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Abstract
Aim: We may be able to buffer biodiversity against the effects of ongoing climate 
change by prioritizing the protection of habitat with diverse physical features (high 
geodiversity) associated with ecological and evolutionary mechanisms that maintain 
high biodiversity. Nonetheless, the relationships between biodiversity and habitat 
vary with spatial and biological context. In this study, we compare how well habitat 
geodiversity (spatial variation in abiotic processes and features) and climate explain 
biodiversity patterns of birds and trees. We also evaluate the consistency of biodiver-
sity–geodiversity relationships across ecoregions.
Location: Contiguous USA.
Time period: 2007–2016.
Taxa studied: Birds and trees.
Methods: We quantified geodiversity with remotely sensed data and generated bi-
odiversity maps from the Forest Inventory and Analysis and Breeding Bird Survey 
datasets. We fitted multivariate regressions to alpha, beta and gamma diversity, 
accounting for spatial autocorrelation among Nature Conservancy ecoregions and 
relationships among taxonomic, phylogenetic and functional biodiversity. We fitted 
models including climate alone (temperature and precipitation), geodiversity alone 
(topography, soil and geology) and climate plus geodiversity.
Results: A combination of geodiversity and climate predictor variables fitted most 
forms of bird and tree biodiversity with < 10% relative error. Models using geodi-
versity and climate performed better for local (alpha) and regional (gamma) diversity 
than for turnover-based (beta) diversity. Among geodiversity predictors, variability of 
elevation fitted biodiversity best; interestingly, topographically diverse places tended 
to have higher tree diversity but lower bird diversity.
Main conclusions: Although climatic predictors tended to have larger individual ef-
fects than geodiversity, adding geodiversity improved climate-only models of biodi-
versity. Geodiversity was correlated with biodiversity more consistently than with 
climate across ecoregions, but models tended to have a poor fit in ecoregions held out 
of the training dataset. Patterns of geodiversity could help to prioritize conservation 



2  |     READ et al.

1  | INTRODUC TION

In the face of an ongoing sixth mass extinction, society is challenged 
to minimize biodiversity loss through conservation efforts (Ceballos 
et al., 2015). Many conservation policies and strategies focus on 
conserving particular species (e.g., the United States Endangered 
Species Act, the International Union for Conservation of Nature 
Red List), but there is growing interest in broadening conserva-
tion to include preserving parcels of Earth's surface that promote 
diversity even as species shift their ranges in response to climate 
change (Beier & de Albuquerque, 2015). For example, The Nature 
Conservancy (TNC) prioritizes the preservation of areas with high 
geodiversity (variation in Earth's abiotic processes and features) 
through their “Conserving Nature's Stage” (CNS) campaign (Beier & 
de Albuquerque, 2015). Conserving nature's stage requires a firm 
understanding of biodiversity–geodiversity relationships, yet we 
know little about how these relationships vary across space, among 
taxa and across different dimensions of biodiversity (Zarnetske et 
al., 2019). Addressing this knowledge gap is key to advancing con-
servation prioritization.

Geodiversity represents natural variation in geological, geomor-
phic and soil features (Gray, 2004, 2008) and can be measured in 
a variety of ways. Most studies focus on elements of topography 
(roughness, elevation, slope and aspect), geology (geological diver-
sity, landscape complexity), soils (pH, organic matter and nutrient 
availability) or hydrology (variation of hydrological features, such as 
rivers, ponds and lakes; Hjort, Heikkinen, & Luoto, 2012; Kaskela et 
al., 2017; Wang et al., 2013). Some geodiversity definitions include 
climate, using variables such as temperature, precipitation, evapo-
transpiration, water balance and solar radiation, whereas others 
explicitly exclude climate from their definition (Gray, 2004; Parks 
& Mulligan, 2010; Tukiainen, Bailey, Field, Kangas, & Hjort, 2017). 
A comprehensive definition of geodiversity includes all abiotic fea-
tures and processes found within Earth's atmosphere, lithosphere, 
hydrosphere and cryosphere (Record et al., in press; Zarnetske et 
al., 2019).

Abiotic variation may promote increased variety of available 
niches for organisms (Tews et al., 2004), and high geodiversity is 
likely to indicate biodiversity hotspots (Lawler et al., 2015; but see 
Noss et al., 2015). However, little is known about how geodiversity 
of Earth's surface compares to climate in explaining the variation in 

biodiversity, whether relationships generalize across geographical 
locations and what types of biodiversity have the closest relation-
ship with geodiversity. Despite the potential importance of geodi-
versity for explaining patterns of biodiversity, models explaining 
patterns of biodiversity rarely include geodiversity (Bailey, Boyd, 
& Field, 2018). Furthermore, conservation frameworks, including 
CNS, typically advance the idea that conservation of geodiversity 
will result in positive outcomes for biodiversity writ large (Beier & 
de Albuquerque, 2015). This assumption must be tested empirically, 
especially given the potential trade-offs among orthogonal dimen-
sions of biodiversity within and among taxa; conservation of one 
aspect of biodiversity might have a neutral or even negative effect 
on other aspects. In this study, we use bird and tree occurrence data 
and remotely sensed environmental data from across the USA to 
increase our understanding of biodiversity–geodiversity relation-
ships. Geodiversity, in conjunction with climate, predicts patterns 
of species diversity of plants (Bailey et al., 2018; Tukiainen et al., 
2017) and animals (Alahuhta et al., 2018; Parks & Mulligan, 2010) 
across disparate biomes. Informed by these previously documented 
patterns, our prediction 1 is that combining geodiversity and climate 
predictors will significantly improve the goodness-of-fit of models 
explaining biodiversity of birds and trees.

