heptane." *J. Phys. Chem.* 64 (5): 532–537. https://doi.org/10.1021/j100834a005.
- Cekerevac, C., and L. Laloui. 2004. "Experimental study of thermal effects on the mechanical behaviour of a clay." *Int. J. Numer. Anal. Methods Geomech.* 28 (3): 209–228. https://doi.org/10.1002/nag.332.
- Cho, G. C., and J. C. Santamarina. 2001. "Unsaturated particulate materials-particle-level studies." J. Geotech. Geoenviron. Eng. 127 (1): 84–96. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:1(84).
- Clayton, C. R. I. 2011. "Stiffness at small strain: Research and practice." *Géotechnique* 61 (1): 5–37. https://doi.org/10.1680/geot.2011.61.1.5.
- Coccia, C. J. R., A. Casady, and J. S. McCartney. 2013. "Physical modeling of the mechanical improvement of unsaturated silt through heating." In *Proc.*, 1st Pan-American Conf. on Unsaturated Soils, 141–146. London: Cartagena de Indias. Taylor and Francis Group.
- Costa, Y. D., J. C. Cintra, and J. G. Zornberg. 2003. "Influence of matric suction on the results of plate load tests performed on a lateritic soil deposit." *Geotech. Test. J.* 26 (2): 1–9. https://doi.org/10.1520 /GTJ11326J.
- Dong, Y., N. Lu, and J. S. McCartney. 2016. "A unified model for small-strain shear modulus of variably saturated soil." J. Geotech. Geoenviron. Eng. 142 (9): 04016039. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001506.
- Dong, Y., N. Lu, and J. S. McCartney. 2018. "Scaling shear modulus from small to finite strain for variably saturated soils." *J. Geotech. Geoen*viron. Eng. 144 (2): 04017110. https://doi.org/10.1061/(ASCE)GT .1943-5606.0001819.
- Dorsey, N. E. 1940. *Properties of ordinary water substance*. New York: Reinhold.
- Dumont, E. R. 2010. "Bone density and the lightweight skeletons of birds." Proc. Roy. Soc. B Biol. Sci. 277 (1691): 2193–2198. https://doi.org/10.1098/rspb.2010.0117.
- Edil, T. B., and S. E. Motan. 1979. "Soil-water potential and resilient behavior of subgrade soils." *Transp. Res. Rec.* 705: 54–63.
- Edil, T. B., S. E. Motan, and F. X. Toha. 1981. "Mechanical behavior and testing methods of unsaturated soils." In *Laboratory shear strength of soil, ASTM STP 740*. West Conshohoken, PA: ASTM.

- Everett, D. H. 1972. "Definitions terminology and symbols in colloid and surface chemistry." *Pure Appl. Chem.* 31 (4): 577–638. https://doi.org /10.1351/pac197231040577.
- François, B., and S. Ettahiri. 2012. "Role of the soil mineralogy on the temperature dependence of the water retention curve." In *Unsaturated* soils: Research and applications, 173–178. Berlin: Springer.
- Fredlund, D. G., A. T. Bergan, and E. K. Sauer. 1975. "Deformation characterization of subgrade soils for highways and runways in northern environments." *Can. Geotech. J.* 12 (2): 213–223. https://doi.org/10.1139/t75-026.
- Gardner, R. 1955. "Relation of temperature to moisture tension of soil." Soil Sci. 79 (4): 257–266.
- Gens, A., and S. Olivella. 2001. "Clay barriers in radioactive waste disposal." Revue française de génie civil 5 (6): 845–856. https://doi.org/10.1080/12795119.2001.9692329.
- Ghayoomi, M., J. S. McCartney, and H. Y. Ko. 2013. "Empirical methodology to estimate seismically induced settlement of partially saturated sand." *J. Geotech. Geoenviron. Eng.* 139 (3): 367–376. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000774.
- Grant, S. A., and J. Bachmann. 2002. "Effect of temperature on capillary pressure." *Geophys. Monograph-Am. Geophys. Union* 129: 199–212. https://doi.org/10.1029/129GM18.
- Grant, S. A., and A. Salehzadeh. 1996. "Calculation of temperature effects on wetting coefficients of porous solids and their capillary pressure functions." Water Resour. Res. 32 (2): 261–270. https://doi.org/10 .1029/95WR02915.
- Haar, L., J. S. Gallagher, and G. S. Kell. 1984. NBS/NRC steam table. New York: Hemisphere Publishing.
