Planning with Abstract Learned Models
While Learning Transferable Subtasks

John Winder,' Stephanie Milani,” Matthew Landen,’ Erebus Oh,’
Shane Parr,* Shawn Squire,' Marie desJardins,” and Cynthia Matuszek!'
!University of Maryland, Baltimore County, 2Carnegie Mellon University, *Georgia Institute of Technology,
4University of Massachusetts Amherst, >Simmons University

Abstract

We introduce an algorithm for model-based hierarchical re-
inforcement learning to acquire self-contained transition and
reward models suitable for probabilistic planning at multiple
levels of abstraction. We call this framework Planning with
Abstract Learned Models (PALM). By representing subtasks
symbolically using a new formal structure, the lifted abstract
Markov decision process (L-AMDP), PALM learns models
that are independent and modular. Through our experiments,
we show how PALM integrates planning and execution, fa-
cilitating a rapid and efficient learning of abstract, hierarchi-
cal models. We also demonstrate the increased potential for
learned models to be transferred to new and related tasks.

1 Introduction

Model-based reinforcement learning (RL) acquires a model
of an agent’s interaction with its surroundings. In this set of
approaches, the learned model captures the stochastic effects
of actions on future states and rewards. Once a model has
been acquired, an agent can use it for probabilistic planning
to anticipate behaviors that will lead to a well-chosen path
through state space.

For challenging tasks in a complex environment, one
common technique is to “divide and conquer,” breaking
down an overall task into a hierarchy of separate, smaller
subtasks that are easier to solve and, ideally, reusable. Such
subtasks are commonly represented and variously discussed
in RL literature as skills (Konidaris, Kaelbling, and Lozano-
Perez 2018) and options (Sutton, Precup, and Singh 1999).

However, in practice, hierarchical reinforcement learning
(HRL) often relies on an expert’s manual encoding of do-
main knowledge to design hierarchies of subtasks. These
methods directly encode a designer’s preconceptions and
bias, due to the specification of subtasks’ structure and
scope. For example, HRL techniques such as MAXQ (Di-
etterich 2000), HAM (Parr and Russell 1998; Bai and Rus-
sell 2017) and AMDP hierarchies (Gopalan et al. 2017),
as well as most work on options, depend on experts spec-
ifying an interlocking hierarchy of subtasks. Methods that
do learn structure, such as MLSH (Frans et al. 2017) and
HIRO (Nachum et al. 2018), still predetermine properties
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like the depth and width of the hierarchy. While option/skill
discovery research attempts to address these limitations,
many assumptions currently remain, such as ad hoc heuris-
tics for transfer mappings, how state abstraction functions
are acquired (MacGlashan et al. 2015). As a result, it re-
mains a significant issue that learned subtasks are specific
to the context in which they are learned, both the training
environment and the hierarchy in which they are embedded.

The ultimate aim of this research is to develop a method
by which an agent can autonomously construct a robust hi-
erarchy of subtasks and their models. To support planning
and task transfer, these subtasks should: (1) be independent
of one another, meaning that each subtask is a complete
Markov decision process unto itself, solvable without rely-
ing on other subtasks; and (2), be modular, meaning that
they can be swapped in or out of a hierarchy. Intuitively,
these constraints encode the requirement that subtasks can
be added and removed without breaking the learned hierar-
chy and can be transferred to new tasks.

We introduce Planning with Abstract Learned Models
(PALM), a novel method for assembling task components
into subtasks with self-contained, local models. When de-
ployed to a new task, PALM computes each subtask’s model
while preserving its independence. The main contributions
of this work are as follows:

1. Lifted Abstract Markov Decision Process (L-AMDP):
an independent, modular subtask representation.

2. PALM PHASE-2: a process for converting task hierar-
chies learned from demonstrations into lifted AMDPs.

3. PALM PHASE-3: an algorithm for acquiring transition
models for all useful subtasks in a hierarchy via integrated
planning and learning.

2 Background & Related Work

Our work on learning hierarchies of independent, modular
subtasks is in the general research area of reinforcement
learning (RL). An RL scenario considers an agent that exe-
cutes actions determined by some policy, receives feedback
(reward), observes the change in its world state, and updates
its policy to increase the expected reward.

Such scenarios are defined by Markov decision processes
(MDPs), M = (S, A, T, R,~), comprised of: a set of states
S; aset of actions .A; a transition probability distribution 7" :
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Figure 1: PALM-ET uses the classic expert Taxi hierarchy
from Dietterich (2000), parameterized for multiple passen-
gers. PALM-EC is our expert hierarchy for Cleanup.

