
A Unified Optimization Algorithm For Solving
“Regret-Minimizing Representative” Problems

Suraj Shetiya‡, Abolfazl Asudeh†, Sadia Ahmed‡, Gautam Das‡
‡University of Texas at Arlington; †University of Illinois at Chicago

‡{suraj.shetiya@mavs, sadia.ahmed78@mavs, gdas@cse}.uta.edu, †asudeh@uic.edu

ABSTRACT
Given a database with numeric attributes, it is often of interest to
rank the tuples according to linear scoring functions. For a scoring
function and a subset of tuples, the regret of the subset is defined
as the (relative) difference in scores between the top-1 tuple of the
subset and the top-1 tuple of the entire database. Finding the regret-
ratio minimizing set (RRMS), i.e., the subset of a required size k
that minimizes the maximum regret-ratio across all possible rank-
ing functions, has been a well-studied problem in recent years. This
problem is known to be NP-complete and there are several approx-
imation algorithms for it. Other NP-complete variants have also
been investigated, e.g., finding the set of size k that minimizes the
average regret ratio over all linear functions. Prior work have de-
signed customized algorithms for different variants of the problem,
and are unlikely to easily generalize to other variants.

In this paper we take a different path towards tackling these prob-
lems. In contrast to the prior, we propose a unified algorithm for
solving different problem variants. Unification is done by localiz-
ing the customization to the design of variant-specific subroutines
or “oracles” that are called by our algorithm. Our unified algorithm
takes inspiration from the seemingly unrelated problem of cluster-
ing from data mining, and the corresponding K-MEDOID algorithm.
We make several innovative contributions in designing our algo-
rithm, including various techniques such as linear programming,
edge sampling in graphs, volume estimation of multi-dimensional
convex polytopes, and several others. We provide rigorous theoret-
ical analysis, as well as substantial experimental evaluations over
real and synthetic data sets to demonstrate the practical feasibility
of our approach.

PVLDB Reference Format:
Suraj Shetiya, Abolfazl Asudeh, Sadia Ahmed and Gautam Das. A Unified
Optimization Algorithm For Solving “Regret-Minimizing Representative”
Problems. PVLDB, 13(3): 239 - 251, 2019.
DOI: https://doi.org/10.14778/3368289.3368291

1. INTRODUCTION
Data-driven decision making is challenging when there are mul-

tiple criteria to be considered. Consider a database of n tuples with
d numeric attributes. In certain cases, “experts” can come up with
a (usually linear) function to combine the criteria into a “goodness

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 3
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3368289.3368291

score” that reflects their preference for the tuples. This function can
then be used for ranking and evaluating the tuples [1–4]. However,
devising such a function is challenging [5, 6], hence not always a
reasonable option, especially for ordinary non-expert users [7]. For
instance consider a user who wants to book a hotel in Miami, FL.
She wants to find a hotel that is affordable, is close to a beach, and
has a good rating. It is not reasonable to expect her to come up with
a ranking function, even though she may roughly know what she is
looking for. Therefore, she will probably start exploring different
options and may end up spending several confusing and frustrat-
ing hours before she can finalize her decision. Alternatively, one
could remove the set of “dominated” tuples [8], returning a Pareto-
optimal [9] (a.k.a. skyline [7, 8]) set, which is the smallest set
guaranteed to contain the “best” choice of the user, assuming that
her preference is monotonic [8]. In the case where user preferences
are further restricted to linear ranking functions, only the convex
hull of the dataset needs to be returned.

The problem with the skyline or convex hull is that they can be
very large themselves, sometimes being a significant portion of the
data [10, 11], hence they lose their appeal as a small representative
set for facilitating decision making. Consequently, as outlined in
§ 7, there has been extensive effort to reduce the size of the set.
Nanongkai et al. [10] came up with the elegant idea of finding a
small set that may not contain the absolute “best” for any possi-
ble user (ranking function), but guarantees to contain a satisfactory
choice for each possible function. To do so, they defined the notion
of “regret-ratio” of a representative subset of the dataset for any
given ranking function as follows: it is the relative score difference
between the best tuple in the database and the best tuple in the rep-
resentative set. Given k < n, the task is to find the regret-ratio
minimizing set (RRMS), i.e., a subset of size k that minimizes the
maximum regret-ratio across all possible ranking functions. This
problem is shown to be NP-complete, even for a constant (larger
than two) number of criteria (attributes) [12]. Other researchers
have also considered different versions of the problem formulation.
For instance Chester et. al. [13] generalize the notion of regret from
the comparison of the the actual top-1 of database to the top-k.
More recently, in [14, 15] the goal was to compute the representa-
tive set that minimizes the average regret-ratio across all possible
functions, instead of minimizing the max regret-ratio. All these
variants have been shown to be NP-complete.

Given their intractable nature, there has been significant effort
in designing efficient heuristics and approximation algorithms for
these problems. The RRMS problem has been investigated in sev-
eral papers [11,12,16], and several approximation algorithms have
been designed; the algorithms in [11, 12] run in polynomial time
and can approximate the max-regret ratio within any user-specified
accuracy threshold. The average regret-ratio problem has been in-
vestigated in [14], and a different greedy approach has been pro-

239

posed, which achieves a constant (not user-specified though) ap-
proximation factor with high probability.

1.1 Technical Highlights
In this paper, we make the following observations about the pre-

vious works: (a) the proposed algorithms are dependent on the spe-
cific problem formulation, and do not seem to generalize to differ-
ent variants, and (b) the focus has been on designing approxima-
tion algorithms, and not on optimal algorithms. We take a different
route towards solving these problems, and our work makes two im-
portant contributions:

Firstly, we develop a unified algorithm called URM that works
across different formulations of the problem, including max [10]
and average [14] regret minimizing sets. The unified algorithm
makes calls to a subroutine (we refer to it as an “oracle”), and it
is this subroutine/oracle that needs to be customized for each prob-
lem variant. Thus the customization is localized to the design of
the oracle.

Secondly, we make a connection between the various regret min-
imizing problems and the seemingly unrelated classical data min-
ing problem of clustering and the well-known K-MEDOID [17] al-
gorithm. Most variants of clustering are NP-hard, yet the K-MEDOID
algorithm is extremely popular in practice and is based on a hill-
climbing approach to find a local optima. One of the main technical
highlights of our contributions is to take inspiration from, and de-
sign our unified algorithm based on the K-MEDOID algorithm, even
though the regret minimization problems seemingly appear quite
different from clustering problems. One of the consequences of
our approach is that the well-known advantages of the K-MEDOID
algorithm transfer over to our unified algorithm. For example, the
K-MEDOID algorithm has the any-time property; given more time it
can be repeatedly restarted from different random starting configu-
rations, which gives it the ability to improve the local optima that
it has discovered thus far. Our unified algorithm also has this prop-
erty, which can be useful in time-sensitive applications, including a
query answering system.

To achieve our two contributions, several novel and challenging
technical problems had to be solved. The K-MEDOID algorithm
provided inspiration, but was not easily adaptable for our case. In-
stead, we had to carefully model our problem as that of optimally
partitioning the space ranking functions into k convex geometric re-
gions, such that for each region exactly one tuple from the database
is the “representative”, i.e., it has the highest (max, or average, de-
pending on the problem variant being solved) score for any function
in that region. At a high level, our algorithm first chooses k tuples
randomly as our initial representative set. Then it only examines
these k tuples, and partitions the function space into k convex re-
gions such that the tuple associated with each region outscores the
remaining k − 1 tuples for any ranking function within its region.
Then, the database is examined to update the best representative for
each region, and the process iterates until a local optima is reached.

The process of examining the database for updating the best rep-
resentative for a region required us to develop variant-specific or-
acles. For the case of the max regret-ratio, we propose different
innovative strategies for designing an efficient oracle. For large
regions, we design a threshold-based algorithm based on function-
space discretization. For narrow regions, we model the problem
as an instance of edge sampling from a weighted graph where edge
weights are determined by solving (constant-sized) linear programs.

For the average regret-ratio case, designing an oracle was chal-
lenging. As another of our innovative technical highlights, we show
that it is reducible to the classical problem of computing the volume
of polytopes defined by the intersection ofO(n) halfspaces. Unfor-
tunately, this approach has a time complexity of Ω(nd) [18]. Even

if we assume that the dimension of the database is fixed, this high
complexity makes this approach only of theoretical interest. Conse-
quently, we propose an alternative approach based on Monte-Carlo
sampling of the function space.

We provide proof of convergence of our unified algorithm, as
well as provide detailed theoretical analyses of our oracles. We also
conduct extensive empirical experiments on both real and synthesis
datasets that show the efficiency and effectiveness of our proposal.

2. PRELIMINARIES
Data Model: We consider a database D in the form of n tuples
t1 to tn, defined over d numeric attributes A1 to Ad. We use
the notation ti[j] to show the value of ti on attribute Aj . With-
out loss of generality, we assume that attribute values are normal-
ized and standardized as the non-negative real numbers, R+. The
numeric attributes are used for scoring and ranking the tuples. Ad-
ditionally, the dataset may also include non-ordinal attributes that
may be used in filtering, but not in ranking. Finally, for each
attribute Ai, we assume that the larger attribute values are pre-
ferred. The values x of an attribute Ai with smaller-preferred na-
ture require a straight forward transformation such as (max(Ai)−
x)/(max(Ai)−min(Ai)).

