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Centroid of Age Neighborhoods: A New
Approach to Estimate Biological Age

Syed Ashiqur Rahman

Abstract—Estimation of human biological age is an im-
portant and difficult challenge. Different biomarkers and nu-
merous approaches have been studied for biological age
prediction, each with its advantages and limitations. In this
paper, we propose a new biological age estimation method,
and investigate the performance of the new method. We
introduce a centroid based approach, using the notion of
age neighborhoods. Specifically, we develop a model, based
on which we compute biological age using blood biomark-
ers, by considering the centroid or mediod of specially se-
lected age neighborhoods. Experiments were performed on
the National Health and Human Nutrition Examination Sur-
vey dataset with biomarkers (21 451 individuals). Compared
with current popular methods for biological age prediction,
our experiments show that the proposed age neighborhood
model results in an improved performance in human bio-
logical age estimation.

Index Terms—Age estimation, aging, bio-markers, biolog-
ical age, age centroid, age medoid, all-cause mortality.

|. INTRODUCTION

UMAN age estimation is an important problem that has

witnessed an increased attention, given its role in various
daily activities, from health assessment, to social interaction,
to security and identity profiling. Although age estimation has
been practiced for centuries, accurate age estimation is known
to be a difficult problem. Doing this automatically by a machine
is an even more onerous task [1], [2]. The major challenge is
that most of the measures used to characterize age, for instance,
visual appearance, and biological/physiological markers vary
significantly from person to person, even for people of the same
chronological age.

Age has a deep connection with health and mortality [3]-[5].
Aging is a gradual process that results in increased health risk,
and mortality over time. In general, a younger person is ex-
pected to have a better health condition and his/her mortality
hazard should be low in comparison with a relatively older per-
son. But two different people of the same age may have very
different health conditions and mortality hazards. This brings up
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the debate on “chronological ” versus “biological” age. Chrono-
logical age is typically what we know and is based on the date of
birth. Chronological age estimation from face image [2] is most
popular. However, biological age is based on the interesting,
yet confounded, idea that a person’s true age can be differ-
ent from his/her chronological age. Biological age (sometimes
called functional age [6]) lacks a precise definition, but it is often
viewed as the true age of an individual in the gerontology and
aging research community [7]. The common idea is that, biolog-
ical age provides a better estimator of the true life expectancy of
the individual than his or her chronological age. Quantification
of biological age is a difficult challenge, since there is no well
defined criteria. To estimate biological age, some age-dependent
variables are used [8]-[10], and chronological age may or may
not be arequired attribute/variable depending on the application.

Klemera and Doubal’s approach [7] is the most popular, and
perhaps, the most effective biological age estimation method
[3]-[5]. The biological age (BA) estimates are derived based on
minimizing the distance between biomarker points and regres-
sion lines. Other approaches include multiple linear regression
(MLR) [3], and combination of MLR with principal component
analysis (PCA) features [3]. Levine [3] compared the perfor-
mance of five BA estimation algorithms in terms of their ability
to predict mortality. Klemera and Doubal’s (KD) method was
found to be the most reliable predictor for mortality. Overall,
the performance of biological age (BA) in mortality predic-
tion was significantly better than using chronological age (CA).
Cho et al. [10] studied various BA estimation methods to ex-
amine the relation with work ability index (WAI). WAI is a
measure that reflects present health condition rather than how it
changes with age and their analysis showed that the KD method
on PCA features produced the most reliable results. Mitnitski
et al. [5] compared the performance of the frailty index (FI)
with biomarker-based measures of BA. They employed the KD
algorithm in predicting mortality. Belsky ef al. [4] described
biological age as a reflection of ongoing longitudinal change
within a person. They estimated the BA for subjects at age 38
using the Klemera-Doubal equation with parameters estimated
from the NHANES-III dataset. The study also tested the hypoth-
esis that young adults with older biological age at age 38 years
were actually aging faster than those with a younger biological
age. They analyzed within-individual longitudinal change in 18
biomarkers from the Dunedin Study [11] across chronological
ages 26 y, 32 y, 38 y to quantify each study member’s per-
sonal rate of physiological deterioration. Cole et al. [12] stud-
ied the use of structural neuro-imaging such as MRI under a
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Gaussian process regression framework to estimate biological
age. The predicted age was identified as “brain-predicted age”
or “brain age” for short. They combined DNA-methylation with
brain age and showed that the combination improved mortality
risk prediction. However, combining brain age with grey matter
and cerebrospinal fluid volumes did not improve mortality risk
prediction. Bobrov et al. [13] proposed a deep learning based
model (called PhotoAgeClock) to estimate chronological age
using images of eye corners.

Other methods that have been used to assess biological age
or speed of aging includes handgrip strength [14], locomotor
activity [15], [16], and deep learning on biomarker data [17].
There is no clear consensus on which method is best for BA esti-
mation, nor on how best to quantify the BA itself. Although KD
method is the most popular, it is limited to biomarker features.
Thus, biological age estimation in humans remains a significant
challenge and evaluating the estimated BA is still a difficult
problem. In this work, we introduce a novel centroid based
method to estimate biological age.