SxAxS —[0,1]; areward function R : S x Ax S — R;
and a scalar discount factor v € (0, 1], which governs the
importance of future rewards. The agent’s goal is to find
the most rewarding behavior over time, as represented by
a probabilistic policy 7 : & x A — [0,1]. That policy
is often learned through the computation of a value func-
tion V™, which captures the long-term value of being in a
given state. Value is computed recursively over rewards re-
ceived from following the policy through state-action space
as V™ (s) = Ex[> peg V" re4n+1]s = s¢],Vs € S. The op-
timal policy 7* maximizes cumulative expected future re-
wards, corresponding directly to an optimal value function.

Hierarchical RL (HRL) is commonly used in situations
that require agents to perform repeated sequences of ac-
tions over an extended period. HRL decomposes a hard task
into subtasks that are more focused, more manageable, and
(ideally) repeatable. Two notable HRL techniques are op-
tions (Sutton, Precup, and Singh 1999) and MAXQ (Di-
etterich 2000). Both accomplish femporal abstraction, in
which the agent reasons over actions that unfold over many
time-steps rather than discrete, atomic actions. HRL is also
conducive to state abstraction, in which similar grounded
states are aggregated (Boutilier and Dearden 1994; Abel et
al. 2018). Combined, these make HRL well suited to address
many open challenges in RL, namely mitigating the curse of
dimensionality by reducing the state-action space, facilitat-
ing generalization across similar (abstract) states, and lever-
aging transfer learning across tasks.

Central to HRL is the notion of a task hierarchy, a graph-

ical structure that encodes how subtasks and primitive ac-
tions relate (for example, what subtasks use other subtasks
or actions). Thus, each subtask may be viewed as a node in a
directed acyclic graph (the hierarchy). MAXQ, for example,
decomposes an MDP into a set of smaller MDPs — one per
subtask — with transitions and rewards derived from the base
MDP. It then computes the overall value function recursively
down through each possible branch, using a piece-wise com-
pletion function to determine the expected discounted re-
ward contributed by each subtask.

A drawback in much HRL research is the reliance on hu-
mans to design the task hierarchy. As a result, there has been
significant research on autonomously learning such hierar-
chies. Prior efforts in learning hierarchical structures of tasks
include discovering sub-MDPs divided by suitable bound-
ary “exit” states (Hengst 2002; 2004); acquiring transfer-
able option policies directly (Brunskill and Li 2014; Topin
et al. 2015); learning high-level skills and abstract actions
from demonstrations (Konidaris, Kaelbling, and Lozano-
Perez 2018); learning hierarchies based on associating ac-
tions with relevant state features via CSRL (Li, Narayan,
and Leong 2017); and, causally-annotated approaches that
produce MAXQ-style task graphs, such as VISA (Jonsson
and Barto 2005; Vigorito and Barto 2010), HI-MAT (Mehta
et al. 2008), and its extension, HierGen (Mehta 2011).

While we restrict our examination in this paper to tradi-
tional, symbolic RL, there is a rich and growing body of
work in the context of deep HRL (Kulkarni et al. 2016).
MLSH (Frans et al. 2017) learns master- and sub-policies
jointly, with the former acting as a controller over the lat-
ter group. The HIRO agent (Nachum et al. 2018) creates
two tiers of policies, in which the lower level interacts with
the grounded MDP based on goals directed by the higher
level. Notably, HIRO eschews any goal representation, so it
lacks an explicit notion of subtask. Along this thread, a HAC
agent (Levy et al. 2019) does specifically consider goals and
subtasks. HAC combines hindsight experience replay with
universal function approximators in an algorithm that learns,
in parallel, multiple levels of policies. Finally, the unified
model-free HRL algorithm (Rafati and Noelle 2019) com-
bines intrinsic motivation with aspects of both skill and sub-
goal discovery.

One drawback of existing hierarchical methods, such as
planning with (predefined) AMDP hierarchies (Gopalan et
al. 2017), is the requirement of human intervention or cura-
tion at some (or many) parts of the design. Examples include
defining how subtasks chain together, picking the number
or depth of subtasks, providing the low-level controllers be-
forehand. This work is motivated by the goal of learning sub-
tasks, both their relations among each other and their inter-
nal model dynamics, without expert knowledge. While sev-
eral HRL techniques can suffer from nonstationarity issues
arising due to learning multiple levels of subtasks (Nachum
et al. 2018), our technique is devised to counter the prob-
lem without an impact to performance. Lastly, in our ap-
proach, PALM learns AMDP subtasks that are independent
and modular. As such, these AMDPs can be removed or
added without impairing the functioning of other subtasks
or the hierarchy as a whole. Taken together, the method we



introduce facilitates the inclusion of new skills on transfer to
different and more difficult tasks.