EXAMPLE 1. Consider a dataset of 10 tuples, defined over the
attributes A1 to A3, as shown below. The values of the attributes
are normalized in range [0,100] and for all attributes the higher
values are preferred. In this example t4[3] refers to the value of
tuple t4 on attribute d3 which is equal to 75.

tuple A1 A2 A3 tuple A1 A2 A3

t1 60 80 77 t6 56 65 91
t2 55 75 63 t7 61 78 80
t3 75 60 59 t8 90 60 58
t4 68 70 75 t9 86 68 74
t5 80 75 73 t10 77 67 82

Ranking Model: The database tuples are ranked using the scores
assigned by a ranking function. For every tuple t ∈ D, a ranking
function f : Rd → R+ assigns a non-negative score to t. A tuple
ti outranks tj based on f if its score is larger than the one of tj .
Following the literature in regret-minimizing context [10–13], we
consider the class of linear ranking functions in this paper1. The
score of a tuple t based on a linear function f with a weight vector
~w = {w1, w2, · · · , wd} is computed as:

f~w(t) =

d∑
i=1

wi · t[i] (1)

In the rest of paper, we simplify f~w(t) to f(t) when ~w is clear in the
context. As an example, let us consider Example 1, while choosing
~w = 〈.25, .5, .25〉 for the ranking function. Using this function,
f(t1) = .25 × 60 + .5 × 80 + .25 × 77 = 74.25. Computing
the score of other tuples, the ordering of the tuples in D based this
function is {t5, t1, t7, t9, t10, t4, t6, t2, t8, t3}.

In a d-dimensional space every tuple is presented as a point, and
every linear function can be modeled as a origin-starting ray that
passes through the point specified by its weight vector. For ex-
ample, the function f with the weight vector ~w = 〈.25, .5, .25〉 is
modeled as the ray that starts from the origin and passes through the
point 〈.25, .5, .25〉. The ordering of tuples based on f is specified
by the ordering their projections on the ray of f (please refer to [5]
for further details). As a result, the universe of origin-starting rays
in the first quadrant of the d dimensional space forms the universe
of linear functions. We call this the function space.
1Note that a large class of non-linear functions can fit this model
after a straight-forward linearization [19].

240

A tuple ti of a database is said to dominate tuple tj if each of
the attribute values for ti is not smaller than that of tj’s while there
exists an attribute Ak where ti[k] > tj [k]. For instance, in Ex-
ample 1, t1 : 〈60, 80, 77〉 dominates t2 : 〈55, 75, 63〉. The set
of tuples from the database which are not dominated tuples in the
database is known as the skyline (or Pareto-optimal) [7–9].

A maxima representative, or simply a representative, is a subset
S ⊆ D that is used for finding the maximum of D for any arbitrary
ranking function f . Skyline is the minimal representative of D that
guarantees the containment of the maximum of any function in the
class of monotonic ranking functions. That is the reason it is pop-
ular for multi-criteria decision making (in the absence of a ranking
function). Similarly, convex-hull is the minimal representative that
contains the maximum for the class of linear ranking functions.

However, the skyline or convex-hull may contain a large portion
of the database, which diminishes their applicability as a small set
for decision making [10,11]. For instance, the skyline of Example 1
is {t1, t4, t5, t6, t7, t8, t9, t10}, which includes 80% of the tuples.

2.1 Regret optimization measures
Regret ratio is a measure of dissatisfaction of a user when she

sees results returned from the subset instead of the entire database.
Let f be a ranking function, then regret ratio is defined as the ra-
tio of the difference in ranking function scores between the top
database tuple and the top tuple from the representative set to the
score of the top database tuple:

DEFINITION 1 (REGRET RATIO). Given a function f , let tu-
ple t be argmax∀t∈Df(t). The regret ratio of set S ⊆ D for a
ranking function f can be computed as

rr(f, S) = min
t′∈S

f(t)− f(t′)

f(t)
(2)

For instance, in Example 1, consider the set S = {t2, t3, t4} and
the function f with the weight vector ~w = 〈.25, .5, .25〉. t5 is the
max for this function (f(t5) = 75.75) while t4 is the tuple with
the max score (f(t4) = 70.75) in S. Therefore, rr(f, S) in this
example is (75.75− 70.75)/75.75 ' .066.

For a universe of ranking functions, an aggregate over the regret
ratio of each ranking function is considered as the regret ratio of
the representative set for the universe.

In this paper, we provide a unified model that can handle a wide
variety of aggregates (any `p norm):

DEFINITION 2. `p norm regret measure : Given a database D,
a representative S ⊆ D, a real number p ≥ 1, and a set of ranking
functions F , the regret-ratio for the `p norm is defined as:

RRF (S) = Aggp∀f∈Frr(f, S)

where Aggp is the `p norm aggregate measure.

While different aggregates can be used here, so far the literature
has considered maximum and average regret ratio minimizing sets.
Without limiting our proposal to a specific value of norm, we espe-
cially show the adaptation of our framework for the existing aggre-
gates, i.e., (i) `∞: maximum regret ratio and (ii) `1: average regret
ratio. We will lay out the formal definitions of these measures in
the remainder of this section.

DEFINITION 3. Maximum (`∞ norm) Regret Ratio: Given a
database D and a set of functionsF , the maximum regret ratio [10]
of a set S ⊆ D is the maximum value of regret ratio for the set S
over the set of all possible ranking functions F . That is,

RRF (S) = sup
f∈F

rr(f, S) (3)

While the maximum regret ratio looks at the worst case regret ra-
tio for a set of functions, a different measure for user dissatisfaction
is the average regret ratio.

DEFINITION 4. Average (`1 norm) Regret Ratio:
Given a database D, a set of functions F , and a probability dis-

tribution η(.) where η(f) is the probability of each function f ∈ F ,
the average regret ratio [14] of a set S ⊆ D is defined as

ARRF (S) =

∫
f∈F

η(f) rr(f, S) df (4)

Even though the regret ratio notions are defined for general classes
of functions, the majority of the existing work consider F as the
class of linear ranking functions (Eq. 1) [10–14, 20]. Also, for
average regret ratio, the uniform distribution is considered as the
probability distribution of ranking functions η(.) [14]. We follow
the literature on these. In the rest of the paper, we simplify the no-
tations RRF (S) and ARRF (S) to RR(S) and ARR(S) for the
class of linear ranking functions (L).

2.2 Problem Definition
In this paper, we consider the problem of finding a compact rep-

resentative of size k from a database such that the regret optimiza-
tion measure is minimized. Formally:

`p REGRET RATIO REPRESENTATIVE PROBLEM:
Given a dataset D, a set of ranking functions F , and a value
k, find the representative S of D forF such that |S| = k and
`p norm regret measure (Definition 2) of S is minimized.

In particular, the problem for the max. (resp. avg.) regret ratio
is to find a set S ⊆ D of size k that minimizes the max. (resp.
avg.) regret ratio. For any constant number of dimensions larger
than 2, the maximum regret ratio problem is NP-complete [12].
Similarly, the problem for average regret ratio is proven to be NP-
complete [14].

The two problems we consider in this paper are the max and aver-
age regret ratio optimizing set problems. In section 3, we describe
the Regret Minimizing Framework algorithm, a general framework
to solve the regret ratio class of problems, followed by sections 4
and 5 which discuss the details of the oracles for the Maximum
and Average regret ratio problems respectively. We show empirical
results for both these problems in section 6.

3. UNIFIED REGRET MINIMIZATION
3.1 Overview

In this section, we propose our Unified Regret Minimizer (URM)
algorithm which is inspired by the K-MEDOID algorithm. Before
providing the details of the algorithm, it is necessary to explain two
central ideas in this paper: (i) representative and (ii) region of a
tuple t, defined in definition 5 and definition 6 respectively.

DEFINITION 5. Given a function f and a set of tuples S ⊆ D,
a tuple t ∈ S is a representative for f if it has the maximum score,
based on f among elements of S. Formally:

ρ(f, S) = argmaxt∈Sf(t)

DEFINITION 6 (REGION OF THE TUPLE t). Given a set S and
a tuple t ∈ S, the region of t is the set of functions for which t is
the representative. That is,

Rt(S) = {f ∈ L | ρ(f, S) = t}

241

For example, Fig. 1 shows the regions of the tuples {t1, t5, t7, t9}
in Example 1.

Having the necessary definitions in place, we now provide a brief
overview of the K-MEDOID and then show the transformation of our
problem to it. Recall that given a database D, the output size k and
a regret measure, the URM algorithm finds a set of k representative
tuples from D, such that the regret measure is minimized.

K-MEDOID algorithm: An iterative algorithm that partitions a set
of n objects into k clusters, such that the distance between objects
belonging to a cluster and their cluster center are minimized. While
many clustering algorithms (such as kNN [21]) have cluster centers
that may not belong to the set of n objects, the K-MEDOID algo-
rithm sets itself apart by choosing the cluster centers from the set
of n objects. More details about the algorithm is provided in [17].