First, we propose a basic algorithm to estimate biological
age using the centroid of selected age neighborhoods. Then we
show a more refined algorithm that considers the distribution
of the features. Similarly, we show that this approach can be
used for medoid and inter quartile range. We then show three
approaches to quantify the performance of the estimated biolog-
ical age and compare with the state of the art biological age es-
timation methods. The paper is organized as follows: in Section
II we describe the data set used and the proposed methodology.
Section III shows the experimental results, and in Section IV
we provide a discussion on the proposed approach and compare
with other related methods. Section V draws some conclusions
on the proposed work.

Il. METHODOLOGY
A. Dataset

We used biomarkers from the National Health and Human
Nutrition Examination Surveys (NHANES) 1999-2010 [17].
NHANES employs a complex cluster design to sample mem-
bers of the civilian USA population who are not institutional-
ized. NHANES uses stratified multistage probability to sample
the data. Ethnicity included white, black, Mexican and others.
For biomarkers of aging, we considered 16 of the biomark-
ers available in NHANES, namely, C-reactive protein, glycated
hemoglobin, albumin, total cholesterol, urea nitrogen, alkaline
phosphatase, systolic blood pressure, diastolic blood pressure,
pulse, high density lipoprotein, hemoglobin, lymphocyte per-
cent, while blood cell count, hematocrit, red blood cell count,
platelet count. Subsets of these have been used in earlier work
as key biomarkers of biological age [3], [4], [8]. To begin with,
we had 62160 individuals from year 1999 to 2010 dataset. We
merged the datasets of different years and then performed match-
ing with the mortality follow-up data that was updated in 2015.
Thus, we obtained 21451 individuals with 1664 deaths during
the 4-16 years of follow-up (1999-2015). Table I shows some
information on the key biomarkers used in this study.

TABLE |
KEY BIOMARKER ATTRIBUTES FOR STUDY PARTICIPANTS IN THE NHANES
DATASET, ALONG WITH THEIR CORRELATION WITH CHRONOLOGICAL AGE
USING DIRECT MEASUREMENTS FOR BOTH PEARSON’S p, AND KENDALL'S

Correlation with Age

Biomarkers (N=21451) Average + SD p T
C-reactive protein (mg/dL) 0.38 &+ 0.78 0.09 0.13
Glycated hemoglobin (%) 5.50 &+ 0.91 0.33 0.35
Serum Albumin (ug/mL) 4.26 + 0.37 -0.17 -0.15
Total Cholesterol (mg/dL) 19777 £ 4227 | 0.22 0.19
Serum Urea Nitrogen (mg/dL) 13.32 + 5.55 0.44 0.31
Serum Alkaline Phosphatase (U/L) | 74.75 + 28.00 0.06 0.06
Systolic blood pressure (mmH g) 123.88 £ 20.02 | 0.54 0.38
Diastolic blood pressure (mmH g) 70.09 + 13.05 0.07 0.11
Pulse (60sec) 72.12 £ 12.21 -0.14 -0.08
High density lipoprotein (mg/dL) 53.36 & 15.91 0.05 0.02
Hemoglobin (g/dL) 14.26 + 1.53 -0.07 -0.04
Lymphocyte percent (%) 30.60 &+ 8.71 -0.10 -0.07
White blood cell count (ST) 7.09 £+ 2.42 -0.06 -0.04
Hematocrit (%) 42.00 + 4.39 -0.06 -0.03
Red blood cell count (ST) 4.68 + 0.51 \ -0.17 -0.1
Platelet count (%ST) 261.62 + 67.85 [ -0.12 -0.08
Age (years) ‘ 46.37 + 19.74 ‘
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Fig. 1. Variation of biomarkers with age. Features plotted for average

measurements for individuals grouped by age (in years).

B. Characteristics of the Dataset or Sample

Table I also shows the correlation between chronological age
and the biomarkers. The table shows the correlation using direct
measurements for both Pearson’s p, and Kendall’s 7. Age has
higher correlation with some of the biomarker features (Systolic
blood pressure, blood urea nitrogen, glycated hemoglobin) and
low correlation with C-reactive protein, seram alkaline phos-
phatase, diastolic blood pressure, etc. Some biomarkers (e.g.,
pulse, red blood cell count and albumin) have negative corre-
lation with age. Fig. 1(a) shows how two positively correlated
biomarkers (systolic blood pressure (p = 0.54), blood urea ni-
trogen (p = 0.44) vary with age on average. Subjects in the
NHANES dataset had ages in the range 18—85. Both mean sys-
tolic blood pressure and mean blood urea nitrogen increase
consistently with age. Conversely, Fig. 1(b) shows how two
negatively correlated biomarkers (albumin (p = —0.17), red
blood cell count (p = —0.17), vary with age on average. Both
mean albumin and red blood cell count decrease consistently
with age. However, the variation of the decrease is not similar.

C. Symbols/Notations Used

Table II shows the notations used in this paper.