We draw a connection between PALM and an existing
approach in planning and RL focused on abstract modu-
lar and independent tasks. PLANQ-learning (Grounds and
Kudenko 2005) synthesizes a hierarchical variant of Q-
learning with STRIPS planning (Fikes and Nilsson 1971)
to reason further into the future over a sequence of sub-
tasks. PPSB (Segovia-Aguas, Ferrer-Mestres, and Jonsson
2016), planning with partially specified behaviors, builds
on PLANQ with formalisms to afford more modular sub-
task decomposition. PLANQ and PPSB encode precondi-
tions and rules that comprise a knowledge base to inform
per-subtask policies that are then learned independently, as
guided by high-level plans. PPSB is similar to our approach,
though instead of AMDPs, PPSB relies on the partial speci-
fications of abstract actions based in STRIPS. This framing
requires expert-created conditions and operators for actions,
including the models of the abstract actions. PALM and L-
AMDPs do not encode such information beforehand, except
incidentally through state abstraction, which we show can it-
self be learned from data without human supervision, due to
the generality of AMDPs. PPSB also assumes no dead-ends
and determinism within subtasks. In contrast, PALM’s re-
cursive algorithm is designed to be tolerant to stochasticity
and accounts for subtask failures explicitly. On encounter-
ing a failed subtask, PALM escapes out and recurses up to
replan at the appropriate parent AMDP.

3 Approach

PALM aims to remedy issues of existing techniques in a
three-phase framework. In PHASE-1, our approach first re-
lies on input sample demonstrations and a hierarchy learner,
producing a MAXQ-like hierarchy. Our contributions begin
in PHASE-2 with a procedure for creating a new subtask rep-
resentation, the L-AMDP, from those extracted in PHASE-
1. PHASE-3 then describes our novel algorithm for learning
those subtask models in a hierarchy simultaneously at mul-
tiple levels, while preserving their self-contained properties.

3.1 Learning from Demonstrations

PHASE-1 uses existing HRL techniques to learn a MAXQ-
style task hierarchy from demonstrations. MAXQ decom-
poses a task hierarchically across subtasks, computing the
value function by defining completion function to repre-
sent the amount of expected discounted reward recursively
credited down through each branch of a task’s subtasks.
Hierarchy-learning algorithms are typically assumed to have
access to sample trajectories of an agent exploring and solv-
ing the domain (e.g., state-action-reward transition tuples),
labeled with, minimally, whether the sample is a success or
failure.

Given this set of solution demonstrations, D, PHASE-
1 takes any general existing algorithm H that assembles a
MAXQ-style task graph, H(D) — @. This phase assumes
the use of factored state space MDPs, such as states that are
defined simply in terms of a feature vector. There exist many
possibilities for H (Mehta 2011; Li, Narayan, and Leong

2017; Levy et al. 2019); we use HierGen (Mehta 2011) be-
cause it creates a per-subtask state abstraction mapping. Al-
ternatively, PHASE-1 can be skipped if an expert supplies
the task graph G (a hierarchy of MAXQ subtasks).

3.2 Assembling Lifted Abstract MDP Subtasks

Given an expert or learned task graph from the previous
phase, we present a novel process to convert all of its
subtasks into a more general abstract MDP representation,
PHASE-2 of the process. We refer to this novel intermediate
representation of an abstract subtask as the Lifted AMDP,
or L-AMDP. At a high level, PHASE-2 maps the task graph
G to H, a hierarchy of Lifted AMDPs.

We depart from standard approaches by representing sub-
tasks abstractly as decision problems complete unto them-
selves. To do so, we redefine subtasks using the formal-
ization of abstract MDPs (AMDPs) (Gopalan et al. 2017).
AMDPs differ from the more familiar framing of subtasks as
skills or options in that each AMDP subtask has its own lo-
cal model of reward and transitions, from which value func-
tions and policies may be generated.

Formally, an AMDP subtask is an MDP with abstract
components, M = (S, A, T,R,~,G,F, ), consisting of:
abstract actions A, comprised of child subtasks (e.g., other
AMDPs or primitive actions from M ); sets of terminal goal
and failure states G, F C S; and (optionally) state abstrac-
tion ¢ : S — S, which maps ground states to abstract state
space by aggregating similar states or removing features.

Extending this concept, /ifted AMDPs are parameterized
over features (state factors). An L-AMDP contains a goal
predicate 7, a failure predicate x, subtask parameters 6 (if
any), and a state abstraction function ¢. We formally define
an L-AMDP as My = (-, A,-,R ~ {7,x},,G ~ {7}, F ~
{x}, ®). On grounding to a target task MDP, they serve as
AMDP subtasks with models missing; the remaining com-
ponents are induced or learned during PHASE-3.