Although the clustering problem and the K-MEDOID algorithm
seem different from our regret minimization problems, the notion
of region of a tuple, provided in Definition 6 is the key in the prob-
lem transformation. As we shall show in the following, we see
the problem as a partitioning of the function space into k convex
regions while the tuples are the centroids.

Before providing further technical details in § 3.2, we would like
to highlight a key difference between the nature of the problems:
While the K-MEDOID algorithm deals with a countable set of ob-
jects n, the URM algorithm deals with an infinite set of objects
(functions). The K-MEDOID algorithm clusters n objects (n being
a discrete and finite number) into k clusters, each of which contains
finite number of objects. In contrast, as we shall elaborate next, the
URM algorithm clusters the continuous space of ranking functions,
which contains an infinite number of functions into k convex re-
gions of ranking functions.

The URM algorithm forms the basis for a unified framework to
find compact representatives for a variety of regret measures. It
does this by abstracting the various notions of regret measures into
an oracle. At a high level, URM operates as follows. It is initialized
with a set of k tuples, which form the compact representatives for
the first iteration of the algorithm. These k tuples are used to par-
tition the entire function space into k convex regions, such that for
each region the corresponding tuple is the representative. In each
iteration, we replace the k tuples with a potentially new set of k tu-
ples that improves the regret measure. This is done by choosing, for
each convex region of functions, the tuple from the database D that
is the best representative for that region (this is accomplished by
making calls to the oracle). The function space is repartitioned into
k new convex regions, and the iterations continue until we converge
to a local optima (i.e., the k tuples do not change).

3.2 Algorithm development
The key in the design of URM is that a set of k representative

tuples partition the function space into k convex regions, such that
each of the tuples ti is the “representative” for all functions of its re-
gion Ri. This enables adopting the K-MEDOID technique for clus-
tering the function space.

THEOREM 1. Consider the set S : {t1, · · · , tk} as the compact
representative of database D and the region of functions that are
represented by ti be Ri. Then the followings hold:

1. The regions R1, · · · , Rk partition the function space.

2. For each tuple ti, Ri is convex.

3. Each region Ri is the intersection of (k − 1) half-spaces.

PROOF. Consider an arbitrary ranking function f . From Eq. 2,
the regret ratio r = rr(f, S) is the regret ratio of the set S for the

Figure 1: In Example 1, Tuples in a representative {t1, t5, t7, t9} par-
tition the function space into convex regions. For a representative of
size k, each region is formed as the intersection of (k − 1) half spaces.
Each tuple can be thought of as being in charge of its own region.

function f . The tuple from the set S which achieves this regret ra-
tio is t = argmin ∀i≤k(f(t)− f(ti))/f(t).
This tuple t ∈ S is the representative for the function f . The re-
gion Ri consists of all the functions that have ti as the representa-
tive. As the above property is applicable to the set of all ranking
functions, regions R1, · · · , Rk partition the function space into k
regions. This proves property 1.

The region of functions for which the tuple ti is ranked higher
than tuple t1 is a half-space denoted by H+

i1, which is defined by
the inequality, k∑

i=1

wi · (ti[i]− t1[i]) ≥ 0 (5)

The hyper-plane represented by the left-hand side of Eq. 5 is de-
noted as ordering exchange hyper-plane as it divides the space into
two regions, one in which tuple ti is better than t1 and vice versa
in the other. As Eq. 5 represents a half-space and half-spaces are
convex, H+

i1 is a convex region. Similarly, let H+
ij be the region of

functions where ti is better than tj . As Ri is the region of func-
tions where ti is the representative, we need to consider the func-
tion space where ti is better than all the other tuples, which is given
by, R1 = ∩k

j=1 H
+
ij (6)

Ri is the intersection of k−1 half-spaces which proves property 3.
We know that, the intersection of convex regions is convex. As

half-spaces are convex, region Ri, which is an intersection of (k−
1) half-spaces is convex. This proves property 3.

An interesting observation from Theorem 1 is that each region
is described as a list of (k − 1) half-spaces (equations), which is
independent of the number of dimensions.

As an example let us consider Fig. 1, which shows the regions
for the tuples {t1, t5, t7, t9} in Example 1. Table 1 shows the three
half-spaces that define each of the regions. For instance, the region
of t1 is described by the half-spaces between t1 and t5, t7, and t9.
Each of these regions are drawn in Fig. 1. One can verify that
these regions are convex and partition the function space.

Theorem 1 shows that the regions of a set of tuples S : {t1, .., tk}
partition the function space into k non-overlapping convex clusters.
Now we show how this enables adopting the K-MEDOID algorithm.
Consider a database D and an initial set S : {t1, .., tk} of k repre-
sentative tuples in the first iteration of the algorithm. Let the region
of functions Ri for tuple ti be represented as the intersection of
(k − 1) half-spaces. Based on Definition 6, ti is preferred over all
tuples tj ∈ S\{ti} for any function f ∈ Ri. But it does not neces-
sarily mean that ti is preferred over all tuples tj ∈ D\{ti}. So, for
each i, there may be another tuple in the dataset that can introduce
a smaller regret compared to ti for Ri. This is a key observation in
designing the subsequent iterations of the algorithm. To do so, we
rely on the existence of the “regret optimization oracle”, that finds

242

Table 1: Table containing the inequalities that define each region of the representative {t1, t5, t7, t9}.
Region Half-space 1 Half-space 2 Half-space 3 Color

Region for t1 t1 − t5: −20A1 + 5A2 + 4A3 ≥ 0 t1 − t7: −A1 + 2A2 − 3A3 ≥ 0 t1 − t9: −26A1 + 12A2 + 3A3 ≥ 0 Purple
Region for t5 t5 − t1: 20A1 − 5A2 − 4A3 ≥ 0 t5 − t7:19A1 − 3A2 − 7A3 ≥ 0 t5 − t9: −6A1 + 7A2 −A3 ≥ 0 Green
Region for t7 t7 − t1: A1 − 2A2 + 3A3 ≥ 0 t7 − t5: −19A1 + 3A2 + 7A3 ≥ 0 t7 − t9: −25A1 + 10A2 + 6A3 ≥ 0 Blue
Region for t9 t9 − t1 26A1 − 12A2 − 3A3 ≥ 0 t9 − t5: 6A1 − 7A2 +A3 ≥ 0 t9 − t7: 25A1 − 10A2 − 6A3 ≥ 0 Orange

Algorithm 1 URM Algorithm

Input: D, Regret Oracle Orc, Initial set of k tuples initial
Output: Representative S

1: S ← initial
2: repeat
3: S′ ← new List
4: for tuple t in S do
5: Rt ← RegionOf(t, S \ {t})2

6: t′ ← Orc(D, Rt) // the best tuple for Rt

7: Add t′ to S′

8: end for
9: S ← S′

10: until Convergence
11: return S

the best tuple in the database for Ri. This oracle is dependent on
the variant of the regret measure we are seeking to optimize.

Regret optimization oracle: The regret optimization oracle is the
variant-specific part of our overall approach. It is used to find a rep-
resentative tuple from the database which best optimizes a specific
regret measure for a convex region of ranking functions Ri (e.g.,
max regret, average regret, more general `p-norm regret, etc). For-
mally, given a database D, a particular variant of regret measure of
interest, and a convex region of functions Ri defined by the inter-
section of half-spaces, the regret optimization oracle finds the tuple
(and the corresponding regret measure) from the database which
minimizes the regret measure over all functions in Ri.

For now, we assume that such a variant-specific oracle exists,
and we proceed with describing how our unified algorithm URM
can leverage such an oracle (details about the design of the ora-
cle for different problem variants are deferred to § 4 and § 5). At
every iteration of the algorithm, for every region of functions Ri,
the regret optimization oracle is used to find the new representative
for the region Ri. The set of k tuples obtained from k calls to the
regret optimization oracle form the new set of representatives for
the next iteration of the algorithm. The iterations continue until the
representative set of tuples ceases to change.

The pseudo code of the URM algorithm is given in Algorithm 1.
Also, Algorithm 2 shows the pseudo code for finding the region Ri

for a tuple ti, in the form of the intersection of (k− 1) half-spaces.

Algorithm 2 RegionOf

Input: A set of k tuples S and a tuple t ∈ S
Output: Rt in the form of intersection of (k − 1) half spaces

1: Rt ← new set
2: for tuple tj in S \ {t} do

// Hj is defined as as
∑d

i=1 Hj [i]× wi ≥ 0

3: Hj ← new list of size d
4: for i← 1 to d do Hj [i] = t[i]− tj [i]
5: Add Hj to Rt

6: end for
7: return Rt

2Note that the region of a tuple can be empty unless it belongs to
the convex hull. In case of a region of a tuple being empty we add
a random tuple in its place.

Compared to the existing literature for regret ratio minimizing
problem, the URM algorithm has some unique and important fea-
tures. URM provides a unified framework for the `p and `∞ classes
of regret ratio measures. Our iterative algorithm has the any-time
property where the user may stop at any time/iteration and still find
a set of compact representatives. The any-time property can be
very useful in case of real time query answering systems and other
time-sensitive applications.

3.3 Proof of convergence for `p and `∞ norms
A critical requirement for the iterative algorithm is the conver-

gence guarantee. Here, we prove that our algorithm converges to a
local optima, for the `p and `∞ norm class of regret ratio measures.

