Efficient Signal Reconstruction for
a Broad Range of Applications

Abolfazl Asudeh! Jees Augustinei Azade Nazi{ Saravanan Thirumuruganathan?
Nan Zhang!| Gautam Das: Divesh Srivastava**
 University of lllinois at Chicago; * University of Texas at Arlington; ® Google Brain
TQCRI, HBKU; !Pennsylvania State University; “AT&T Labs-Research
asudeh@uic.edu, {jees.augustine@mavs, gdas@cse}.uta.edu,
azade.nazi@google.com, sthirumuruganathan@hbku.edu.ga, nan@ist.psu.edu,
divesh@research.att.com

ABSTRACT

The signal reconstruction problem (SRP) is an important optimiza-
tion problem where the objective is to identify a solution to an
under-determined system of linear equations AX = b that is clos-
est to a given prior. It has a substantial number of applications
in diverse areas including network traffic engineering, medical im-
age reconstruction, acoustics, astronomy and many more. Most
common approaches for solving SRP do not scale to large problem
sizes. In this paper, we propose a dual formulation of this problem
and show how adapting database techniques developed for scalable
similarity joins provides a significant speedup when the A matrix
is sparse and binary. Extensive experiments on real-world and syn-
thetic data show that our approach produces a significant speedup
of up to 20x over competing approaches.

1. INTRODUCTION

The database community has been at the forefront of grappling
with challenges of big data and has developed numerous techniques
for the scalable processing and analysis of massive datasets. These
techniques often originate from solving core data management chal-
lenges but then find their way into effectively addressing the needs
of big data analytics. For example, efficiency of machine learn-
ing has been successfully boosted by database techniques as var-
ied as materialization, join optimization, query rewriting for effi-
ciency, query progress estimation, federated databases, etc. This
paper studies how database techniques can benefit another founda-
tional problem in big data analytics, large-scale signal reconstruc-
tion [22], which is of significant interest to research communities
such as computer networks [25], medical imaging [11, 14], etc. We
demonstrate that the scalability of existing solutions can be sig-
nificantly improved using ideas originally developed for similarity
joins [7] and selectivity estimation for set similarity queries [3, 12].

Signal Reconstruction Problem (SRP): The essence of SRP is
to solve a linear system of the form AX = b, where X is a high-
dimensional unknown signal (represented by an m-d vector in R™),
bis alow-dimensional projection of X that can be observed in prac-
tice (represented by an n-d vector in R" with n < m), and A is a
n X m matrix that captures the linear relationship between X and b.
There are many real-world applications that follow the SRP model
(see § 2.1). For example, high-dimensional signals like environ-

(©VLDB Endowment 2018. This is a minor revision of the paper enti-
tled “Leveraging similarity joins for signal reconstruction”, published in
the Proceedings of the VLDB Endowment, Vol. 11, No. 10, 1276-1288.
DOI: https://doi.org/10.14778/3231751.3231752

42

mental temperature can only be observed through low-dimensional
observations, like readings captured by a small number of tempera-
ture sensors. Similarly, as further explained in § 2.1, end-to-end
network traffic, another high-dimensional signal, is often moni-
tored through low-dimensional readings such as traffic volume on
routers in the backbone or edge networks. In these applications,
the laws of physics or the topology of computer networks reveal the
value of A, and our objective is to reconstruct the high-dimensional
signal X from the observation b based on the knowledge of A.

Since n < m, the linear system is underdetermined. That is, for
a given A and b, there are an infinite number of feasible solutions
(of X) that satisfy AX = b [13,22]. In order to identify the best
reconstruction of the signal, it is customary to define and optimize
for a loss function that measures the distance between the recon-
structed X and a prior understanding of certain properties of X.
For example, one can represent one’s prior belief of X as an m-d
vector X', and define the loss function as the £2-norm of X — X,
i.e., | X — X’||2. In other cases, when prior knowledge indicates
that X is sparse, one can define the loss function as the ¢p-norm
of X, aiming to minimize the number of non-zero elements in the
reconstructed signal. For the purpose of this paper, we consider the
£-based loss function of || X — X’||2, which has been adopted in
many application-oriented studies such as [11,25].

Running Example of SRP: While SRP has a broad range of appli-
cations, for the ease of discussion, it is important to have a running
example of SRP on a domain-specific application. What we use as
a running example of SRP throughout the paper is a common in-
stance of network tomography (§ 2.1.1), where the objective is to
compute the pairwise end-to-end traffic in IP Networks. Pairwise
traffic measures the volume of traffic between all pairs of source-
destination nodes in an IP network, and has numerous uses such as
capacity planning, traffic engineering and detecting traffic anoma-
lies. Informally, consider an IP network where various sources and
destinations send different amounts of traffic to each other. The
network administrator is aware of the network topology and the
routing table (from which we can construct matrix A). In addi-
tion, the administrator can observe the traffic passing through each
link in the backbone network (observation b). The goal is to find
the amount of traffic flow between all source-destination pairs (sig-
nal X). Note that one cannot directly measure the raw traffic be-
tween all source-destination pairs due to challenges in instrumenta-
tion and storage - see [25,26] for a technical discussion. In almost
all real-world IP networks, the number of source-destination pairs
is significantly larger than the number of links, leading to an un-
derdetermined linear system. To reconstruct the pairwise traffic,
the network community introduced various traffic models, e.g., the

SIGMOD Record, March 2019 (Vol. 48, No. 1)

gravity model [25], as the prior for X', and used the £2-distance be-
tween X and the prior as the loss function. Note that in reconstruct-
ing the pairwise distances, efficiency is a concern front-and-center,
especially given the rise of Software Designed Networks (SDNs)
which feature much larger sizes and much more frequent topolog-
ical changes, pushing further the scalability requirements of signal
reconstruction algorithms.