Recent work shows that the biodiversity–geodiversity relation-
ship depends on spatial grain and extent (Bailey, Boyd, Hjort, Lavers, 
& Field, 2017; Zarnetske et al., 2019). Nevertheless, most studies have 
focused on alpha diversity (local diversity) measured within a plot. 
In contrast, most large-scale mapping studies characterizing diver-
sity have equated diversity with gamma diversity, or the size of the 
regional species pool (Currie & Paquin, 1987; Jenkins, Houtan, Pimm, 
& Sexton, 2015). Only a few have accounted for the three levels of 
biodiversity: alpha diversity, beta diversity (turnover among plots) and 
gamma diversity (Gossner et al., 2013; Meynard et al., 2011). Beta di-
versity represents compositional turnover among local communities, 
linking local diversity (alpha diversity) to regional species pools (gamma 
diversity). We expect that the relationship between geodiversity and 
beta and gamma diversity will be stronger than that of alpha diver-
sity, because high geodiversity often reflects high diversity of habitats 
within regions and therefore more unique local species assemblages 
(Stein, Gerstner, & Kreft, 2014). This leads to prediction 2, which is that 
geodiversity will explain more variability in the beta and gamma levels 
of biodiversity than in alpha diversity.
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efforts within ecoregions. However, we need to understand the underlying mecha-
nisms more fully before we can build models transferable across ecoregions.
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The relationship between geodiversity and biodiversity may 
also vary with the dimensions of biodiversity (taxonomic, func-
tional and phylogenetic diversity). Targeting functional and phy-
logenetic diversity is especially important for conserving unique 
ecological function (Steudel et al., 2016) and evolutionary his-
tory (Davis, Faurby, & Svenning, 2018) in the face of the current 
biodiversity crisis. Given that phylogenetic (Winter, Devictor, & 
Schweiger, 2013) and functional (Lamanna et al., 2014) biodiver-
sity are explicitly linked to different ecological and evolutionary 
mechanisms, they may provide deeper insight into ecological and 
evolutionary processes that underlie regional variation in diversity. 
However, few studies of geodiversity have investigated these mul-
tiple dimensions of biodiversity (Meynard et al., 2011); most stud-
ies have considered only taxonomic diversity (e.g., Safi et al., 2011; 
Stevens & Gavilanez, 2015). Given that each dimension of biodi-
versity represents a unique mechanistic connection with the en-
vironment, we predict (prediction 3) that the different dimensions 
of biodiversity will have different relationships with geodiversity.

Relationships between dimensions of biodiversity and geodi-
versity vary across geographical and environmental space. In some 
areas and environmental contexts, one form of geodiversity might 
be a more reliable predictor of biodiversity than elsewhere. For 
example, topographical complexity generates a diversity of cli-
matic conditions at small to intermediate spatial scales, ranging 
from metres (Bennie, Huntley, Wiltshire, Hill, & Baxter, 2008) to 
tens of kilometres (Badgley et al., 2017), which may buffer spe-
cies against local extinctions as climate warms (Dobrowski, 2011; 
Lenoir et al., 2013). Such buffering is, however, conditional on cli-
matic context; if an entire landscape is far outside of the phys-
iological range of tolerance for some taxonomic or functional 
groups, geodiversity is likely to be unimportant for maintaining 
local biodiversity. For example, along the central California coast, 
land and ocean surface temperatures contrast strongly, and there 
is high heterogeneity in topography and associated cloud and fog 
patterns. Such conditions support relatively high local richness of 
tree species (Barbour, Keeler-Wolf, & Schoenherr, 2007). Inland, 
in contrast, the average climate of the Coast Range is more arid, 
and fog is absent (Ackerly et al., 2010), meaning that only the cool-
est facets of the landscape support any level of tree cover. In this 
context, topographical heterogeneity is still associated with higher 
tree diversity, but the relationship is likely to be weaker. For these 
reasons, we predict (prediction 4) that the influence of different 
geodiversity predictors on biodiversity will vary across ecore-
gions. In particular, mountainous ecoregions with more mesic 
climates will have more positive relationships between topograph-
ical diversity and biodiversity than more arid mountain ranges.

In this study, we use bird and tree occurrence data and remotely 
sensed environmental data from across the USA to increase our un-
derstanding of biodiversity–geodiversity relationships. We make the 
following predictions:

1.	 Geodiversity will significantly increase the explanatory power 
of models explaining biodiversity of birds and trees.

2.	 Geodiversity will explain more variability in beta and gamma di-
versity than in alpha diversity.

3.	 The different dimensions of biodiversity will have different rela-
tionships with geodiversity.

4.	 The influence of different geodiversity predictors on biodiversity 
will vary across ecoregions.

2  | METHODS

We used multivariate linear mixed models with spatial random ef-
fects to determine which geodiversity predictors explain the most 
variation across the levels and dimensions of bird and tree biodiver-
sity in the contiguous USA. We used biodiversity and geodiversity 
data collected from 2007 to 2016.