THEOREM 2. In each successive iteration of the URM algo-
rithm, the regret measure for the set S : {t1, · · · , tk} improves
for the `p norm regret measure.

PROOF. Let us consider a set S : {t1, · · · , tk} as the compact
representatives before the iteration and let set S′ : {t′1, · · · , t′k} be
the compact representatives after the iteration. The `p norm for the
set S can be described by

RR = p

√∫
f∈F

(rr(f, S))p = p

√√√√ k∑
i=1

∫
f∈Ri

(rr(f, ti))p

During the iteration, for every region Ri the regret minimization
oracle finds a tuple from the database D that minimizes the `p norm
regret measure. Hence, we know that,

k

∀
i=1

∫
f∈Ri

(rr(f, S))p ≥
∫
f∈R′

i

(rr(f, t′i))
p (7)

As the equation for RR′ can be written as,

RR′ = p

√√√√ k∑
i=1

∫
f∈Ri

(rr(f, t′i))
p (8)

Using Eq. 7 in Eq. 8, we get

p

√√√√ k∑
i=1

∫
f∈Ri

(rr(f, ti))p ≥ p

√√√√ k∑
i=1

∫
f∈Ri

(rr(f, t′i))
p

As the region of ti differs from that of t′i, we can conclude

rr(f, t′i)) ≥ (rr(f, S′)⇒ RR ≥ RR′ (9)

A similar proof for `∞ norm can be proved.

THEOREM 3. In each successive iteration of the URM algo-
rithm, the regret measure for the set S : {t1, · · · , tk} improves
for the `∞ norm regret measure(maximum regret ratio).

PROOF. Let us consider a set S : {t1, · · · , tk} as the compact
representatives before the iteration and let set S′ : {t′1, .., t′k} be

243

the compact representatives after the iteration. The `∞ norm regret
measure for the set S can be described by

RR =
k

max
i=i

sup
f∈Ri

rr(f, ti)

During the iteration, for every region Ri the regret minimization
oracle finds a tuple from the database D that minimizes the `∞

norm regret measure. Hence, we know that

k

∀
i=1

sup
f∈Ri

rr(f, ti) ≥ sup
f∈Ri

rr(f, t′i) (10)

Using equations 9 and 10 we get,

k
max
i=i

sup
f∈Ri

rr(f, ti) ≥
k

max
i=i

sup
f∈Ri

rr(f, t′i) ≥ sup
f∈F

rr(f, S′)

RR ≥ RR′

3.4 Running Example

To provide a better understanding of the algorithm, in this sec-
tion we provide a run of the algorithm over Example 1, while con-
sidering max as the target regret ratio measure. Let the set S =
{t1, t5, t7, t9} be the initial representative for the algorithm. The
region of each tuple is highlighted in Table 1. Based on Defini-
tion 6, each tuple ti is in charge of its own region Ri, highlighted
in Fig. 1, i.e., ti is the best tuple in S for all the ranking func-
tions lying inside Ri. In the next iteration the URM algorithm goes
through each of these regions to find better representatives. To do
this, it calls the oracle MaxO. We shall provide the details of this
oracle in § 4. For each region Ri, the oracle finds the best tuple in
the entire dataset that has the minimum value of max regret ratio the
functions in Ri. After the first iteration, the representative changes
to {t1, t5, t6, t9}. This new representative creates a different par-
titioning of the function space, shown in Fig. 2. We report the
max regret ratio scores of this iteration in Table 2. As we can see,
the new representative has a lower score of max regret ratio, which
is due to the convergence property of the algorithm, discussed in
§ 3.3. While in this example, only one of the tuples changed during
the iteration, in practice more than one tuple may change during an
iteration. The algorithm then calls the oracle MaxO to find the best
tuples for the new regions and continues until convergence.

4. MAX REGRET RATIO ORACLE
So far in this paper, we discussed the regret-minimizing problem

in general, assuming the existence of an oracle for computing the
regret. In this section we focus on the original (and dominant) mea-
sure of regret-ratio: max regret-ratio [10]. Given a database D and
a region of ranking functions R, the oracle MaxRROrc finds the tu-
ple that has the least maximum regret ratio score for all functions
in R. The region of functions R is formulated as the intersection
of half spaces, R = {H1, .., Hk−1}. The objective is to design an
efficient oracle for this case.

We first model the problem into a weighted directed complete
graph, and use it for calculating the max regret ratio. Then, we
propose three optimization techniques to make the oracle efficient
and scalable.

4.1 Graph Transformation
In order to find the tuple with the least max regret ratio in a region

R, we transform the problem into a graph exploration instance.
Consider a weighted directed complete graph G, as illustrated in
Fig. 3, with n nodes and n(n− 1) edges such that:

• Every tuple t ∈ D translates to the node t in G.

• The weight wt→t′ of an edge t→ t′ (from node t to node t′)
is equal to the max regret ratio of replacing t′ with t in the
region R.

In order to compute the weight of an edge t → t′ we use the
(fixed size – independent of n) linear programming (LP) shown in
Eq. 11.

Having the graph G constructed, the max regret ratio of assign-
ing a tuple t as the representative (removing all other tuples t′ ∈
D\{t}) of the region R, is the maximum weight of its outgoing
edges. This is proved in Theorem 4.

THEOREM 4. Given the graph G of a database D, a space of
ranking functions R the max regret ratio of a tuple t ∈ D in R is:

RR(t,D, R) = max
∀t′∈D\{t}

wt→t′

PROOF. Let f ′ ∈ R be the ranking function for which the tuple
t has the maximum regret ratio score. Let r′f ′ be the maximum
regret ratio score and tuple tf ′ be the tuple which has the maximum
score from the database D for the function f ′. By definition, the
equation for maximum regret ratio r′f ′ is

rf ′ =
f ′(tf ′)− f ′(t)

f ′(tf ′)

An important observation that we will use in this proof is that
the equation for rf ′ is dependent only on the tuple tf ′ from the
database. The computation of edge weight wt→t′ can be formu-
lated as,

wt→t′ = sup
f∈R

f(t′)− f(t)

f(t′)

As we compute the edge weights between tuple t and all the other
tuples from the database D, the maximum value is computed when
the comparison between tuples t and tf ′ . Hence, RR(t,D, R) is
equal to rf ′ .

The representative tuple for a region of functions R is the node
that has the minimum max-weight over its outgoing edges. There-
fore, after constructing the graphG, the oracle can make a pass over
the graph and find the representative node to assign to the region.

Given that the LPs have a constant size, the construction of the
graph G and finding the representative tuple for a region R based
on it has the time complexity of O(n2).

Even though the construction of graph G enables a polynomial
algorithm for the max regret ratio oracle, it is still a quadratic algo-
rithm which is not efficient and scalable in practice. Therefore, in
the rest of this section we propose different approaches for making
the oracle more efficient.

The idea is to find the representative tuple of the region without
the complete construction of G. For instance, following the con-
vergence property of the URM algorithm, we know that, at every
iteration, the max regret ratio of the representative of a region R is
not more than the one for the representative from the previous iter-
ation. We can exploit this property by using the regret ratio value of
the representative for the region Ri as a threshold during the regret
ratio value computation for the region Ri. That is, for any node in
graph G, we ignore computing the weights of its outgoing edges,
as soon as we find a edge that is not smaller than the threshold for
this region. Following the idea of not computing the weights of all
edges in G, next, we propose a threshold-based algorithm for the
max regret ratio oracle.

244

Figure 2: Tuples in {t1, t5, t6, t9} partition
the function space into convex regions. This
is the updated representative after one iter-
ation of URM, with {t1, t5, t7, t9} as the ini-
tial set. The new representative has the max
regret ratio 0.0444.

Table 2: An iteration of the URM algorithm corre-
sponding to the max regret ratio problem for example
1. Regret ratio for each of the tuples in representative
is shown. The last row gives the max regret ratio score
for the representatives.

Initial Rep. Rep. after one Iter.

Tuple RR Tuple RR

t1 0.0 t1 0.0103
t5 0.0223 t5 0.0177
t7 0.1208 t6 0.0230
t9 0.0938 t9 0.0444

0.1208 0.0444
Figure 3: Graph transformation for max re-
gret ratio oracle

max r (11)
s.t. r ≥ 0

Σd
j=1wj × t′[j] = 1

Σd
j=1wj × (t′[j]− t[j]) ≥ r

∀0 < ` < k : Σd
j=1H`[j]× wj ≥ 0

4.2 Threshold-based Algorithm
Threshold-based algorithms are proven to be effective in practice

and are the de-facto solution for many important problems such as
top-k query processing [2, 22]. When the objective value is mini-
mization, the idea is to sort the tuples based on a lower bound on
their objective values, ascending. Then starting from the top of the
list, while maintaining a threshold, we continue processing the tu-
ples in the sorted order until the lower bound value of the remaining
tuples in the list is larger than the current threshold. The algorithm
can stop then, as the objective value of the remaining tuples cannot
be less that the best known threshold.

We apply a similar strategy here. But, first, we need to find the
lower bounds on the max regret ratio of the tuples in region R.
We apply two strategies for finding the lower bound: (i) function
sampling and (ii) edge sampling, explained in § 4.2.1 and § 4.2.2,
respectively. The objective is to construct a sorted vector V based
on the lower bound values on the max regret ratio of the tuples.