D. Centroid BA: New Approach to Estimating BA

We propose a new neighborhood-based method to predict bio-
logical age using biomarkers. Fig. 2 shows the general structure
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TABLE Il < . T T .
NOTATIONS USED IN THE PAPER Algorithm 2: BA Estimation via Age Neighborhoods: Ap-
proach 1.
Tr training subjects Cy trained standard deviation centroids R . . .
Tg test subjects Cigr trained inter-quartile range medoid Input' train centroids (C/L )’ test SUb.]eCt R > # of
Cy trained centroids BA; biological age of person P; neighbors (N)
Cme trained medoids c?> selected trained centroids . . .
u . .
C Centroid ED Euclidean distance vector Olltpllt. BA7 ’ the predICted blOIOglcal age
P; ith person Cp average age of selected N neighbors COMPUTEBAl(C;L ) ]Di7 N)
N # of neighbors Ac, age corresponding to the C', " centroid 1: for each Centroid C € ON do
T th h -

Ky the f*" feature of the C*" centroid of C,, - y

o'(f’ the £ feature of the C*™ centroid of C., 2 EDc ||R ’ C/LC ||

Tr , training subjects with Age A 3: end for

4: Sort ED
Train — Dtermine Res Csvrzlpgl:]ttes r::;g::t?rrnh;:d oA 5: Select Np, the N neighbors from sorted £2D
Samples Model Neighborhoods Biological Age 6: Compute Cp
7 7: for each neighbor j € Np do
8 Compute the distances (A; = [Cp — C}])

Test
Samples

Fig. 2.
tion.

Proposed framework for centroid-based biological age estima-

Algorithm 1: Biological Age Estimation using Centroid of
Age Neighborhoods.

Input: Training data Ty, test data Ty, # of neighbors (N)
Output: BA, the predicted biological age

1: for each age A € age range of training data T do

2 < Cy,,Cy, >+ BUILDCENTROIDMODEL (1%, )
3: end for
4: for each person P, € Ty do
5: BA! « compPuTEBAL (C,,, P;, N)
6 BA? « coMPUTEBA2 (C,,,C,,, P;, N)
7: end for

of the proposed framework. Below we describe each component
of the framework.

Each subject is represented using the biomarker attributes,
forming a multidimensional feature space. Each subject is
viewed as a point in the multidimensional feature space defined
by the individual biomarker attributes (the features). Subjects
in our NHANES dataset had ages in the range 18-85. During
training, we calculate the centroid for each age. First, we com-
pute the centroid based on the training dataset. We divide the
dataset in 68 groups based on the chronological age. We have
68 centroids (age range 18-85 inclusive). Then we calculate
the mean and standard deviation of each feature for all the age
groups. We denote these as C), and C,, respectively. At the
testing stage, given a person P with an unknown biological age,
we first determine the age neighborhoods for this individual P
based on person P’s biomarker attributes and the precomputed
age centroids at training. Then we estimate the BA using the age
neighborhoods. Algorithm 1 shows the pseudo-code of the pro-
posed centroid-based approach to BA estimation. Clearly, how
we determine the age neighborhoods is an important element in
our proposed approach. Below, we describe two approaches to
address this problem.

Approach 1: Using only C,,.

For a given person P, we first calculate and record the
Euclidean distances from all the 68 centroids. Now, based on

9: end for
10: for each neighbor j € Np do

11: Compute a; = 1 — ZAAJ
12: Compute weight w; = fat
13: end for

14: BA; =Y w; + A, .

the sorted Euclidean distances, we select the required /N number
of neighbors added with two centroids (these centroids are used
later on for removing outliers). Then we compute Cp, mean age
of the selected centroids, and record the distances A; of each
selected neighbor from the Cp. We consider two weighting
schemes in computing the biological age.

a) Simple Average: This is the simplest approach, where based
on the selected centroids we calculate the mean age, Cp. Based
on the distance from the mean age, we remove two outliers that
are farthest from the mean. Now we calculate the average age
of the remaining centroids.

b) Weighted exponential squared distance: First, we calcu-
late the mean age (Cp). Now we compute the squared dis-
tances (A; = (Cp — C;)?) of each neighbor from the mean;
we now calculate weight w; = exp ®/ and sum of weights
W = Zjvzl wj. Finally, we calculate the centroid BA. BA; =

Z;.Vzl (5 * Ac, ). Algorithm 2 shows the pseudo-code summa-
rizing the proposed approach.

Approach 2: Using Both C, and C,.

In the above basic approach, we used the centroid which is
calculated based on the mean of the individual features. But the
distributions of the features were ignored. To address this issue,
in Approach 2, we incorporate the standard deviation (of each
individual feature) along with their mean. Both C, and C,, are
calculated based on the training dataset. We have 68 centroids
and 68 standard deviations for each individual features, one
pair for each age range between 18 to 85. Given person P, we
estimate the biological age based on these (feature centroid,
dispersion) pairs. For a given person P, we first calculate and
record the Euclidean distances from all the 68 trained centroids
C),. Now, based on the sorted Euclidean distances, we select
a subset of centroid C), and the standard deviation C;. Then
we apply two different parameters (o and 7— see below) to
determine the neighbors that will be considered to calculate
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Algorithm 3: BA Estimation via Age Neighborhoods: Ap-
proach 2.