Research Gap: Because of the importance of SRP, there has been
extensive work from multiple communities on finding efficient so-
lutions. To solve the problem efficiently, methods explored in the
recent literature include statistical likelihood based iterative algo-
rithms based on expectation-maximization [5], as well as the use
of linear algebraic techniques such as computing the pseudoinverse
of A [22] or performing Singular Value Decomposition (SVD) on
A, and iterative algorithms for solving the linear system [22]. Yet
even these approaches cannot scale to fully meet the requirements
in practice, especially the traffic reconstruction needs of large-scale
IP networks - which call for a more scalable solution [26].

Our Approach: In this paper, we consider a special case of SRP
where A, X, b are non-negative with A being a sparse binary ma-
trix. Such a setting finds its applications in many domains, as ex-
plained in § 2.1.

Our proposed solution starts with an exact algorithm based on
the transformation of the problem into its Lagrangian dual repre-
sentation. As we shall show in § 6, our algorithm DIRECT, which
directly computes X through the dual representation, already out-
performs commonly used approaches for SRP, as it avoids expen-
sive linear algebraic operations required by the previous solutions.
Next, we investigate whether our approach can be sped up even
further, by replacing exact computations with approximation tech-
niques. This can be useful in applications where the user is willing
to trade accuracy for efficiency. We carefully investigate the com-
putational bottlenecks of DIRECT and find it to be a special case
of matrix multiplication involving a sparse binary matrix with its
transpose. We start by investigating a seemingly straightforward
sampling strategy for approximately computing this matrix multi-
plication, but encounter a negative result. Then, we use the obser-
vation that a small number of cells in the result matrix of the bottle-
neck operation take the bulk of the values, and propose a threshold-
based algorithm for approximating it. Specifically, we reduce the
problem to computing the dot product of two vectors if and only
if their similarity is above a user-provided threshold. Our key idea
here is to leverage various database techniques to speed up the mul-
tiplication operation. We propose a hybrid algorithm based on a
number of techniques originally proposed for computing similarity
joins and selectivity estimation of set similarity queries, resulting
in significant speedup in solving SRP in comparison with the exact
solution.

Experimental Summary: We conduct extensive experiments on
both real-world and synthetic datasets with a special emphasis on
traffic matrix computation. We compare our method against a num-
ber of commonly used approaches such as an efficient quadratic
programming based solver, a two stage approximate approach first
proposed in [25] and one based on compressive sensing. Our exper-
imental results show that our exact algorithm significantly outper-
forms the baselines. Furthermore, our threshold based approxima-
tion approaches inspired from similarity joins provide even more
speedup over DIRECT without resulting in any significant increase
in reconstruction error.

Summary of Contributions:
e We investigate the Signal Reconstruction Problem (SRP) which

SIGMOD Record, March 2019 (Vol. 48, No. 1)

has diverse applications. By using techniques that were origi-
nally pioneered for databases, we dramatically improve the scale
of problems that could be solved.

e We formulate SRP as a Quadratic Programming problem and
derive its Lagrangian dual form and propose an exact algorithm
DIRECT to solve the dual problem. Our algorithm DIRECT al-
ready outperforms commonly used approaches for SRP.

e We identify the computational bottleneck in DIRECT and pro-
pose a threshold-based algorithm for approximating it. We pro-
pose a hybrid algorithm that combines two algorithms that were
designed for efficiently computing set similarity joins.

e We conduct a comprehensive set of experiments on both real and
synthetic datasets that confirm the efficiency and effectiveness of
our approach, and report the results in [1]. Here we provide a
summary of those results.

Paper Organization: We provide the necessary background to
SRP and formally define it in § 2. In § 3, we describe the exact
algorithm DIRECT for solving SRP. In § 4, we show how to ap-
ply approximation using techniques from databases to significantly
speed up the computation. In § 5, we discuss how our approach can
be easily adapted to identify the top-K components of the recon-
structed signal. § 6 describes our experiments followed by related
work in § 7 with § 8 providing the conclusion.

2. PROBLEM FORMULATION

As mentioned in Section 1, we consider a special class of SRP
that has a number of applications in network traffic engineering,
tomographic image reconstruction and many others, discussed in
§ 2.1. We are given a system of linear equations AX = b where
e A€ {1,0}™ ™ is a sparse binary matrix n < m.

e X € R™ is the “signal” to be reconstructed and is a vector of
unknown values.
e b € R"™ is the vector of observations.

Each row in the matrix A corresponds to an equation with each
column corresponding to an unknown variable. When the num-
ber of equations (n) is much smaller than the number of unknowns
(m), the system of linear equations is said to be under-determined
and does not have a unique solution. The solution space can be
represented as a hyperplane in a m’ € [2,m] dimensional vector
space’. Since SRP does not have a unique solution, one must have
auxiliary criteria to choose the best solution from the set of (pos-
sibly infinite) valid solutions. A common approach in SRP is to
provide a prior X’ and the objective is to pick the solution X that
is closest to X’. We study the problem where the objective is to
find the point satisfying AX = b that minimizes the {5 distance
from a prior point X’. Formally the problem is defined as:

min [|[X — X'||2
st. AX = b)

Figure 1 provides an example visualization of the problem in 3
dimensions. The gray plane is the solution space with the prior
marked as a point X’. The intersection of the perpendicular line to
the plane that passes though X' is the point that minimizes || X —
X2

In this paper, we pay attention to the fact that SRP is a special
case of quadratic programming where (a) the constraints are only
in the form of equality, (b) matrix A is sparse, and (c) matrix A is
binary (and hence un-weighted). By leveraging these characteris-
tics, we seek to design more efficient solutions compared with the
baselines that are designed for general cases. Especially, in § 3, af-
ter studying the existing work, we use the dual representative of the

'We assume that the problem has at least one solution.

43

X2

Figure 1: Visualizing the problem

problem to propose an efficient exact algorithm. Later in § 4, we
show how leveraging similarity join techniques help in achieving
significant speed up without sacrificing much accuracy.