2.1 | Breeding Bird Survey

The North American Breeding Bird Survey (BBS; https​://www.pwrc.
usgs.gov/bbs/) is an annual survey of breeding birds across the USA 
and Canada begun in 1966. Voluntary observers report species 
and counts of birds seen or heard during 3 min observations at 50 
stops spaced every c. 800 m along routes c. 39.4 km in length (Sauer, 
Link, Fallon, Pardieck, & Ziolkowski, 2013). There are c. 3,480 ac-
tive routes in the contiguous USA with continuous yearly stop-level 
data. We excluded any routes with an ambiguous midpoint coordi-
nate (discontinuous transects), leaving 3,089 routes. We included 
only the surveys conducted under the standard protocol, discarding 
repeat surveys and any observations recorded by trainees.

2.2 | Forest Inventory and Analysis

The U.S. Department of Agriculture Forest Service's Forest Inventory 
and Analysis (FIA) program surveys the composition and status of 
forests throughout the USA, with data collected annually (Bechtold 
& Patterson, 2005). Each FIA plot consists of four 7.2 m fixed-radius 
subplots. Plots are spaced roughly on a 5 km grid across forested 
land. Each plot is surveyed approximately every 5 years (Bechtold & 
Patterson, 2005). Each tree is identified to species. We obtained the 
most recent survey from all forested, non-plantation FIA plots in the 
contiguous USA (119,177 plots). Some plots in the Pacific Northwest 
Region included a larger “macroplot” around the central subplots; 
we excluded any trees outside the subplot boundary. The year of the 
most recent survey varied between 2012 and 2016.

2.3 | Phylogenetic and trait data

We obtained phylogenetic trees and compiled trait information for 
all bird and tree species in the BBS and FIA databases, respectively, 
and used them to calculate the distance-based phylogenetic and 
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functional diversity indices described below. See the Supporting 
Information (Appendix S1) for additional details.

2.4 | Calculation of biodiversity metrics

For both tree and bird communities, we calculated biodiversity met-
rics based on species presence at the site level (here defined as a 
single FIA plot or BBS route). For trees in FIA, we used the most re-
cent survey as a single time point for each site, because there is little 
turnover in species composition between surveys, and the probabil-
ity of imperfect detection is low. To minimize the effects of imper-
fect bird detection in the BBS survey, we pooled observations from 
all stops on each route and pooled all surveys from 2007 to 2016. 
See the Supporting Information (Appendix S2) for additional details.

We calculated alpha, beta and gamma diversity (referred to as 
levels of biodiversity) within a circle of 50 km radius around each site, 
originating at the centre of the FIA plot or midpoint of the BBS route. 
We defined any BBS route whose midpoint fell within the 50 km circle 
around the focal route midpoint to be a neighbour route (see Supporting 
Information Appendix S2). We took: (a) the median diversity of all sites 
in the radius, including the focal site (alpha); (b) the median pairwise 
diversity of all pairs of sites in the radius, including the focal sites (beta); 
and (c) the aggregated diversity of all sites in the radius (gamma). Each 
diversity level has three dimensions: taxonomic, phylogenetic and 
functional (Supporting Information Table S1). For taxonomic diversity, 
alpha diversity and gamma diversity were represented by species rich-
ness, and beta diversity was represented by pairwise Sørensen dissim-
ilarity. The Sørensen dissimilarity index represents the degree to which 
pairs of communities differ from one another in their species compo-
sition, independent of their species richness, and encompasses both 
species turnover and nestedness components of beta diversity. This 
contrasts with beta-diversity indices based on multiplicative or addi-
tive partitions of alpha and gamma diversity (Anderson et al., 2011). 
To quantify phylogenetic diversity, we calculated the mean pairwise 
phylogenetic distance (MPD) of each community with the R package pi-
cante (Kembel et al., 2018). We randomized the phylogenetic distance 
matrix 999 times and calculated the z-score of the observed phyloge-
netic distances relative to the distribution of phylogenetic distances 
of the randomized matrices to remove the dependence on richness. 
Likewise, we calculated a distance-based metric of functional diversity 
by finding the Gower distance between the trait values for all possible 
species pairs, and then calculating the mean pairwise distance among 
all pairs of species in each community and its z-score. Given that the 
BBS surveys provide poor estimates of the abundances of some spe-
cies, we calculated incidence-based biodiversity metrics for both birds 
and trees in order that metrics are comparable between the two taxa.

2.5 | Geodiversity data sources and processing

We obtained and processed remotely sensed data for the con-
tiguous USA to generate geodiversity and climate data layers. 

Remotely sensed geodiversity variables are particularly valuable 
in disentangling the independent effects of climate and geodiver-
sity. Many biodiversity analyses use climatic data products that 
interpolate weather station data using elevation; for example, 
WorldClim v.1 (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005). 
Using elevation to derive temperature values makes it difficult to 
evaluate independent contributions from climate and topogra-
phy (Körner, 2007). Remotely sensed temperature represents the 
temperature of the land surface, in contrast to weather stations, 
which measure air temperature several metres above ground level 
(Bechtel, 2015). In areas with very sparse coverage of meteoro-
logical stations and/or complex topography, the error introduced 
by interpolating between ground stations may be large. In many 
regions, especially grasslands, shrublands and croplands, surface 
temperature shows large systematic deviations from air tempera-
ture (Mildrexler, Zhao, & Running, 2011). What is more, studies 
have shown that surface temperature might be more ecologically 
relevant than air temperature (Pau, Edwards, & Still, 2013; Still, 
Pau, & Edwards, 2014). The thermodynamic temperature of an 
organism, which drives its respiratory rate and vapour pressure 
deficit, is more closely related to the surface temperature than to 
the surrounding air temperature. Remotely sensed data products 
provide spatially continuous, independent and direct measures of 
climate and geodiversity for use in biodiversity models.