Input: mean training centroids (C),), standard deviation
train centroids (C, ), test dataset (T ), # of neighbors (N),
T, &
Output: BA;, the estimated biological age
COMPUTEBA2 (C,,C,, P, N,a, T)

1: C;? — ¢

2: for each person P, € Ty do

3: for each Centroid C' € C, do

4: count « # features k of P; € (u +a*of)
5: if count >= 7 then
6: C’i — Ci ucC
7 end if
8: end for
9: if |(C7| >= N then
10: BA; —COMPUTEBAL(CS , P;, N)
11: else
12: BA; —comPUTEBAL(C,,, P;, N)
13: end if
14: end for

biological age. Based on the selected number of neighborhood
centroids, the algorithm will use the new centroids that pass the
thresholds. If not enough neighbors are found, the algorithm
defaults to Approach 1. Algorithm 3 shows the pseudo-code for
this improved approach.

Two key parameters in the proposed approach are o and 7.
The first parameter « is a factor that we used to compute the
lower range (1 — « * o) and higher range (i 4+ « * o) for evalu-
ating similarity between corresponding features. The ranges are
calculated for each feature individually. Essentially, « is used
to restrict the allowed distance between the given feature for a
subject say P, and the corresponding feature from the centroid
for a given age category. With increasing values of «, more dis-
tance is allowed, and hence leading to a less stringent criteria.
Conversely, when « is small, only centroids that are very close
to P, on the given feature will be involved in computing the BA
for P. The parameter 7 is a threshold count that is used to deter-
mine how many similar features (% of the matches) are allowed
in selecting a centroid. Here, even if one feature is found to be
very close between P, and a given centroid, say C, this centroid
may still not be used to estimate the BA for P unless some
other features are similar between P and C, and the fraction of
similar (or matching) features are above 7, the threshold on the
number of feature matches. With higher values of 7, we have a
more stringent criteria for selecting the thresholds.

Both o and 7 can affect the performance of the proposed
method. In our experiments, to find the best combination of «
and 7 in estimating the BA, we varied « in the range o = 0.25,
0.5, 1.0, 1.5, 2.0 and 7 in the range 7 = 0.5, 0.75, 0.9.

E. Medoid BA: Estimating BA Using Medoid of
Age Neighborhoods

Similar to the mean of each age category (the centroids),
we also considered median representation of each age cluster.

Algorithm 4: BA Estimation using Medoid of Age Neigh-
borhoods.
Input: Training data Ty, test data T, # of neighbors (N)
Output: BA, the predicted biological age
1: for each age A € age range of training data T do
2 <Chme, Cror, >+ BUILDMEDOIDMODEL (T, )
3: end for
4: for each person P; € test do
5.
6
7

BA! « coMPUTEBAL (C,,., P, N)
BA? « coMPUTEBA2 (Ce, Crgr, Piy N)
. end for

We call the estimated biological age (BA) based on median,
as medoid-based BA. Algorithm 4 shows the pseudo-code of
the proposed medoid-based biological age estimation. Similar
to Algorithm 1, for every age (in the range 18-85) we cal-
culate a train medoid of the attributes, where the medoid is
a vector in the feature space that contains the respective me-
dian of each attribute at a given chronological age. First, we
compute medoid based on the training dataset. We divide the
dataset in 68 groups based on the chronological age. We have
68 medoids (age range 18-85 inclusive). Now we calculate the
median and the inter quartile range (IQR) of each feature for
each age group. We denote them as (), and Crgr, respec-
tively. Following the centroid approach, we can now estimate
a person’s biological age based on the trained medoids and the
recorded IQRs. The medoid approach is summarized in Algo-
rithm 4. Algorithm 1 and Algorithm 4 are similar. The differ-
ences are, C), is replaced by C), ., and Cj; is replaced by Crgr.
So, for medoid BA, to compute COMPUTEBA1(), we then use
Cyn. and similarly for COMPUTEBA2(), we use both C),. and
C]Q R-

[ll. RESULTS

For validation and comparison of the proposed BA algo-
rithms, we have applied three statistical analysis methods,
namely, Cox proportional hazard (Cox PH) model, Kaplan-
Meier (KM) curves, and survival area under the curve (AUC)
of receiver operating characteristic (ROC). We randomly par-
titioned the dataset into training set and test set, using 2/3 for
training, the remaining 1/3 for testing. All statistical analyses
were performed using the R Language, Ver. 3.3.5 (The R Foun-
dation for Statistical Computing, Vienna, Austria). The follow-
ing packages were used: survival, gtools, ggplot2, tidyverse,
keras, €1071, matrixStats, SurvAUC.