2.1 Broad Application Range

SRP covers a broad range of real world problems that use signal
reconstruction. In practice, it is popular to observe low-dimensional
projections in form of (unweighted) aggregates of a high-dimensional
signal vector. For example, in general network flow applications
(such as road traffic estimation [27]), the value on each edge is the
summation of the flows values which includes this edge as part of
the path between them. Of course, a requirement to our problem
is an “expert-provided” prior template, such as gravity model [25]
for the network flow problems. Another major application domain
for SRP problem over aggregates is image reconstruction (§ 2.1.2),
where observations are unweighted projections of unknowns. Im-
age reconstruction has a broad applications ranging from medical
imaging [11, 14], to astronomy [23] and physics [19] and to gas
flow reconstruction [2]. Some of the other applications of SRP, in
general, include radar data reconstruction [18], transmission elec-
tron microscopy [15], and product assortment design [9], to name
a few. To showcase some applications in more detail, we sketch a
few examples in the context of network flow problems and image
reconstruction in the following.

2.1.1 Network Tomography

Traffic matrix computation (the running example): Consider an
IP network with n traffic links and m source-destination traffic
flows (SD flow) between the ingress/egress points, where n <
m. The ingress/egress points can be PoPs (points of presence) or
routers or even IP prefixes depending on the level of granularity re-
quired. The network has a routing policy prescribes a path for each
of the SD flows that can be captured in a #links(n) x # flows(m)
binary matrix A, where the entry Az, j] = 1 if the link ¢ is used
to route the traffic of the j-th SD flow. The matrix A is sparse and
“fat” with more SD flows(columns) than number of links(rows).
Note that, one cannot directly measure each of the SD flows on
a link owing to efficiency reasons. However, one can easily mea-
sure the total volume of the network traffic that passes through a
given link using network protocols such as SNMP. Thus, the load
on each link 7 becomes the observed vector b. To obtain a prior
X', one can use any traffic model such as the popular and intu-
itive gravity model [25]. It assumes independence between source
and destination and states that traffic between any given source s
and destination d is proportional to the product of network traffic
entering at s and that exiting at d.

Traffic analysis attack in P2P networks: In traffic analysis at-
tack, the information leak on traffic data is exploited to expose the
user traffic pattern in P2P networks [10]. Here we propose the fol-
lowing traffic analysis attack that can be modeled to our problem:
Consider an adversary who monitors the link level traffics in a P2P
network. Applying SRP, one can directly identify the volume of
traffic between any pair of users in a P2P network.

44

2.1.2 Image Reconstruction

Image reconstruction [16,24] has a wide range of applications in
different fields such as medical imaging [11, 14], and physics [19].
Given a set of (usually 2D) projection of a (usually 3D) image, the
objective is to reconstruct it. The reconstruction is usually done
with the help of some prior knowledge. For example, knowing that
the 2D projections are taken from a human face, one may use a
template 3D face photo and, among all possible 3D reconstructions
from the 2D images, find the one that is the closest to the template,
making the image reconstruction more effective.

CT Scan: A popular application of SRP is tomographic reconstruc-
tion, which is a multi-dimensional linear inverse problem with wide
range of applications in medical imaging [11,14] such as CT scans
(computed tomography). Informally, a CT scan takes multiple 2D
projections (b) through X-rays from different angles (A) and the
objective is to reconstruct the 3D image from the projections. Note
that many 3D images may produce the same projections necessitat-
ing the use of priors to choose an appropriate reconstruction.

Radio astronomy: In Astronomy, SRP has application for recon-
structing interferometric images where the astrophysical signals are
probed through Fourier measurements. The objective is to recon-
struct the images from the observations — forming a SRP scenario.
Also, the specific prior information about the signals plays an im-
portant role in reconstruction, as mentioned in [23].

3. EXACT SOLUTION FOR SOLVING SRP

In this section, we begin by describing two representative ap-
proaches for solving SRP from prior research and highlight their
shortcomings. We then propose a dual representation of the prob-
lem that can be solved exactly in an efficient manner and already
outperforms the baselines. This alternate formulation has a number
of appealing properties that allows one to leverage various database
techniques for speeding it up.

3.1 Lagrangian Formulation of SRP

In this subsection, we leverage the Lagrangian dual form of SRP
as a special case of quadratic programming, and design an efficient
exact solution forit. ~ For SRP as specified in Equation 1, f(X) =
1XTX — X'7X and g(X) = AX.* Thus, our problem can be
re-written as:

L(X,)\) = %XTX — X'"X 4+ AT (AX —b) @)

Next, we find the stationary point * of Equation 2 in the general
form by taking the derivatives with regard to X and A and setting
them to zero, we get:

X=X —AT(AATY" 1 (AX' —b) 3)

Solving SRP in Dual Form. The stationary point of Equation 2 is
the optimal solution for our problem (Equation 1). In contrast to
prior work, we solve the SRP problem by directly solving Equa-
tion 3. We make two observations. First, the matrix AA” € Z"*"
always has an inverse as it is full-rank. From Figure 1, one can note
that the problem has a unique solution that minimizes the distance
from the prior. It means that AAT is full-rank, because otherwise
the problem was not feasible and would not have a solution. Sec-
ond, Equation 3 does have a matrix inverse operator that is expen-
sive to compute. However, one can avoid taking the inverse of AA”

*Note that min 3 X7 X — X7 X is the same as min || X — X"||.

3Since, looking at Figure 1, Equation 1 has a single optimal point, Equa-
tion 2 has one stationary point which happens to be the saddle point.

SIGMOD Record, March 2019 (Vol. 48, No. 1)

0J0JOJIJOJOJO]I]O0]O B, 7)
0[0[1|0|0|0[0]0]0]0 2
0000010101 (5, 7,9)
0O[T1]0|0|0|O0[T]0]0]0 {1, 6)
(a) (b)

Figure 2: Illustration of the sparse representation of A. (a) Non sparse
representation, (b) Sparse representation

by computing £ in Equation 4, and replacing (AAT) ™' (AX' — b)
by it in Equation 3.

(AAT)E = AX' —b “)

Algorithm 1 provides the pseudocode for DIRECT.