- Hardin, B. O. 1978. "The nature of stress-strain behavior of soils." In Vol. 1 of Proc., Geotechnical Engineering Division Specialty Conf. on Earthquake Engineering and Soil Dynamics, 1–90. New York: ASCE.
- Hardin, B. O., and W. Black. 1969. "Closure on vibration modulus of normally consolidated clay." J. Soil Mech. Found. Div. 95 (6): 1531–1537.
- Hardin, B. O., and F. E. Richart Jr. 1963. "Elastic wave velocities in granular soils." *J. Soil Mech. Found. Div.* 89 (1): 33–65.
- Harkins, W. D., and G. Jura. 1944. "Surfaces of solids. XII: An absolute method for the determination of the area of a finely divided crystalline solid." *J. Am. Chem. Soc.* 66 (8): 1362–1366. https://doi.org/10.1021 /ja01236a047.
- Inci, G., N. Yesiller, and T. Kagawa. 2003. "Experimental investigation of dynamic response of compacted clayey soils." *Geotech. Test. J.* 26 (2): 125–141. https://doi.org/10.1520/GTJ11328J.
- Jaroniec, M., and R. Madey. 1988. "Enthalpy of immersion of a microporous solid." *J. Phys. Chem.* 92 (13): 3986–3988. https://doi.org/10.1021/j100324a059.
- Kahr, G., F. Kraehenbuehl, H. F. Stoeckli, and M. Müller-Vonmoos. 1990. "Study of the water-bentonite system by vapour adsorption, immersion calorimetry and X-ray techniques. II: Heats of immersion, swelling pressures and thermodynamic properties." *Clay Miner*. 25 (4): 499–506. https://doi.org/10.1180/claymin.1990.025.4.08.
- Khalil, A. M. 1978. "Thermal treatment of nonporous silica. 1: Chemistry of the surface and heats of immersion in water." *J. Colloid Interface Sci.* 66 (3): 509–515. https://doi.org/10.1016/0021-9797(78)90071-1.
- Khalili, N., F. Geiser, and G. E. Blight. 2004. "Effective stress in unsaturated soils: Review with new evidence." *Int. J. Geomech.* 4 (2): 115–126. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:2(115).
- Khosravi, A., and J. S. McCartney. 2009. "Impact of stress state on the dynamic shear moduli of unsaturated, compacted soils." In *Proc.*, 4th Asia Pacific Conf. Unsaturated Soils, edited by O. Buzzi, S. Fityus, and D. Sheng, 1–6. Newcastle, Australia: Construction Research Council Press/A.A.Balkema.
- Khosravi, A., and J. S. McCartney. 2012. "Impact of hydraulic hysteresis on the small-strain shear modulus of low plasticity soils." *J. Geotech. Geoenviron. Eng.* 138 (11): 1326–1333. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000713.
- Khosravi, A., S. Salam, J. S. McCartney, and A. Dadashi. 2016. "Suction-induced hardening effects on the shear modulus of unsaturated silt." *Int. J. Geomech.* 16 (6): D4016007. https://doi.org/10.1061/(ASCE)GM .1943-5622.0000614.

- Khoury, N. N., and M. M. Zaman. 2004. "Correlation between resilient modulus, moisture variation, soil suction for subgrade soils." *Transp. Res. Rec.* 1874 (1): 99–107. https://doi.org/10.3141/1874-11.
- Kramer, S. L. 1996. Geotechnical earthquake engineering. Prentice-Hall international series in civil engineering and engineering mechanics. Upper Saddle River, NJ: Prentice-Hall.
- Laloui, L., and C. Cekerevac. 2008. "Numerical simulation of the non-isothermal mechanical behaviour of soils." *Comput. Geotech.* 35 (5): 729–745. https://doi.org/10.1016/j.compgeo.2007.11.007.
- Laloui, L., and A. Di Donna. 2013. Energy geostructures: Innovation in underground engineering. New York: Wiley.
- Laloui, L., G. Klubertanz, and L. Vulliet. 2003. "Solid-liquid-air coupling in multiphase porous media." *Int. J. Numer. Anal. Methods Geomech.* 27 (3): 183–206. https://doi.org/10.1002/nag.269.