A. Cox PH Model

We used Cox proportional mortality hazard modeling [18] to
quantify the association of the proposed centroid BA or medoid
BA with all-cause mortality. Under the Cox model, the relation-
ship between hazard and the covariates is described by consid-
ering the logarithm of the hazard as a linear function of the vari-
ables. The larger the hazard ratio the better the method. We have
considered five BA estimation algorithms to calculate the haz-
ard ratio (HR) [18]. First, we estimate BA using MLR method
[3], KD method [7], DNN (Deep Neural Networks) [17], and
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TABLE IlI
Cox PH RESULTS FOR BIOLOGICAL AGE ESTIMATION METHODS

Biological Age

HR p-value
MLR 0.99 | 2.21E-24
KD 1.04 | 9.28E-41
DNN 1.12 | 1.34E-63
Centroid | 1.12 | 9.16E-32
Medoid 1.12 | 4.02E-18

our proposed models. For DNN, we used the network reported
in [17] by Putin et al. which had the best performance. Then we
calculate A = C'A — B A for each BA estimation algorithm. We
then use the A quartiles to apply the Cox model. Table III shows
the results for the biomarker features. We use the estimated BA
as the parameter for the Cox model, and recorded the HR for
each method (Centroid 1.12, Medoid 1.12, MLR 0.99, KD 1.04,

and DNN 1.12). From the perspective of Cox PH model, we
found that proposed centroid-based and medoid-based BA esti-
mation methods had similar or slightly better performance than
the other methods.

B. KM Curves and Log-Rank Test

To further study the performance of centroid BA, we analysed
the Kaplan-Meier (KM) survival curves [19] obtained using the
quartiles of delta (A = C A — BA). Fig. 3 shows the KM plots
using the estimated BA from the proposed Centroid approach.
Fig. 4 shows the results for the proposed Medoid approach.
In general, biological age performs well in distinguishing the
proportion of survivors for each method. From the figures, it
is apparent that when applied in survival model, using the es-
timated biological age from each method seemed to perform
better than using chronological age. Among the methods, the
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TABLE IV
LoG RANK RESULTS (x2-DISTANCE) FOR MORTALITY MODELING USING
FOUR BIOLOGICAL AGE ESTIMATION METHODS

Biomarker

Chronological Age Estimated BA

Chi-Sq p-value Chi-Sq p-value
MLR 7424 | 5.55E-16 32.75 3.18E-16
KD 22.68 | 4.07E-05 | 157.59 | 3.21E-15
DNN 74.25 2.16E-16 | 439.83 | 1.30E-16
Centroid | 81.51 2.38E-16 | 689.37 | 1.29E-17
Medoid 115.15 | 1.39E-16 | 707.42 | 1.12E-17

proposed centroid and medoid based approaches have similar
survival curves. To further quantify the performance, we used the
log-rank test to compare the survival distributions obtained us-
ing the different BA algorithms. The log-rank test can be used to
compare different Kaplan-Meier curves to see if they are statis-
tically equivalent. The output of the test is a x2-distance, and the
p-value associated with the distance. Higher x?-distances and
low p-values indicate a better separation between the curves,
and hence a better performance in mortality modeling. The
differences among the biological ages estimated by the four
methods are more evident using quantitative measures, e.g., the
x2-distance between their respective KM curves, as captured by
the logrank test (Table IV). Proposed medoid based approach
has the best overall results using either chronological age, or
biological age.

R package “survival” is used for Cox PH model, KM plots,
and log-rank test. The Surv() function is the primary function.
The parameters for Surv() are as follows: Surv(time, status)
~ variable. So, for time we can use either chronological or
estimated biological age, status is the mortality status. For the
variable we use A = C A — BA. If chronological age is used as
the time, we can also test the performance of estimated BA as a
variable.

C. ROC of AUC

We have used the receiver operating characteristics (ROC)
curves to examine the sensitivity and specificity of chronological
age and the predicted biological ages in mortality modeling. We
have applied estimators of cumulative and incident/dynamic
area under curve (AUC) proposed by Song and Zhou [20]. These
estimators are given by the areas under the time dependent ROC
curves estimated by sensitivity and specificity. Fig. 5 shows the
estimated ROC curves for the biological age prediction methods.
Using the ROC curve on A = C'A — BA, the best performing
biological age estimate was the proposed medoid BA (AUC
= 0.66) followed by centroid (AUC = 0.61). MLR, KD, and
DNN have AUC values of 0.60, 0.57, and 0.65, respectively.
The results improved using the estimated BA rather than A.
Observing the results on the biomarker features, the proposed
medoid and centroid based BA estimation algorithms produced
the best results with respect to the area under the curve of
ROC. Cox model performance in terms of hazard ratio (HR)
is similar in comparison to MLR, KD, or DNN approaches.
Using the KM curves and log-rank test on the results from the
proposed centroid-based and medoid-based approaches resulted

0.75-

Sensitivity
L=
3

KD
— MLR
— DNN

0.25-

— Centroid
0.00-
' ' ' ' Medoid
1.00 0.75 0.50 0.25

Specificity

Fig. 5. ROC curves for MLR, KD, DNN, Centroid, and Medoid al-
gorithms using biomarker features. Results are reported for applying
A = CA — BA for the respective estimation approach.

TABLE V
RESULTS FOR VARYING «v AND 7 IN APPROACH2 USING
CENTROID BA (ALGORITHM 3), FORN = 5

7 =0.5 T =0.75 7T =0.90
« x2-dist [ AUC | x2-dist | AUC | xZ-dist [ AUC
0.25 | 805.27 0.74 755.98 0.73 755.98 0.73
0.5 767.75 0.75 779.3 0.74 756.01 0.73
1 775.69 0.74 771.6 0.74 762.19 0.74
1.5 760.79 0.74 744.28 0.74 748.88 0.75
2 755.98 0.73 742.55 0.74 733.95 0.74

All the corresponding p-values are significant (p =~ 0) for log-rank test.

in improved performances over the previous approaches. These
results suggest that the centroid based model is a competitive
BA predictor. The medoid-based model showed an improvement
over all the other methods.