Algorithm 1 DIRECT
Input: A, b, and X’

Output: X

1: t = AAT

20 ta=AX' -

3: Solve system of linear equations: ¢t £ = ta
4: X =X —AT¢

S5: return X

Performance Analysis of DIRECT. Let us now investigate the
performance of our algorithm. Recall that A is a fat matrix with
n < m while X and X’ are m-dimensional vectors, and b is a n-
dimensional vector. Line 1 of Algorithm 1 takes O(n*m) while
Line 2 takes O(nm). Line 3 involves solving a system of lin-
ear equations. A naive way would be to compute the inverse of
t that can take as much as O(n?). However, by observing that ¢ is
sparse, one can use approaches such as Gauss-Jordan elimination
or other iterative methods that are practically much faster for sparse
matrices. Finally, the computation of Line 4 is in O(nm). Look-
ing at DIRECT holistically, one can notice that its computational
bottleneck is Line 1 thereby making the overall complexity to be
O(n*m).

An additional approach to speedup DIRECT is to observe that
matrix A is sparse and thereby store it in a manner that allows
efficient matrix multiplication. Since A is binary (and hence un-
weighted), a natural representation is to store only the indices of
non-zero values. Figures 2a and 2b show the non-sparse and
sparse representation of a matrix A. Note that AAT is symmet-
ric since t[i, 7] and t[j, 7] are obtained by the dot product of rows &
and j of A. Let ! be the number of non-zero elements in each row.
Since A is sparse, | < m, one can design a natural matrix multi-
plication algorithm with time complexity of O(nml) that is orders
of magnitude faster than algorithm such as Strassen algorithm.

4. TRADING OFF ACCURACY WITH EF-
FICIENCY

In many applications of SRP, m is often in O(n?), thereby mak-
ing the computational complexity of DIRECT to be O(n*). The
key bottleneck is the computation of AA”. On the other hand, for
large problem instances, the user may accept trading off accuracy
with efficiency and prefer a close-to-exact solution that is computed
quickly, rather than the expensive exact solution. In this section,
our objective is to speed up DIRECT by computing the bottle-neck
step, i.e., computing AAT, approximately. We show how to lever-
age a threshold-based approach by only computing the values of
matrix AAT that are larger than a certain threshold. We describe
the connection between this problem variant and similarity joins
and propose a hybrid method by adopting two classical algorithms

SIGMOD Record, March 2019 (Vol. 48, No. 1)

designed for similarity estimation, which results in an efficient so-
lution for computing AAT .

4.1 Bounding Values in Matrix AA”

We begin by showing that one can efficiently compute the bound
for each cell value in matrix AA”. Figure 3 shows a sparse matrix
A with 183 rows and 495 columns, in which the non-zero elements
are highlighted in white. Figure 4 shows the non-zero elements in
matrix AAT. We can notice that AA” is square and also sparse
due to the fact that every element of AAT is the dot product of
two sparse vectors (two rows of matrix A). Furthermore, one can
also observe a more subtle phenomenon that we state in Theorem 1
which could used to design an efficient algorithm.

THEOREM 1. Given a sparse binary matrix A, considering the
elements on the diagonal of AAT, i.e., t[i,4], VO < i < n:

o t[i,i] = |A[d]|, where | A[i]| is the number of non-zero elements
in row Ali].

e t[i,i] is an upper bound for the elements in the row t[i] and
the column t[,i); formally, VO < j < n : t[i,j] < t[i,i] and
tli, 3] < ¢4, 5l.

The proof can be found in [1].

Consider two representations of AA” of the example matrix
given in Figure 3. Figure 4 shows all the non-zero elements of
AAT while Figure 5 shows a magnitude-weighted variant wherein
cells with larger values are plotted in brighter colors. Figure 5 vi-
sually shows that the elements on the diagonal are brighter than
the ones in the same row and column as predicted by Theorem 1.
Furthermore, one may notice that most of the non-zero elements
of AAT (in Figure 4) are small values (in Figure 5). This shows
that while there are a reasonable number of non-zero elements, the
number of elements with higher magnitude is often much smaller.
Next, we use this insight along with Theorem 1 for speeding up
DIRECT.

4.2 Threshold Based Computation Of 447

In the previous subsection, we discussed the bound on the cell
values in AAT and showed that a small number of elements in
AAT take the bulk of the value. This is the key in designing a
threshold-based algorithm for computing AA” wherein we only
compute values of AAT that are above a certain threshold. Specif-
ically, we use the elements on the diagonal as an upper-bound and
only compute the elements for which this upper-bound is larger
than a user-specified threshold. Note that, if the threshold is equal
to 1, the algorithm will compute the values of all elements. How-
ever, the user-specified threshold allows additional opportunities
for efficiency.

Algorithm 2 provides the pseudocode for the threshold-based
multiplication of sparse binary matrix A with its transpose. This
algorithm depends on the existence of an oracle called SIM that
given two rows A[i] and A[j], and the threshold 7, returns the dot
product of A[¢] and A[j] if the result is not less than 7.

4.3 Leveraging Similarity Joins for Oracle sim

The database community has extensively studied mechanisms
for computing set similarity for applications such as data clean-
ing [7] where the objective is to efficiently identify the set of tuples
that are “close enough” on multiple attributes. In this subsection,
we describe how to implement the oracle SIM by leveraging prior
research on computing set similarity. Especially, we propose a hy-
brid method that combines the threshold-based similarity joins with
the sketch-based methods to resolve their shortcomings.

Oracle SIM through Set Similarity. Given two rows A[:] and
Alj], and the threshold 7, SIM should find the dot product of A[]

45

Figure 3: An example of the binary sparse matrix A183x495

Algorithm 2 ApproxAAT
Input: Sparse matrix A, Threshold 7
Output: ¢

. F={}

2: fort: =0ton —1do

30 4, = |Afi]

4: if |Afi]] > 7 thenadd i to F
5: end for

6: for every pair i, j € F do

72 tli, j] =t[j, 4] = SIM(ALi], A[j], 7)
8: end for

9: return ¢

and A[j] if it is not less than 7. It is possible to make an interesting
connection between SIM and sets similarity problems as follows.
Let every column in matrix A be an object o in a universe U of m
elements. Every row A[i] represents a set U; in U, where Yo; € U,
o; € U, iff Ali,j] = 1. Equivalently, each row corresponds to
a set U; that stores the indices of the non-zero columns similar to
Figure 2b. Using this transformation, we can see that our objective
is to compute |U; N Uj| for all pairs of sets U; and U; where |U; N
U;| > 7. Note that we represent |U; N U;| by N; ; and |U; U Uj|
by U;,; respectively.