We generated predictors from the following remotely sensed 
data products: elevation from SRTM (Farr et al., 2007), land sur-
face temperature from MODIS MOD11A2 (Wan, Hook, & Hulley, 
2015), precipitation from CHIRPS (Funk et al., 2015) and gross 
primary productivity (GPP) dynamic habitat index from MODIS 
(Hobi et al., 2017). We generated additional predictors from 
non-remotely sensed products, including soil type category from 
SoilGrids (Hengl et al., 2017), which uses remotely sensed data to 
interpolate ground-based measurements, and geological age cate-
gory from USGS International Surface Geology. We included GPP 
because spatial variability in GPP integrates many geodiversity 
variables known to influence biodiversity via resource availabil-
ity (Alahuhta et al., 2018; Austin & Smith, 1989). The GPP spatial 
variability is moderately correlated with mean annual precipita-
tion but largely orthogonal to the other geodiversity variables we 
chose (Figure 1), indicating that it might capture additional spatial 
variation not accounted for by the other three geodiversity vari-
ables. See the Supporting Information (Appendix S3) for additional 
details.

We coarsened all environmental data layers by calculating the 
means within 25 km2 pixels to equal the coarsest resolution of any 
layer, then we aggregated all geodiversity and biodiversity variables 
within a 50 km radius around the centre of each FIA plot and the 
midpoint of each BBS route. The 50 km scale of aggregation aver-
ages over a wide range of microhabitats and microclimates, cap-
turing the geodiversity–biodiversity relationship at a coarse spatial 
grain; it is possible that a smaller grain of analysis would reveal dif-
ferent patterns (Zarnetske et al., 2019). For continuous predictors, 
we calculated the mean of all pixels partially or wholly within the 
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50 km radius, and we used the mean terrain ruggedness index (TRI; 
Wilson, O’Connell, Brown, Guinan, & Grehan, 2007) of the 3  ×  3 
pixel neighbourhood around all pixels to represent spatial variability. 
For discrete predictors, we used the Shannon entropy of all pixels in 
the radius to represent spatial variability. Shannon entropy has been 

shown to increase monotonically with an increasing number of land-
scape patch types, to behave consistently in both real and simulated 
landscapes and to be correlated positively with many other mea-
sures of landscape heterogeneity (Peng et al., 2010). Importantly, 
although many past studies have used variables extracted from 
spatially continuous layers at points to characterize environmental 
variation, we explicitly considered spatial variation in the regions 
around the points where biodiversity was measured. Defining geo-
diversity in terms of this variation is crucial for explaining biodiver-
sity fully, because a single point value cannot capture the diversity 
of niche space that may determine biodiversity (Lawler et al., 2015).

Finally, we grouped geodiversity and biodiversity observations 
spatially using the terrestrial ecoregions of TNC (Olson & Dinerstein, 
2002) to account for spatial autocorrelation in response variables. 
We selected this classification scheme over alternatives because the 
regions are defined based on biodiversity analyses conducted across 
many taxa and because the number of ecoregions in the contiguous 
USA (63 after excluding six border regions with insufficient data) is 
high enough to account adequately for spatial autocorrelation in bio-
diversity responses within the study area without overfitting.

2.6 | Selection of predictor variables

We selected six predictor variables for our models: two climate vari-
ables to describe the climate norms inside the radius (mean annual 
temperature and mean annual precipitation), and four predictors to 
describe geodiversity or environmental heterogeneity (mean TRI of 
elevation and GPP, Shannon diversities of geological age category 
and soil type). Together, the six variables encompass most of the var-
iation in geodiversity and climate among locations in the contiguous 
USA and are only modestly correlated with one another (Figure 1), 
meeting model assumptions. Based on our a priori hypothesis that 
geodiversity is related to biodiversity, we included one predictor to 
represent each of the unique geodiversity data sources available to 
us (elevation, soil type and geological age category). In addition, we 
selected GPP diversity to represent other aspects of geodiversity 
not captured by the first three variables. Our choice of mean annual 
temperature and mean annual precipitation to represent long-run 
climate norms is reasonable because the two variables have no rela-
tionship to one another at our scale of observation (Figure 1).

2.7 | Final data processing

First, we excluded any site within 50 km of the Canada or Mexico 
borders because the 50  km radius around those sites contained 
areas without biodiversity measurements. We logit-transformed the 
taxonomic beta-diversity variable, which is a raw dissimilarity metric 
varying between zero and one in the model. No bird sites had a taxo-
nomic beta diversity of exactly zero or one, but c. 16% of tree sites 
had taxonomic beta diversity of exactly zero or one, which is outside 
the domain of the logit function. Thus, we replaced zeroes with .001 

F I G U R E  1   Heat maps showing correlations between pairs of 
environmental predictor variables, including: (a) geodiversity and 
climate; (b) bird biodiversity variables; and (c) tree biodiversity 
variables. Pearson correlation coefficients are shown, along with 
colours indicating the magnitude of the correlation coefficients. 
FD = functional diversity; GPP = gross primary productivity; 
PD = phylogenetic diversity; TD = taxonomic diversity
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and ones with .999. We took a spatially stratified random sample of 
tree sites, where each sampled site was a minimum of 20 km from 
any other site, to minimize spatial autocorrelation not captured by 
our model. This process left c.  3,000 sites, meaning that sample 
sizes were comparable between the datasets used to fit each model.