PHASE-2 is a procedure that builds a hierarchy of Lifted
AMDPs, H, from a task graph G. Construction of L-AMDPs
occurs one at a time, following a reverse topological order-
ing of G. Intuitively, PHASE-2 first wraps primitive actions
(leaf nodes of (7) into “subtasks,” then creates one L-AMDP
subtask for each composite action (internal node of G), and
ends by making a subtask for the root. There is always a root
subtask, with terminal conditions identical to the task MDP.

Given our assumption of factored states, each subtask ei-
ther already possesses terminal conditions. Or, we can train a
classifier to learn goal and failure predicates based on termi-
nal states in D. 7 and y differ from the termination predicate
in MAXQ by capturing success and failure separately. This
property of L-AMDPs is crucial for R, the induced pseudo-
reward function. We make the standard assumption that sub-
tasks adhere to a goal-fail structure. In this scheme, the high-
est reward is received at a goal state, the most negative re-
ward is received at any failure state, and a default reward is
otherwise observed; this assumption simplifies and bounds
the shape of R. Although R has a known shape, a condition-
based pseudo-reward may be included as well, either learned
from D, or added manually. Thus R, like T, once grounded,



must be learned to a task MDP in the next phase, during
execution.

We use the (optional) 6 list of parameterizable features.
A parameterized L-AMDP may generate multiple realized
AMDPs, one for each possible grounding in the target task.
For example, the Taxi hierarchy’s NAVIGATE subtask (Fig-
ure la) may be grounded once per destination depot in a
given MDP. HierGen (Mehta 2011) provides a straightfor-
ward way of generating 6 based on what factors are checked
or change in the trajectories (D) for that subtask (e.g., the
positional coordinates of depots in Taxi). Similarly, the state
abstraction may be hand-engineered or learned, such that
¢ includes all features from 7, x, and 6. Finally, PHASE-
2 makes A by linking to all AMDPs that correspond to child
subtasks of this subtask as defined in G reverse topological
ordering ensures these AMDPs already exist. The missing
will likewise be inherited from the ground MDP.

In summary, the Lifted AMDP is a novel, modular, in-
dependent subtask representation. In PHASE-2, each input
MAXQ task node is converted into an L-AMDP.

Subtask Independence. The L-AMDP subtask represen-
tation devised for PALM leads to independently computable
models. In possessing each component of an MDP, an
AMDRP is itself an MDP, and can be solved using any stan-
dard approach. Deployed to some task (PHASE-3), when-
ever the agent first executes an L-AMDP subtask, it is auto-
matically grounded to its particular circumstance, with the
missing pieces induced or learned gradually through experi-
ence. Computing plans inside a grounded AMDP subtask is
therefore self-contained: it may be solved as with any MDP.

This is an improvement over dependencies present in both
options and MAXQ subtasks. Computing the hierarchical
value function for a MAXQ subtask requires decomposing
via the completion function into its child subtasks. While
this in principle reduces the size of the value function, it
acquires this property by entangling subtasks with ones be-
low it. R-MAXQ (Jong and Stone 2008), the model-based
extension of MAXQ, highlights the complexity of learning
MAXQ subtask models: its recursive variant of the Bellman
equation must consider the stochastic transitions across all
child subtasks, for all their possible terminal states. For op-
tions, approximating an option’s multi-time model requires
knowing all of the (possibly infinite) number of time-steps
across its subtasks (Abel et al. 2019). In general, comput-
ing option plans in complex hierarchies requires solving how
their models compose jointly, in a dependence akin to that of
the MAXQ completion function (Silver and Ciosek 2012).
The practical effect of L-AMDP subtask independence is
that, on grounding, subtasks may be computed directly, in
isolation, without any recursive decomposition.

Subtask Modularity. L-AMDPs also improve the mod-
ularity of subtasks: unnecessary subtasks can easily be
pruned, and new ones incorporated. For example, imagine
transferring from the classic Taxi task to a new task that
requires refueling. The existing hierarchy (Figure 1a), de-
fined in terms of L-AMDPs, can be transferred directly; the

Algorithm 1 Planning with Abstract Learned Models
1: function START(Hierarchy H, MDP M, State sg)

Initialize models for all AMDPs Mi ceH

3 PALM(H, M, ROOT-INDEX(H), sq)

4: function PALM(H, M, AMDP index ¢, s;)

5: <SATR,’y,g}"¢>>eM < NODE(H, 1)

6: St — ¢(St)

7

8

while 5, ¢ GU F do
S:8U§t

> Execute until termination

9: 7w < PLAN(M;, 5¢) > Compute local policy
10 a <+ m(8) > Getnext planned action, a € A
11: if IS-PRIMITIVE(a) then
12: St+1 <+ EXECUTE(M, a)

13: else

14: 7 < CHILD(H, 1, a)

15: St41 PALI\/I(}I7 M,j, St)

16: §t+1 — ¢(St+1)

17: 7 R(3;,a,5,41)