4.2.1 Lower bound based on function sampling
The first strategy is to use function sampling for finding the lower

bounds. We use the existing work [5] for sampling unbiased func-
tions from the region R. Using a set of N IID function samples
drawn from R, we construct a n by N table T that every row in it
is a tuple and every column is one of the sampled functions. Ev-
ery cell T [i, j] is the regret ratio of the tuple ti on the sampled
function fj (Fig. 4). In order to identify the cell values in T ,
we first make a pass over the matrix and fill every cell T [i, j] with
the value of fj(ti). Also, for every column j, we keep track of
its maximum value maxj . After finishing the first pass over the
matrix, we do a second pass replacing each cell value T [i, j] by
(maxj − T [i, j])/maxj .

After the table T is constructed, the lower bound on the max
regret ratio of each tuple ti is the max value on row T [i]. That is,

lowerRR(ti, R) =
N

max
j=1
T [i, j] (12)

Algorithm 3 uses the above idea and returns a sorted vector of tu-
ples based on the lower bound estimation of their max regret ratio.

tid f1 · · · fj · · · fN
t1
...
ti rrfj (ti)

...
tn

Figure 4: Illustration of table T

Algorithm 3 SortedLBFS

Input: Database D, Set of Function Samples F
Output: Sorted vector of tuples based on the lower bound of
their max regret ratio

1: for j ← 1 to |F | do
2: maxj ← 0
3: for i← 1 to n do
4: T [i, j]← F [j](ti)
5: if T [i, j] > maxj then maxj ← T [i, j]
6: end for
7: for i← 1 to n do T [i, j]← maxj−T [i,j]

maxj

8: end for
9: for i← 1 to n do V[i]← (i,

N
max
j=1
T [i, j])

10: return Sorted(V) on second column

Making two passes over T and then sorting the vector V , Algo-
rithm 3 is in O(n(N + logn)). Note that, considering a fixed
sampling budget, the algorithm is linearithmic.

4.2.2 Lower bound based on edge sampling
Function sampling works well for fat regions i.e. regions which

have a large volume where sampling from these regions is easy.
But if the space of function space is a thin region then function
sampling from it would end up being costly. We propose weighted
sampling of edges of G for these cases.

Recall that the max regret ratio of a tuple ti in a region R is the
max of the weights of its outgoing edges in G (c.f. Theorem 4).
A loose lower bound on the max regret ratio value can be obtained
by uniformly sampling a few edges from the graph and computing
their weights. To make it more effective, we use a weighted sam-
pling of the edges. In order to obtain the weights for the sampling
process, we start with a set of ranking functions, chosen within the
region R. To obtain the functions, a linear program is used to find
the Chebyshev center [23], which is the center of largest inscribed
hyper sphere inside of R. Using a normal distribution, we sample
a few functions and transform these functions to lie on the surface
of the hyper sphere described by the Chebyshev center. We use
the sum of the scores of the tuples as a guidance for the weighted

245

Algorithm 4 SortedLBES

Input: Database D, Number of samples N , Number of edge
samples Nedge, Convex region of functions R
Output: Sorted vector of tuples based on the lower bound of
their max regret ratio

1: center, radius← Compute Chebyshev Center for region R
2: F ← Sample(N) // draw N samples
3: for j ← 1 to |F | do
4: for i← 1 to n do P[i]← P[i] + F [j](ti)
5: total← total + P[i]
6: end for
7: for i← 1 to n do P[i]← P[i]

total
// Normalize P

8: for i← 1 to n do
// draw Nedge samples from distribution P

9: E ← Sample(P, Nedge)
10: for j ← 1 to Nedge do
11: w ← max(w, compute wi→E[j] based on Eq. 11)
12: end for
13: V[i]← (i, w)
14: end for
15: return Sorted(V) on second column

Algorithm 5 MaxO

Input: Database D, Convex region of functions R, Sampling
budget N , representative t, threshold τ
Output: The representative tuple for R

1: F ← Sample(R,N) // draw N samples from R

2: if F is not empty then V ← SortedLBFS(D, F)
3: else V ← SortedLBES(D, R, N)
4: for i← 1 to n do
5: if V[i, 2] ≥ τ then break
6: rr ← 0
7: for j ← 1 to n where j 6= V[i, 1] do
8: w ← compute wV[i,1]→j based on Eq. 11
9: if w > rr then rr ← w

10: if rr ≥ τ then continue
11: end for
12: if rr < τ then τ ← rr; t← V[i, 1]
13: end for
14: return t

sampling. The idea is that the tuples with the higher scores are
more likely of being representative of the region. Hence, we use
the normalized vector of the score aggregates for the tuples, as the
probability distribution for edge sampling.

Weighted sampling is performed using these weights to obtain a
few edges of the graph. Computing the weights of these edges gives
us a tighter lower bound value for max regret ratio. These lower
bound values are then used in a similar manner to the threshold
based algorithm § 4.2.1. Algorithm 4 shows the pseudo code for
the weighted edge sampling algorithm.

Having the sorted list of tuples V , we can now design our thresh-
old based algorithm (Algorithm 5). Starting from the first tuple in
the list, the algorithm computes the weights for the outgoing edges
the current tuple in graph G (Eq. 11). The max regret ratio of the
current tuple is the max of its outgoing edges. While making a pass
over V and computing the max regret ratio of the tuples, the algo-
rithm keeps track of the best known solution (the least value of max
regret ratio) as the threshold, and stops as soon as the lower bound
values of the remaining tuples are higher than the threshold.

5. AVERAGE REGRET RATIO ORACLE
In this section, we shift our focus to a different measure of regret

ratio, namely, average regret-ratio (ARR). An exact solution for the

ARR computation oracle requires to partition the region R into the
“maxima sub-regions” such that a specific tuple ti is the maxima
for each and every of the functions in each sub-region. Let TM ⊆ D
be the set of tuples that have the maximum score for at least one
function in R. Also let n′ ≤ n be the size of TM . For each tuple
t ∈ TM , the set of functions for which t is the maxima is a convex
region, defined by the intersection of n′ − 1 = O(n) half-spaces.
For every function f in Rt′ (the maxima sub-region of a tuple t′ ∈
TM), the regret ratio of a tuple t ∈ D is (f(t′)−f(t))/f(t′). This,
in the end, provides an exact solution for computing the ARR of
a tuple in a region R. However, it involves a volume computation
under the regret ratio curves across the sub-regions. Unfortunately,
even though the total number of sub-regions is in O(n) and each
sub-region is defined as the intersection of a linear number of half
spaces, the computation of ARR within each of the sub-regions is
not computationally feasible in higher dimensions. That is because,
as proven by Dyer et al. [18], the exact computation of the volume
of a convex shape described as the intersection of a linear number
of half-spaces is #P-hard.

Fortunately, although exact volume computation is usually costly,
Monte-carlo methods [24] combined with tail inequalities [25] pro-
vide strong estimation methods for the problem. Following this,
Zeighami et. al [15] have shown that the ARR value can be ap-
proximated using N samples of ranking functions with an error
bound of ε and a confidence of 1 − σ, where the relation between
N, ε, and σ is shown in the following equation.

ε =

√
3

N
ln

1

σ
(13)

Essentially, [15] shows that discretizing the continuous function
space to a set of N uniform samples, and using the samples for
finding the maxima representatives guarantee an error ε, with the
confidence interval of 1− σ, as specified in Eq. 13. We follow this
in the design of the ARR oracle. That is, to use the discrete set of
N uniform function samples for finding the representative tuples.

Consider a database D and a set of representative tuples S and
their regions. For each of the regions, we want to find the tuple
t ∈ D for which the ARR score is the lowest. For any region Ri,
we select the functions which lie inside Ri. We use this set of
ranking functions to estimate the ARR score of each of the tuples
in the database. Next, for each region, the tuple with the lowest
ARR score replaces the previous representative of that region. The
algorithm is given in 6.

6. EXPERIMENTS
6.1 Experimental setup
Datasets: For evaluating our algorithms, we have used the follow-
ing datasets. We generated two synthetic datasets - Surface and
Scaled along the lines of Sphere and SkyPoints in [12].

• (Real dataset) Colors [26]: This is one of the commonly used
datasets for the evaluation of regret ratio and skyline problems
[10, 12, 27]. In our experiments, we have used the Color His-
togram dataset. It contains 68,040 tuples, each being a color
image. For every image, it contains 32 attributes, where each
attribute is the density of a color in the entire image.
• (Synthetic) Surface: We generated the Surface dataset by uni-

formly sampling points on the surface of a unit hypersphere.
Therefore, by construction, all the points in the Surface dataset
belong to the skyline. The dataset contain 20,000 tuples, over 12
attribute, in range [0, 1].
• (Synthetic) Scaled: For the Scaled dataset, we uniformly gener-

ated points inside a unit hypersphere. Since, in a high dimen-
sional space, a large portion of the total volume of a hypersphere

246

Algorithm 6 AvgO

Input: D, Convex region R, Function samples F in R
Output: The representative tuple for R

1: for j ← 1 to |F | do max[j]← 0
2: for i← 1 to n do
3: for j ← 1 to |F | do
4: scores[i, j]← F [j](ti)
5: if max[j] < scores[i, j] then max[j]← scores[i, j]
6: end for
7: end for
8: min←∞
9: for i← 1 to n do

10: arr[i]←
∑|S|

j←1
max[j]−scores[i,j]

max[j]

11: if min > arr[i] then min← arr[i]; t← i
12: end for
13: return t

lies near the surface area, most of the points in the Scaled dataset
is also present in the skyline. The scaled dataset contains a set of
20,000 tuples, each defined over 12 attributes in range [0, 1].