2.8 | Model fitting

We fitted spatial multivariate mixed models with the following fixed 
predictors: (a) all six predictor variables as fixed effects; (b) only the 
four geodiversity predictors as fixed effects; (c) only the two cli-
mate predictors as fixed effects; and (d) no fixed effects (null model 
with only spatial random effects). We fitted multivariate models for 
each diversity level (alpha, beta and gamma) and each taxon (birds 
and trees), totalling 24 models (four predictor sets × three diversity 
levels ×  two taxa = 24). Each model had three response variables 
corresponding to the three dimensions of biodiversity (taxonomic, 
phylogenetic and functional). We used the null model z-scores to 
represent phylogenetic and functional biodiversity in all the models.

We fitted a random intercept and slope for each predictor in each 
TNC ecoregion. We excluded ecoregions with fewer than five sites, 
because random effects estimated with fewer than five data points 
are not robust. The excluded ecoregions were primarily in Canada or 
Mexico and have only a small area inside the contiguous USA that 
is ≥ 50 km from a land border. After excluding these ecoregions, 63 
ecoregions remained. We estimated random slopes and intercepts 
for each ecoregion with a multilevel conditional autoregressive (CAR) 
structure to model the spatial variability in the biodiversity–geodi-
versity relationship among ecoregions (Besag & Kooperberg, 1995). 
We specified the neighbourhood structure with an adjacency ma-
trix identifying all pairs of regions that share a border. The ecoregion 
random effects in the model were therefore spatially structured, 
accounting for spatial autocorrelation in the biodiversity values of 
neighbouring regions. We chose to model spatial dependence using 
discrete regions because of better out-of-sample prediction perfor-
mance than simultaneous autoregressive models (Kress, 2018).

We fitted the models in a hierarchical Bayesian framework 
using the R package brms (Bürkner, 2017). We modelled the error in 
response variables as normally distributed. Finally, we standardized 
both predictor and response variables before fitting the models in 
order that we could compare effect sizes across predictors and re-
sponses. The standard deviation of each coefficient represents the 
among-region variability of each predictor–response relationship.

2.9 | Model validation

To assess model predictive performance, we performed spatially 
blocked leave-one-location-out cross-validation (Roberts et al., 
2017). We refitted each of the models 63 times, each time hold-
ing out all data points from one of the 63 ecoregions. We found 
the root mean squared error (RMSE) of the predicted values of the 

withheld data from each fold to obtain a cross-validation RMSE for 
each model. We also calculated the RMSE of the models fitted to 
all the data. We divided all RMSE values by the range of the ob-
served data to yield relative values that could be compared among 
models. We also calculated RMSEs using resubstitution evaluation, 
in which no data points were held out in model fitting. This proce-
dure assesses the goodness-of-fit of models across the entire con-
tiguous USA but does not correct fully for spatial autocorrelation.

We calculated the Bayesian R2 (Gelman, Goodrich, Gabry, & Ali, 
2018) for each model to quantify the proportion of variation in the 
response explained by fixed and spatial random effects combined. 
Finally, we calculated the widely applicable information criterion 
(WAIC; Watanabe, 2010) for each model.

3  | RESULTS

3.1 | Description of geodiversity and biodiversity 
variables

Correlations among geodiversity predictor variables were relatively 
low (Figure 1a). The pairwise correlation between elevation diversity 
and geological age diversity was relatively high (r =  .52), indicating 
that geodiversity measured as topographical variability is correlated 
with geodiversity measured as the variety of geological substrate 
ages. Notably, the correlation between elevation diversity and mean 
annual temperature was low (r = −.20). In both birds (Figure 1b) and 
trees (Figure 1c), taxonomic and phylogenetic diversity were posi-
tively correlated with one another at all levels; this relationship was 
strongest for birds. However, local (alpha) and regional (gamma) 
functional diversity tended to be correlated negatively with other 
forms of biodiversity in both birds and trees.

Geodiversity variables (Figure 2) had unique patterns and spa-
tial grains of variability. Climate variables varied at broad scales, 
whereas geological and topographical variables varied at scales 
corresponding to major land features, such as mountain ranges 
(Figure 2). Biogeographical patterns were disparate across dimen-
sions of biodiversity for birds (Figure 3) and trees (Figure 4). Bird 
diversity patterns were spatially idiosyncratic (Figure 3), whereas 
tree diversity showed a strong longitudinal pattern, with taxonomic 
diversity being highest in the east and functional and phylogenetic 
diversity highest in the west (Figure 4).

3.2 | Effects of climate and geodiversity across 
taxa and components of biodiversity

Among geodiversity variables, elevation variability tended to be 
the strongest predictor of biodiversity (Figure 5). Elevation variabil-
ity was associated with increased bird taxonomic beta diversity but 
with decreased bird phylogenetic and functional diversity at all levels. 
Interestingly, it had a positive effect across all levels and dimensions 
of tree biodiversity; it was the only predictor with such a consistently 
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positive relationship. Higher mean annual temperature was associ-
ated with lower taxonomic diversity but higher phylogenetic and 
functional diversity in birds. In contrast, for trees, precipitation was a 
much more important climate driver than temperature (Figure 5). The 
effect size for temperature was not distinguishable from zero for most 
levels and dimensions of tree diversity. For birds, taxonomic alpha 
diversity (local richness) was highest in colder and wetter areas, but 
most other levels and dimensions of biodiversity showed the opposite 
pattern. For trees, taxonomic and functional diversity were higher in 
wetter areas, but phylogenetic diversity was higher in drier areas.