- Likitlersuang, S., S. Teachavorasinskun, C. Surarak, E. Oh, and A. Balasubramaniam. 2013. "Small strain stiffness and stiffness degradation curve of Bangkok clays." Soils Found. 53 (4): 498–509. https://doi.org/10.1016/j.sandf.2013.06.003.
- Loret, B., and N. Khalili. 2002. "An effective stress elastic-plastic model for unsaturated porous media." *Mech. Mater.* 34 (2): 97–116. https://doi .org/10.1016/S0167-6636(01)00092-8.
- Lu, N. 2016. "Generalized soil water retention equation for adsorption and capillarity." J. Geotech. Geoenviron. Eng. 142 (10): 04016051. https:// doi.org/10.1061/(ASCE)GT.1943-5606.0001524.
- Lu, N. 2018. "Generalized elastic modulus equation for unsaturated soil." In Proc. PanAm Unsaturated Soils 2017: Plenary Papers: Second Pan-American Conf. on Unsaturated Soils: Unsaturated Soil Mechanics for Sustainable Geotechnics, Geotechnical Special Publication No. 300, edited by L. R. Hoyos, et al. 32–48. Reston, VA: ASCE. https://doi.org/10.1061/9780784481677.002.
- Lu, N., J. W. Godt, and D. T. Wu. 2010. "A closed-form equation for effective stress in unsaturated soil." Water Resour. Res. 46 (5): W05515. https://doi.org/10.1029/2009WR008646.
- Lu, N., and M. Kaya. 2014. "Power law for elastic moduli of unsaturated soil." J. Geotech. Geoenviron. Eng. 140 (1): 46–56. https://doi.org/10 .1061/(ASCE)GT.1943-5606.0000990.
- Lu, N., and W. J. Likos. 2004. Unsaturated soil mechanics. Hoboken, NJ: Wiley.
- Mair, R. J., R. N. Taylor, and A. Bracegirdle. 1993. "Subsurface settlement profiles above tunnels in clays." *Géotechnique* 43 (2): 315–320. https://doi.org/10.1680/geot.1993.43.2.315.
- Mancuso, C., R. Vassallo, and A. d'Onofrio. 2002. "Small strain behavior of a silty sand in controlled-suction resonant column-torsional shear tests." *Can. Geotech. J.* 39 (1): 22–31. https://doi.org/10.1139/t01 -076.
- McCartney, J. S., N. H. Jafari, T. Hueckel, M. Sanchez, and F. Vahedifard. 2019. "Thermal energy issues in geotechnical engineering." In *Geotechnical fundamentals for addressing new world challenges*, edited by N. Lu and J. K. Mitchell, 275–317. New York: Springer. https://doi.org/10.1007/978-3-030-06249-1_10.
- McCartney, J. S., M. Sánchez, and I. Tomac. 2016. "Energy geotechnics: Advances in subsurface energy recovery, storage, exchange, and waste management." *Comput. Geotech.* 75 (May): 244–256. https://doi.org/10 .1016/j.compgeo.2016.01.002.
- Mendoza, C. E., J. E. Colmenares, and V. E. Merchan. 2005. "Stiffness of an unsaturated compacted clayey soil at very small strains." In *Proc.*, *Int. Symp. on Advanced Experimental Unsaturated Soil Mechanics*, 199–204. London: Taylor & Francis Group.
- Mitchell, J. K., and K. Soga. 2005. Fundamentals of soil behavior. New York: Wiley.
- Ng, C. W. W., Q. Y. Mu, and C. Zhou. 2017. "Effects of soil structure on the shear behaviour of an unsaturated loess at different suctions and temperatures." *Can. Geotech. J.* 54 (2): 270–279. https://doi.org/10.1139/cgj -2016-0272.
- Ng, C. W. W., C. Zhou, and J. Xu. 2016. "Monotonic and cyclic shear stiffness of unsaturated soil at different temperatures." In Proc., 6th Asia-Pacific Conference on Unsaturated Soils: Unsaturated Soil Mechanics from Theory to Practice, 89–101.

- Nimmo, J. R. 2004. "Porosity and pore size distribution." In *Encyclopedia of soils in the environment*, edited by D. Hillel, 295–303. London: Elsevier.
- Nuth, M., and L. Laloui. 2008. "Effective stress concept in unsaturated soils: Clarification and validation of a unified framework." J. Numer. Anal. Methods Geomech. 32 (7): 771–801. https://doi.org/10.1002/nag 645
- Oh, W. T., and S. K. Vanapalli. 2014. "Semi-empirical model for estimating the small-strain shear modulus of unsaturated non-plastic sandy soils." *Geotech. Geol. Eng.* 32 (2): 259–271. https://doi.org/10.1007/s10706 -013-9708-5.