D. Results for Approach 2

Applying the proposed Approach 2 (Algorithm 3) using both
the C,, C, improved the results. Table V shows the results
for applying log-rank test, and AUC of ROC survival curves
for variation of different values of the parameter o and 7. We
varied parameter o (o = 0.25, 0.5, 1, 1.5, 2) and 7 (7 = 0.5,
0.75, 0.9) to test the performance of the proposed approach.
Parameter « is varied to test the impact of the range allowed,
and parameter 7 is varied to check the impact of percentage of
feature matches. We have considered 15 possible variations of
a and 7 for these sets of values. As mentioned earlier, applying
a and 7 is a more robust approach. We notice that the above two
mentioned criteria (y?-distance using the log-rank test, survival
AUC) improved for the centroid method using Approach 2.
Although for parameter o = 0.25, and 7 = 0.5 the x>-distance
is highest, but the range using o = 0.25 will be too small. Thus
we chose o = 0.5, and 7 = 0.5 as our best combination for
the centroid method. We observed that survival AUC improved
from 0.61 (Table VI) to 0.75, x? distance of the log-rank test
increased from 689.37 to 767.75, and the hazard ratio of Cox
PH model also improved from 1.120 (Table III) to 1.128 (data
not shown).
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TABLE VI TABLE VIl
AREA UNDER THE CURVE (AUC) OF RECEIVER OPERATING OVERALL COMPARATIVE RESULTS ON BIOLOGICAL AGE PREDICTION
CHARACTERISTICS (ROC) CURVES
CoxPH Log-rank AUC
Delta | Estimated BA « HR p-value X2 -dist p-value
MLR 0.60 0.64 MLR [3] 0.99 | 2.21E-24 32.75 3.18E-16 | 0.60
KD 0.57 0.60 KD [7] 1.04 | 9.28E-41 157.59 3.21E-15 0.57
DNN 0.65 0.51 DNN [16] | [.12 | 1.34E-63 | 439.83 1.30E-16 | 0.65
Centroid | 0.61 0.64 Centroid 1.12 | 9.16E-32 | 689.37 1.29E-17 | 0.61
Medoid 0.66 0.66 Centroid2 | 1.13 | 7.18E-16 | 767.75 | 4.05E-18 | 0.75
Medoid 1.12 | 4.02E-18 707.42 1.12E-17 0.66
Medoid2 1.12 | 6.30E-16 712.1 4.81E-18 | 0.76
@ gop- ®) 440 = 05
== T0.75
- T09
8 750- 8 750-
= =
2 700 2 700 Hazard Ratio (HR) using the Cox proportional hazard model,
Al T x>-distance from the LogRank test, based on Kaplan-Meier
= 650~ — w5 Y 650- (KM) curves, and the survival area under the curve (AUC).
:?;,73 Using these three performance measures, the results show that
600 - 600 - g p . .
05 10 15 20 o5 10 15 20 our proposed Approach 2 using both Centroid2 (C),, C,;) and
o o Medoid2 (C,, ¢, Crgr) have the best overall results. Between the
Fig. 6. Impact of parameter a and r in Approach2 (a) Centroid BA, proposed centroid-based and mediod-based age neighborhood

and (b) using Medoid BA.

TABLE VII
RESULTS FOR VARYING v AND 7 IN APPROACH2 USING
MEDOID BA (ALGORITHM 4), FOR N = 5

7=05 7 =0.75 T =0.90
« x2-dist | AUC | x?-dist | AUC | x2-dist | AUC
0.25 [ 700.20 | 0.75 | 660.17 | 0.75 | 660.16 | 0.75
0.5 | 712.10 | 0.76 | 65822 | 0.75 | 660.22 | 0.75
1 67120 | 0.75 | 729.65 | 0.75 | 613.19 | 0.75
1.5 | 658.70 | 0.75 | 626.75 | 0.75 | 708.25 | 0.76
2 660.20 | 0.75 | 646.18 | 0.75 | 661.25 | 0.75

All the corresponding p-values are significant (p ~ 0) for log-rank test.

Fig. 6 shows the impact of cv, and 7 parameters on x2-distance
of the log-rank test using Approach 2 for both the centroid
and medoid methods. Similarly, Table VII shows the results of
varying o and 7 for medoid BA using Approach 2. We observe
that survival AUC value improved from 0.66 (Table VI) to 0.75,
x2 distance of the log-rank test increased from 707.42 to 712.10,
and the hazard ratio of Cox PH model remained similar (1.12)
(using o = 0.5 and 7 = 0.5). For both the centroid approach and
the medoid approach, our observation is that parameter setting
(v = 0.5, 7 = 0.5) usually leads to the best result, or close to
the best. Thus we have used this setting in comparative analysis
of the methods.