18: UPDATE-MODEL(T, R, G, F, 5;, a, St41,7)

19: t—t+1

20: return s; > The current ground state

learned models of its abstract subtasks are still valid, due to
the AMDP’s state abstraction and independent model. All
that needs to be added is a newly initialized REFUEL sub-
task, included as a child of the ROOT subtask, with its set of
abstract actions A containing NAVIGATE and a primitive ac-
tion for refueling (assuming it is available in the task MDP).
When a new subtask is added to a hierarchy, its pres-
ence would be included in any parent subtasks’ abstract ac-
tion set; only the new subtask and any parents need to be
updated. Assuming an optimism-under-uncertainty model-
based scheme is used, the newly available transitions due to
the new subtask are incentivized to be explored. Removing
a subtask is likewise straightforward: the subtask only needs
to be removed from its parents’ .A. Any learned transitions
involving that action would, thus, be disallowed or deleted.

3.3 Integrating Planning and Learning

PHASE-3 sees a new model-based hierarchical RL algo-
rithm (Algorithm 1) applying the hierarchy from PHASE-2
to a new (previously unseen) task MDP M. This algorithm
recursively integrates planning and learning to acquire its
subtasks’ models while solving M. We refer to the algorithm
as PALM: Planning with Abstract Learned Models.

In model-based RL, the agent uses its observations to
bootstrap an approximation of the model, 7" and R, which
express the probabilistic effect of actions on the environ-
ment. In our case, this occurs at multiple levels of abstrac-
tion, with PALM learning the T and R of each subtask, up-
dating the model after using it to make a decision. Concep-
tually, PALM plans the solution to a given task (a policy ),
selects a subtask, recurses, and continues this process suc-
cessively until reaching and executing a primitive action of
M. Thus, planning and execution are interleaved.

The inputs of PALM are M, an initial ground state sg €



S, and a hierarchy H of L-AMDPs. Planning begins at the
root subtask. With each recursive call to PALM, s; is pro-
jected into the given AMDP’s state space by applying state
abstraction. PALM then computes a local policy 7 for the
AMDP, selecting the next planned action. If that action is
primitive (¢ € .A), executing it in the base environment
causes a “real” transition in the world, and it returns the next
ground state, s;y;. Otherwise, PALM retrieves the linked
child subtask in the hierarchy, and recurses down to it, re-
peating this process. On completion of the execution step or
recursive call, PALM abstracts the new ground state, ;4 1,
obtains the pseudo-reward r for the abstract transition, and
updates the current AMDP’s model, recomputing the ap-
proximation of 7" and R based on the observed transition.

It is desirable for PALM to be a general framework.
PHASE-3 is designed to permit the use of any MDP planner,
such as Value Iteration, UCT (Kocsis and Szepesvari 2006)
methods like PROST (Keller and Eyerich 2012), or bounded
RTDP (McMahan, Likhachev, and Gordon 2005). PALM
also supports any standard model-based approach such as
E? (Kearns and Singh 2002) or R-MAX (Brafman and Ten-
nenholtz 2002). Additionally, because subtasks are indepen-
dent, they may use different planners as appropriate—for
example, if value function approximation is required in one
subtask but not another.

Avoiding Nonstationarity. One common issue in HRL
is that of nonstationarity: so long as a lower-level model
has not converged to a stable point, it defines a moving
target for any higher-level subtask relying on that model.
Learning on a nonstationary process upends the assump-
tions needed in RL to update via bootstrapping and guar-
antee optimality. To avoid the effects of nonstationarity,
we rely on the “knows-what-it-knows” (KWIK) frame-
work. A KWIK algorithm such as R-MAX (Li et al. 2011;
Szita and Szepesvdri 2011) reasons explicitly about known
or unknown transitions. We employ a strategy of solidifying
lower subtask models first, then learning successively higher
levels. During execution, PALM simply returns a signal in-
dicating the known/unknown status of the transition that just
occurred, informing the parent task if it should ignore or
process its own transition. In effect, subtask models are ce-
mented before their parent models are learned. Without this
update strategy, we find empirically that PALM produces
solutions swiftly while learning on nonstationary models,
often achieving more optimal behavior; however, this strat-
egy ensures optimality across levels of abstraction such that
PALM converges to a recursively optimal policy.

Complexity. We consider the complexity of each AMDP
subtask individually. In the execution of PALM on a given
AMDRP (line 9), computational complexity is dominated by
the planning algorithm. In the worst case, this planner is
recomputed at each step. The sample complexity for an
AMDP subtask in general will be O(p), where p is the sam-
ple complexity of the model-learning algorithm used; for R-
MAX, which we use, p = |S|?|A|V,2 ..e 3(1 — )73 given
M’s maximum value V,,,,, and the PAC-MDP parameter €

Figure 2: Example starting states pulled from a distribution
over possible tasks. We use the factored OO-MDP represen-
tation for tasks (Diuk, Cohen, and Littman 2008). A Taxi
task, left, contains the agent “taxi” (gray), walls, depots,
and passenger (red). A Cleanup task, right, includes blocks,
doors, rooms, and the agent “robot” facing north.