- Oh, W. T., S. K. Vanapalli, and A. J. Puppala. 2009. "Semi-empirical model for the prediction of modulus of elasticity for unsaturated soils." *Can. Geotech. J.* 46 (8): 903–914. https://doi.org/10.1139/T09-030.
- Partyka, S., F. Rouquerol, and J. Rouquerol. 1979. "Calorimetric determination of surface areas: Possibilities of a modified Harkins and Jura procedure." J. Colloid Interface Sci. 68 (1): 21–31. https://doi.org/10.1016/0021-9797(79)90255-8.
- Rampello, S., G. M. B. Viggiani, and A. Amorosi. 1997. "Small-strain stiffness of reconstituted clay compressed along constant triaxial effective stress ratio paths." *Géotechnique* 47 (3): 475–489. https://doi.org/10.1680/geot.1997.47.3.475.
- Robinson, J. D., and F. Vahedifard. 2016. "Weakening mechanisms imposed on California's levees under multiyear extreme drought." *Clim. Change* 137 (1–2): 1–14. https://doi.org/10.1007/s10584-016-1649-6.
- Sawangsuriya, A., T. B. Edil, and P. J. Bosscher. 2005. "Stiffness behavior of an unsaturated pavement subgrade soil." In *Proc., Int. Conf. on Problematic Soils*, 209–217. Famagusta, Cyprus: Eastern Mediterranean University Press.
- Sawangsuriya, A., T. B. Edil, and P. J. Bosscher. 2009. "Modulus-suction-moisture relationship for compacted soils in postcompaction state." J. Geotech. Geoenviron. Eng. 135 (10): 1390–1403. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000108.
- Shahrokhabadi, S., T. C. Cao, and F. Vahedifard. 2020. "Thermo-hydromechanical modeling of unsaturated soils using isogeometric analysis: Model development and application to strain localization simulation." *Int. J. Numer. Anal. Methods Geomech.* 44 (2): 261–292. https://doi.org/10.1002/nag.3015.
- She, H. Y., and B. E. Sleep. 1998. "The effect of temperature on capillary pressure-saturation relationships for air-water and perchloroethylenewater systems." Water Resour. Res. 34 (10): 2587–2597. https://doi.org/10.1029/98WR01199.
- Stoeckli, H. F., and F. Kraehenbuehl. 1981. "The enthalpies of immersion of active carbons in relation to the Dubinin theory for the volume filling of micropores." *Carbon* 19 (5): 353–356. https://doi.org/10.1016/0008 -6223(81)90059-2.
- Tanaka, K., K. Okamoto, H. Inui, Y. Minonishi, M. Yamaguchi, and M. Koiwa. 1996. "Elastic constants and their temperature dependence for the intermetallic compound Ti₃Al." *Philos. Mag. A* 73 (5): 1475–1488. https://doi.org/10.1080/01418619608245145.
- Thomas, H. R., and Y. He. 1997. "A coupled heat–moisture transfer theory for deformable unsaturated soil and its algorithmic implementation." *Int. J. Numer. Meth. Eng.* 40 (18): 3421–3441. https://doi.org/10.1002/(SICI)1097-0207(19970930)40:18<3421::AID-NME220>3.0 .CO;2-C.
- Thota, S. K., T. C. Cao, F. Vahedifard, and E. Ghazanfari. 2019. "Stability analysis of unsaturated slopes under nonisothermal conditions." In Proc., 8th Int. Conf. on Case Histories in Geotechnical Engineering: Geo-Congress 2019, Geotechnical Special Publication No. 310, 844–852. Reston, VA: ASCE. https://doi.org/10.1061/9780784482124 085
- Uchaipichat, A. 2005. "Experimental investigation and constitutive modelling of thermo-hydro-mechanical coupling in unsaturated soils." Ph.D. thesis, School of Civil and Environmental Engineering, Univ. of New South Wales.
- Uchaipichat, A., and N. Khalili. 2009. "Experimental investigation of thermo-hydro-mechanical behaviour of an unsaturated silt." *Géotechni-que* 59 (4): 339–353. https://doi.org/10.1680/geot.2009.59.4.339.