E. Comparative Results

To place the results of our proposed approaches in perspec-
tive, we have compared with current popular approaches to BA
estimation using biomarker data, namely KD [7], MLR [3], and
DNN [17]. We have shown the corresponding results with these
methods while we discuss the results of our proposed approaches
(see Tables III, IV, and VI).

Table VIII shows the comparative performance of existing
popular methods and the proposed approaches. The methods
are compared using three popular performance metrics, namely,

approaches, the centroid-based approach resulted in a superior
performance over the mediod-based approach. The results for
Approach 2 are reported for using o« = 0.5 and 7 = 0.5.

IV. DISCUSSION
A. Impact of Number of Neighbors

Two key steps in the proposed method are how to select the
neighbors, and how to determine the number of neighbors to
be involved. Algorithm 2 and Algorithm 3 have shown how the
neighbors are selected, once we know the number of neighbors.
Given the significance of neighborhoods in our approach, it
becomes important to study how the neighborhood size can
influence our results. To check the impact of neighborhood size
on our proposed centroid of age neighborhoods for biological
age estimation, we experimented with different values for N,
the number of neighbors. We have considered 10 values of N,
namely, N =1, 2, 3, 5, 7, 10, 15, 18, 20, 22, 25, 30, 40,
50. We show the impact of N based on the KM plots and the
corresponding log-rank test. We also studied changes in error
density with increasing N.

Table IX shows the results of log-rank test using both esti-
mated BA and delta (A = CA — BA) for different number of
neighbors. Based on the x? distance, we observe that BA es-
timated using 10 neighbors has the maximum value followed
by 5 neighbors. When using delta, best results were obtained
with N = 2, followed by N = 5. Table IX also shows how mean
absolute error (MAE) vary with increasing number of neighbors
in our proposed centroid-based method. The MAE starts high
(N = 1), then it reduces sharply at N = 2. Considering just a
single neighbor leads to a significant error in the estimation. The
sharp decrease at N = 2 is understandable because it averaged
out the error introduced by the single neighbor. MAE is similar
for N = 2 to N = 20. After that the MAE starts to increase
almost linearly with the increasing N. N = 20 has the overall
lowest MAE. The performance criteria for choosing N was to
get lower MAE, and higher y-distance using both estimated
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TABLE IX
IMPACT OF NUMBER OF NEIGHBORS ON MEAN ABSOLUTE ERROR (MAE),
LoG-RANK TESTS ON ESTIMATED BIOLOGICAL AGE, DELTA (CA-BA)

MAE Estimated BA delta (CA - BA)
N x2-dist | p-val | x2-dist | p-val
1 26.82 | 566.60 0 935.14 0
2 11.51 399.8 0 723.7 0
3 11.47 376.3 0 653.8 0
5 11.35 491.2 0 703.9 0
7 11.17 480.9 0 664.6 0
10 | 10.92 506.1 0 562.1 0
15 | 10.80 494.5 0 408.01 0
18 | 10.81 497.5 0 334.4 0
20 | 10.74 476.5 0 320.4 0
22 | 10.83 536.4 0 326.3 0
25 | 1091 568.5 0 212.1 0
30 | 11.20 494.6 0 154.6 0
40 | 12.36 419.6 0 108.4 0
50 | 14.02 394.1 0 84.0 0
TABLE X
RESULTS FOR DIFFERENT DISTANCE MEASURES
Centroid Medoid
Distance HR | x2-dist | AUC | HR | x°-dist | AUC
Euclidean 1.13 | 767.75 0.75 1.12 | 712.11 0.75
Jaccard 1.13 | 874.61 0.76 | 1.12 | 860.06 0.75
Manhattan | [.13 | 837.39 0.75 1.12 | 707.52 0.75
TABLE XI
STABILITY OF THE RESULTS
Centroid Medoid
CA BA CA BA
Fold | x?-dist | x?-dist | HR | x2-dist | x?-dist HR
1 132.79 811.69 | 1.128 176.63 717.19 1.124
2 84.92 761.61 1.123 138.45 687.53 1.119
3 105.39 | 749.93 1.120 | 150.97 750.93 1.115
mean | 107.70 | 774.41 1.124 | 15535 | 718.550 | 1.119
std 24.02 32.81 0.004 19.46 31.719 0.005

BA and delta (A = CA — BA). From these results, we selected
N =5 as the overall best number of neighbors.

B. Impact of Distance Measures

Table X shows the hazard ratio (Cox PH), y*-distance (Log-
rank test), and survival area under the curve (AUC) using dif-
ferent distance measures in the proposed centroid-based neigh-
borhood approach to BA estimation. We tested the performance
of different approaches using 5 neighbors. We observe that, in
Table X Jaccard distance has the largest y*-distances and AUC
values applying delta (A = CA-BA) as a co-variate while the
general trend is similar for all the distance measures. Although
the Jaccard distance was slightly better than the Euclidean dis-
tance that we used to develop the model, these results show the
generality of the proposed age neighborhood approaches.

C. Stability of Results

Table XI shows the x2-distance (Log-rank test) and hazard ra-
tio (Cox PH) using 3-fold cross validation for both the proposed
centroid-based and medoid-based approach to BA estimation.