• (Real dataset) DOT [28]: The flight on-time dataset is published
by the US Department of Transportation(DOT). It records, for
all flights conducted by the 14 US carriers in January 2015, at-
tributes such as scheduled and actual departure time, taxiing time
and other detailed delay metrics. The dataset consists of 457,013
tuples and 7 ordinal attributes.

• (Real dataset) NBA [29]: NBA dataset contains the points for
the combination of player,team,season up to 2009. It contains
21,961 tuples and 17 ordinal attributes: gp, minutes, pts, oreb,
dreb, reb, asts, stl, blk, turnover, pf, fga, fgm, fta, ftm, tpa, tpm.

Hardware and Platform: All our experiments were performed on
a Core-i7 machine running Ubuntu 16.04 with 64 GB of RAM. The
algorithms were implemented in Python.

Evaluations: In order to asses the performance of our algorithm,
we focus on two main criteria namely, efficiency and efficacy. Con-
cretely, we evaluate based on the following metrics - (i) the quality
of the results produced, i.e. the regret ratio measure of the result
(ii) the amount of time taken by the algorithm.

Algorithms Evaluated: For the max regret ratio representative
problem, we have used HD-RRMS as the baseline [11], one of the
recent and advanced algorithms for finding the max regret ratio rep-
resentative that guarantees a tunable additive approximation. To do
so, it discretizes the ranking function space and models the prob-
lem as a discrete matrix min-max problem. A combination of bi-
nary search technique and transforming the problem into fixed-size
set covers are applied for solving the problem. To make the prob-
lem practical, the greedy approximation algorithm is used for the
set cover instances. As we shall later show in this section, the
extra approximation induced by the greedy set cover in the HD-
RRMS algorithm shows up in our results and can be seen in the
HD-RRMS curve when the regret ratio does not reduce with time
in some cases. For the average regret ratio case, we have imple-
mented the GREEDY-SHRINK algorithm [15]. This algorithm starts
with the entire database as its representative and iteratively removes
the tuple for which the increase in the average regret ratio is the
least. This process is continued until k tuples are left. In addition
to GREEDY-SHRINK, we also compute the global minima, using
N samples from the function space, drawn based on Eq. 13 with
ε = 0.01 and a confidence as 0.999. We filtered the dataset to
only the skyline points. Using the N samples, a table containing
the regret-ratio values for the filtered tuples is generated, similar to

table 4. For every combination of k tuples as a representative, we
compute the average regret-ratio value. It is important to note here
that existing algorithms are all approximation algorithms and do
not exhibit the anytime property. As a result, URM is not directly
comparable to the existing work. In our experiments we focus on
specific properties of our algorithm.

We also compare our algorithm with several skyline reducing
algorithms (which are discussed in more detail in § 7). We have
implemented the KRSPGREEDY algorithm from [30], EIQUE al-
gorithm from [31], NAIVEGREEDY algorithm from [32], ε-ADR
greedy algorithm from [33] and SKYCOVER algorithm from [34].

6.2 Summary of experimental results
At a high level, the experiments verified the quality and effi-

ciency of our proposal. We consider regret ratio score as the mea-
sure of quality. For the max regret ratio representative problem,
URM improves the quality of the representatives provided by HD-
RRMS when used as a starting point. When provided with a time
budget URM qualitatively outperforms HD-RRMS algorithm. In
case of the average regret ratio representative problem, URM qual-
itatively outperforms GREEDY-SHRINK when provided with the
same time budget. Our experiments show that URM converges to
the local minima very fast which increases the chance of discov-
ering the global optima. In addition, the experiments demonstrate
some of the useful properties of our approach, namely, (a) anytime
property - even if the execution of the algorithm is terminated at
any point of time, the algorithm will still have a representative (b)
provision for getting better results - by restarting with a different
set of initial points, URM can achieve better representatives.

6.3 Results for Max Regret-Ratio
Results when initial representative is given: Similar to other
clustering-inspired algorithms, the quality of the results produced
by the URM algorithm depends on the initial set of tuples. Often
feeding the output of an existing approximation algorithm as the
input to these iterative algorithms yield good results. In this set of
experiments, we have used the compact representative returned by
HD-RRMS as the initial set of tuples to the URM algorithm. To be
fair in the assessment, while creating the plots for URM, we have
taken the time to generate the initial points into consideration. Con-
cretely, we have added the running time of HD-RRMS to the run-
ning time of URM when creating the plots for the URM algorithm.
We run the experiments on the Surface, Colors, NBA, DOT,and the
Scaled datasets. For Surface, Colors, DOT and Scaled datasets we
run URM for 4 and 5 dimensions with 20k points each. We use the
same configuration used in [11] for NBA and DOT datasets. While
we use 20k tuples with 4, 5 and 6 dimensions for NBA dataset, we
use 400k tuples with 4 and 5 dimensions for DOT dataset. Fig. 5
and 6 plot the obtained max regret ratio to the time taken by each
algorithm for Surface, Colors, Scaled and the DOT datasets for di-
mensions 4 and 5, respectively. Fig. 7 compares the URM and
HD-RRMS algorithms for the NBA datasets.

To get different results from HD-RRMS, we used different val-
ues of γ for discretization. Every red point shows the experimental
result of one individual run of the HD-RRMS algorithm. While HD-
RRMS is expected to provide better results as γ increased, in several
settings, one can see an increase in the max regret ratio of the gener-
ated output. The reason is that HD-RRMS uses the greedy approach
for solving the (theoretically fixed-size) set cover instances. This
adds one more level of approximation to the algorithm which, in
the end, results in the non-decreasing behavior of it in some cases.

In the figures, each red point is connected to a blue point by
a dotted line, which represents feeding the HD-RRMS algorithm’s
output to the URM algorithm. The string of blue points connected
by the solid blue line show the performance of the URM algorithm

247

(a) Surface [4D] (b) Scaled [4D] (c) Colors [4D] (d) DOT [4D]
Figure 5: Maximum regret ratio when URM uses the compact representative produced by HD-RRMS as the initial set [4D, K=5].

(a) Surface [5D] (b) Scaled [5D] (c) Colors [5D] (d) DOT [5D]
Figure 6: Maximum regret ratio when URM uses the compact representative produced by HD-RRMS as the initial set [5D, K=5].

(a) NBA [4D] (b) NBA [5D] (c) NBA [6D]
Figure 7: Maximum regret ratio when URM uses the compact representative produced by HD-RRMS as the initial
set for NBA dataset.

Figure 8: 2D Dataset Example

(a) Surface [4D] (b) Scaled [4D] (c) Colors [4D] (d) DOT [4D]
Figure 9: Maximum regret ratio when both URM and HD-RRMS uses a fixed time budget [4D, K=5].

(a) Surface [5D] (b) Scaled [5D] (c) Colors [5D] (d) DOT [5D]
Figure 10: Maximum regret ratio when both URM and HD-RRMS uses a fixed time budget [5D, K=5].

(a) NBA [4D] (b) NBA [5D] (c) NBA [6D]
Figure 11: Maximum regret ratio when both URM and HD-RRMS uses a fixed time budget for NBA dataset.

Figure 12: Comparing skyline reduc-
ing alg. with URM for DOT dataset
with 4 dimensions

248

(a) Colors, Set size = 4 [9D] (b) Colors, Set size = 5 [9D] (c) Colors, Set size = 6 [9D]
Figure 13: Average regret ratio, we are comparing our results against the global best representatives [9D].

Figure 14: Comparing skyline reduc-
ing alg. with URM for DOT dataset
with 5 dimensions

over the subsequent iterations. First, our experiments show that
URM quickly reaches the local minima of regret ratio in this set-
ting. Also, in most of the experiments, URM improves the results
of the HD-RRMS algorithm. The ones where URM could not im-
prove the result of HD-RRMS were the ones that HD-RRMS had, by
chance, discovered a local optima. Apart from the performance of
the algorithm, it is interesting to see the existence of multiple local
optima and the impact of the starting point on the optima discov-
ered. For instance in Fig. 5b, each setting discovered a different
local optima. The fast convergence of URM enables multiple runs
of the algorithm with multiple starting points, which increases the
chance of discovering the global optima.
Results on a fixed time budget: While URM is an anytime al-
gorithm, HD-RRMS is not. That is, HD-RRMS returns a represen-
tative only after it is finished. Therefore, in order to make a fair
assessment, we run the HD-RRMS algorithm with different values
of γ and allocate the exact same amount of time taken by the HD-
RRMS algorithm as the time budget for our URM algorithm. We run
our experiments with Surface, Colors, NBA, DOT,and the Scaled
datasets. This set of experiments demonstrate two important prop-
erties of the URM algorithm. First, as we can see from Fig. 9, 10
and 11 the regret ratio scores reduce monotonically. This is due
to the convergence property of the algorithm, proved in § 3.3. In
addition, the URM algorithm produces reasonably good regret ratio
scores even when the allocated time budget is small. This means
that a user can still get a reasonably good set of representatives
even if she terminates the algorithm before it finishes. Another im-
portant result is that URM actually allows the user to find a better
representative. With a fixed time budget, we restart the algorithm
with a random set of starting points and repeat this process until our
time budget expires. Essentially, with subsequent repetition of the
URM algorithm, we find a different set of compact representatives
with a better score of max regret-ratio. Another important property
that our algorithm exhibits is the any time property. As URM is
an iterative hill climbing algorithm, the best representative among
the ones it has already visited can be consumed by the user even
before the end of the time budget. This can be seen in Fig. 9 and
Fig. 10 where if we were to stop the algorithm at any point of time
we would get a representative marked by the blue circles. First,
looking at the figures, one can see the monotonically decreasing
behaviour of URM, compared to HD-RRMS. Also, HD-RRMS needs
to finish at least once or will not provide any output. For instance,
in Fig. 10(c), HD-RRMS did not provide any result for a time budget
less than 8000 seconds. In contrast, having the anytime property,
URM has an output to offer at any point of time.