The effects of geological age variability and soil type variability 
tended to be relatively weak, although for birds the soil type vari-
ability positively affected taxonomic diversity, and for trees the geo-
logical age variability positively affected taxonomic diversity. Spatial 

variability in GPP had a positive relationship with bird taxonomic and 
functional diversity and a positive relationship with tree turnover 
and regional diversity across the three dimensions of biodiversity.

3.3 | Overall model performance

The spatially blocked cross-validation showed that the models with 
climate or geodiversity predictors performed no better than the 
null model when predicting all biodiversity values from an entire 
ecoregion held out during model fitting (Figure 6). However, cross-
validation prediction error for models including climate tended to 
be higher than for models including geodiversity. Model evaluation 
using the full dataset without holding out any locations showed that 

F I G U R E  2   Maps of climate and geodiversity predictor variables across the contiguous USA, centred on Breeding Bird Survey (BBS) route 
midpoints and Forest Inventory and Analysis program (FIA) plots (fuzzed locations shown). GPP = gross primary productivity



8  |     READ et al.

models including the six fixed predictors were the best fit for bio-
diversity of trees and birds, as shown by the RMSEs, WAIC values, 
and Bayesian R2 values (Supporting Information Figure S1; Table S2). 
Geodiversity explained a consistent proportion of variation in most 
forms of bird biodiversity. For trees, the explanatory power of geodi-
versity depended on the level of biodiversity considered; geodiver-
sity explained local (alpha) and regional (gamma) biodiversity better 
than turnover (beta).

3.4 | Spatially varying biodiversity–geodiversity 
relationships

The strength of biodiversity–climate relationships varied more 
across ecoregions than the strength of biodiversity–geodiversity 
relationships (Supporting Information Figure S2). Individual geo-
diversity–biodiversity relationships varied idiosyncratically across 
space (Supporting Information Figures S3–S14). Interestingly, the 
relationship between mean annual precipitation and tree taxo-
nomic and functional biodiversity tended to be more strongly 

positive in drier western ecoregions where precipitation is limit-
ing (Supporting Information Figure S10). Phylogenetic diversity 
showed an opposite spatial pattern; drier areas in the west had 
higher tree phylogenetic diversity. In those ecoregions, we ob-
served high phylogenetic diversity at sites dominated by gymno-
sperms (Pinus and Juniperus spp.) with a few associated angiosperm 
species, notably Cercocarpus ledifolius and Populus tremuloides. 
These dry sites, which tended to have low to intermediate taxo-
nomic and functional diversity, might be driving the negative re-
lationship between precipitation and phylogenetic diversity in the 
western USA. Notably, the relationship between elevation varia-
bility and biodiversity was relatively consistent across ecoregions, 
being generally positive for trees, positive for bird taxonomic di-
versity and negative for bird functional and phylogenetic diversity.

4  | DISCUSSION

The magnitude and direction of the relationships between environmen-
tal variability and biodiversity were intriguingly context dependent, 

F I G U R E  3   Maps of bird biodiversity at Breeding Bird Survey (BBS) routes, across three levels and three dimensions of biodiversity. For 
taxonomic diversity, richness is plotted for alpha and gamma diversity, and pairwise dissimilarity score is plotted for beta diversity. For 
phylogenetic and functional diversity, z-scores are plotted for all levels. Midpoints of each route are shown on the map
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varying between birds and trees, by diversity level (alpha, beta and 
gamma), by diversity dimension (taxonomic, phylogenetic and func-
tional) and by ecoregion. Below, we explore potential reasons for this 
context dependence as they relate to the predictions we made initially.

4.1 | Effects of climate and geodiversity across 
components of biodiversity

A combination of geodiversity and climate predictors predicted 
biodiversity within 10% relative error for most forms of biodiver-
sity for both birds and trees (Supporting Information Figure S1). 
However, these more complex models performed worse than the 
null models in spatially blocked cross-validation, when predict-
ing biodiversity values in ecoregions not used to fit the model 
(Figure 6). The poor performance of models outside the training 
dataset might indicate that similarity among neighboring com-
munities of birds and trees explains the majority of variation in 
biodiversity, with deterministic effects of geodiversity and climate 
playing a smaller role. Alternatively, this suggests that a large pro-
portion of the relationship between geodiversity and bird and tree 

biodiversity is spatially context dependent, providing only weak 
support for our prediction that geodiversity and climate together 
explain variation in biodiversity among ecoregions (prediction 1). 
The high level of spatial autocorrelation and high variability in rela-
tionships among ecoregions prevented the statistical models from 
identifying spatially transferable relationships between geodiver-
sity and biodiversity. Nevertheless, geodiversity variables per-
formed relatively better than climate variables at out-of-sample 
prediction (Figure 6), suggesting a potential use of geodiversity to 
identify biodiversity hotspots at local to regional scales. The poor 
performance of the models relative to null models reveals the dif-
ficulty of disentangling environmental drivers of biodiversity from 
biogeographical and historical contingency and cautions against 
relying heavily on geodiversity or climate to predict biodiversity in 
regions far from where models are fitted.