(Li 2012). R-MAX is a well-studied, PAC-MDP algorithm,
with guarantees of convergence and bounded space and sam-
ple complexity (Strehl, Li, and Littman 2009). Thus, hierar-
chies of fewer nodes and shallower depth are preferable in
terms of sample complexity.

4 Experimental Methodology

We compare our method against R-MAXQ (Jong and Stone
2008), the most closely aligned existing algorithm to PALM
and its aims. R-MAXQ unites R-MAX with MAXQ, achiev-
ing a model-based approach of the latter method’s value
function decomposition technique by specifying a recursive
variant of the Bellman operator. As opposed to other HRL
algorithms, R-MAXQ is similar to PALM in representing
abstract models concretely; unlike PALM, R-MAXQ’s mod-
els do not meet the criteria we desire for subtask indepen-
dence and modularity. To keep our PALM in line with R-
MAXQ, we parallel it by using Value Iteration as the planner
and R-MAX as the model-based RL algorithm for all sub-
tasks; these are baselines, and due to subtask independence,
more sophisticated techniques could be used as appropriate.

Domains. The Taxi domain (Dietterich 2000) is a com-
mon HRL problem where the agent, a taxi, must collect
passengers and ferry them to different destinations. The
Cleanup domain simulates a robot that tidies a house by
putting blocks where they belong, similar to the game of
Sokoban (MacGlashan et al. 2015; Guez et al. 2019). The
agent must navigate a grid-world composed of rooms and
blocks, pushing and pulling blocks until one (or more) tar-
get blocks are in a room of a matching color. Cleanup tasks
appear deceptively simple. They present a combinatorial ex-
plosion of state space as more blocks and rooms are added.
Moreover, agents frequently encounter edge cases and bot-
tlenecks that are difficult to exit (e.g., blocks in a corner).
Visualizations of a classic Taxi task and a Cleanup task are
shown in Figure 2.

Hierarchies. All PALM methods use a hierarchy of L-
AMDP subtasks that, on each trial, are grounded to a new,
random target MDP. The lifted hierarchies we describe use
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Figure 3: PALM-AC, amended by experts.

an abbreviation scheme: E is an expert-designed hierarchy,
H is a HierGen-learned hierarchy, A is an amended hierar-
chy that updates a learned hierarchy with expert knowledge,
T is a hierarchy for Taxi, and C is a hierarchy for Cleanup.
Thus, PALM-ET and PALM-HT are the expert and learned
hierarchies for the Taxi domain, following directly from Di-
etterich (2000) and Mehta (2011), respectively. PALM-EC
(Figure 1b), our expert hierarchy for Cleanup, decomposes
the task in terms of moving to a block and then the block to
a room. PALM-HC, the learned Cleanup hierarchy, degen-
erates into a flat hierarchy without subtasks beyond ROOT,
which contains only the primitive actions. We find this nega-
tive result (from our use of HierGen) surprising, and discuss
it further later. Informed by HC, PALM-AC (Figure 3), is
an amended, second-draft expert hierarchy for Cleanup. In
AC, each primitive action is wrapped in an AMDP subtask
parameterized by the x-y coordinates of the destination rel-
ative to the agent position. Additionally, we define a LOOK
task for turning to look in a direction (without hitting a wall),
which promotes an agent’s ability to plan to face a block
before pulling it. Combining these parameterized, shielded
primitive actions with state abstraction means AC ignores all
irrelevant features, and never plans an action that is illegal or
results in a self-transition.

5 Experimental Results

We examine the usefulness of learned hierarchies in com-
parison with expert-specified hierarchies, and we consider
the performance of PALM in terms of the cumulative steps
taken and reward acquired across episodes. Our figures are
shown with the 95% confidence region shaded.

5.1 Baseline Results

Figure 4 compares PALM with R-MAXQ. In a small Taxi
task (1 x 5 grid) with deterministic transitions, R-MAXQ
exceeds PALM when using the same hierarchical structure
(ET). In Figure 4b, we observe a different asymptotic re-
lationship when facing stochasticity. R-MAXQ struggles to
compute the recursive models of its subtasks, even in this
task with only 100 states. Note that these results match those
reported in Jong and Stone (2008), and belie the fact that R-
MAXQ does ultimately approximate correct models, just in
episodes beyond those shown.