Due to its widespread importance, different versions of this prob-
lem have been extensively studied in the DB community. In this
paper, we consider one exact approach and two approximate ap-
proaches based on threshold-based algorithms [7] and sketch-based
methods [3, 8, 12]. We then compare and contrast the two approx-
imate approaches, describe the scenarios when they provide better
performance, and propose a hybrid algorithm based on these sce-
narios.

Exact Approach : Set Intersection. One can see that when 7 =
1, the problem boils down to computing AAT exactly. This in
turn, boils down to computing the intersection between two sets as
efficiently as possible. The sparse representation of the matrix often
provides the non-zero columns in an ordered manner. The simplest
approaches for finding the intersection of ordered sets is to perform
a linear merge by scanning both the lists in parallel and leveraging
the ordered nature similar to the merge step of merge-sort. One
can also speedup this approach by using sophisticated approaches
such as binary search on one of the lists or using sophisticated data
structures such as treaps or skip-lists. Each of these approaches
allows one to “skip” some elements of a set when necessary.

Approximate Approach : Threshold based Algorithms. Threshold-

based algorithms, such as [7] identify the pair of sets such that their
similarity is more than a given threshold. This has a number of
applications such as data cleaning, deduplication, collaborative fil-
tering, and product recommendation in advertisement where the

46

Figure 4: The non-zero ele- Figure 5:

Magnitude of
ments in AAT for the example weights in AA” for the

of Figure 3 example of Figure 3

objective is to quickly identify the pairs that are highly similar. The
key idea is that if the intersection of two sets is large, the intersec-
tion of small subsets of them is non zero [7]. More precisely, for
two sets U; and U; with size h, if N; ; > 7, any subsets U; C U;
and U} C Uj of size h — 7 + 1 will overlap; i.e., |[U; N Uj| > 0.
Using this idea, while considering an ordering of the objects, the
algorithm first finds the set of candidate pairs that overlap in a sub-
set of size h — 7 + 1. In the second step, the algorithm verifies the
pairs, by removing the false positives.

One can see the effectiveness of this method highly depends on
the value of 7 and, considering the target application, it works well
for the cases that 7 is large. For example, consider a case where
h = 100. When 7 = 99 (i.e., 99% similarity), the first filtering step
needs to compare the subsets of size 2 and is efficient; whereas if
7 = 10, the filtering step needs to compare the subset pairs of size
91, which is close to the entire set. The latrer case is quite possible
in our problem. To understand it better, let us consider matrix A in
Figure 3, while setting 7 equal to 5 in Algorithm 2. Even though
the size of many of the rows is close to the threshold, there are
rows A[i] where |A[i]] is significantly larger than it. For example,
for two rows A[i] and A[j] where |A[i]| > 50 and |A[j]] > 50,
to satisfy the dot product be not less than 7, the filtering step needs
to compare the subsets of size > 44, which is close to the exact
comparison of A[i] and A[j].

Approximate Approach : Sketch based Algorithms. Sketch based
methods such as [3, 8, 12] use a precomputed synopsis such as
a minhash for answering different set aggregates such as Jaccard
similarity. The main idea behind the min-hashing [4] based algo-
rithms is as follows: consider a hash (ordering) of the elements
in U. For each set U;, let hmin(U;) be the element o € U; that
has the minimum hash value. Two sets U; and U; have the same
min-hash, when the element with the smallest hash value belongs
to their intersection. Hence, it is easy to see that the probability
that hmin (U;) = hmin (U;) is equal to B:: , i.e., Jaccard similarity
of U; and U;. Bottom-k sketch [8], a variant of min-hashing picks
the hash of the k& elements in U; with the smallest hash value, as its
signature. The Jaccard similarity of two sets U; and Uj is estimated
as w where kn(i,7) is |he (U;) N hi(U;)|. Bayer et al. [3]
use the bottom-k sketch for estimating the union and intersection
of the sets. Let h; ;[k] be the hash value of the k-th smallest hash
value in hy (U;) U hi(U;). The idea is that the larger the size of a
set is, the smaller the expected value of the k-th element in hash is.
Using the results of [3], mhfkﬁkl]) is an unbiased estimator for U; ;.
Hence the estimation for N;_; is as provided in Equation 5.

_ km(%]) m(k — 1)
E[mixj] - k hz][k]

&)

Estimating U; ; with Equation 5, performs well when U; ; >

SIGMOD Record, March 2019 (Vol. 48, No. 1)

1 [3], i.e., the larger sets. Hence, we combine the threshold-based
and sketch-based algorithms to design the oracle SIM, as a hybrid
method that, based on the sizes of the rows A[i] and A[j], adopts
the threshold-based computation with sketch-based estimation for
computing the dot product of A[i] and A[j]. We consider log(m)
as the threshold to decide which strategy to adopt. Considering the
effectiveness of threshold based approaches when U; and U; are
small and, as a result, the two sets need a large overlap to have the
intersection larger than 7, if |U;| and |U;| are less than log(m),
we choose the threshold-based intersection computation. However,
if the size of U; or U; is more then we use the bottom-k sketch,
while considering k to be log(m). For each element o; € U, we
set h(o;) = j. Hence, for each vector U; the index of the first
log(m) elements in it are its bottom-k sketch. Using this strategy,
Algorithm 3 shows the pseudo code of the oracle SIM.