Temperature and precipitation means had the strongest effects 
on diversity, across taxa and across the levels and dimensions of 
biodiversity. However, adding geodiversity predictors significantly 
increased explanatory power when evaluating models trained on 
the full dataset (Supporting Information Figure S1), although neither 
climate nor geodiversity predictors increased prediction accuracy 

F I G U R E  4   Maps of tree biodiversity at Forest Inventory and Analysis (FIA) program plots, across three levels and three dimensions of 
biodiversity. The same biodiversity metrics are shown as in Figure 3. Fuzzed locations of each FIA plot are shown on the map
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in spatially blocked cross-validation (Figure 6). Among geodiversity 
predictors, topographical variability had the largest effect on bio-
diversity. Interestingly, topographical variability had a positive re-
lationship with tree diversity across levels but was associated with 
lower bird diversity. This might be because breeding bird diversity is 
driven by highly mobile migratory bird species seeking out high-pro-
ductivity regions for breeding sites (Anderson & Shugart, 1974; 
Cody, 1981). The diversity of niche opportunities available to trees 
might depend on the microhabitats created by topographical varia-
tion. Niche diversity for birds might be driven more by the diversity 

of food sources, which could be reduced in more topographically 
rugged regions. In contrast to topographical variability, geological 
age and soil type diversity tended to have little or no effect on biodi-
versity in the regions and taxa we studied.

We found that geodiversity has significant effects on all diversity 
levels. Gamma diversity, which integrates the alpha and beta levels, 
is best predicted by a combination of geodiversity and climate. This 
finding contrasts with prediction 2, that effect of geodiversity would 
be strongest on turnover (beta) and regional diversity (gamma). For 
trees, in particular, geodiversity combined with climate predicted beta 

F I G U R E  5   Scaled coefficients of fixed effects for birds and trees. Error bars show the 95% credible interval around the parameter 
estimate. Parameters with credible intervals that do not overlap zero are shown in red, and the credible intervals that do overlap zero are 
shown with dotted lines. Within each model, predictors are scaled so that coefficients can be compared across variables within the model. 
Predictors representing mean climate are shaded in grey; the other predictors represent geodiversity. GPP = gross primary productivity
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diversity less well than alpha and gamma diversity. This result might be 
attributable to incomplete sampling of the local community by single 
FIA plots. If trees have patchy distributions at local scales, the small-
sized FIA plots might overestimate beta diversity because some species 
that are present throughout the region will be absent from a random 
subset of plots within the focal region (Figure 4). Therefore, local sam-
pling might obscure the true pattern of turnover among plots, but not 
the regional diversity, which is integrated over many plots. We show 
that familiar maps of biodiversity, which are commonly created using 
species range maps (Brown & Lomolino, 1998; Currie & Paquin, 1987; 
Jenkins et al., 2015), represent gamma-diversity patterns, but not nec-
essarily other forms of biodiversity. Our results show that these differ-
ent levels of biodiversity (Figures 3 and 4) exhibit different relationships 
with environmental gradients. Our maps promote a more nuanced view 
of biodiversity and emphasize that each level and dimension has a dif-
ferent relationship with spatial variability in the environment.

Although we found generally similar responses across biodi-
versity dimensions, differences might indicate ecologically or evo-
lutionarily meaningful relationships. In general, we found similar 
responses across biodiversity dimensions because they tend to 
be correlated positively with one another (Figure 1). This finding 
partly contradicts prediction 3 that patterns would differ across 
dimensions. However, in support of prediction  3, some environ-
mental drivers had opposite effects on different dimensions of 
biodiversity (Jarzyna & Jetz, 2016). This result parallels contrasting 
patterns across biodiversity dimensions previously documented 
in mammals (Davies & Buckley, 2011). For example, areas with 
greater topographical variability tended to have higher bird tax-
onomic diversity but lower phylogenetic and functional diversity. 
The taxonomic diversity of birds might not have the same signal as 
phylogenetic or functional diversity because both the functional 
guilds and the phylogenetic lineages of birds differ greatly from 

F I G U R E  6   Model performance for bird biodiversity and tree biodiversity, assessed with spatially blocked leave-one-location-out cross-
validation. This figure shows the root mean squared errors from the space-only or null models (red circles), models with climate predictors 
(green squares), models with geodiversity predictors (blue diamonds) and full models (purple triangles) for each taxon and each response 
variable. Individual models were fitted holding out all data points from one ecoregion, then the holdout data points were predicted, and the 
root mean squared error was calculated across all ecoregions. The raw errors are divided by the range of the observed data to produce a 
relative value comparable among models. A lower value represents better performance of the model. Error bars are 95% credible intervals. 
Given that each cross-validation (CV) fold excludes an entire region, the null model including only the spatial random effect tends to 
predict the held out values as well as or better than the models including climate and geodiversity predictors. However, models including 
geodiversity predictors tend to perform as well as or better than the models including climate predictors, especially for phylogenetic and 
functional diversity
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one another in species richness (De Graaf, Tilghman, & Anderson, 
1985). For example, there are many functionally similar and closely 
related species within the guild of small insectivorous songbirds. 
An increase of species richness in the insectivore guild would 
result in increased taxonomic diversity without influencing the 
other dimensions of diversity. The high numbers of bird species 
harboured by geodiverse regions are likely to reflect increased 
taxonomic diversity within speciose guilds.