TABLE XII
RESULTS REPORTED FOR LOG-RANK TEST AND AREA UNDER CURVE
(AUC) oF RECEIVER OPERATING CHARACTERISTICS (ROC) CURVES
FOR SINGLE MODEL GROUPED BY GENDER

x2-dist AUC

Female Male Female | Male
MLR 17.98 20.26 0.6 0.61
KD 64.54 81.05 0.57 0.58
DNN 191.09 | 265.74 0.65 0.66
Centroid 285.31 | 421.56 0.59 0.64
Centroid2 | 354.55 | 419.95 0.59 0.67
Medoid 269.38 | 386.36 0.67 0.68
Medoid2 294.82 | 363.75 0.68 0.71

We observe that, in Table XI the x?-distances and hazard ratios
are similar to the results of simple train and test dataset. The
relatively small values for the standard deviation demonstrate
the stability of the results. We also performed 10-fold cross val-
idation using the same data set. Similar to the above results,
the standard deviation of the results was equally small, about
0.71% of the mean for centroid-BA, and 0.89% of the mean for
medoid-BA approach.

D. Impact of Gender

Gender is expected to have some influence on the perfor-
mance of an age estimation scheme [2]. We have grouped the
results of the single model applied to all subjects into male and
female subjects. In Table XII we show the results for log-rank
(x?-distance) test, and AUC for each BA estimation algorithm
for both female and male. For log-rank test, proposed centroid-
based model has the highest X2-distance (Male = 421.56, Fe-
male = 354.55). However, the proposed medoid based method
has the overall best result for AUC (Male = 0.71, Female =
0.68). We also observe that, in every case independent of the
particular method applied, or the specific features used, better
results were obtained for male subjects than for female subjects.
These results are consistent with other existing work that show
that age prediction and mortality analysis for female subjects is
generally more difficult than for male subjects [2], [21], [22].

E. Computational Complexity

Of the proposed methods, Approach 2 requires more compu-
tation. This depends on the time used in COMPUTEBA2(). The
running time of COMPUTEBAZ2() is the sum of running time of
each statement of the pseudocode. The outer for loop (Line 2 to
Line 14) has a running time of O(|Tg|), Tx is the test dataset.
The nested for loop (Line 3 to Line 8) looks up the two centroid
matrices. The complexity is (O (k) + O(k), where k is the num-
ber of features. Now depending on the condition of |C’f | >=N
method COMPUTEBA 1() is called either using C 5 or C,.In Algo-
rithm 2 for person P,, we calculate the Euclidean distances from
each centroid C' € C;. This can be done in time of O(|C| x k),
where k is the number of features and |C'| is the number of cen-
troids. Then we perform quick sort on the calculated distances
which is on average O(|C|log|C|), and essentially is also a
constant. The for loop (Line 7 to Line 9) computes the distances
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in O(N), where N is number of neighbors. Similarly, the for
loop (Line 10 to Line 13) have time of O(V). The overall com-
plexity of Approach 2 is O(|Tx| x |C|), where T is the test
dataset, and |C| is the number of centroids. Since |C| and N
are essentially constants (|C| = 68, N < |C| = 68), and k is
relatively small, the time required will thus depend linearly on
the size of the dataset.

V. CONCLUSION

In this work, we studied age estimation using human blood
biomarkers from the NHANES dataset. We presented a new
centroid/medoid-based model to estimate biological age. We
grouped individuals of same age to the same centroid. The
proposed method utilized specially selected age neighborhood
to perform biological age estimation. Although both centroid
and medoid based approaches have similar performances, we
observed that considering the three different methods for quan-
tifying the performance of estimated BA as used in the paper
(i.e., Cox PH, Log-rank from KM curves, and AUC) the centroid
based approach (with Approach 2) is the overall best. Practical
results demonstrate the significant improvement in BA estima-
tion using the proposed methods when compared with existing
approaches, such as KD [7], MLR [3], and DNN [17]. Although
the performance of Cox Proportional Hazard model (Cox PH)
provides similar hazard ratio for DNN and proposed methods,
the methods differ in terms of log-rank test and survival area
under the curve. In this work, we established that centroid
based method can be used on blood biomarkers to estimate
biological age. A potential future work, will be to study whether
other modalities, for instance, human body measurements,
or human locomotor activity, could be used for estimation of
biological age, using the centroid-based or medoid-based age
neighborhoods.

We mention one potential limitation of the proposed ap-
proach. As a learning-based approach, the results reported
clearly depend on the specific dataset used. We have tested on a
large dataset, and also performed cross-validation on the dataset.
We have discussed the stability of the results produced with the
proposed approaches. The results will not change much for a
dataset with similar characteristics as the NHANES dataset.
However, the NHANES dataset is based mainly on subjects
from the US population, and thus the trained models based on
NHANES may not generalize to people from a very different
ethnic makeup. For instance, a dataset containing mainly peo-
ple of East Asian origin may require us to train the model on
the new dataset, before using it for prediction. But the general
methodology remains the same. Thus, another potential future
work would be to test the approach on biomarker datasets with
possibly different characteristics from NHANES, example, data
from populations with a different ethnic makeup when compared
with the US population.
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