Given two given sets U; and U; (corresponding to the rows A[i]
and A[j]) together with the threshold 7, the algorithm aims to com-
pute the value of N; j, if it is larger than 7. Combining the two
aforementioned methods, if |U;| and |U;| are more than a value a,
the algorithm uses sampling to estimate N; ;, otherwise it applies
the threshold-based method to compute it. During the sampling,
rather than sampling from U/, the algorithm samples from Uj; to re-
duce the underestimation of probability. In this case, in order to
compute MN;, ;, the algorithm, for each sample, picks a random ob-
ject from U; and check its existence in Uj. It is easy to see it is
an unbiased estimator for MN; ;, where its expected value is N; ;. If
|U;| or |Uj| is less than «, the algorithms applies threshold-based
strategy for computing N; ;. As discussed earlier in this subsection,
in order for N;_ ; to be more than 7, the subsets of size N; ; — 7+ 1
should intersect. Hence, the algorithm first applies the threshold
filtering and only if the two subsets intersect it continues with com-
puting N; ;.

Algorithm 3 SIM
Input: the sets U; and U, Threshold 7
Output: ¢
1: if |U;| > log(m) and |U;| > log(m) then
2: h; = the first k elements in U;
3 h; = the first k elements in U
4 kn(i,5) = |hi 0 Ayl
5: hyj[k] = the first k elements in h; U h;
6.
7
8

kn(i,g) m(k—1)
k Ry ;K]

c:
else
c=0
if |U;| > |U;| then swap U; and U
102 B = ‘Uz‘ — T
11: fork=0topSdo: ifU;k] € Ujthenc=c+1
12: if ¢ = 0 then return 0
13: fork = to|U;| —1do: ifU;[k] € Ujthenc=c+1
14: end if
15: returnc

0 %

Performance Analysis. Algorithm 2 has a time complexity of
O(n + u? min(1, log(m))). where = | {A[i]| [A[i]] > 7}.

S. SCALING SRP TO VERY LARGE SET-
TINGS

Recall that in SRP often n is a low dimensional vector with n <
m. In this subsection we briefly describe how to extend DIRECT
to handle cases where even n is very large (and still n < m). For
example, let n be 10° and m be 10*2. A key aspect of DIRECT is
that it leverages the sparse representation of the matrix (as against
its complete dense representation) for speedup. However, when n

SIGMOD Record, March 2019 (Vol. 48, No. 1)

is very large, even fitting the sparse representation of A into the
memory may not be possible. To see why, even if there is only one
non-zero value in every column, then we use O(m) storage to even
represent this matrix.

Interestingly, the similarity-joins based techniques proposed in
§ 4 do not require to completely materialize even sparse represen-
tation of A for estimating AAT. Also, there are many scenarios
where the user is interested in knowing the values of a subset of
components of the reconstructed signals such as those correspond-
ing to the largest values of the reconstructed signal. We now show
how to adapt our algorithms to handle these scenarios.

Consider Algorithm 1 where the critical step is the first line. Al-
gorithm 3 applies bottom-k sketch for the sets whose size is more
than logm. Thus, choosing the signature size in the bottom-k
sketch to be in O(logm), Algorithm 3 needs at most O(logm)
elements from each row. As a result, Line 1 of DIRECT needs a
representation of size O(n log m) of A. For instance, in our exam-
ple of n = 10° and m = 10", the size of the representative of A
is only in the order of 1 million rows by 40 columns. Also, since
AAT is a sparse matrix, we only store the non-zero values of matrix
t, rather than the complete n by n matrix. Line 2 is the multiplica-
tion of matrix A with X’ whose dimensions are m by 1 followed
by subtracting the n-dimensional result vector from the vector b.
For this line, for each row of A, we use a sample of size O(log m)
for the non-zero elements of the row, while using the values of X’
as the sampling distribution. The result is a representation of size
O(nlogm) of A. Also, rather than loading the complete vector X’
to the memory, in an iterative manner, we bring loadable buckets of
it to the memory, update the calculation for that bucket, and move
to the next one. In Line 4, ¢ is the non-zero elements of AA” and
t'is an by 1 vector, and finding the n by 1 vector £ is doable, using
methods like Gauss-Jordan. Finally, we only limit the calculations
to the variables of interest, or even if the computation of all vari-
ables is required, in an iterative manner, we move a loadable bucket
of them to the memory, compute their values, and move to the next
bucket.

6. EXPERIMENTAL EVALUATION
6.1 Experimental Setup

Hardware and Platform. All our experiments were performed on
a Macintosh machine with a 2.6 GHz CPU and 8GB memory. The
algorithms were implemented using Python2.7 and Matlab.

Datasets. We conducted extensive experiments to demonstrate the
efficacy of our algorithms over graphs with diverse values for num-
ber of nodes, edges and source-destination pairs. Recall that given a
communication network, the size of the routing matrix A is param-
eterized by the number of edges and number of source-destination
pairs - and not by the number of nodes and edges. The size of
SRP that we tackle are 2-3 orders of magnitude larger than prior
work such as [26]. Specifically, we used p2p dataset from SNAP
repository of Stanford university*. The p2p dataset is a snapshot of
the Gnutella network in August 2002 with 10876 nodes and 39994
edges. Nodes represent the hosts and the links represent the con-
nection between the hosts. Each of the derived datasets is a sub-
graph of the overall p2p graph and was obtained by Forest Fire
model [17]. The characteristics of each of these datasets dubbed
p2p-2 and p2p-3 can be found in Table 1.

Constructing Traffic Matrices. Once we sample the network and
obtain a connected graph, we consider all possible source destina-
tion pairs, i.e., #nodesx (#nodes—1), to be as individual flows.

*SNAP Dataset: https://snap.stanford.edu/data/p2p-Gnutella04.html

47

Table 1: Dataset Characteristics

Network | #Nodes | #Edges | #Source-Destination pairs
N 274 281 827
p2p-3 1438 7081 2M

For each source-destination pair we calculated the shortest path be-
tween them (network policies are not considered here as our algo-
rithm is oblivious of the route chosen). Traffic matrix is a collec-
tion of all such routes in the following manner, each of the rows
corresponds to an edge used in routing and each of the columns
corresponds to a source-destination pair. Every cell, c[¢, j] isa’1’
if edge[i] is involved in routing traffic for source-destination[;] else
is assigned a value "0’. A visual glimpse of the routing matrix is
given in Figure 2.