The discrepancy in relationships we observed among the di-
mensions of biodiversity we examined mirrors that of a previous 
study examining change in biodiversity over time. Increases in 
taxonomic diversity without corresponding changes in phyloge-
netic or functional diversity might indicate biotic homogenization 
of assemblages; 40  years of BBS surveys show a homogenizing 
trend over time (Jarzyna & Jetz, 2017). Although our study does 
not address change over time, the discrepancy between taxo-
nomic and functional/phylogenetic diversity patterns with topo-
graphical variability and with temperature is notable. Jarzyna and 
Jetz (2017) also observed that the greatest temporal changes in 
diversity occurred at higher elevations and latitudes, ascribing this 
pattern to climate change. We documented a positive association 
between temperature and beta diversity for all dimensions, but we 
found lower phylogenetic and functional diversity in topographi-
cally diverse regions (Figure 5). This result echoes the temporal 
pattern documented by Jarzyna and Jetz (2017), suggesting that 
bird communities at high elevations and in cold regions might be 
relatively homogeneous and thus relatively more vulnerable to 
changing climate. In the case of breeding birds in the USA, topo-
graphically diverse regions might, in fact, be the most sensitive to 
environmental change.

Phylogenetic and functional diversity have similar patterns 
with respect to most predictor variables. This finding makes sense 
given that many, although not all, traits are phylogenetically con-
served (Devictor et al., 2010), such that phylogenetic diversity 
roughly approximates functional diversity (Winter et al., 2013). 
However, tree phylogenetic diversity increases with decreasing 
precipitation, whereas functional diversity and taxonomic diver-
sity decrease. This suggests that the angiosperm and gymnosperm 
species that contribute to high phylogenetic diversity in low-pre-
cipitation regions might have convergently evolved suites of adap-
tations to dry environments (Méndez-Alonzo, Paz, Zuluaga, Rosell, 
& Olson, 2012), resulting in low functional diversity at those sites.

4.2 | Spatially varying biodiversity–geodiversity 
relationships

The relationship between geodiversity variables and biodiversity 
variables varied in direction and magnitude across the ecoregions 
of the USA. For example, elevational variability had a greater ef-
fect on tree biodiversity in the central and eastern USA, providing 
support for prediction 4. In the west, climatic factors and a smaller 

regional species pool set upper bounds on richness, meaning that 
the opportunity for increased richness with increased geodiver-
sity is reduced relative to the east (Supporting Information Figure 
S11). In contrast, the effect of elevational variability on bird taxo-
nomic diversity was more likely to be non-zero in regions of high 
topographical relief, such as the Appalachian ecoregion and the 
northern Rocky Mountains (Supporting Information Figure S5). For 
trees, the effect of precipitation on biodiversity was more likely to 
be significant in the drier central and western USA (Supporting 
Information Figure S10), where water tends to be limiting. This 
suggests that in regions where climatic factors strongly control 
species diversity, the influence of geodiversity on biodiversity is 
weaker. However, this result might depend on the spatial extent of 
the study region; a similar model fitted only for trees in the Pacific 
Northwest region shows a strong positive correlation between el-
evational variability and tree alpha and gamma diversity (Record 
et al., in press).

The form of the geodiversity–biodiversity relationship and the 
particular variables that are the best predictors of biodiversity 
might not be transferable across ecoregions. This might present a 
conundrum for organisms that are migrating to track climate con-
ditions and might encounter novel geological features. The Nature 
Conservancy documented a similar pattern. When they initially 
developed the Conserving Nature's Stage framework, they identi-
fied geological variables as the best predictors of biodiversity in the 
Northeast USA (Anderson & Ferree, 2010). Those variables did not 
predict biodiversity well when they extended the approach to the 
Southeast (Anderson et al., 2014), where geologically homogeneous 
regions of the Coastal Plain host high biodiversity.

4.3 | Conclusions and future directions

Our study found that topographical variability was related to bio-
diversity independently of climatic means and in different ways 
from climatic means. This result suggests that using remotely 
sensed temperature data, rather than values interpolated between 
weather stations using local elevation, might improve our ability 
to distinguish between the effects of climate and of topographi-
cal variability (Pau et al., 2013; Still et al., 2014). Remotely sensed 
temperature has broader spatial coverage than interpolated tem-
perature and is not inherently dependent on elevation. Therefore, 
it would be valuable to confirm whether remotely sensed tem-
perature is biologically relevant across a range of taxa (Heft-Neal, 
Lobell, & Burke, 2017).

With the increasing intensity of global change threatening bio-
diversity and ecological integrity, it is vital to conserve nature's 
stage and create refugia for organisms moving to track their opti-
mal climatic conditions. Past ecological research and the results of 
the present study show that climate explains much of the spatial 
variation in biodiversity of trees and birds, whereas geodiversity 
is related to biodiversity independently of climate. To disentangle 
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the effects of climatic and topographical drivers, spatially continu-
ous remotely sensed data are necessary. Biodiversity–geodiversity 
relationships depend on the taxonomic group, the spatial location, 
the level and dimension of biodiversity considered and the grain of 
analysis (Zarnetske et al., 2019); there is no single relationship valid 
for all conditions. To date, biodiversity–geodiversity relationships 
have been characterized primarily in a few well-studied taxa (Hjort 
et al., 2012; Meynard et al., 2011; Wang et al., 2013; but see Kaskela 
et al., 2017; Tukiainen et al., 2017); our study of birds and trees only 
hints at potential mechanisms underlying differences in relationships 
among taxonomic groups. Future work across a wider range of taxa 
would allow us to identify the mechanisms behind the differences. 
Although we need to understand the underlying mechanisms more 
fully before we can build models that are transferable across ecore-
gions, globally available geodiversity predictors can inform conser-
vation practitioners working at a local scale to conserve different 
dimensions of biodiversity in the face of climate change.
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