These results are even more stark in Cleanup, due to
the exacerbation of R-MAXQ’s scaling issues in handling
larger, more complex state spaces. R-MAXQ experimentally
requires orders of magnitude more computation time than
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Figure 4: In 4a, without randomness, all approaches rapidly
find an optimal policy (reflected in their asymptotic trends).
In 4b, ET and HT again converge quickly due to the ease of
computing AMDP models relative to R-MAXQ’s approach.
HT consistently learns with fewer samples; while HT also
learns fewer models, they are larger and more complex.
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Figure 5: In 5a, multiple fickle passengers cause HT to vac-
illate while learning mid-level models. In 5b, we provide a
converged model of the navigation subtask to an ET agent,
highlighting the benefit of transferring learned models.

PALM for the same domain. To highlight the stark differ-
ence in the actual time operations between the two methods,
we report the empirical runtime difference of 20 trials on a
small Cleanup task with |S| in the hundreds. Using EC for
both, PALM decreases from 100 ms per episode to 10 once
its models have converged, while R-MAXQ consistently av-
erages 10* ms.! Behaviorally, PALM quickly converges to-
wards a near-optimal policy while R-MAXQ conducts ex-
cessive exploration. We observe that R-MAXQ continually
expands down branches of a hierarchy that are unhelpful to
solving the overall goal, for example, continually re-entering
a room and going to as many spaces as possible and fac-
ing in all directions. This difference is due to subtask in-
dependence: unlike with MAXQ, planning with an AMDP
hierarchy expands only those child subtasks actually used
in the rollout of a hierarchical policy (Gopalan et al. 2017).
Thus, PALM’s focused expansion learns models that solve
the harder Cleanup tasks quickly, where R-MAXQ has su-
perfluous branching.

5.2 Results for Expert vs. Learned Hierarchies

We now consider the impact of learning a hierarchy. Fig-
ure 4b shows how HT, a hierarchy learned from data without
human supervision, can surpass the efficiency of one made

'Performed on i7-4790K CPU @ 4.00 GHz, 20GB of RAM.
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Figure 6: Cumulative steps for the Cleanup domain, high-
lighting the number of samples needed to reach conver-
gence.

by an expert, ET, with the former attaining roughly the same
asymptotic performance as ET in only a fraction of the sam-
ples required. PALM makes it possible to create everything
needed for hierarchical planning via sampled experiences
without expert knowledge or intervention.

In Figure 5, we examine hierarchies on increasingly more
complex tasks. However, ET achieves greater cuamulative re-
ward in the successive experiments than HT, with the latter
faltering to increasingly greater extents as more passengers
are added. HT reasons about putting down passengers in its
top-most AMDP, slowing it down when there are more than
one, whereas ET more cleanly separates the process of re-
trieving and depositing passengers. As we scaled to variants
with three and four passengers, we found this trend contin-
ued to worsen for HT, while ET could achieve greater cu-
mulative reward in the successive experiments, scaling more
gracefully in contrast to the sinking asymptotic trend of HT.
For Figure 5b, the large Taxi variant, on a 20x20 grid with
only one passenger, HT has the same lead over ET as in 4b.

For Cleanup, in Figure 6, we report results in cumulative
steps rather than reward (each complete episode yields a re-
ward of exactly 1.0) as complexity is varied among tasks.
Specifically, we consider when there are more rooms, Fig-
ures 6a and 6b, or fewer rooms but more blocks, Figures 6¢
and 6d. The key property to observe in Figure 6 is that the
time-to-convergence signifies how effectively the algorithm
computes its models, with the “elbow” of each trend indi-
cating the point at which the models solidify. Thus, we re-
port cumulative instead of average steps; with the latter, it is
harder to distinguish the differences in the long-term model-
learning trends among the algorithms (typically, they all
eventually have the same average number of steps once their
models have converged). We note that the asymptotic rela-

tions among the PALM methods hold across all tasks: EC
requires the most samples, while HC is in the middle, and
the redesigned AC solves the domains most readily. Both
HC and AC outperform QL, which we include to bench-
mark model-free learning (without planning). In compari-
son, the original expert design, EC, is much less effective,
taking statistically significantly more steps to learn than QL,
despite having fewer models than AC. AC is created based
on our observations of EC and then HC; the fact this second
iteration expert hierarchy performs better after observing a
learned one highlights the value of human cooperation with
learning algorithms in designing solutions.

We note a finding that emphasizes the challenge of gen-
eralization that endures for hierarchy-learning algorithms.
Specific to the algorithm we used, HierGen, we observed it
would degenerate if trained on D of sufficient environmental
complexity. For example, if D contained two Cleanup MDPs
with the same number of rooms and blocks but no shared
features (e.g., colors or door locations), HierGen would pro-
duce only flat MAXQ graphs (causally-annotating subse-
quences into a precedence graph of solely one node). De-
spite this degeneration, we remark that the resulting HC still
produces valid, reasonably efficient solutions in PHASE-3.
In each case, it converges significantly faster than EC.