We used a Pareto traffic generation model, a popular stochas-
tic model of the traffic flows for generating self-similar traffic ob-
served in network communication [6]. The distribution is parametr-
ized by a scale parameter x,, (set to 20) and a shape parameter o
(set to 1). x,, is the minimum value of the distribution of traffic
represented by the scale parameter while the shape parameter o in-
dicates the ’steepness of the slope’ of the distribution curve. The
prior to the experiments (X ') was obtained as a function of gravity
model from [25].

6.2 Experimental Results

We compare the exact algorithm DIRECT with the baselines QP
and WLSE [25]. The evaluation was conducted over small scale
synthetic networks. Here we report the comparison results for Ny
(Table 1). Please refer to [1] for the complete experiment results.
As shown in Figure 6, DIRECT significantly outperforms the base-
lines. In addition to comparing with these two baselines, for N1, we
also used compressive sensing [20] for estimating the values of the
source-destination pairs. Since the objective in compressive sens-
ing is the expensive [p-optimization, even for our smallest setting
N it took 23.414 seconds.

We next evaluate the exact version of DIRECT and its approx-
imate counterpart (using Algorithm 2) that leverages techniques
from similarity joins to speed up the computation. We use DIRECT-
E to refer to the exact version of DIRECT and DIRECT-A for its
approximate version. Note that our algorithms take advantage of
the sparse representation of matrix A and can perform the linear
algebraic operations without materializing the entire matrix. We
also evaluate the performance of our algorithms to two different
threshold values of (m/1000) and (m/100), where m is the num-
ber of source-destination pairs. Choosing an appropriate thresh-
old is often domain specific with larger thresholds providing better
speedups. We compare the performance of the algorithms DIRECT-
E and DIRECT-A through two metrics : performance and accu-
racy. We measure the former through execution time. We mea-
sure the accuracy of the signal reconstruction through bucketized
error where we bucketize the source-destination pairs by the ex-
act value of their flows and compute the error of the approximation
algorithm within each bucket. The bucketization is often more il-
luminating for scenarios such as network traffic engineering where
the signal exhibits a heavy tailed distribution and often the practi-
tioner is interested in accurately estimating large flows. After find-
ing the optimal flow assignments using the algorithm DIRECT-E,
we sort the source-destination pairs in descending order, based on
the amount of flow passing through them. For example, let a flow
assignment by DIRECT-E be {(SD: : 3),(SD2 : 24),(SDs :

7),(SD4 : 75),(SDs : 5),(SDe : 12)}. The sorted SD pairs
are {(SD4 : 75),(SD2 : 24),(SD6 : 12),(SD3 : 7),(SD5 :
5),(SDy : 3)}. We then partition the SD pairs into 50 equal
48

size buckets (each bucket contains 2% of SD pairs®). In the pro-
vided example, assume that we partition them into 3 buckets B :
{(SDy4 : 75),(SD2 : 24)}, By : {(SD¢ : 12),(SDs : 7)}, and
Bs : {(SDs : 5),(SD; : 3)}. For every SD pair, we consider
the difference between the values computed by DIRECT-A and the
one by DIRECT-E as the error of that SD pair, and compute the av-
erage for each bucket. In our example, let {(SD; : 5),(SD2 :
24),(SDs : 6),(SD4 : 79),(SDs5 : 5),(SDg : 11)} be the as-
signed values by DIRECT-A. Then the average errors for the buck-
ets B1, B2, and B3 are 2, 1, and 1, respectively. It was observed
in [25] that for many tasks in network traffic engineering such as
routing optimization, even a relative error of few 10s of percent is
considered tolerable.

p2p-3 (2M Source-Destination pairs) This network has 2M source-
destination pairs with 7081 edges sampled from the SNAP p2p
dataset. Figure 7 shows that DIRECT-E takes much as 1500 sec-
onds to compute the exact solution. This is often prohibitive and
simply unacceptable for many traffic engineering tasks. However,
our approximate algorithms can provide the result in as little as 35
seconds. This is a significant reduction in execution time with a
speedup of much as 97% of the running time of DIRECT-E. Fig-
ure 8 shows that the results are very close to the exact answer pro-
duced by DIRECT-E.

7. RELATED WORK

Linear Algebraic Techniques for Solving SRP: There has been
extensive work on solving the system of linear equations using a
wide variety of techniques such as computing the pseudoinverse of
A [22] or performing Singular Value Decomposition (SVD) on A,
and iterative algorithms for solving the linear system [22]. How-
ever, none of these methods scale for large-scale signal reconstruc-
tion problems. A key bottleneck in these approaches is often the
computation of the pseudo inverse for matrix A. Note that any ma-
trix B such that ABA = A is defined as a pseudo inverse for A.
It is possible to identify “the infinitely many possible generalized
inverses” [22], each with its own advantages and disadvantages.
Moore-Penrose Pseudo inverse (MPP) [21] is one of the most well-
known and widely used pseudo inverse. MPP is the pseudo inverse
that has the smallest Frobenius norm, minimizes the least-square
fit in over-determined systems, and finds the shortest solution in
the under-determined ones. However, none of the pseudo-inverse
definitions suits our purpose of finding the solution X that mini-
mizes the /> distance from a prior. Furthermore, computing pseudo
inverses is often done by SVD that is computationally very expen-
sive.

8. CONCLUSION

In this paper, we investigated how a wide ranging problem of
large scale signal reconstruction can benefit from techniques de-
veloped by the database community. Efficiently solving SRP has
number of applications in diverse domains including network traffic
engineering, astronomy, medical imaging etc. We propose an algo-
rithm DIRECT based on the Lagrangian dual form of SRP. We iden-
tify a number of computational bottlenecks in DIRECT and evaluate
the use of database techniques such as sampling and similarity joins
for speeding them up without much loss in accuracy. Our experi-
ments on networks that are orders of magnitude larger than prior
work show the potential of our approach.

>We have found out the knee point of the cumulative flow is around
2%.