Proof of concept by an example: Using the NBA dataset, we high-
light a concrete example. The dataset contains performance records
of different Basketball players across different seasons. Consider
the case where the decision criteria are Points, Rebounds, Assists
and Steals. More than 60 tuples belonged to the skyline. Offer-
ing such a large set to the user is overwhelming. Instead, using
the URM algorithm while setting the output size to 6 we find the

set { Wilt Chamberlain - 1967, Don Buse -1975, Nate Archibald
- 1972, Michael Jordan - 1987, Wilt Chamberlain - 1961, John
Stockton - 1988} with maximum regret-ratio of 0.058. That is, the
user can make selection between these 6 tuples, yet be sure that the
score (quality) of its selection is not more than 5.8% percent worse
than the optimal choice. For example, for the ranking function As-
sists+Steals, the optimal tuple is John Stockton 1990 with the score
of 1398. The tuple John Stockton - 1988 in the representative set
has the score of 1381 which shows how close to optimal it is.

6.4 Results for Avg Regret-Ratio
Comparison against the global minima: URM is an iterative al-
gorithm where the regret ratio score monotonically decreases over
time. That is, it produces better results as time passes. In contrast,
the GREEDY-SHRINK algorithm generates results only at program
termination. For a fair comparison between the two algorithms,
we run GREEDY-SHRINK with different parameter values of ε and
σ. We also demonstrate the ability of our algorithm to find the
global minima given sufficient time. Therefore, in addition to the
GREEDY-SHRINK algorithm we compare against the global min-
ima, the computation of which is described in § 6.1. Concretely,
we let the URM algorithm finish multiple iterations and recorded
the regret ratio at the end of each iteration. Finally, we have com-
pared the progression of these scores against the global minima
along with the results from GREEDY-SHRINK. For this set of ex-
periments, we have used 20,000 points from the Colors dataset, in a
9 dimensional space. As discussed in § 5, instead of computing the
exact volumes, we approximate the average regret ratio score using
N samples with an ε of 0.01 and a confidence of 0.999 as described
in 13. We present the results of our experiments in Fig. 13. The
black dotted line indicates the global minima while the red trian-
gles show the output from the GREEDY-SHRINK algorithm. The
URM algorithm outperforms the GREEDY-SHRINK algorithm for
different output sizes of k. In all cases URM finds a representative
with small value of average regret ratio in a small amount of time.
In fact, our experiments show that it is possible to reach the global
minima of average regret ratio in a short time.

6.5 Results for skyline reducing algorithms
To compare our algorithm with skyline reducing algorithms, we

have implemented the algorithms KRSPGREEDY [30], ε-ADR [33],
EIQUE [31], NAIVEGREEDY [32], and SKYCOVER [34]. NAIVE-
GREEDY takes the skyline and a starting tuple as input to output a
representative. To be fair in comparison, we passed every point
from the skyline as a starting point and chose the set with least re-
gret ratio. ε-ADR and SKYCOVER take an error parameter ε as
the input and output the smallest set size satisfying ε-ADR opti-
mization criteria. To find a set of size k or smaller, we find a large
ε which satisfies the set size criteria and apply a binary search to
get the smallest ε satisfying the size requirement. The results for
the DOT dataset with dimensions 4 and 5 are presented in Fig. 12
and Fig. 14. We denote KRSPGREEDY as RSP, NAIVEGREEDY as
NG, EIQUE as EQ, ε-ADR greedy as ε-ADR and SKYCOVER as
SC in the plots. The blue bar shows the regret ratio of the output of

249

the skyline reducing algorithms, with the name of the algorithm on
the X axis. The orange bars show the regret ratio of the output of
our (URM) algorithm when initialized with the corresponding al-
gorithm’s output. As expected URM outperforms other algorithms.

7. RELATED WORK
Over the past few decades, a major amount of research has fo-

cused on the generation of a representative of the dataset to assist
users with multi-criteria decision making. Most of these published
works can be grouped into skyline discovery, skyline reduction and
regret based compact representative computations. In this section,
in addition to discussing the related works in these three categories
we also provide a brief summary of the clustering techniques that
have inspired the URM algorithm.
Regret minimizing representatives: As an effective solution to
the problem of finding compact representatives, Nanongkai et al.
[10] introduced regret-ratio minimizing representative. The notion
of regret introduced in the paper deals with the amount of dissat-
isfaction the user would express when she is shown the top item
from the representative set instead of the top item from the dataset
when provided with the user preference. Many different variations
of the original regret-minimizing representative problem have been
studied since this paper [16, 35]. One specific variant, finding a
representative set that minimizes the maximum regret ratio, has
been extensively studied by several researchers. Agarwal et al. [12]
proved that this problem is NP-complete for dimensions larger than
2. Asudeh et al. [11] introduce function space discretization and
the transformation of the problem to set-cover instances. [11, 12]
propose approximation algorithms with similar tunable approxima-
tion guarantees for the problem. Another interesting variant of this
problem is finding the average regret ratio problem. It was intro-
duced by Zeigami et al. [14, 15]. However, it is important to note
that while others have studied and proposed solutions for single
variants of the regret measures, we have proposed an unifying al-
gorithm that can work with a class of regret measures.
Skyline and convex hull: In the pursuit of efficiency, finding a
small set of representatives of the entire dataset has been of key
interest in recent years. In the absence of user preferences, sky-
line [8, 36, 37] and convex hull based algorithms obtain a part of
the dataset which behave like representatives. While convex hull is
more compact than the skyline, the computation of a convex hull
is significantly more costly in large dimensions. Bentley et al have
studied approximation algorithms with tight approximation ratios
for convex hulls [38]. However, as we move to higher dimensions,
most points in the dataset appear on the skyline or convex hull. As a
result, even though these skyline/convex hull based algorithms are
effective in lower dimensions, the large size of skyline and convex
hull render them ineffective as representatives.
Skyline reducing algorithms: Existing works have studied the
problem of reducing the size of the skyline in various scenarios [30–
34, 39–41]. To the best of our knowledge, none, except the regret-
minimizing literature, incorporate user customizable functions for
skyline reduction nor can be directly translated to the regret ratio
problem. [30] and [39] reduce the skyline size by choosing a subset
of size k of it which maximizes the number of dominated tuples by
this subset. [32] proposes distance-based skyline, a subset of size
k that minimizes the sum of the distances between the points and
their closest representative. [41] and [31] find a subset of size k with
maximum diversity. [42] propose the concept of skyline ordering,
which is skyline-based partitioning of a given data set such that an
order exists among the partitions. This ordering is then exploited to
reduce the set size to k. We note that all of the aforementioned have
a different objective function than regret-ratio and cannot provide
any guarantee on how good it is for an arbitrary function.

Similarly, [33] and [34] propose a new measure, ε-ADR query,
which chooses a subset of the skyline such that the tuples of the
skyline when scaled by (1+ ε), dominate the rest of the skyline
tuples. We illustrate the difference between the optimization mea-
sure of ε-ADR query and regret ratio with an example. Consider a
dataset with n points (in 2D), out of which (n-2) are equi-angularly
placed on the surface of a circle with radius 10 and the two other
points are 〈20, 1〉 and 〈1, 20〉. Note that all the points belong to
the skyline. Figure 8 shows this example for n = 7. The opti-
mal set for size 2 is (the convex hull) {〈20, 1〉, 〈1, 20〉} with max
regret ratio 0. On the other hand, ε-ADR query chooses a subset
of the skyline such that the tuples of the skyline when scaled by
(1+ ε), dominate the rest of the skyline tuples. As both 〈20, 1〉 and
〈1, 20〉 have one of their attributes set to 1, the scaling required
for these tuples to dominate the other tuples is large making them
less attractive to the ε-ADR query. For the example of Figure 8,
ε-ADR [33] returns {〈8.66, 5.0〉, 〈5.0, 8.66〉}. Note that, instead of
〈20, 1〉 and 〈1, 20〉, we could add points 〈X, 1〉 and 〈1, Y 〉 with X
and Y such that there exists a tuple 〈a, b〉 from the database which
has the property X

a
< b and Y

b
< a. For example, we can increase

X and Y to 49 as this dataset contains the point 〈7.07, 7.07〉 for
which 49

7.07
= 6.93 < 7.07.