5.3 Independence, Modularity, & Transfer

The most significant difference between our formulation and
R-MAXQ, and other subtask representations more gener-
ally, is that PALM yields independent models. Practically,
PALM circumvents the typical HRL approach of creating
interdependent “puzzle piece” forms of temporal abstraction
that must link together precisely. For example, options must
terminate where another can initiate, skills require chaining
from target to target, and MAXQ does not distinguish be-
tween goal and failure termination predicates. As a result,
we identify a key benefit of PALM: graceful replanning on
failure. Should a subtask fail, control simply returns to its
parent, and so on as needed, to the appropriate level for re-
planning, and a new plan is generated.

We also highlight the transferability implications of sub-
task modularity: PALM can learn one subtask, then transfer
its abstract models to new, related tasks, greatly accelerating
overall performance. To transfer in a model, it is first neces-
sary to obtain either an expert-defined one or a learned one
acquired via training on an MDP sampled from the same
universe.

We include an example of transfer in Figure 5b, and re-
fer to standard metrics for transfer in RL (Taylor and Stone
2009). In this case, a converged model for the NAVIGATION
subtask is transferred to a hierarchy deployed on a new task
set. Here, only the high-level AMDP models need to be re-
computed. This “PALM-ET given Nav” agent achieves, as
expected, an immediate and statistically significant jump-
start over the algorithm with the same hierarchy, ET, as
well as having a shorter time-to-convergence and greater
total reward. Navigation dominates the sample complex-
ity; however, having been learned once, it may be reused.
Thus, transferred knowledge in PALM alleviates the bur-
den of further exploration at that level, allowing the agent



to advance more rapidly in learning higher-level AMDPs.
PALM’s style of encapsulated, modular transfer is impos-
sible with R-MAXQ and other HRL methods because they
learn representations that recurse down to, or ultimately de-
pend on, the transition probabilities, reward function, and
ground states specific to the given task MDP.

We would like to emphasize two major takeaways from
these results. First, subtask independence limits the effects
of other models on the one being learned. Since each model
in PALM is computed independently, the effects of stochas-
ticity are limited. PALM can, in effect, learn the value func-
tions of these tasks in a more focused manner. In, for ex-
ample, R-MAXQ, computational efficiency is negatively af-
fected by the need to compute down to the primitive level
at every decision point and model update; other HRL algo-
rithms experience similar problems, requiring computation
with a direct dependence on lower-level models. In a sense,
they do not actually abstract away fine-grained temporal de-
tails. The multi-time model of options, for example, requires
knowing the joint distribution of all possible time-steps of all
options (Abel et al. 2019).

Second, PALM, unlike related approaches, produces a
plan which can be revised. Our investigation of R-MAXQ on
much larger, more complex MDPs (including the Cleanup
tasks) indicates that the intertwined nature of R-MAXQ’s
computation exacerbates scalability issues. PALM’s inde-
pendent models inhibit such problems. Because each AMDP
that PALM is learning has its own dedicated model, the
model-based exploration that must occur is handled irre-
spective of child subtasks. This fact further distinguishes
PALM: the L-AMDP subtask models are not a static pol-
icy (as with an option) or fragment of a value function (as
with a MAXQ subtask), but an encapsulated MDP in its
own right. As a result, each PALM subtask can decide in-
dependently, within its own confines, what actions to take,
abstracting away details of child subtasks.

6 Discussion & Future Work

We introduce Lifted AMDPs as novel, general, and useful
representations of behavior. We develop PALM, which per-
forms hierarchical reinforcement learning while eliminat-
ing the dependency on human authors: an agent can create
a hierarchy where all constituent parts are learned entirely
from data. PALM has the following novel traits. Deployed
to some new task, it learns a transition and reward model for
all subtasks in its hierarchy. This hierarchy itself, and any
related state abstractions, may be learned from data. Mod-
els learned via PALM are transferable to related tasks. We
demonstrate the effectiveness of this approach in supporting
complex, hierarchical planning without human supervision.
The properties of independence and modularity make our
approach promising for transfer learning, training on a given
task and deploying to related ones with reduced retraining
and a jumpstart to performance.

PALM’s ability to transfer warrants more extensive inves-
tigation, and we hope to examine its potential further, es-
pecially in cases that require mixed discrete and continu-
ous state space L-AMDPs. These hierarchies could combine

deep and traditional RL, such that subtasks needing percep-
tion or control are handled by the former and those requiring
more abstract reasoning are addressed by the latter. Trained
wholly in simulation to learn the higher-level symbolic mod-
els, models could be transferred over to a continuous, phys-
ical domain where only the lowest-level navigational sub-
tasks need to be learned from scratch.
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