- Vahedifard, F., A. AghaKouchak, E. Ragno, S. Shahrokhabadi, and I. Mallakpour. 2017. "Lessons from the Oroville Dam." Science 355 (6330): 1139.2–1140. https://doi.org/10.1126/science.aan0171.
- Vahedifard, F., A. AghaKouchak, and J. D. Robinson. 2015. "Drought threatens California's levees." *Science* 349 (6250): 799. https://doi. org/10.1126/science.349.6250.799-a.
- Vahedifard, F., T. C. Cao, E. Ghazanfari, and S. K. Thota. 2019. "Closed-form models for nonisothermal effective stress of unsaturated soils." J. Geotech. Geoenviron. Eng. 145 (9): 04019053. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002094.
- Vahedifard, F., T. D. Cao, S. K. Thota, and E. Ghazanfari. 2018a. "Non-isothermal models for soil–water retention curve." *J. Geotech. Geoenviron. Eng.* 144 (9): 04018061. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001939.
- Vahedifard, F., J. D. Robinson, and A. AghaKouchak. 2016. "Can protracted drought undermine the structural integrity of California's earthen levees?" J. Geotech. Geoenviron. Eng. 142 (6): 02516001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001465.
- Vahedifard, F., J. M. Williams, and A. AghaKouchak. 2018b. "Geotechnical engineering in the face of climate change: Role of multi-physics processes in partially saturated soils." In *Proc. IFCEE 2018, GSP No. 295*, 353–364. Reston, VA: ASCE.
- Vanapalli, S. K., and D. G. Fredlund. 2000. "Comparison of different procedures to predict unsaturated soil shear strength." In *Proc.*, *Advances in Unsaturated Geotechnics*. Reston, VA: ASCE. https://doi.org/10.1061/40510(287)13.
- Vanapalli, S. K., W. T. Oh, and A. J. Puppala. 2008. "A simple model for predicting modulus of elasticity of unsaturated sandy soils." In *Unsatu*rated soils: Advances in Geo-engineering, edited by D. G. Toll, et al. 503–509. Rotterdam, Netherlands: A.A.Balkema.

- van Genuchten, M. T. 1980. "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils." *Soil Sci. Soc. Am. J.* 44 (5): 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
- Viggiani, G., and J. H. Atkinson. 1995. "Interpretation of bender element tests." Géotechnique 45 (1): 35–53. https://doi.org/10.1680/geot.1995.45.1.149.
- Watson, K. M. 1943. "Thermodynamics of the liquid state." Ind. Eng. Chem. 35 (4): 398–406. https://doi.org/10.1021/ie50400a004.
- Whalen, J. W. 1961. "Thermodynamic properties of water adsorbed on quartz." *J. Phys. Chem.* 65 (10): 1676–1681. https://doi.org/10.1021/j100827a003.
- Yang, J., and X. Gu. 2013. "Shear stiffness of granular material at small strains: Does it depend on grain size?." *Géotechnique* 63 (2): 165–179. https://doi.org/10.1680/geot.11.P.083.
- Young, T. 1805. "An essay on the cohesion of fluids." *Philos. Trans. R. Soc.* 95: 65–87. https://doi.org/10.1098/rstl.1805.0005.
- Zettlemoyer, A. C., G. J. Young, and J. J. Chessick. 1955. "Studies of the surface chemistry of silicate minerals: III. Heats of immersion of bentonite in water." J. Phys. Chem. 59 (9): 962–966. https://doi.org/10 .1021/j150531a034.
- Zhou, C., and C. W. W. Ng. 2016. "Effects of temperature and suction on plastic deformation of unsaturated silt under cyclic loads." *J. Mater. Civ. Eng.* 28 (12): 04016170. https://doi.org/10.1061/(ASCE)MT .1943-5533.0001685.
- Zhou, C., and C. W. W. Ng. 2017. "Constitutive modelling of shear stiffness degradation at various suctions and temperatures." In *Proc.*, 19th Int. Conf. on Soil Mechanics and Geotechnical Engineering, 2077–2080. London: International Society for Soil Mechanics and Geotechnical Engineering.
- Zhou, C., J. Xu, and C. W. W. Ng. 2015. "Effects of temperature and suction on secant shear modulus of unsaturated soil." *Géotech. Lett.* 5 (3): 123–128. https://doi.org/10.1680/jgele.14.00096.