Clustering: Clustering have long been studied to partition data into
similar groups. One of the major variants in this field is the K-
MEDOID algorithm [17]. Like many other clustering algorithms,
K-MEDOID is also an iterative algorithm that partitions the points
into clusters by minimizing the distance between the points from
the cluster center. However, the difference between the K-MEDOID
algorithm and other clustering techniques is that K-MEDOID al-
ways chooses the cluster centroids from the existing data points. In
the literature, there have been several variations of K-MEDOID that
have explored several avenues of choosing the best centroid. Few
of the most prominent are PAM, CLARA [43] and CLARANS [44].

8. FINAL REMARKS
In this paper, we proposed a unified algorithm for solving a va-

riety of “regret-minimizing representative” problems for different
aggregate norms. Unlike the existing work that design approxi-
mation algorithms for a specific variant of problem, we design an
iterative optimization algorithm to search for optima for the gen-
eral problem. To do so, we make connection with the problem of
clustering from data mining, and the corresponding K-MEDOID al-
gorithm. We propose several innovative technical contributions in
designing our algorithm and provide theoretical analysis as well
as empirical experiments that demonstrate the effectiveness of our
proposal. The experiments also highlight useful properties of our
approach that makes it a suitable practical algorithm.

Our work gives rise to several interesting optimization opportu-
nities that deserve further study. For example, currently in URM,
we update all regions concurrently. An interesting heuristic to up-
date the regions one after the other with a specific ordering which
might improve our algorithm. In particular, at every iteration, we
could find the representative tuple with the smallest region by vol-
ume as a good candidate for being replaced. This, however, is chal-
lenging to develop and implement, as each update requires k ex-
pensive volume computations. We consider this, along with other
possible optimizations and open problems for future work.

9. ACKNOWLEDGEMENTS
The work of Gautam Das was supported in part by grants 1745925

and 1937143 from the National Science Foundation, and a grant
from AT&T.

250

10. REFERENCES
[1] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of

top-k query processing techniques in relational database
systems. CSUR, 40(4):11, 2008.

[2] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. Journal of Computer and System
Sciences, 66(4):614–656, 2003.

[3] G. Das, D. Gunopulos, N. Koudas, and D. Tsirogiannis.
Answering top-k queries using views. In VLDB, 2006.

[4] A. Asudeh, N. Zhang, and G. Das. Query reranking as a
service. PVLDB, 9(11), 2016.

[5] A. Asudeh, H. Jagadish, G. Miklau, and J. Stoyanovich. On
obtaining stable rankings. PVDLB, 12(3):237–250, 2018.

[6] A. Asudeh, H. Jagadish, J. Stoyanovich, and G. Das.
Designing fair ranking schemes. In SIGMOD. ACM, 2019.

[7] S. Borzsony, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE, 2001.

[8] A. Asudeh, S. Thirumuruganathan, N. Zhang, and G. Das.
Discovering the skyline of web databases. PVLDB,
9(7):600–611, 2016.

[9] A. Asudeh, G. Zhang, N. Hassan, C. Li, and G. V. Zaruba.
Crowdsourcing pareto-optimal object finding by pairwise
comparisons. In CIKM, 2015.

[10] D. Nanongkai, A. D. Sarma, A. Lall, R. J. Lipton, and J. Xu.
Regret-minimizing representative databases. VLDB, 2010.

[11] A. Asudeh, A. Nazi, N. Zhang, and G. Das. Efficient
computation of regret-ratio minimizing set: A compact
maxima representative. In SIGMOD. ACM, 2017.

[12] P. K. Agarwal, N. Kumar, S. Sintos, and S. Suri. Efficient
algorithms for k-regret minimizing sets. LIPIcs, 2017.

[13] S. Chester, A. Thomo, S. Venkatesh, and S. Whitesides.
Computing k-regret minimizing sets. VLDB, 7(5), 2014.

[14] S. Zeighami and R. C.-W. Wong. Minimizing average regret
ratio in database. In SIGMOD. ACM, 2016.

[15] S. Zeighami and R. C.-W. Wong. Finding average regret ratio
minimizing set in database. pages 1722–1725, 2019.

[16] M. Xie, R. C.-W. Wong, J. Li, C. Long, and A. Lall. Efficient
k-regret query algorithm with restriction-free bound for any
dimensionality. In SIGMOD. ACM, 2018.

[17] L. Kaufman and P. J. Rousseeuw. Clustering by means of
medoids, statistical data analysis based on the l1 norm and
related methods. Y. Dodge, North-Holland, 1987.

[18] M. Dyer and A. Frieze. On the complexity of computing the
volume of a polyhedron. SIAM, 17(5):967–974, 1988.

[19] L. Kubáček. On a linearization of regression models.
Applications of Mathematics, 40(1):61–78, 1995.

[20] P. K. Agarwal and J. Pan. Near-linear algorithms for
geometric hitting sets and set covers. In SOCG. ACM, 2014.

[21] S. Thirumuruganathan. A detailed introduction to k-nearest
neighbor (knn) algorithm. Retrieved March, 20:2012, 2010.

[22] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k
lists. Journal on Discrete Mathematics, 2003.

[23] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, New York, NY, USA, 2004.

[24] J. Hammersley. Monte carlo methods. Springer Science &
Business Media, 2013.

[25] R. Motwani and P. Raghavan. Randomized algorithms.
Cambridge university press, 1995.

[26] Color dataset. https://archive.ics.uci.edu/ml/
datasets/corel+image+features.

[27] I. Bartolini, P. Ciaccia, and M. Patella. Efficient sort-based
skyline evaluation. ACM Trans. Database Syst.,
33(4):31:1–31:49, December 2008.

[28] US Department of Transportation’s dataset. http:
//www.transtats.bts.gov/DL_SelectFields.
asp?Table_ID=236&DB_Short_Name=On-Time.

[29] NBA dataset. www.databasebasketball.com/.
[30] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars:

The k most representative skyline operator. In ICDE, pages
86–95. IEEE, 2007.

[31] Z. Huang, Y. Xiang, and Z. Lin. l-skydiv query: Effectively
improve the usefulness of skylines. Science China
Information Sciences, 53(9):1785–1799, 2010.

[32] Y. Tao, L. Ding, X. Lin, and J. Pei. Distance-based
representative skyline. In ICDE, pages 892–903. IEEE, 2009.

[33] V. Koltun and C. H. Papadimitriou. Approximately
dominating representatives. In ICDT, pages 204–214.
Springer, 2005.

[34] S. Aggarwal, S. Mitra, and A. Bhattacharya. Skycover:
Finding range-constrained approximate skylines with
bounded quality guarantees. In COMAD, pages 1–12, 2016.

[35] D. Nanongkai, A. Lall, A. Das Sarma, and K. Makino.
Interactive regret minimization. In SIGMOD, SIGMOD ’12,
pages 109–120, New York, NY, USA, 2012. ACM.

[36] S. Borzsony, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE, pages 421–430. IEEE, 2001.

[37] M. F. Rahman, A. Asudeh, N. Koudas, and G. Das. Efficient
computation of subspace skyline over categorical domains.
In CIKM, pages 407–416. ACM, 2017.

[38] J. L. Bentley, F. P. Preparata, and M. G. Faust.
Approximation algorithms for convex hulls. Commun. ACM,
25(1):64–68, January 1982.

[39] Y. Gao, Q. Liu, L. Chen, G. Chen, and Q. Li. Efficient
algorithms for finding the most desirable skyline objects.
Knowledge-Based Systems, 89:250–264, 2015.

[40] W. Jin, J. Han, and M. Ester. Mining thick skylines over large
databases. In PKDD, pages 255–266. Springer, 2004.

[41] G. Valkanas, A. N. Papadopoulos, and D. Gunopulos.
Skydiver: a framework for skyline diversification. In EDBT,
pages 406–417. ACM, 2013.

[42] H. Lu, C. S. Jensen, and Z. Zhang. Flexible and efficient
resolution of skyline query size constraints. TKDE,
23(7):991–1005, 2010.

[43] L. Kaufman and P. Rousseeuw. Finding groups in data: An
introduction to cluster analysis. 1990.

[44] R. T. Ng and J. Han. Clarans: a method for clustering objects
for spatial data mining. TKDE, 14(5):1003–1016, Sep. 2002.

251

https://archive.ics.uci.edu/ml/datasets/corel+image+features
https://archive.ics.uci.edu/ml/datasets/corel+image+features
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
www.databasebasketball.com/

	Introduction
	Technical Highlights

	Preliminaries
	Regret optimization measures
	Problem Definition

	Unified Regret Minimization
	Overview
	Algorithm development
	Proof of convergence for p and norms
	Running Example

	Max Regret Ratio ORACLE
	Graph Transformation
	Threshold-based Algorithm
	Lower bound based on function sampling
	Lower bound based on edge sampling

	Average Regret Ratio ORACLE
	Experiments
	Experimental setup
	Summary of experimental results
	Results for Max Regret-Ratio
	Results for Avg Regret-Ratio
	Results for skyline reducing algorithms

	Related Work
	Final Remarks
	Acknowledgements
	References