SIGMOD Record, March 2019 (Vol. 48, No. 1)

0.35

1500

0.3

0.25 1000

o
Y
time (sec)

time (sec)
o
&

500

e

e

o

a
o

Direct WLSE QP

Figure 6: DIRECT v.s. baselinesin V1 : n = 281 Figure 7: Execution time of DIRECT-E, DIRECT-

and m = 827

9. ACKNOWLEDGMENTS

The work of Abolfazl Asudeh, Azade Nazi, Jees Augustine, and
Gautam Das was supported in part by AT&T, the National Science
Foundation under grant 1343976, and the Army Research Office
under grant W911NF-15-1-0020. Nan Zhang was supported in
part by the National Science Foundation, including under grants
1343976, 1443858, 1624074, 1760059, and by the Army Research
Office under grant W911NF-15-1-0020.

10. REFERENCES

[1] A. Asudeh, A. Nazi, J. Augustine, S. Thirumuruganathan,
N. Zhang, G. Das, and D. Srivastava. Leveraging similarity
joins for signal reconstruction. PVLDB, 11(10), 2018.

[2] Y. Awatsuji, Y. Wang, P. Xia, and O. Matoba. 3d image
reconstruction of transparent gas flow by parallel
phase-shifting digital holography. In WIO, 2016.

[3] K. Beyer, R. Gemulla, P. J. Haas, B. Reinwald, and
Y. Sismanis. Distinct-value synopses for multiset operations.
Communications of the ACM, 52(10):87-95, 2009.

[4] A.Z. Broder. On the resemblance and containment of
documents. In SEQUENCES, pages 21-29. IEEE, 1997.

[5] J. Cao, D. Davis, S. Vander Wiel, and B. Yu. Time-varying
network tomography: router link data. Journal of the
American statistical association, 95(452):1063-1075, 2000.

[6] B. Chandrasekaran. Survey of network traffic models.
Waschington University in St. Louis CSE, 567, 2009.

[7] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator
for similarity joins in data cleaning. In /CDE. IEEE, 2006.

[8] E. Cohen and H. Kaplan. Tighter estimation using bottom k
sketches. PVLDB, 1(1):213-224, 2008.

[9] V.E Farias, S. Jagabathula, and D. Shah. A nonparametric
approach to modeling choice with limited data. Management
science, 59(2):305-322, 2013.

[10] Y. Gong. Identifying p2p users using traffic analysis. 2005.
www.symantec.com/connect/articles/

identifying-p2p-users—-using-traffic-analysis.

[11] P. Grangeat and J.-L. Amans. Three-dimensional image
reconstruction in radiology and nuclear medicine, volume 4.
Springer Science & Business Media, 2013.

[12] M. Hadjieleftheriou, X. Yu, N. Koudas, and D. Srivastava.
Hashed samples: selectivity estimators for set similarity
selection queries. PVLDB, 1(1):201-212, 2008.

[13] P. C. Hansen. Rank-deficient and discrete ill-posed problems:
numerical aspects of linear inversion. SIAM, 1998.

[14] W. T. Hrinivich, D. A. Hoover, K. Surry, C. Edirisinghe,

D. D’Souza, A. Fenster, and E. Wong. Ultrasound guided
high-dose-rate prostate brachytherapy: Live needle

SIGMOD Record, March 2019 (Vol. 48, No. 1)

average flow
o

0 10 20 30
sorted buckets

40 50

Figure 8: Absolute Error of the DIRECT-A (7 =

A (7=2067), and DIRECT-A (7=20672) in p2p-3 20672) in p2p-3

segmentation and 3d image reconstruction using the sagittal

transducer. Brachytherapy, 15:S195, 2016.

S. V. Kalinin, E. Strelcov, A. Belianinov, S. Somnath, R. K.

Vasudevan, E. J. Lingerfelt, R. K. Archibald, C. Chen,

R. Proksch, N. Laanait, et al. Big, deep, and smart data in

scanning probe microscopy, 2016.

P. Kuchment and F. Terzioglu. 3d image reconstruction from

compton camera data. arXiv:1604.03805, 2016.

J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over

time: densification laws, shrinking diameters and possible

explanations. In SIGKDD, pages 177-187. ACM, 2005.

Z.Liu, Z. Shi, M. Jiang, J. Zhang, L. Chen, T. Zhang, and

G. Liu. Using MC algorithm to implement 3d image

reconstruction for yunnan weather radar data. Journal of

Computer and Communications, 5(05), 2017.

R. Massey, J. Rhodes, R. Ellis, N. Scoville, A. Leauthaud,

A. Finoguenov, P. Capak, D. Bacon, H. Aussel, J.-P. Kneib,

et al. Dark matter maps reveal cosmic scaffolding. arXiv

preprint astro-ph/0701594, 2007.

D. Needell and J. A. Tropp. Cosamp: Iterative signal

recovery from incomplete and inaccurate samples. Applied

and Computational Harmonic Analysis, 26(3), 2009.

[21] R. Penrose. A generalized inverse for matrices. In
Mathematical proceedings of the Cambridge philosophical
society, volume 51, pages 406413, 1955.

[22] C. R. Vogel. Computational methods for inverse problems.
SIAM, 2002.

[23] Y. Wiaux, L. Jacques, G. Puy, A. M. Scaife, and
P. Vandergheynst. Compressed sensing imaging techniques
for radio interferometry. Monthly Notices of the Royal
Astronomical Society, 395(3):1733-1742, 2009.

[24] G. L. Zeng. 3d image reconstruction. In Medical Image
Reconstruction, pages 87—-123. Springer, 2010.

[25] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg. Fast
accurate computation of large-scale ip traffic matrices from
link loads. In SIGMETRICS, volume 31, 2003.

[26] Y. Zhang, M. Roughan, C. Lund, and D. Donoho. An
information-theoretic approach to traffic matrix estimation.
In SIGCOMM, pages 301-312. ACM, 2003.

[27] Y. Zhu, Z. Li, H. Zhu, M. Li, and Q. Zhang. A compressive
sensing approach to urban traffic estimation with probe
vehicles. IEEE Transactions on Mobile Computing,
12(11):2289-2302, 2012.

[15]

(16]

(17]

(18]

(19]

(20]

49

